f-stack/dpdk/kernel/linux/kni/ethtool/igb/igb_main.c

10364 lines
281 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*******************************************************************************
Intel(R) Gigabit Ethernet Linux driver
Copyright(c) 2007-2013 Intel Corporation.
Contact Information:
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/tcp.h>
#ifdef NETIF_F_TSO
#include <net/checksum.h>
#ifdef NETIF_F_TSO6
#include <linux/ipv6.h>
#include <net/ip6_checksum.h>
#endif
#endif
#ifdef SIOCGMIIPHY
#include <linux/mii.h>
#endif
#ifdef SIOCETHTOOL
#include <linux/ethtool.h>
#endif
#include <linux/if_vlan.h>
#ifdef CONFIG_PM_RUNTIME
#include <linux/pm_runtime.h>
#endif /* CONFIG_PM_RUNTIME */
#include <linux/if_bridge.h>
#include "igb.h"
#include "igb_vmdq.h"
#include <linux/uio_driver.h>
#if defined(DEBUG) || defined (DEBUG_DUMP) || defined (DEBUG_ICR) || defined(DEBUG_ITR)
#define DRV_DEBUG "_debug"
#else
#define DRV_DEBUG
#endif
#define DRV_HW_PERF
#define VERSION_SUFFIX
#define MAJ 5
#define MIN 0
#define BUILD 6
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." __stringify(BUILD) VERSION_SUFFIX DRV_DEBUG DRV_HW_PERF
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
"Intel(R) Gigabit Ethernet Network Driver";
static const char igb_copyright[] =
"Copyright (c) 2007-2013 Intel Corporation.";
const struct pci_device_id igb_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER) },
/* required last entry */
{0, }
};
//MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
static void igb_set_sriov_capability(struct igb_adapter *adapter) __attribute__((__unused__));
void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
static void igb_setup_mrqc(struct igb_adapter *);
void igb_update_stats(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure(struct igb_adapter *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_set_rx_mode(struct net_device *);
#ifdef HAVE_TIMER_SETUP
static void igb_update_phy_info(struct timer_list *);
static void igb_watchdog(struct timer_list *);
#else
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
#endif
static void igb_watchdog_task(struct work_struct *);
static void igb_dma_err_task(struct work_struct *);
#ifdef HAVE_TIMER_SETUP
static void igb_dma_err_timer(struct timer_list *);
#else
static void igb_dma_err_timer(unsigned long data);
#endif
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
static struct net_device_stats *igb_get_stats(struct net_device *);
static int igb_change_mtu(struct net_device *, int);
void igb_full_sync_mac_table(struct igb_adapter *adapter);
static int igb_set_mac(struct net_device *, void *);
static void igb_set_uta(struct igb_adapter *adapter);
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
static irqreturn_t igb_msix_ring(int irq, void *);
#ifdef IGB_DCA
static void igb_update_dca(struct igb_q_vector *);
static void igb_setup_dca(struct igb_adapter *);
#endif /* IGB_DCA */
static int igb_poll(struct napi_struct *, int);
static bool igb_clean_tx_irq(struct igb_q_vector *);
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
#ifdef HAVE_VLAN_RX_REGISTER
static void igb_vlan_mode(struct net_device *, struct vlan_group *);
#endif
#ifdef HAVE_VLAN_PROTOCOL
static int igb_vlan_rx_add_vid(struct net_device *,
__be16 proto, u16);
static int igb_vlan_rx_kill_vid(struct net_device *,
__be16 proto, u16);
#elif defined HAVE_INT_NDO_VLAN_RX_ADD_VID
#ifdef NETIF_F_HW_VLAN_CTAG_RX
static int igb_vlan_rx_add_vid(struct net_device *,
__always_unused __be16 proto, u16);
static int igb_vlan_rx_kill_vid(struct net_device *,
__always_unused __be16 proto, u16);
#else
static int igb_vlan_rx_add_vid(struct net_device *, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, u16);
#endif
#else
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
#endif
static void igb_restore_vlan(struct igb_adapter *);
void igb_rar_set(struct igb_adapter *adapter, u32 index);
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
static void igb_process_mdd_event(struct igb_adapter *);
#ifdef IFLA_VF_MAX
static int igb_ndo_set_vf_mac( struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
#ifdef HAVE_VF_VLAN_PROTO
int vf, u16 vlan, u8 qos, __be16 vlan_proto);
#else
int vf, u16 vlan, u8 qos);
#endif
#ifdef HAVE_VF_SPOOFCHK_CONFIGURE
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
bool setting);
#endif
#ifdef HAVE_VF_MIN_MAX_TXRATE
static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
#else /* HAVE_VF_MIN_MAX_TXRATE */
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
#endif /* HAVE_VF_MIN_MAX_TXRATE */
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
struct ifla_vf_info *ivi);
static void igb_check_vf_rate_limit(struct igb_adapter *);
#endif
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
#ifdef CONFIG_PM
#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
static int igb_suspend(struct device *dev);
static int igb_resume(struct device *dev);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif /* CONFIG_PM_RUNTIME */
static const struct dev_pm_ops igb_pm_ops = {
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,34)
.suspend = igb_suspend,
.resume = igb_resume,
.freeze = igb_suspend,
.thaw = igb_resume,
.poweroff = igb_suspend,
.restore = igb_resume,
#ifdef CONFIG_PM_RUNTIME
.runtime_suspend = igb_runtime_suspend,
.runtime_resume = igb_runtime_resume,
.runtime_idle = igb_runtime_idle,
#endif
#else /* Linux >= 2.6.34 */
SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
#ifdef CONFIG_PM_RUNTIME
SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
igb_runtime_idle)
#endif /* CONFIG_PM_RUNTIME */
#endif /* Linux version */
};
#else
static int igb_suspend(struct pci_dev *pdev, pm_message_t state);
static int igb_resume(struct pci_dev *pdev);
#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
#endif /* CONFIG_PM */
#ifndef USE_REBOOT_NOTIFIER
static void igb_shutdown(struct pci_dev *);
#else
static int igb_notify_reboot(struct notifier_block *, unsigned long, void *);
static struct notifier_block igb_notifier_reboot = {
.notifier_call = igb_notify_reboot,
.next = NULL,
.priority = 0
};
#endif
#ifdef IGB_DCA
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
.notifier_call = igb_notify_dca,
.next = NULL,
.priority = 0
};
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
#ifdef HAVE_PCI_ERS
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);
static struct pci_error_handlers igb_err_handler = {
.error_detected = igb_io_error_detected,
.slot_reset = igb_io_slot_reset,
.resume = igb_io_resume,
};
#endif
static void igb_init_fw(struct igb_adapter *adapter);
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
static struct pci_driver igb_driver = {
.name = igb_driver_name,
.id_table = igb_pci_tbl,
.probe = igb_probe,
.remove = __devexit_p(igb_remove),
#ifdef CONFIG_PM
#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
.driver.pm = &igb_pm_ops,
#else
.suspend = igb_suspend,
.resume = igb_resume,
#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
#endif /* CONFIG_PM */
#ifndef USE_REBOOT_NOTIFIER
.shutdown = igb_shutdown,
#endif
#ifdef HAVE_PCI_ERS
.err_handler = &igb_err_handler
#endif
};
//MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
//MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
//MODULE_LICENSE("GPL");
//MODULE_VERSION(DRV_VERSION);
static void igb_vfta_set(struct igb_adapter *adapter, u32 vid, bool add)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_host_mng_dhcp_cookie *mng_cookie = &hw->mng_cookie;
u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
u32 vfta;
/*
* if this is the management vlan the only option is to add it in so
* that the management pass through will continue to work
*/
if ((mng_cookie->status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
(vid == mng_cookie->vlan_id))
add = TRUE;
vfta = adapter->shadow_vfta[index];
if (add)
vfta |= mask;
else
vfta &= ~mask;
e1000_write_vfta(hw, index, vfta);
adapter->shadow_vfta[index] = vfta;
}
static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
//module_param(debug, int, 0);
//MODULE_PARM_DESC(debug, "Debug level (0=none, ..., 16=all)");
/**
* igb_init_module - Driver Registration Routine
*
* igb_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
**/
static int __init igb_init_module(void)
{
int ret;
printk(KERN_INFO "%s - version %s\n",
igb_driver_string, igb_driver_version);
printk(KERN_INFO "%s\n", igb_copyright);
#ifdef IGB_HWMON
/* only use IGB_PROCFS if IGB_HWMON is not defined */
#else
#ifdef IGB_PROCFS
if (igb_procfs_topdir_init())
printk(KERN_INFO "Procfs failed to initialize topdir\n");
#endif /* IGB_PROCFS */
#endif /* IGB_HWMON */
#ifdef IGB_DCA
dca_register_notify(&dca_notifier);
#endif
ret = pci_register_driver(&igb_driver);
#ifdef USE_REBOOT_NOTIFIER
if (ret >= 0) {
register_reboot_notifier(&igb_notifier_reboot);
}
#endif
return ret;
}
#undef module_init
#define module_init(x) static int x(void) __attribute__((__unused__));
module_init(igb_init_module);
/**
* igb_exit_module - Driver Exit Cleanup Routine
*
* igb_exit_module is called just before the driver is removed
* from memory.
**/
static void __exit igb_exit_module(void)
{
#ifdef IGB_DCA
dca_unregister_notify(&dca_notifier);
#endif
#ifdef USE_REBOOT_NOTIFIER
unregister_reboot_notifier(&igb_notifier_reboot);
#endif
pci_unregister_driver(&igb_driver);
#ifdef IGB_HWMON
/* only compile IGB_PROCFS if IGB_HWMON is not defined */
#else
#ifdef IGB_PROCFS
igb_procfs_topdir_exit();
#endif /* IGB_PROCFS */
#endif /* IGB_HWMON */
}
#undef module_exit
#define module_exit(x) static void x(void) __attribute__((__unused__));
module_exit(igb_exit_module);
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
* igb_cache_ring_register - Descriptor ring to register mapping
* @adapter: board private structure to initialize
*
* Once we know the feature-set enabled for the device, we'll cache
* the register offset the descriptor ring is assigned to.
**/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
int i = 0, j = 0;
u32 rbase_offset = adapter->vfs_allocated_count;
switch (adapter->hw.mac.type) {
case e1000_82576:
/* The queues are allocated for virtualization such that VF 0
* is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
* In order to avoid collision we start at the first free queue
* and continue consuming queues in the same sequence
*/
if ((adapter->rss_queues > 1) && adapter->vmdq_pools) {
for (; i < adapter->rss_queues; i++)
adapter->rx_ring[i]->reg_idx = rbase_offset +
Q_IDX_82576(i);
}
case e1000_82575:
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
default:
for (; i < adapter->num_rx_queues; i++)
adapter->rx_ring[i]->reg_idx = rbase_offset + i;
for (; j < adapter->num_tx_queues; j++)
adapter->tx_ring[j]->reg_idx = rbase_offset + j;
break;
}
}
static void igb_configure_lli(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 port;
/* LLI should only be enabled for MSI-X or MSI interrupts */
if (!adapter->msix_entries && !(adapter->flags & IGB_FLAG_HAS_MSI))
return;
if (adapter->lli_port) {
/* use filter 0 for port */
port = htons((u16)adapter->lli_port);
E1000_WRITE_REG(hw, E1000_IMIR(0),
(port | E1000_IMIR_PORT_IM_EN));
E1000_WRITE_REG(hw, E1000_IMIREXT(0),
(E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
}
if (adapter->flags & IGB_FLAG_LLI_PUSH) {
/* use filter 1 for push flag */
E1000_WRITE_REG(hw, E1000_IMIR(1),
(E1000_IMIR_PORT_BP | E1000_IMIR_PORT_IM_EN));
E1000_WRITE_REG(hw, E1000_IMIREXT(1),
(E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_PSH));
}
if (adapter->lli_size) {
/* use filter 2 for size */
E1000_WRITE_REG(hw, E1000_IMIR(2),
(E1000_IMIR_PORT_BP | E1000_IMIR_PORT_IM_EN));
E1000_WRITE_REG(hw, E1000_IMIREXT(2),
(adapter->lli_size | E1000_IMIREXT_CTRL_BP));
}
}
/**
* igb_write_ivar - configure ivar for given MSI-X vector
* @hw: pointer to the HW structure
* @msix_vector: vector number we are allocating to a given ring
* @index: row index of IVAR register to write within IVAR table
* @offset: column offset of in IVAR, should be multiple of 8
*
* This function is intended to handle the writing of the IVAR register
* for adapters 82576 and newer. The IVAR table consists of 2 columns,
* each containing an cause allocation for an Rx and Tx ring, and a
* variable number of rows depending on the number of queues supported.
**/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
int index, int offset)
{
u32 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
/* clear any bits that are currently set */
ivar &= ~((u32)0xFF << offset);
/* write vector and valid bit */
ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
}
#define IGB_N0_QUEUE -1
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
struct e1000_hw *hw = &adapter->hw;
int rx_queue = IGB_N0_QUEUE;
int tx_queue = IGB_N0_QUEUE;
u32 msixbm = 0;
if (q_vector->rx.ring)
rx_queue = q_vector->rx.ring->reg_idx;
if (q_vector->tx.ring)
tx_queue = q_vector->tx.ring->reg_idx;
switch (hw->mac.type) {
case e1000_82575:
/* The 82575 assigns vectors using a bitmask, which matches the
bitmask for the EICR/EIMS/EIMC registers. To assign one
or more queues to a vector, we write the appropriate bits
into the MSIXBM register for that vector. */
if (rx_queue > IGB_N0_QUEUE)
msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
if (tx_queue > IGB_N0_QUEUE)
msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
if (!adapter->msix_entries && msix_vector == 0)
msixbm |= E1000_EIMS_OTHER;
E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), msix_vector, msixbm);
q_vector->eims_value = msixbm;
break;
case e1000_82576:
/*
* 82576 uses a table that essentially consists of 2 columns
* with 8 rows. The ordering is column-major so we use the
* lower 3 bits as the row index, and the 4th bit as the
* column offset.
*/
if (rx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
rx_queue & 0x7,
(rx_queue & 0x8) << 1);
if (tx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
tx_queue & 0x7,
((tx_queue & 0x8) << 1) + 8);
q_vector->eims_value = 1 << msix_vector;
break;
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
/*
* On 82580 and newer adapters the scheme is similar to 82576
* however instead of ordering column-major we have things
* ordered row-major. So we traverse the table by using
* bit 0 as the column offset, and the remaining bits as the
* row index.
*/
if (rx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
rx_queue >> 1,
(rx_queue & 0x1) << 4);
if (tx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
tx_queue >> 1,
((tx_queue & 0x1) << 4) + 8);
q_vector->eims_value = 1 << msix_vector;
break;
default:
BUG();
break;
}
/* add q_vector eims value to global eims_enable_mask */
adapter->eims_enable_mask |= q_vector->eims_value;
/* configure q_vector to set itr on first interrupt */
q_vector->set_itr = 1;
}
/**
* igb_configure_msix - Configure MSI-X hardware
*
* igb_configure_msix sets up the hardware to properly
* generate MSI-X interrupts.
**/
static void igb_configure_msix(struct igb_adapter *adapter)
{
u32 tmp;
int i, vector = 0;
struct e1000_hw *hw = &adapter->hw;
adapter->eims_enable_mask = 0;
/* set vector for other causes, i.e. link changes */
switch (hw->mac.type) {
case e1000_82575:
tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
/* enable MSI-X PBA support*/
tmp |= E1000_CTRL_EXT_PBA_CLR;
/* Auto-Mask interrupts upon ICR read. */
tmp |= E1000_CTRL_EXT_EIAME;
tmp |= E1000_CTRL_EXT_IRCA;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
/* enable msix_other interrupt */
E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), vector++,
E1000_EIMS_OTHER);
adapter->eims_other = E1000_EIMS_OTHER;
break;
case e1000_82576:
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
/* Turn on MSI-X capability first, or our settings
* won't stick. And it will take days to debug. */
E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
E1000_GPIE_PBA | E1000_GPIE_EIAME |
E1000_GPIE_NSICR);
/* enable msix_other interrupt */
adapter->eims_other = 1 << vector;
tmp = (vector++ | E1000_IVAR_VALID) << 8;
E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmp);
break;
default:
/* do nothing, since nothing else supports MSI-X */
break;
} /* switch (hw->mac.type) */
adapter->eims_enable_mask |= adapter->eims_other;
for (i = 0; i < adapter->num_q_vectors; i++)
igb_assign_vector(adapter->q_vector[i], vector++);
E1000_WRITE_FLUSH(hw);
}
/**
* igb_request_msix - Initialize MSI-X interrupts
*
* igb_request_msix allocates MSI-X vectors and requests interrupts from the
* kernel.
**/
static int igb_request_msix(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
int i, err = 0, vector = 0, free_vector = 0;
err = request_irq(adapter->msix_entries[vector].vector,
&igb_msix_other, 0, netdev->name, adapter);
if (err)
goto err_out;
for (i = 0; i < adapter->num_q_vectors; i++) {
struct igb_q_vector *q_vector = adapter->q_vector[i];
vector++;
q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
if (q_vector->rx.ring && q_vector->tx.ring)
sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
q_vector->rx.ring->queue_index);
else if (q_vector->tx.ring)
sprintf(q_vector->name, "%s-tx-%u", netdev->name,
q_vector->tx.ring->queue_index);
else if (q_vector->rx.ring)
sprintf(q_vector->name, "%s-rx-%u", netdev->name,
q_vector->rx.ring->queue_index);
else
sprintf(q_vector->name, "%s-unused", netdev->name);
err = request_irq(adapter->msix_entries[vector].vector,
igb_msix_ring, 0, q_vector->name,
q_vector);
if (err)
goto err_free;
}
igb_configure_msix(adapter);
return 0;
err_free:
/* free already assigned IRQs */
free_irq(adapter->msix_entries[free_vector++].vector, adapter);
vector--;
for (i = 0; i < vector; i++) {
free_irq(adapter->msix_entries[free_vector++].vector,
adapter->q_vector[i]);
}
err_out:
return err;
}
static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
if (adapter->msix_entries) {
pci_disable_msix(adapter->pdev);
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
pci_disable_msi(adapter->pdev);
}
}
/**
* igb_free_q_vector - Free memory allocated for specific interrupt vector
* @adapter: board private structure to initialize
* @v_idx: Index of vector to be freed
*
* This function frees the memory allocated to the q_vector. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
if (q_vector->tx.ring)
adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
if (q_vector->rx.ring)
adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
adapter->q_vector[v_idx] = NULL;
netif_napi_del(&q_vector->napi);
#ifndef IGB_NO_LRO
__skb_queue_purge(&q_vector->lrolist.active);
#endif
kfree(q_vector);
}
/**
* igb_free_q_vectors - Free memory allocated for interrupt vectors
* @adapter: board private structure to initialize
*
* This function frees the memory allocated to the q_vectors. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
int v_idx = adapter->num_q_vectors;
adapter->num_tx_queues = 0;
adapter->num_rx_queues = 0;
adapter->num_q_vectors = 0;
while (v_idx--)
igb_free_q_vector(adapter, v_idx);
}
/**
* igb_clear_interrupt_scheme - reset the device to a state of no interrupts
*
* This function resets the device so that it has 0 rx queues, tx queues, and
* MSI-X interrupts allocated.
*/
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
igb_free_q_vectors(adapter);
igb_reset_interrupt_capability(adapter);
}
/**
* igb_process_mdd_event
* @adapter - board private structure
*
* Identify a malicious VF, disable the VF TX/RX queues and log a message.
*/
static void igb_process_mdd_event(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 lvmmc, vfte, vfre, mdfb;
u8 vf_queue;
lvmmc = E1000_READ_REG(hw, E1000_LVMMC);
vf_queue = lvmmc >> 29;
/* VF index cannot be bigger or equal to VFs allocated */
if (vf_queue >= adapter->vfs_allocated_count)
return;
netdev_info(adapter->netdev,
"VF %d misbehaved. VF queues are disabled. "
"VM misbehavior code is 0x%x\n", vf_queue, lvmmc);
/* Disable VFTE and VFRE related bits */
vfte = E1000_READ_REG(hw, E1000_VFTE);
vfte &= ~(1 << vf_queue);
E1000_WRITE_REG(hw, E1000_VFTE, vfte);
vfre = E1000_READ_REG(hw, E1000_VFRE);
vfre &= ~(1 << vf_queue);
E1000_WRITE_REG(hw, E1000_VFRE, vfre);
/* Disable MDFB related bit. Clear on write */
mdfb = E1000_READ_REG(hw, E1000_MDFB);
mdfb |= (1 << vf_queue);
E1000_WRITE_REG(hw, E1000_MDFB, mdfb);
/* Reset the specific VF */
E1000_WRITE_REG(hw, E1000_VTCTRL(vf_queue), E1000_VTCTRL_RST);
}
/**
* igb_disable_mdd
* @adapter - board private structure
*
* Disable MDD behavior in the HW
**/
static void igb_disable_mdd(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 reg;
if ((hw->mac.type != e1000_i350) ||
(hw->mac.type != e1000_i354))
return;
reg = E1000_READ_REG(hw, E1000_DTXCTL);
reg &= (~E1000_DTXCTL_MDP_EN);
E1000_WRITE_REG(hw, E1000_DTXCTL, reg);
}
/**
* igb_enable_mdd
* @adapter - board private structure
*
* Enable the HW to detect malicious driver and sends an interrupt to
* the driver.
**/
static void igb_enable_mdd(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 reg;
/* Only available on i350 device */
if (hw->mac.type != e1000_i350)
return;
reg = E1000_READ_REG(hw, E1000_DTXCTL);
reg |= E1000_DTXCTL_MDP_EN;
E1000_WRITE_REG(hw, E1000_DTXCTL, reg);
}
/**
* igb_reset_sriov_capability - disable SR-IOV if enabled
*
* Attempt to disable single root IO virtualization capabilites present in the
* kernel.
**/
static void igb_reset_sriov_capability(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
/* reclaim resources allocated to VFs */
if (adapter->vf_data) {
if (!pci_vfs_assigned(pdev)) {
/*
* disable iov and allow time for transactions to
* clear
*/
pci_disable_sriov(pdev);
msleep(500);
dev_info(pci_dev_to_dev(pdev), "IOV Disabled\n");
} else {
dev_info(pci_dev_to_dev(pdev), "IOV Not Disabled\n "
"VF(s) are assigned to guests!\n");
}
/* Disable Malicious Driver Detection */
igb_disable_mdd(adapter);
/* free vf data storage */
kfree(adapter->vf_data);
adapter->vf_data = NULL;
/* switch rings back to PF ownership */
E1000_WRITE_REG(hw, E1000_IOVCTL,
E1000_IOVCTL_REUSE_VFQ);
E1000_WRITE_FLUSH(hw);
msleep(100);
}
adapter->vfs_allocated_count = 0;
}
/**
* igb_set_sriov_capability - setup SR-IOV if supported
*
* Attempt to enable single root IO virtualization capabilites present in the
* kernel.
**/
static void igb_set_sriov_capability(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int old_vfs = 0;
int i;
old_vfs = pci_num_vf(pdev);
if (old_vfs) {
dev_info(pci_dev_to_dev(pdev),
"%d pre-allocated VFs found - override "
"max_vfs setting of %d\n", old_vfs,
adapter->vfs_allocated_count);
adapter->vfs_allocated_count = old_vfs;
}
/* no VFs requested, do nothing */
if (!adapter->vfs_allocated_count)
return;
/* allocate vf data storage */
adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
sizeof(struct vf_data_storage),
GFP_KERNEL);
if (adapter->vf_data) {
if (!old_vfs) {
if (pci_enable_sriov(pdev,
adapter->vfs_allocated_count))
goto err_out;
}
for (i = 0; i < adapter->vfs_allocated_count; i++)
igb_vf_configure(adapter, i);
switch (adapter->hw.mac.type) {
case e1000_82576:
case e1000_i350:
/* Enable VM to VM loopback by default */
adapter->flags |= IGB_FLAG_LOOPBACK_ENABLE;
break;
default:
/* Currently no other hardware supports loopback */
break;
}
/* DMA Coalescing is not supported in IOV mode. */
if (adapter->hw.mac.type >= e1000_i350)
adapter->dmac = IGB_DMAC_DISABLE;
if (adapter->hw.mac.type < e1000_i350)
adapter->flags |= IGB_FLAG_DETECT_BAD_DMA;
return;
}
err_out:
kfree(adapter->vf_data);
adapter->vf_data = NULL;
adapter->vfs_allocated_count = 0;
dev_warn(pci_dev_to_dev(pdev),
"Failed to initialize SR-IOV virtualization\n");
}
/**
* igb_set_interrupt_capability - set MSI or MSI-X if supported
*
* Attempt to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
{
struct pci_dev *pdev = adapter->pdev;
int err;
int numvecs, i;
if (!msix)
adapter->int_mode = IGB_INT_MODE_MSI;
/* Number of supported queues. */
adapter->num_rx_queues = adapter->rss_queues;
if (adapter->vmdq_pools > 1)
adapter->num_rx_queues += adapter->vmdq_pools - 1;
#ifdef HAVE_TX_MQ
if (adapter->vmdq_pools)
adapter->num_tx_queues = adapter->vmdq_pools;
else
adapter->num_tx_queues = adapter->num_rx_queues;
#else
adapter->num_tx_queues = max_t(u32, 1, adapter->vmdq_pools);
#endif
switch (adapter->int_mode) {
case IGB_INT_MODE_MSIX:
/* start with one vector for every rx queue */
numvecs = adapter->num_rx_queues;
/* if tx handler is separate add 1 for every tx queue */
if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
numvecs += adapter->num_tx_queues;
/* store the number of vectors reserved for queues */
adapter->num_q_vectors = numvecs;
/* add 1 vector for link status interrupts */
numvecs++;
adapter->msix_entries = kcalloc(numvecs,
sizeof(struct msix_entry),
GFP_KERNEL);
if (adapter->msix_entries) {
for (i = 0; i < numvecs; i++)
adapter->msix_entries[i].entry = i;
#ifdef HAVE_PCI_ENABLE_MSIX
err = pci_enable_msix(pdev,
adapter->msix_entries, numvecs);
#else
err = pci_enable_msix_range(pdev,
adapter->msix_entries,
numvecs,
numvecs);
#endif
if (err == 0)
break;
}
/* MSI-X failed, so fall through and try MSI */
dev_warn(pci_dev_to_dev(pdev), "Failed to initialize MSI-X interrupts. "
"Falling back to MSI interrupts.\n");
igb_reset_interrupt_capability(adapter);
case IGB_INT_MODE_MSI:
if (!pci_enable_msi(pdev))
adapter->flags |= IGB_FLAG_HAS_MSI;
else
dev_warn(pci_dev_to_dev(pdev), "Failed to initialize MSI "
"interrupts. Falling back to legacy "
"interrupts.\n");
/* Fall through */
case IGB_INT_MODE_LEGACY:
/* disable advanced features and set number of queues to 1 */
igb_reset_sriov_capability(adapter);
adapter->vmdq_pools = 0;
adapter->rss_queues = 1;
adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
adapter->num_rx_queues = 1;
adapter->num_tx_queues = 1;
adapter->num_q_vectors = 1;
/* Don't do anything; this is system default */
break;
}
}
static void igb_add_ring(struct igb_ring *ring,
struct igb_ring_container *head)
{
head->ring = ring;
head->count++;
}
/**
* igb_alloc_q_vector - Allocate memory for a single interrupt vector
* @adapter: board private structure to initialize
* @v_count: q_vectors allocated on adapter, used for ring interleaving
* @v_idx: index of vector in adapter struct
* @txr_count: total number of Tx rings to allocate
* @txr_idx: index of first Tx ring to allocate
* @rxr_count: total number of Rx rings to allocate
* @rxr_idx: index of first Rx ring to allocate
*
* We allocate one q_vector. If allocation fails we return -ENOMEM.
**/
static int igb_alloc_q_vector(struct igb_adapter *adapter,
unsigned int v_count, unsigned int v_idx,
unsigned int txr_count, unsigned int txr_idx,
unsigned int rxr_count, unsigned int rxr_idx)
{
struct igb_q_vector *q_vector;
struct igb_ring *ring;
int ring_count, size;
/* igb only supports 1 Tx and/or 1 Rx queue per vector */
if (txr_count > 1 || rxr_count > 1)
return -ENOMEM;
ring_count = txr_count + rxr_count;
size = sizeof(struct igb_q_vector) +
(sizeof(struct igb_ring) * ring_count);
/* allocate q_vector and rings */
q_vector = kzalloc(size, GFP_KERNEL);
if (!q_vector)
return -ENOMEM;
#ifndef IGB_NO_LRO
/* initialize LRO */
__skb_queue_head_init(&q_vector->lrolist.active);
#endif
/* initialize NAPI */
netif_napi_add(adapter->netdev, &q_vector->napi,
igb_poll, 64);
/* tie q_vector and adapter together */
adapter->q_vector[v_idx] = q_vector;
q_vector->adapter = adapter;
/* initialize work limits */
q_vector->tx.work_limit = adapter->tx_work_limit;
/* initialize ITR configuration */
q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
q_vector->itr_val = IGB_START_ITR;
/* initialize pointer to rings */
ring = q_vector->ring;
/* initialize ITR */
if (rxr_count) {
/* rx or rx/tx vector */
if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
q_vector->itr_val = adapter->rx_itr_setting;
} else {
/* tx only vector */
if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
q_vector->itr_val = adapter->tx_itr_setting;
}
if (txr_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* update q_vector Tx values */
igb_add_ring(ring, &q_vector->tx);
/* For 82575, context index must be unique per ring. */
if (adapter->hw.mac.type == e1000_82575)
set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
/* apply Tx specific ring traits */
ring->count = adapter->tx_ring_count;
ring->queue_index = txr_idx;
/* assign ring to adapter */
adapter->tx_ring[txr_idx] = ring;
/* push pointer to next ring */
ring++;
}
if (rxr_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* update q_vector Rx values */
igb_add_ring(ring, &q_vector->rx);
#ifndef HAVE_NDO_SET_FEATURES
/* enable rx checksum */
set_bit(IGB_RING_FLAG_RX_CSUM, &ring->flags);
#endif
/* set flag indicating ring supports SCTP checksum offload */
if (adapter->hw.mac.type >= e1000_82576)
set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
if ((adapter->hw.mac.type == e1000_i350) ||
(adapter->hw.mac.type == e1000_i354))
set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
/* apply Rx specific ring traits */
ring->count = adapter->rx_ring_count;
ring->queue_index = rxr_idx;
/* assign ring to adapter */
adapter->rx_ring[rxr_idx] = ring;
}
return 0;
}
/**
* igb_alloc_q_vectors - Allocate memory for interrupt vectors
* @adapter: board private structure to initialize
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
**/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
int q_vectors = adapter->num_q_vectors;
int rxr_remaining = adapter->num_rx_queues;
int txr_remaining = adapter->num_tx_queues;
int rxr_idx = 0, txr_idx = 0, v_idx = 0;
int err;
if (q_vectors >= (rxr_remaining + txr_remaining)) {
for (; rxr_remaining; v_idx++) {
err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
0, 0, 1, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining--;
rxr_idx++;
}
}
for (; v_idx < q_vectors; v_idx++) {
int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
tqpv, txr_idx, rqpv, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining -= rqpv;
txr_remaining -= tqpv;
rxr_idx++;
txr_idx++;
}
return 0;
err_out:
adapter->num_tx_queues = 0;
adapter->num_rx_queues = 0;
adapter->num_q_vectors = 0;
while (v_idx--)
igb_free_q_vector(adapter, v_idx);
return -ENOMEM;
}
/**
* igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
*
* This function initializes the interrupts and allocates all of the queues.
**/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
{
struct pci_dev *pdev = adapter->pdev;
int err;
igb_set_interrupt_capability(adapter, msix);
err = igb_alloc_q_vectors(adapter);
if (err) {
dev_err(pci_dev_to_dev(pdev), "Unable to allocate memory for vectors\n");
goto err_alloc_q_vectors;
}
igb_cache_ring_register(adapter);
return 0;
err_alloc_q_vectors:
igb_reset_interrupt_capability(adapter);
return err;
}
/**
* igb_request_irq - initialize interrupts
*
* Attempts to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
static int igb_request_irq(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
int err = 0;
if (adapter->msix_entries) {
err = igb_request_msix(adapter);
if (!err)
goto request_done;
/* fall back to MSI */
igb_free_all_tx_resources(adapter);
igb_free_all_rx_resources(adapter);
igb_clear_interrupt_scheme(adapter);
igb_reset_sriov_capability(adapter);
err = igb_init_interrupt_scheme(adapter, false);
if (err)
goto request_done;
igb_setup_all_tx_resources(adapter);
igb_setup_all_rx_resources(adapter);
igb_configure(adapter);
}
igb_assign_vector(adapter->q_vector[0], 0);
if (adapter->flags & IGB_FLAG_HAS_MSI) {
err = request_irq(pdev->irq, &igb_intr_msi, 0,
netdev->name, adapter);
if (!err)
goto request_done;
/* fall back to legacy interrupts */
igb_reset_interrupt_capability(adapter);
adapter->flags &= ~IGB_FLAG_HAS_MSI;
}
err = request_irq(pdev->irq, &igb_intr, IRQF_SHARED,
netdev->name, adapter);
if (err)
dev_err(pci_dev_to_dev(pdev), "Error %d getting interrupt\n",
err);
request_done:
return err;
}
static void igb_free_irq(struct igb_adapter *adapter)
{
if (adapter->msix_entries) {
int vector = 0, i;
free_irq(adapter->msix_entries[vector++].vector, adapter);
for (i = 0; i < adapter->num_q_vectors; i++)
free_irq(adapter->msix_entries[vector++].vector,
adapter->q_vector[i]);
} else {
free_irq(adapter->pdev->irq, adapter);
}
}
/**
* igb_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
**/
static void igb_irq_disable(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
/*
* we need to be careful when disabling interrupts. The VFs are also
* mapped into these registers and so clearing the bits can cause
* issues on the VF drivers so we only need to clear what we set
*/
if (adapter->msix_entries) {
u32 regval = E1000_READ_REG(hw, E1000_EIAM);
E1000_WRITE_REG(hw, E1000_EIAM, regval & ~adapter->eims_enable_mask);
E1000_WRITE_REG(hw, E1000_EIMC, adapter->eims_enable_mask);
regval = E1000_READ_REG(hw, E1000_EIAC);
E1000_WRITE_REG(hw, E1000_EIAC, regval & ~adapter->eims_enable_mask);
}
E1000_WRITE_REG(hw, E1000_IAM, 0);
E1000_WRITE_REG(hw, E1000_IMC, ~0);
E1000_WRITE_FLUSH(hw);
if (adapter->msix_entries) {
int vector = 0, i;
synchronize_irq(adapter->msix_entries[vector++].vector);
for (i = 0; i < adapter->num_q_vectors; i++)
synchronize_irq(adapter->msix_entries[vector++].vector);
} else {
synchronize_irq(adapter->pdev->irq);
}
}
/**
* igb_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
**/
static void igb_irq_enable(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
if (adapter->msix_entries) {
u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
u32 regval = E1000_READ_REG(hw, E1000_EIAC);
E1000_WRITE_REG(hw, E1000_EIAC, regval | adapter->eims_enable_mask);
regval = E1000_READ_REG(hw, E1000_EIAM);
E1000_WRITE_REG(hw, E1000_EIAM, regval | adapter->eims_enable_mask);
E1000_WRITE_REG(hw, E1000_EIMS, adapter->eims_enable_mask);
if (adapter->vfs_allocated_count) {
E1000_WRITE_REG(hw, E1000_MBVFIMR, 0xFF);
ims |= E1000_IMS_VMMB;
if (adapter->mdd)
if ((adapter->hw.mac.type == e1000_i350) ||
(adapter->hw.mac.type == e1000_i354))
ims |= E1000_IMS_MDDET;
}
E1000_WRITE_REG(hw, E1000_IMS, ims);
} else {
E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK |
E1000_IMS_DRSTA);
E1000_WRITE_REG(hw, E1000_IAM, IMS_ENABLE_MASK |
E1000_IMS_DRSTA);
}
}
static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 vid = adapter->hw.mng_cookie.vlan_id;
u16 old_vid = adapter->mng_vlan_id;
if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
/* add VID to filter table */
igb_vfta_set(adapter, vid, TRUE);
adapter->mng_vlan_id = vid;
} else {
adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
}
if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
(vid != old_vid) &&
#ifdef HAVE_VLAN_RX_REGISTER
!vlan_group_get_device(adapter->vlgrp, old_vid)) {
#else
!test_bit(old_vid, adapter->active_vlans)) {
#endif
/* remove VID from filter table */
igb_vfta_set(adapter, old_vid, FALSE);
}
}
/**
* igb_release_hw_control - release control of the h/w to f/w
* @adapter: address of board private structure
*
* igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that the
* driver is no longer loaded.
*
**/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext;
/* Let firmware take over control of h/w */
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
E1000_WRITE_REG(hw, E1000_CTRL_EXT,
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}
/**
* igb_get_hw_control - get control of the h/w from f/w
* @adapter: address of board private structure
*
* igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that
* the driver is loaded.
*
**/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext;
/* Let firmware know the driver has taken over */
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
E1000_WRITE_REG(hw, E1000_CTRL_EXT,
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}
/**
* igb_configure - configure the hardware for RX and TX
* @adapter: private board structure
**/
static void igb_configure(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int i;
igb_get_hw_control(adapter);
igb_set_rx_mode(netdev);
igb_restore_vlan(adapter);
igb_setup_tctl(adapter);
igb_setup_mrqc(adapter);
igb_setup_rctl(adapter);
igb_configure_tx(adapter);
igb_configure_rx(adapter);
e1000_rx_fifo_flush_82575(&adapter->hw);
#ifdef CONFIG_NETDEVICES_MULTIQUEUE
if (adapter->num_tx_queues > 1)
netdev->features |= NETIF_F_MULTI_QUEUE;
else
netdev->features &= ~NETIF_F_MULTI_QUEUE;
#endif
/* call igb_desc_unused which always leaves
* at least 1 descriptor unused to make sure
* next_to_use != next_to_clean */
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igb_ring *ring = adapter->rx_ring[i];
igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
}
}
/**
* igb_power_up_link - Power up the phy/serdes link
* @adapter: address of board private structure
**/
void igb_power_up_link(struct igb_adapter *adapter)
{
e1000_phy_hw_reset(&adapter->hw);
if (adapter->hw.phy.media_type == e1000_media_type_copper)
e1000_power_up_phy(&adapter->hw);
else
e1000_power_up_fiber_serdes_link(&adapter->hw);
}
/**
* igb_power_down_link - Power down the phy/serdes link
* @adapter: address of board private structure
*/
static void igb_power_down_link(struct igb_adapter *adapter)
{
if (adapter->hw.phy.media_type == e1000_media_type_copper)
e1000_power_down_phy(&adapter->hw);
else
e1000_shutdown_fiber_serdes_link(&adapter->hw);
}
/* Detect and switch function for Media Auto Sense */
static void igb_check_swap_media(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext, connsw;
bool swap_now = false;
bool link;
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
connsw = E1000_READ_REG(hw, E1000_CONNSW);
link = igb_has_link(adapter);
(void) link;
/* need to live swap if current media is copper and we have fiber/serdes
* to go to.
*/
if ((hw->phy.media_type == e1000_media_type_copper) &&
(!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
swap_now = true;
} else if (!(connsw & E1000_CONNSW_SERDESD)) {
/* copper signal takes time to appear */
if (adapter->copper_tries < 2) {
adapter->copper_tries++;
connsw |= E1000_CONNSW_AUTOSENSE_CONF;
E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
return;
} else {
adapter->copper_tries = 0;
if ((connsw & E1000_CONNSW_PHYSD) &&
(!(connsw & E1000_CONNSW_PHY_PDN))) {
swap_now = true;
connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
}
}
}
if (swap_now) {
switch (hw->phy.media_type) {
case e1000_media_type_copper:
dev_info(pci_dev_to_dev(adapter->pdev),
"%s:MAS: changing media to fiber/serdes\n",
adapter->netdev->name);
ctrl_ext |=
E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
adapter->flags |= IGB_FLAG_MEDIA_RESET;
adapter->copper_tries = 0;
break;
case e1000_media_type_internal_serdes:
case e1000_media_type_fiber:
dev_info(pci_dev_to_dev(adapter->pdev),
"%s:MAS: changing media to copper\n",
adapter->netdev->name);
ctrl_ext &=
~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
adapter->flags |= IGB_FLAG_MEDIA_RESET;
break;
default:
/* shouldn't get here during regular operation */
dev_err(pci_dev_to_dev(adapter->pdev),
"%s:AMS: Invalid media type found, returning\n",
adapter->netdev->name);
break;
}
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
}
}
#ifdef HAVE_I2C_SUPPORT
/* igb_get_i2c_data - Reads the I2C SDA data bit
* @hw: pointer to hardware structure
* @i2cctl: Current value of I2CCTL register
*
* Returns the I2C data bit value
*/
static int igb_get_i2c_data(void *data)
{
struct igb_adapter *adapter = data;
struct e1000_hw *hw = &adapter->hw;
s32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
return (i2cctl & E1000_I2C_DATA_IN) != 0;
}
/* igb_set_i2c_data - Sets the I2C data bit
* @data: pointer to hardware structure
* @state: I2C data value (0 or 1) to set
*
* Sets the I2C data bit
*/
static void igb_set_i2c_data(void *data, int state)
{
struct igb_adapter *adapter = data;
struct e1000_hw *hw = &adapter->hw;
s32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
if (state)
i2cctl |= E1000_I2C_DATA_OUT;
else
i2cctl &= ~E1000_I2C_DATA_OUT;
i2cctl &= ~E1000_I2C_DATA_OE_N;
i2cctl |= E1000_I2C_CLK_OE_N;
E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
E1000_WRITE_FLUSH(hw);
}
/* igb_set_i2c_clk - Sets the I2C SCL clock
* @data: pointer to hardware structure
* @state: state to set clock
*
* Sets the I2C clock line to state
*/
static void igb_set_i2c_clk(void *data, int state)
{
struct igb_adapter *adapter = data;
struct e1000_hw *hw = &adapter->hw;
s32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
if (state) {
i2cctl |= E1000_I2C_CLK_OUT;
i2cctl &= ~E1000_I2C_CLK_OE_N;
} else {
i2cctl &= ~E1000_I2C_CLK_OUT;
i2cctl &= ~E1000_I2C_CLK_OE_N;
}
E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
E1000_WRITE_FLUSH(hw);
}
/* igb_get_i2c_clk - Gets the I2C SCL clock state
* @data: pointer to hardware structure
*
* Gets the I2C clock state
*/
static int igb_get_i2c_clk(void *data)
{
struct igb_adapter *adapter = data;
struct e1000_hw *hw = &adapter->hw;
s32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
return (i2cctl & E1000_I2C_CLK_IN) != 0;
}
static const struct i2c_algo_bit_data igb_i2c_algo = {
.setsda = igb_set_i2c_data,
.setscl = igb_set_i2c_clk,
.getsda = igb_get_i2c_data,
.getscl = igb_get_i2c_clk,
.udelay = 5,
.timeout = 20,
};
/* igb_init_i2c - Init I2C interface
* @adapter: pointer to adapter structure
*
*/
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
s32 status = E1000_SUCCESS;
/* I2C interface supported on i350 devices */
if (adapter->hw.mac.type != e1000_i350)
return E1000_SUCCESS;
/* Initialize the i2c bus which is controlled by the registers.
* This bus will use the i2c_algo_bit structue that implements
* the protocol through toggling of the 4 bits in the register.
*/
adapter->i2c_adap.owner = THIS_MODULE;
adapter->i2c_algo = igb_i2c_algo;
adapter->i2c_algo.data = adapter;
adapter->i2c_adap.algo_data = &adapter->i2c_algo;
adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
strlcpy(adapter->i2c_adap.name, "igb BB",
sizeof(adapter->i2c_adap.name));
status = i2c_bit_add_bus(&adapter->i2c_adap);
return status;
}
#endif /* HAVE_I2C_SUPPORT */
/**
* igb_up - Open the interface and prepare it to handle traffic
* @adapter: board private structure
**/
int igb_up(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
/* hardware has been reset, we need to reload some things */
igb_configure(adapter);
clear_bit(__IGB_DOWN, &adapter->state);
for (i = 0; i < adapter->num_q_vectors; i++)
napi_enable(&(adapter->q_vector[i]->napi));
if (adapter->msix_entries)
igb_configure_msix(adapter);
else
igb_assign_vector(adapter->q_vector[0], 0);
igb_configure_lli(adapter);
/* Clear any pending interrupts. */
E1000_READ_REG(hw, E1000_ICR);
igb_irq_enable(adapter);
/* notify VFs that reset has been completed */
if (adapter->vfs_allocated_count) {
u32 reg_data = E1000_READ_REG(hw, E1000_CTRL_EXT);
reg_data |= E1000_CTRL_EXT_PFRSTD;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg_data);
}
netif_tx_start_all_queues(adapter->netdev);
if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
schedule_work(&adapter->dma_err_task);
/* start the watchdog. */
hw->mac.get_link_status = 1;
schedule_work(&adapter->watchdog_task);
if ((adapter->flags & IGB_FLAG_EEE) &&
(!hw->dev_spec._82575.eee_disable))
adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
return 0;
}
void igb_down(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 tctl, rctl;
int i;
/* signal that we're down so the interrupt handler does not
* reschedule our watchdog timer */
set_bit(__IGB_DOWN, &adapter->state);
/* disable receives in the hardware */
rctl = E1000_READ_REG(hw, E1000_RCTL);
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
/* flush and sleep below */
netif_tx_stop_all_queues(netdev);
/* disable transmits in the hardware */
tctl = E1000_READ_REG(hw, E1000_TCTL);
tctl &= ~E1000_TCTL_EN;
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
/* flush both disables and wait for them to finish */
E1000_WRITE_FLUSH(hw);
usleep_range(10000, 20000);
for (i = 0; i < adapter->num_q_vectors; i++)
napi_disable(&(adapter->q_vector[i]->napi));
igb_irq_disable(adapter);
adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
del_timer_sync(&adapter->watchdog_timer);
if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
del_timer_sync(&adapter->dma_err_timer);
del_timer_sync(&adapter->phy_info_timer);
netif_carrier_off(netdev);
/* record the stats before reset*/
igb_update_stats(adapter);
adapter->link_speed = 0;
adapter->link_duplex = 0;
#ifdef HAVE_PCI_ERS
if (!pci_channel_offline(adapter->pdev))
igb_reset(adapter);
#else
igb_reset(adapter);
#endif
igb_clean_all_tx_rings(adapter);
igb_clean_all_rx_rings(adapter);
#ifdef IGB_DCA
/* since we reset the hardware DCA settings were cleared */
igb_setup_dca(adapter);
#endif
}
void igb_reinit_locked(struct igb_adapter *adapter)
{
WARN_ON(in_interrupt());
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
usleep_range(1000, 2000);
igb_down(adapter);
igb_up(adapter);
clear_bit(__IGB_RESETTING, &adapter->state);
}
/**
* igb_enable_mas - Media Autosense re-enable after swap
*
* @adapter: adapter struct
**/
static s32 igb_enable_mas(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 connsw;
s32 ret_val = E1000_SUCCESS;
connsw = E1000_READ_REG(hw, E1000_CONNSW);
if (hw->phy.media_type == e1000_media_type_copper) {
/* configure for SerDes media detect */
if (!(connsw & E1000_CONNSW_SERDESD)) {
connsw |= E1000_CONNSW_ENRGSRC;
connsw |= E1000_CONNSW_AUTOSENSE_EN;
E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
E1000_WRITE_FLUSH(hw);
} else if (connsw & E1000_CONNSW_SERDESD) {
/* already SerDes, no need to enable anything */
return ret_val;
} else {
dev_info(pci_dev_to_dev(adapter->pdev),
"%s:MAS: Unable to configure feature, disabling..\n",
adapter->netdev->name);
adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
}
}
return ret_val;
}
void igb_reset(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
struct e1000_mac_info *mac = &hw->mac;
struct e1000_fc_info *fc = &hw->fc;
u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
/* Repartition Pba for greater than 9k mtu
* To take effect CTRL.RST is required.
*/
switch (mac->type) {
case e1000_i350:
case e1000_82580:
case e1000_i354:
pba = E1000_READ_REG(hw, E1000_RXPBS);
pba = e1000_rxpbs_adjust_82580(pba);
break;
case e1000_82576:
pba = E1000_READ_REG(hw, E1000_RXPBS);
pba &= E1000_RXPBS_SIZE_MASK_82576;
break;
case e1000_82575:
case e1000_i210:
case e1000_i211:
default:
pba = E1000_PBA_34K;
break;
}
if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
(mac->type < e1000_82576)) {
/* adjust PBA for jumbo frames */
E1000_WRITE_REG(hw, E1000_PBA, pba);
/* To maintain wire speed transmits, the Tx FIFO should be
* large enough to accommodate two full transmit packets,
* rounded up to the next 1KB and expressed in KB. Likewise,
* the Rx FIFO should be large enough to accommodate at least
* one full receive packet and is similarly rounded up and
* expressed in KB. */
pba = E1000_READ_REG(hw, E1000_PBA);
/* upper 16 bits has Tx packet buffer allocation size in KB */
tx_space = pba >> 16;
/* lower 16 bits has Rx packet buffer allocation size in KB */
pba &= 0xffff;
/* the tx fifo also stores 16 bytes of information about the tx
* but don't include ethernet FCS because hardware appends it */
min_tx_space = (adapter->max_frame_size +
sizeof(union e1000_adv_tx_desc) -
ETH_FCS_LEN) * 2;
min_tx_space = ALIGN(min_tx_space, 1024);
min_tx_space >>= 10;
/* software strips receive CRC, so leave room for it */
min_rx_space = adapter->max_frame_size;
min_rx_space = ALIGN(min_rx_space, 1024);
min_rx_space >>= 10;
/* If current Tx allocation is less than the min Tx FIFO size,
* and the min Tx FIFO size is less than the current Rx FIFO
* allocation, take space away from current Rx allocation */
if (tx_space < min_tx_space &&
((min_tx_space - tx_space) < pba)) {
pba = pba - (min_tx_space - tx_space);
/* if short on rx space, rx wins and must trump tx
* adjustment */
if (pba < min_rx_space)
pba = min_rx_space;
}
E1000_WRITE_REG(hw, E1000_PBA, pba);
}
/* flow control settings */
/* The high water mark must be low enough to fit one full frame
* (or the size used for early receive) above it in the Rx FIFO.
* Set it to the lower of:
* - 90% of the Rx FIFO size, or
* - the full Rx FIFO size minus one full frame */
hwm = min(((pba << 10) * 9 / 10),
((pba << 10) - 2 * adapter->max_frame_size));
fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
fc->low_water = fc->high_water - 16;
fc->pause_time = 0xFFFF;
fc->send_xon = 1;
fc->current_mode = fc->requested_mode;
/* disable receive for all VFs and wait one second */
if (adapter->vfs_allocated_count) {
int i;
/*
* Clear all flags except indication that the PF has set
* the VF MAC addresses administratively
*/
for (i = 0 ; i < adapter->vfs_allocated_count; i++)
adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
/* ping all the active vfs to let them know we are going down */
igb_ping_all_vfs(adapter);
/* disable transmits and receives */
E1000_WRITE_REG(hw, E1000_VFRE, 0);
E1000_WRITE_REG(hw, E1000_VFTE, 0);
}
/* Allow time for pending master requests to run */
e1000_reset_hw(hw);
E1000_WRITE_REG(hw, E1000_WUC, 0);
if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
e1000_setup_init_funcs(hw, TRUE);
igb_check_options(adapter);
e1000_get_bus_info(hw);
adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
}
if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
if (igb_enable_mas(adapter))
dev_err(pci_dev_to_dev(pdev),
"Error enabling Media Auto Sense\n");
}
if (e1000_init_hw(hw))
dev_err(pci_dev_to_dev(pdev), "Hardware Error\n");
/*
* Flow control settings reset on hardware reset, so guarantee flow
* control is off when forcing speed.
*/
if (!hw->mac.autoneg)
e1000_force_mac_fc(hw);
igb_init_dmac(adapter, pba);
/* Re-initialize the thermal sensor on i350 devices. */
if (mac->type == e1000_i350 && hw->bus.func == 0) {
/*
* If present, re-initialize the external thermal sensor
* interface.
*/
if (adapter->ets)
e1000_set_i2c_bb(hw);
e1000_init_thermal_sensor_thresh(hw);
}
/*Re-establish EEE setting */
if (hw->phy.media_type == e1000_media_type_copper) {
switch (mac->type) {
case e1000_i350:
case e1000_i210:
case e1000_i211:
e1000_set_eee_i350(hw);
break;
case e1000_i354:
e1000_set_eee_i354(hw);
break;
default:
break;
}
}
if (!netif_running(adapter->netdev))
igb_power_down_link(adapter);
igb_update_mng_vlan(adapter);
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
E1000_WRITE_REG(hw, E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
#ifdef HAVE_PTP_1588_CLOCK
/* Re-enable PTP, where applicable. */
igb_ptp_reset(adapter);
#endif /* HAVE_PTP_1588_CLOCK */
e1000_get_phy_info(hw);
adapter->devrc++;
}
#ifdef HAVE_NDO_SET_FEATURES
static kni_netdev_features_t igb_fix_features(struct net_device *netdev,
kni_netdev_features_t features)
{
/*
* Since there is no support for separate tx vlan accel
* enabled make sure tx flag is cleared if rx is.
*/
#ifdef NETIF_F_HW_VLAN_CTAG_RX
if (!(features & NETIF_F_HW_VLAN_CTAG_RX))
features &= ~NETIF_F_HW_VLAN_CTAG_TX;
#else
if (!(features & NETIF_F_HW_VLAN_RX))
features &= ~NETIF_F_HW_VLAN_TX;
#endif
/* If Rx checksum is disabled, then LRO should also be disabled */
if (!(features & NETIF_F_RXCSUM))
features &= ~NETIF_F_LRO;
return features;
}
static int igb_set_features(struct net_device *netdev,
kni_netdev_features_t features)
{
u32 changed = netdev->features ^ features;
#ifdef NETIF_F_HW_VLAN_CTAG_RX
if (changed & NETIF_F_HW_VLAN_CTAG_RX)
#else
if (changed & NETIF_F_HW_VLAN_RX)
#endif
igb_vlan_mode(netdev, features);
return 0;
}
#ifdef NTF_SELF
#ifdef USE_CONST_DEV_UC_CHAR
static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr,
#ifdef HAVE_NDO_FDB_ADD_VID
u16 vid,
#endif
#ifdef HAVE_NDO_FDB_ADD_EXTACK
u16 flags,
struct netlink_ext_ack *extack)
#else
u16 flags)
#endif
#else
static int igb_ndo_fdb_add(struct ndmsg *ndm,
struct net_device *dev,
unsigned char *addr,
u16 flags)
#endif
{
struct igb_adapter *adapter = netdev_priv(dev);
struct e1000_hw *hw = &adapter->hw;
int err;
if (!(adapter->vfs_allocated_count))
return -EOPNOTSUPP;
/* Hardware does not support aging addresses so if a
* ndm_state is given only allow permanent addresses
*/
if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
pr_info("%s: FDB only supports static addresses\n",
igb_driver_name);
return -EINVAL;
}
if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
u32 rar_uc_entries = hw->mac.rar_entry_count -
(adapter->vfs_allocated_count + 1);
if (netdev_uc_count(dev) < rar_uc_entries)
err = dev_uc_add_excl(dev, addr);
else
err = -ENOMEM;
} else if (is_multicast_ether_addr(addr)) {
err = dev_mc_add_excl(dev, addr);
} else {
err = -EINVAL;
}
/* Only return duplicate errors if NLM_F_EXCL is set */
if (err == -EEXIST && !(flags & NLM_F_EXCL))
err = 0;
return err;
}
#ifndef USE_DEFAULT_FDB_DEL_DUMP
#ifdef USE_CONST_DEV_UC_CHAR
static int igb_ndo_fdb_del(struct ndmsg *ndm,
struct net_device *dev,
const unsigned char *addr)
#else
static int igb_ndo_fdb_del(struct ndmsg *ndm,
struct net_device *dev,
unsigned char *addr)
#endif
{
struct igb_adapter *adapter = netdev_priv(dev);
int err = -EOPNOTSUPP;
if (ndm->ndm_state & NUD_PERMANENT) {
pr_info("%s: FDB only supports static addresses\n",
igb_driver_name);
return -EINVAL;
}
if (adapter->vfs_allocated_count) {
if (is_unicast_ether_addr(addr))
err = dev_uc_del(dev, addr);
else if (is_multicast_ether_addr(addr))
err = dev_mc_del(dev, addr);
else
err = -EINVAL;
}
return err;
}
static int igb_ndo_fdb_dump(struct sk_buff *skb,
struct netlink_callback *cb,
struct net_device *dev,
int idx)
{
struct igb_adapter *adapter = netdev_priv(dev);
if (adapter->vfs_allocated_count)
idx = ndo_dflt_fdb_dump(skb, cb, dev, idx);
return idx;
}
#endif /* USE_DEFAULT_FDB_DEL_DUMP */
#ifdef HAVE_BRIDGE_ATTRIBS
#ifdef HAVE_NDO_BRIDGE_SET_DEL_LINK_FLAGS
static int igb_ndo_bridge_setlink(struct net_device *dev,
struct nlmsghdr *nlh,
#ifdef HAVE_NDO_BRIDGE_SETLINK_EXTACK
u16 flags, struct netlink_ext_ack *extack)
#else
u16 flags)
#endif
#else
static int igb_ndo_bridge_setlink(struct net_device *dev,
struct nlmsghdr *nlh)
#endif /* HAVE_NDO_BRIDGE_SET_DEL_LINK_FLAGS */
{
struct igb_adapter *adapter = netdev_priv(dev);
struct e1000_hw *hw = &adapter->hw;
struct nlattr *attr, *br_spec;
int rem;
if (!(adapter->vfs_allocated_count))
return -EOPNOTSUPP;
switch (adapter->hw.mac.type) {
case e1000_82576:
case e1000_i350:
case e1000_i354:
break;
default:
return -EOPNOTSUPP;
}
br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
nla_for_each_nested(attr, br_spec, rem) {
__u16 mode;
if (nla_type(attr) != IFLA_BRIDGE_MODE)
continue;
mode = nla_get_u16(attr);
if (mode == BRIDGE_MODE_VEPA) {
e1000_vmdq_set_loopback_pf(hw, 0);
adapter->flags &= ~IGB_FLAG_LOOPBACK_ENABLE;
} else if (mode == BRIDGE_MODE_VEB) {
e1000_vmdq_set_loopback_pf(hw, 1);
adapter->flags |= IGB_FLAG_LOOPBACK_ENABLE;
} else
return -EINVAL;
netdev_info(adapter->netdev, "enabling bridge mode: %s\n",
mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB");
}
return 0;
}
#ifdef HAVE_BRIDGE_FILTER
#ifdef HAVE_NDO_BRIDGE_GETLINK_NLFLAGS
static int igb_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
struct net_device *dev, u32 filter_mask,
int nlflags)
#else
static int igb_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
struct net_device *dev, u32 filter_mask)
#endif /* HAVE_NDO_BRIDGE_GETLINK_NLFLAGS */
#else
static int igb_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
struct net_device *dev)
#endif
{
struct igb_adapter *adapter = netdev_priv(dev);
u16 mode;
if (!(adapter->vfs_allocated_count))
return -EOPNOTSUPP;
if (adapter->flags & IGB_FLAG_LOOPBACK_ENABLE)
mode = BRIDGE_MODE_VEB;
else
mode = BRIDGE_MODE_VEPA;
#ifdef HAVE_NDO_DFLT_BRIDGE_ADD_MASK
#ifdef HAVE_NDO_BRIDGE_GETLINK_NLFLAGS
#ifdef HAVE_NDO_BRIDGE_GETLINK_FILTER_MASK_VLAN_FILL
return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0,
nlflags, filter_mask, NULL);
#else
return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0, nlflags);
#endif /* HAVE_NDO_BRIDGE_GETLINK_FILTER_MASK_VLAN_FILL */
#else
return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0);
#endif /* HAVE_NDO_BRIDGE_GETLINK_NLFLAGS */
#else
return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode);
#endif /* HAVE_NDO_DFLT_BRIDGE_ADD_MASK */
}
#endif /* HAVE_BRIDGE_ATTRIBS */
#endif /* NTF_SELF */
#endif /* HAVE_NDO_SET_FEATURES */
#ifdef HAVE_NET_DEVICE_OPS
static const struct net_device_ops igb_netdev_ops = {
.ndo_open = igb_open,
.ndo_stop = igb_close,
.ndo_start_xmit = igb_xmit_frame,
.ndo_get_stats = igb_get_stats,
.ndo_set_rx_mode = igb_set_rx_mode,
.ndo_set_mac_address = igb_set_mac,
.ndo_change_mtu = igb_change_mtu,
.ndo_do_ioctl = igb_ioctl,
.ndo_tx_timeout = igb_tx_timeout,
.ndo_validate_addr = eth_validate_addr,
.ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
#ifdef IFLA_VF_MAX
.ndo_set_vf_mac = igb_ndo_set_vf_mac,
.ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
#ifdef HAVE_VF_MIN_MAX_TXRATE
.ndo_set_vf_rate = igb_ndo_set_vf_bw,
#else /* HAVE_VF_MIN_MAX_TXRATE */
.ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
#endif /* HAVE_VF_MIN_MAX_TXRATE */
.ndo_get_vf_config = igb_ndo_get_vf_config,
#ifdef HAVE_VF_SPOOFCHK_CONFIGURE
.ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
#endif /* HAVE_VF_SPOOFCHK_CONFIGURE */
#endif /* IFLA_VF_MAX */
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = igb_netpoll,
#endif
#ifdef HAVE_NDO_SET_FEATURES
.ndo_fix_features = igb_fix_features,
.ndo_set_features = igb_set_features,
#endif
#ifdef HAVE_VLAN_RX_REGISTER
.ndo_vlan_rx_register = igb_vlan_mode,
#endif
#ifndef HAVE_RHEL6_NETDEV_OPS_EXT_FDB
#ifdef NTF_SELF
.ndo_fdb_add = igb_ndo_fdb_add,
#ifndef USE_DEFAULT_FDB_DEL_DUMP
.ndo_fdb_del = igb_ndo_fdb_del,
.ndo_fdb_dump = igb_ndo_fdb_dump,
#endif
#endif /* ! HAVE_RHEL6_NETDEV_OPS_EXT_FDB */
#ifdef HAVE_BRIDGE_ATTRIBS
.ndo_bridge_setlink = igb_ndo_bridge_setlink,
.ndo_bridge_getlink = igb_ndo_bridge_getlink,
#endif /* HAVE_BRIDGE_ATTRIBS */
#endif
};
#ifdef CONFIG_IGB_VMDQ_NETDEV
static const struct net_device_ops igb_vmdq_ops = {
.ndo_open = &igb_vmdq_open,
.ndo_stop = &igb_vmdq_close,
.ndo_start_xmit = &igb_vmdq_xmit_frame,
.ndo_get_stats = &igb_vmdq_get_stats,
.ndo_set_rx_mode = &igb_vmdq_set_rx_mode,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = &igb_vmdq_set_mac,
.ndo_change_mtu = &igb_vmdq_change_mtu,
.ndo_tx_timeout = &igb_vmdq_tx_timeout,
.ndo_vlan_rx_register = &igb_vmdq_vlan_rx_register,
.ndo_vlan_rx_add_vid = &igb_vmdq_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = &igb_vmdq_vlan_rx_kill_vid,
};
#endif /* CONFIG_IGB_VMDQ_NETDEV */
#endif /* HAVE_NET_DEVICE_OPS */
#ifdef CONFIG_IGB_VMDQ_NETDEV
void igb_assign_vmdq_netdev_ops(struct net_device *vnetdev)
{
#ifdef HAVE_NET_DEVICE_OPS
vnetdev->netdev_ops = &igb_vmdq_ops;
#else
dev->open = &igb_vmdq_open;
dev->stop = &igb_vmdq_close;
dev->hard_start_xmit = &igb_vmdq_xmit_frame;
dev->get_stats = &igb_vmdq_get_stats;
#ifdef HAVE_SET_RX_MODE
dev->set_rx_mode = &igb_vmdq_set_rx_mode;
#endif
dev->set_multicast_list = &igb_vmdq_set_rx_mode;
dev->set_mac_address = &igb_vmdq_set_mac;
dev->change_mtu = &igb_vmdq_change_mtu;
#ifdef HAVE_TX_TIMEOUT
dev->tx_timeout = &igb_vmdq_tx_timeout;
#endif
#if defined(NETIF_F_HW_VLAN_TX) || defined(NETIF_F_HW_VLAN_CTAG_TX)
dev->vlan_rx_register = &igb_vmdq_vlan_rx_register;
dev->vlan_rx_add_vid = &igb_vmdq_vlan_rx_add_vid;
dev->vlan_rx_kill_vid = &igb_vmdq_vlan_rx_kill_vid;
#endif
#endif
igb_vmdq_set_ethtool_ops(vnetdev);
vnetdev->watchdog_timeo = 5 * HZ;
}
int igb_init_vmdq_netdevs(struct igb_adapter *adapter)
{
int pool, err = 0, base_queue;
struct net_device *vnetdev;
struct igb_vmdq_adapter *vmdq_adapter;
for (pool = 1; pool < adapter->vmdq_pools; pool++) {
int qpp = (!adapter->rss_queues ? 1 : adapter->rss_queues);
base_queue = pool * qpp;
vnetdev = alloc_etherdev(sizeof(struct igb_vmdq_adapter));
if (!vnetdev) {
err = -ENOMEM;
break;
}
vmdq_adapter = netdev_priv(vnetdev);
vmdq_adapter->vnetdev = vnetdev;
vmdq_adapter->real_adapter = adapter;
vmdq_adapter->rx_ring = adapter->rx_ring[base_queue];
vmdq_adapter->tx_ring = adapter->tx_ring[base_queue];
igb_assign_vmdq_netdev_ops(vnetdev);
snprintf(vnetdev->name, IFNAMSIZ, "%sv%d",
adapter->netdev->name, pool);
vnetdev->features = adapter->netdev->features;
#ifdef HAVE_NETDEV_VLAN_FEATURES
vnetdev->vlan_features = adapter->netdev->vlan_features;
#endif
adapter->vmdq_netdev[pool-1] = vnetdev;
err = register_netdev(vnetdev);
if (err)
break;
}
return err;
}
int igb_remove_vmdq_netdevs(struct igb_adapter *adapter)
{
int pool, err = 0;
for (pool = 1; pool < adapter->vmdq_pools; pool++) {
unregister_netdev(adapter->vmdq_netdev[pool-1]);
free_netdev(adapter->vmdq_netdev[pool-1]);
adapter->vmdq_netdev[pool-1] = NULL;
}
return err;
}
#endif /* CONFIG_IGB_VMDQ_NETDEV */
/**
* igb_set_fw_version - Configure version string for ethtool
* @adapter: adapter struct
*
**/
static void igb_set_fw_version(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_fw_version fw;
e1000_get_fw_version(hw, &fw);
switch (hw->mac.type) {
case e1000_i210:
case e1000_i211:
if (!(e1000_get_flash_presence_i210(hw))) {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%2d.%2d-%d",
fw.invm_major, fw.invm_minor, fw.invm_img_type);
break;
}
/* fall through */
default:
/* if option rom is valid, display its version too*/
if (fw.or_valid) {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%d.%d, 0x%08x, %d.%d.%d",
fw.eep_major, fw.eep_minor, fw.etrack_id,
fw.or_major, fw.or_build, fw.or_patch);
/* no option rom */
} else {
if (fw.etrack_id != 0X0000) {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%d.%d, 0x%08x",
fw.eep_major, fw.eep_minor, fw.etrack_id);
} else {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%d.%d.%d",
fw.eep_major, fw.eep_minor, fw.eep_build);
}
}
break;
}
return;
}
/**
* igb_init_mas - init Media Autosense feature if enabled in the NVM
*
* @adapter: adapter struct
**/
static void igb_init_mas(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 eeprom_data;
e1000_read_nvm(hw, NVM_COMPAT, 1, &eeprom_data);
switch (hw->bus.func) {
case E1000_FUNC_0:
if (eeprom_data & IGB_MAS_ENABLE_0)
adapter->flags |= IGB_FLAG_MAS_ENABLE;
break;
case E1000_FUNC_1:
if (eeprom_data & IGB_MAS_ENABLE_1)
adapter->flags |= IGB_FLAG_MAS_ENABLE;
break;
case E1000_FUNC_2:
if (eeprom_data & IGB_MAS_ENABLE_2)
adapter->flags |= IGB_FLAG_MAS_ENABLE;
break;
case E1000_FUNC_3:
if (eeprom_data & IGB_MAS_ENABLE_3)
adapter->flags |= IGB_FLAG_MAS_ENABLE;
break;
default:
/* Shouldn't get here */
dev_err(pci_dev_to_dev(adapter->pdev),
"%s:AMS: Invalid port configuration, returning\n",
adapter->netdev->name);
break;
}
}
/**
* igb_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in igb_pci_tbl
*
* Returns 0 on success, negative on failure
*
* igb_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
**/
static int __devinit igb_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *netdev;
struct igb_adapter *adapter;
struct e1000_hw *hw;
u16 eeprom_data = 0;
u8 pba_str[E1000_PBANUM_LENGTH];
s32 ret_val;
static int global_quad_port_a; /* global quad port a indication */
int i, err, pci_using_dac;
static int cards_found;
err = pci_enable_device_mem(pdev);
if (err)
return err;
pci_using_dac = 0;
err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64));
if (!err) {
err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64));
if (!err)
pci_using_dac = 1;
} else {
err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32));
if (err) {
err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32));
if (err) {
IGB_ERR("No usable DMA configuration, "
"aborting\n");
goto err_dma;
}
}
}
#ifndef HAVE_ASPM_QUIRKS
/* 82575 requires that the pci-e link partner disable the L0s state */
switch (pdev->device) {
case E1000_DEV_ID_82575EB_COPPER:
case E1000_DEV_ID_82575EB_FIBER_SERDES:
case E1000_DEV_ID_82575GB_QUAD_COPPER:
pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S);
default:
break;
}
#endif /* HAVE_ASPM_QUIRKS */
err = pci_request_selected_regions(pdev,
pci_select_bars(pdev,
IORESOURCE_MEM),
igb_driver_name);
if (err)
goto err_pci_reg;
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
err = -ENOMEM;
#ifdef HAVE_TX_MQ
netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
IGB_MAX_TX_QUEUES);
#else
netdev = alloc_etherdev(sizeof(struct igb_adapter));
#endif /* HAVE_TX_MQ */
if (!netdev)
goto err_alloc_etherdev;
SET_MODULE_OWNER(netdev);
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
hw = &adapter->hw;
hw->back = adapter;
adapter->port_num = hw->bus.func;
adapter->msg_enable = (1 << debug) - 1;
#ifdef HAVE_PCI_ERS
err = pci_save_state(pdev);
if (err)
goto err_ioremap;
#endif
err = -EIO;
hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!hw->hw_addr)
goto err_ioremap;
#ifdef HAVE_NET_DEVICE_OPS
netdev->netdev_ops = &igb_netdev_ops;
#else /* HAVE_NET_DEVICE_OPS */
netdev->open = &igb_open;
netdev->stop = &igb_close;
netdev->get_stats = &igb_get_stats;
#ifdef HAVE_SET_RX_MODE
netdev->set_rx_mode = &igb_set_rx_mode;
#endif
netdev->set_multicast_list = &igb_set_rx_mode;
netdev->set_mac_address = &igb_set_mac;
netdev->change_mtu = &igb_change_mtu;
netdev->do_ioctl = &igb_ioctl;
#ifdef HAVE_TX_TIMEOUT
netdev->tx_timeout = &igb_tx_timeout;
#endif
netdev->vlan_rx_register = igb_vlan_mode;
netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
#ifdef CONFIG_NET_POLL_CONTROLLER
netdev->poll_controller = igb_netpoll;
#endif
netdev->hard_start_xmit = &igb_xmit_frame;
#endif /* HAVE_NET_DEVICE_OPS */
igb_set_ethtool_ops(netdev);
#ifdef HAVE_TX_TIMEOUT
netdev->watchdog_timeo = 5 * HZ;
#endif
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
adapter->bd_number = cards_found;
/* setup the private structure */
err = igb_sw_init(adapter);
if (err)
goto err_sw_init;
e1000_get_bus_info(hw);
hw->phy.autoneg_wait_to_complete = FALSE;
hw->mac.adaptive_ifs = FALSE;
/* Copper options */
if (hw->phy.media_type == e1000_media_type_copper) {
hw->phy.mdix = AUTO_ALL_MODES;
hw->phy.disable_polarity_correction = FALSE;
hw->phy.ms_type = e1000_ms_hw_default;
}
if (e1000_check_reset_block(hw))
dev_info(pci_dev_to_dev(pdev),
"PHY reset is blocked due to SOL/IDER session.\n");
/*
* features is initialized to 0 in allocation, it might have bits
* set by igb_sw_init so we should use an or instead of an
* assignment.
*/
netdev->features |= NETIF_F_SG |
NETIF_F_IP_CSUM |
#ifdef NETIF_F_IPV6_CSUM
NETIF_F_IPV6_CSUM |
#endif
#ifdef NETIF_F_TSO
NETIF_F_TSO |
#ifdef NETIF_F_TSO6
NETIF_F_TSO6 |
#endif
#endif /* NETIF_F_TSO */
#ifdef NETIF_F_RXHASH
NETIF_F_RXHASH |
#endif
NETIF_F_RXCSUM |
#ifdef NETIF_F_HW_VLAN_CTAG_RX
NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_TX;
#else
NETIF_F_HW_VLAN_RX |
NETIF_F_HW_VLAN_TX;
#endif
if (hw->mac.type >= e1000_82576)
netdev->features |= NETIF_F_SCTP_CSUM;
#ifdef HAVE_NDO_SET_FEATURES
/* copy netdev features into list of user selectable features */
netdev->hw_features |= netdev->features;
#ifndef IGB_NO_LRO
/* give us the option of enabling LRO later */
netdev->hw_features |= NETIF_F_LRO;
#endif
#else
#ifdef NETIF_F_GRO
/* this is only needed on kernels prior to 2.6.39 */
netdev->features |= NETIF_F_GRO;
#endif
#endif
/* set this bit last since it cannot be part of hw_features */
#ifdef NETIF_F_HW_VLAN_CTAG_FILTER
netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
#else
netdev->features |= NETIF_F_HW_VLAN_FILTER;
#endif
#ifdef HAVE_NETDEV_VLAN_FEATURES
netdev->vlan_features |= NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_IP_CSUM |
NETIF_F_IPV6_CSUM |
NETIF_F_SG;
#endif
if (pci_using_dac)
netdev->features |= NETIF_F_HIGHDMA;
adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
#ifdef DEBUG
if (adapter->dmac != IGB_DMAC_DISABLE)
printk("%s: DMA Coalescing is enabled..\n", netdev->name);
#endif
/* before reading the NVM, reset the controller to put the device in a
* known good starting state */
e1000_reset_hw(hw);
/* make sure the NVM is good */
if (e1000_validate_nvm_checksum(hw) < 0) {
dev_err(pci_dev_to_dev(pdev), "The NVM Checksum Is Not"
" Valid\n");
err = -EIO;
goto err_eeprom;
}
/* copy the MAC address out of the NVM */
if (e1000_read_mac_addr(hw))
dev_err(pci_dev_to_dev(pdev), "NVM Read Error\n");
memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
#ifdef ETHTOOL_GPERMADDR
memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->perm_addr)) {
#else
if (!is_valid_ether_addr(netdev->dev_addr)) {
#endif
dev_err(pci_dev_to_dev(pdev), "Invalid MAC Address\n");
err = -EIO;
goto err_eeprom;
}
memcpy(&adapter->mac_table[0].addr, hw->mac.addr, netdev->addr_len);
adapter->mac_table[0].queue = adapter->vfs_allocated_count;
adapter->mac_table[0].state = (IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE);
igb_rar_set(adapter, 0);
/* get firmware version for ethtool -i */
igb_set_fw_version(adapter);
/* Check if Media Autosense is enabled */
if (hw->mac.type == e1000_82580)
igb_init_mas(adapter);
#ifdef HAVE_TIMER_SETUP
timer_setup(&adapter->watchdog_timer, &igb_watchdog, 0);
if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
timer_setup(&adapter->dma_err_timer, &igb_dma_err_timer, 0);
timer_setup(&adapter->phy_info_timer, &igb_update_phy_info, 0);
#else
setup_timer(&adapter->watchdog_timer, &igb_watchdog,
(unsigned long) adapter);
if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
setup_timer(&adapter->dma_err_timer, &igb_dma_err_timer,
(unsigned long) adapter);
setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
(unsigned long) adapter);
#endif
INIT_WORK(&adapter->reset_task, igb_reset_task);
INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
INIT_WORK(&adapter->dma_err_task, igb_dma_err_task);
/* Initialize link properties that are user-changeable */
adapter->fc_autoneg = true;
hw->mac.autoneg = true;
hw->phy.autoneg_advertised = 0x2f;
hw->fc.requested_mode = e1000_fc_default;
hw->fc.current_mode = e1000_fc_default;
e1000_validate_mdi_setting(hw);
/* By default, support wake on port A */
if (hw->bus.func == 0)
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
/* Check the NVM for wake support for non-port A ports */
if (hw->mac.type >= e1000_82580)
hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
&eeprom_data);
else if (hw->bus.func == 1)
e1000_read_nvm(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
if (eeprom_data & IGB_EEPROM_APME)
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
/* now that we have the eeprom settings, apply the special cases where
* the eeprom may be wrong or the board simply won't support wake on
* lan on a particular port */
switch (pdev->device) {
case E1000_DEV_ID_82575GB_QUAD_COPPER:
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
break;
case E1000_DEV_ID_82575EB_FIBER_SERDES:
case E1000_DEV_ID_82576_FIBER:
case E1000_DEV_ID_82576_SERDES:
/* Wake events only supported on port A for dual fiber
* regardless of eeprom setting */
if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FUNC_1)
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
break;
case E1000_DEV_ID_82576_QUAD_COPPER:
case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
/* if quad port adapter, disable WoL on all but port A */
if (global_quad_port_a != 0)
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
else
adapter->flags |= IGB_FLAG_QUAD_PORT_A;
/* Reset for multiple quad port adapters */
if (++global_quad_port_a == 4)
global_quad_port_a = 0;
break;
default:
/* If the device can't wake, don't set software support */
if (!device_can_wakeup(&adapter->pdev->dev))
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
break;
}
/* initialize the wol settings based on the eeprom settings */
if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
adapter->wol |= E1000_WUFC_MAG;
/* Some vendors want WoL disabled by default, but still supported */
if ((hw->mac.type == e1000_i350) &&
(pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
adapter->wol = 0;
}
device_set_wakeup_enable(pci_dev_to_dev(adapter->pdev),
adapter->flags & IGB_FLAG_WOL_SUPPORTED);
/* reset the hardware with the new settings */
igb_reset(adapter);
adapter->devrc = 0;
#ifdef HAVE_I2C_SUPPORT
/* Init the I2C interface */
err = igb_init_i2c(adapter);
if (err) {
dev_err(&pdev->dev, "failed to init i2c interface\n");
goto err_eeprom;
}
#endif /* HAVE_I2C_SUPPORT */
/* let the f/w know that the h/w is now under the control of the
* driver. */
igb_get_hw_control(adapter);
strncpy(netdev->name, "eth%d", IFNAMSIZ);
err = register_netdev(netdev);
if (err)
goto err_register;
#ifdef CONFIG_IGB_VMDQ_NETDEV
err = igb_init_vmdq_netdevs(adapter);
if (err)
goto err_register;
#endif
/* carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
#ifdef IGB_DCA
if (dca_add_requester(&pdev->dev) == E1000_SUCCESS) {
adapter->flags |= IGB_FLAG_DCA_ENABLED;
dev_info(pci_dev_to_dev(pdev), "DCA enabled\n");
igb_setup_dca(adapter);
}
#endif
#ifdef HAVE_PTP_1588_CLOCK
/* do hw tstamp init after resetting */
igb_ptp_init(adapter);
#endif /* HAVE_PTP_1588_CLOCK */
dev_info(pci_dev_to_dev(pdev), "Intel(R) Gigabit Ethernet Network Connection\n");
/* print bus type/speed/width info */
dev_info(pci_dev_to_dev(pdev), "%s: (PCIe:%s:%s) ",
netdev->name,
((hw->bus.speed == e1000_bus_speed_2500) ? "2.5GT/s" :
(hw->bus.speed == e1000_bus_speed_5000) ? "5.0GT/s" :
(hw->mac.type == e1000_i354) ? "integrated" :
"unknown"),
((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
(hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
(hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
(hw->mac.type == e1000_i354) ? "integrated" :
"unknown"));
dev_info(pci_dev_to_dev(pdev), "%s: MAC: ", netdev->name);
for (i = 0; i < 6; i++)
printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
ret_val = e1000_read_pba_string(hw, pba_str, E1000_PBANUM_LENGTH);
if (ret_val)
strncpy(pba_str, "Unknown", sizeof(pba_str) - 1);
dev_info(pci_dev_to_dev(pdev), "%s: PBA No: %s\n", netdev->name,
pba_str);
/* Initialize the thermal sensor on i350 devices. */
if (hw->mac.type == e1000_i350) {
if (hw->bus.func == 0) {
u16 ets_word;
/*
* Read the NVM to determine if this i350 device
* supports an external thermal sensor.
*/
e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_word);
if (ets_word != 0x0000 && ets_word != 0xFFFF)
adapter->ets = true;
else
adapter->ets = false;
}
#ifdef IGB_HWMON
igb_sysfs_init(adapter);
#else
#ifdef IGB_PROCFS
igb_procfs_init(adapter);
#endif /* IGB_PROCFS */
#endif /* IGB_HWMON */
} else {
adapter->ets = false;
}
if (hw->phy.media_type == e1000_media_type_copper) {
switch (hw->mac.type) {
case e1000_i350:
case e1000_i210:
case e1000_i211:
/* Enable EEE for internal copper PHY devices */
err = e1000_set_eee_i350(hw);
if (!err &&
(adapter->flags & IGB_FLAG_EEE))
adapter->eee_advert =
MDIO_EEE_100TX | MDIO_EEE_1000T;
break;
case e1000_i354:
if ((E1000_READ_REG(hw, E1000_CTRL_EXT)) &
(E1000_CTRL_EXT_LINK_MODE_SGMII)) {
err = e1000_set_eee_i354(hw);
if ((!err) &&
(adapter->flags & IGB_FLAG_EEE))
adapter->eee_advert =
MDIO_EEE_100TX | MDIO_EEE_1000T;
}
break;
default:
break;
}
}
/* send driver version info to firmware */
if (hw->mac.type >= e1000_i350)
igb_init_fw(adapter);
#ifndef IGB_NO_LRO
if (netdev->features & NETIF_F_LRO)
dev_info(pci_dev_to_dev(pdev), "Internal LRO is enabled \n");
else
dev_info(pci_dev_to_dev(pdev), "LRO is disabled \n");
#endif
dev_info(pci_dev_to_dev(pdev),
"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
adapter->msix_entries ? "MSI-X" :
(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
adapter->num_rx_queues, adapter->num_tx_queues);
cards_found++;
pm_runtime_put_noidle(&pdev->dev);
return 0;
err_register:
igb_release_hw_control(adapter);
#ifdef HAVE_I2C_SUPPORT
memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
#endif /* HAVE_I2C_SUPPORT */
err_eeprom:
if (!e1000_check_reset_block(hw))
e1000_phy_hw_reset(hw);
if (hw->flash_address)
iounmap(hw->flash_address);
err_sw_init:
igb_clear_interrupt_scheme(adapter);
igb_reset_sriov_capability(adapter);
iounmap(hw->hw_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_selected_regions(pdev,
pci_select_bars(pdev, IORESOURCE_MEM));
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
#ifdef HAVE_I2C_SUPPORT
/*
* igb_remove_i2c - Cleanup I2C interface
* @adapter: pointer to adapter structure
*
*/
static void igb_remove_i2c(struct igb_adapter *adapter)
{
/* free the adapter bus structure */
i2c_del_adapter(&adapter->i2c_adap);
}
#endif /* HAVE_I2C_SUPPORT */
/**
* igb_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* igb_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void __devexit igb_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
pm_runtime_get_noresume(&pdev->dev);
#ifdef HAVE_I2C_SUPPORT
igb_remove_i2c(adapter);
#endif /* HAVE_I2C_SUPPORT */
#ifdef HAVE_PTP_1588_CLOCK
igb_ptp_stop(adapter);
#endif /* HAVE_PTP_1588_CLOCK */
/* flush_scheduled work may reschedule our watchdog task, so
* explicitly disable watchdog tasks from being rescheduled */
set_bit(__IGB_DOWN, &adapter->state);
del_timer_sync(&adapter->watchdog_timer);
if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
del_timer_sync(&adapter->dma_err_timer);
del_timer_sync(&adapter->phy_info_timer);
flush_scheduled_work();
#ifdef IGB_DCA
if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
dev_info(pci_dev_to_dev(pdev), "DCA disabled\n");
dca_remove_requester(&pdev->dev);
adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
E1000_WRITE_REG(hw, E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_DISABLE);
}
#endif
/* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant. */
igb_release_hw_control(adapter);
unregister_netdev(netdev);
#ifdef CONFIG_IGB_VMDQ_NETDEV
igb_remove_vmdq_netdevs(adapter);
#endif
igb_clear_interrupt_scheme(adapter);
igb_reset_sriov_capability(adapter);
iounmap(hw->hw_addr);
if (hw->flash_address)
iounmap(hw->flash_address);
pci_release_selected_regions(pdev,
pci_select_bars(pdev, IORESOURCE_MEM));
#ifdef IGB_HWMON
igb_sysfs_exit(adapter);
#else
#ifdef IGB_PROCFS
igb_procfs_exit(adapter);
#endif /* IGB_PROCFS */
#endif /* IGB_HWMON */
kfree(adapter->mac_table);
kfree(adapter->shadow_vfta);
free_netdev(netdev);
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
/**
* igb_sw_init - Initialize general software structures (struct igb_adapter)
* @adapter: board private structure to initialize
*
* igb_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int igb_sw_init(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_device_id = pdev->subsystem_device;
pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
/* set default ring sizes */
adapter->tx_ring_count = IGB_DEFAULT_TXD;
adapter->rx_ring_count = IGB_DEFAULT_RXD;
/* set default work limits */
adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
VLAN_HLEN;
/* Initialize the hardware-specific values */
if (e1000_setup_init_funcs(hw, TRUE)) {
dev_err(pci_dev_to_dev(pdev), "Hardware Initialization Failure\n");
return -EIO;
}
adapter->mac_table = kzalloc(sizeof(struct igb_mac_addr) *
hw->mac.rar_entry_count,
GFP_ATOMIC);
/* Setup and initialize a copy of the hw vlan table array */
adapter->shadow_vfta = kzalloc(sizeof(u32) * E1000_VFTA_ENTRIES,
GFP_ATOMIC);
#ifdef NO_KNI
/* These calls may decrease the number of queues */
if (hw->mac.type < e1000_i210) {
igb_set_sriov_capability(adapter);
}
if (igb_init_interrupt_scheme(adapter, true)) {
dev_err(pci_dev_to_dev(pdev), "Unable to allocate memory for queues\n");
return -ENOMEM;
}
/* Explicitly disable IRQ since the NIC can be in any state. */
igb_irq_disable(adapter);
set_bit(__IGB_DOWN, &adapter->state);
#endif
return 0;
}
/**
* igb_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
**/
static int __igb_open(struct net_device *netdev, bool resuming)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
#ifdef CONFIG_PM_RUNTIME
struct pci_dev *pdev = adapter->pdev;
#endif /* CONFIG_PM_RUNTIME */
int err;
int i;
/* disallow open during test */
if (test_bit(__IGB_TESTING, &adapter->state)) {
WARN_ON(resuming);
return -EBUSY;
}
#ifdef CONFIG_PM_RUNTIME
if (!resuming)
pm_runtime_get_sync(&pdev->dev);
#endif /* CONFIG_PM_RUNTIME */
netif_carrier_off(netdev);
/* allocate transmit descriptors */
err = igb_setup_all_tx_resources(adapter);
if (err)
goto err_setup_tx;
/* allocate receive descriptors */
err = igb_setup_all_rx_resources(adapter);
if (err)
goto err_setup_rx;
igb_power_up_link(adapter);
/* before we allocate an interrupt, we must be ready to handle it.
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
* as soon as we call pci_request_irq, so we have to setup our
* clean_rx handler before we do so. */
igb_configure(adapter);
err = igb_request_irq(adapter);
if (err)
goto err_req_irq;
/* Notify the stack of the actual queue counts. */
netif_set_real_num_tx_queues(netdev,
adapter->vmdq_pools ? 1 :
adapter->num_tx_queues);
err = netif_set_real_num_rx_queues(netdev,
adapter->vmdq_pools ? 1 :
adapter->num_rx_queues);
if (err)
goto err_set_queues;
/* From here on the code is the same as igb_up() */
clear_bit(__IGB_DOWN, &adapter->state);
for (i = 0; i < adapter->num_q_vectors; i++)
napi_enable(&(adapter->q_vector[i]->napi));
igb_configure_lli(adapter);
/* Clear any pending interrupts. */
E1000_READ_REG(hw, E1000_ICR);
igb_irq_enable(adapter);
/* notify VFs that reset has been completed */
if (adapter->vfs_allocated_count) {
u32 reg_data = E1000_READ_REG(hw, E1000_CTRL_EXT);
reg_data |= E1000_CTRL_EXT_PFRSTD;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg_data);
}
netif_tx_start_all_queues(netdev);
if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
schedule_work(&adapter->dma_err_task);
/* start the watchdog. */
hw->mac.get_link_status = 1;
schedule_work(&adapter->watchdog_task);
return E1000_SUCCESS;
err_set_queues:
igb_free_irq(adapter);
err_req_irq:
igb_release_hw_control(adapter);
igb_power_down_link(adapter);
igb_free_all_rx_resources(adapter);
err_setup_rx:
igb_free_all_tx_resources(adapter);
err_setup_tx:
igb_reset(adapter);
#ifdef CONFIG_PM_RUNTIME
if (!resuming)
pm_runtime_put(&pdev->dev);
#endif /* CONFIG_PM_RUNTIME */
return err;
}
static int igb_open(struct net_device *netdev)
{
return __igb_open(netdev, false);
}
/**
* igb_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the driver's control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
**/
static int __igb_close(struct net_device *netdev, bool suspending)
{
struct igb_adapter *adapter = netdev_priv(netdev);
#ifdef CONFIG_PM_RUNTIME
struct pci_dev *pdev = adapter->pdev;
#endif /* CONFIG_PM_RUNTIME */
WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
#ifdef CONFIG_PM_RUNTIME
if (!suspending)
pm_runtime_get_sync(&pdev->dev);
#endif /* CONFIG_PM_RUNTIME */
igb_down(adapter);
igb_release_hw_control(adapter);
igb_free_irq(adapter);
igb_free_all_tx_resources(adapter);
igb_free_all_rx_resources(adapter);
#ifdef CONFIG_PM_RUNTIME
if (!suspending)
pm_runtime_put_sync(&pdev->dev);
#endif /* CONFIG_PM_RUNTIME */
return 0;
}
static int igb_close(struct net_device *netdev)
{
return __igb_close(netdev, false);
}
/**
* igb_setup_tx_resources - allocate Tx resources (Descriptors)
* @tx_ring: tx descriptor ring (for a specific queue) to setup
*
* Return 0 on success, negative on failure
**/
int igb_setup_tx_resources(struct igb_ring *tx_ring)
{
struct device *dev = tx_ring->dev;
int size;
size = sizeof(struct igb_tx_buffer) * tx_ring->count;
tx_ring->tx_buffer_info = vzalloc(size);
if (!tx_ring->tx_buffer_info)
goto err;
/* round up to nearest 4K */
tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
&tx_ring->dma, GFP_KERNEL);
if (!tx_ring->desc)
goto err;
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
return 0;
err:
vfree(tx_ring->tx_buffer_info);
dev_err(dev,
"Unable to allocate memory for the transmit descriptor ring\n");
return -ENOMEM;
}
/**
* igb_setup_all_tx_resources - wrapper to allocate Tx resources
* (Descriptors) for all queues
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int i, err = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
err = igb_setup_tx_resources(adapter->tx_ring[i]);
if (err) {
dev_err(pci_dev_to_dev(pdev),
"Allocation for Tx Queue %u failed\n", i);
for (i--; i >= 0; i--)
igb_free_tx_resources(adapter->tx_ring[i]);
break;
}
}
return err;
}
/**
* igb_setup_tctl - configure the transmit control registers
* @adapter: Board private structure
**/
void igb_setup_tctl(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 tctl;
/* disable queue 0 which is enabled by default on 82575 and 82576 */
E1000_WRITE_REG(hw, E1000_TXDCTL(0), 0);
/* Program the Transmit Control Register */
tctl = E1000_READ_REG(hw, E1000_TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
e1000_config_collision_dist(hw);
/* Enable transmits */
tctl |= E1000_TCTL_EN;
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
}
static u32 igb_tx_wthresh(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
switch (hw->mac.type) {
case e1000_i354:
return 4;
case e1000_82576:
if (adapter->msix_entries)
return 1;
default:
break;
}
return 16;
}
/**
* igb_configure_tx_ring - Configure transmit ring after Reset
* @adapter: board private structure
* @ring: tx ring to configure
*
* Configure a transmit ring after a reset.
**/
void igb_configure_tx_ring(struct igb_adapter *adapter,
struct igb_ring *ring)
{
struct e1000_hw *hw = &adapter->hw;
u32 txdctl = 0;
u64 tdba = ring->dma;
int reg_idx = ring->reg_idx;
/* disable the queue */
E1000_WRITE_REG(hw, E1000_TXDCTL(reg_idx), 0);
E1000_WRITE_FLUSH(hw);
mdelay(10);
E1000_WRITE_REG(hw, E1000_TDLEN(reg_idx),
ring->count * sizeof(union e1000_adv_tx_desc));
E1000_WRITE_REG(hw, E1000_TDBAL(reg_idx),
tdba & 0x00000000ffffffffULL);
E1000_WRITE_REG(hw, E1000_TDBAH(reg_idx), tdba >> 32);
ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
E1000_WRITE_REG(hw, E1000_TDH(reg_idx), 0);
writel(0, ring->tail);
txdctl |= IGB_TX_PTHRESH;
txdctl |= IGB_TX_HTHRESH << 8;
txdctl |= igb_tx_wthresh(adapter) << 16;
txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
E1000_WRITE_REG(hw, E1000_TXDCTL(reg_idx), txdctl);
}
/**
* igb_configure_tx - Configure transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void igb_configure_tx(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
}
/**
* igb_setup_rx_resources - allocate Rx resources (Descriptors)
* @rx_ring: rx descriptor ring (for a specific queue) to setup
*
* Returns 0 on success, negative on failure
**/
int igb_setup_rx_resources(struct igb_ring *rx_ring)
{
struct device *dev = rx_ring->dev;
int size, desc_len;
size = sizeof(struct igb_rx_buffer) * rx_ring->count;
rx_ring->rx_buffer_info = vzalloc(size);
if (!rx_ring->rx_buffer_info)
goto err;
desc_len = sizeof(union e1000_adv_rx_desc);
/* Round up to nearest 4K */
rx_ring->size = rx_ring->count * desc_len;
rx_ring->size = ALIGN(rx_ring->size, 4096);
rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
&rx_ring->dma, GFP_KERNEL);
if (!rx_ring->desc)
goto err;
rx_ring->next_to_alloc = 0;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
return 0;
err:
vfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
dev_err(dev, "Unable to allocate memory for the receive descriptor"
" ring\n");
return -ENOMEM;
}
/**
* igb_setup_all_rx_resources - wrapper to allocate Rx resources
* (Descriptors) for all queues
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int i, err = 0;
for (i = 0; i < adapter->num_rx_queues; i++) {
err = igb_setup_rx_resources(adapter->rx_ring[i]);
if (err) {
dev_err(pci_dev_to_dev(pdev),
"Allocation for Rx Queue %u failed\n", i);
for (i--; i >= 0; i--)
igb_free_rx_resources(adapter->rx_ring[i]);
break;
}
}
return err;
}
/**
* igb_setup_mrqc - configure the multiple receive queue control registers
* @adapter: Board private structure
**/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 mrqc, rxcsum;
u32 j, num_rx_queues, shift = 0, shift2 = 0;
static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
0xA32DCB77, 0x0CF23080, 0x3BB7426A,
0xFA01ACBE };
/* Fill out hash function seeds */
for (j = 0; j < 10; j++)
E1000_WRITE_REG(hw, E1000_RSSRK(j), rsskey[j]);
num_rx_queues = adapter->rss_queues;
/* 82575 and 82576 supports 2 RSS queues for VMDq */
switch (hw->mac.type) {
case e1000_82575:
if (adapter->vmdq_pools) {
shift = 2;
shift2 = 6;
break;
}
shift = 6;
break;
case e1000_82576:
/* 82576 supports 2 RSS queues for SR-IOV */
if (adapter->vfs_allocated_count || adapter->vmdq_pools) {
shift = 3;
num_rx_queues = 2;
}
break;
default:
break;
}
/*
* Populate the redirection table 4 entries at a time. To do this
* we are generating the results for n and n+2 and then interleaving
* those with the results with n+1 and n+3.
*/
for (j = 0; j < 32; j++) {
/* first pass generates n and n+2 */
u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
u32 reta = (base & 0x07800780) >> (7 - shift);
/* second pass generates n+1 and n+3 */
base += 0x00010001 * num_rx_queues;
reta |= (base & 0x07800780) << (1 + shift);
/* generate 2nd table for 82575 based parts */
if (shift2)
reta |= (0x01010101 * num_rx_queues) << shift2;
E1000_WRITE_REG(hw, E1000_RETA(j), reta);
}
/*
* Disable raw packet checksumming so that RSS hash is placed in
* descriptor on writeback. No need to enable TCP/UDP/IP checksum
* offloads as they are enabled by default
*/
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
rxcsum |= E1000_RXCSUM_PCSD;
if (adapter->hw.mac.type >= e1000_82576)
/* Enable Receive Checksum Offload for SCTP */
rxcsum |= E1000_RXCSUM_CRCOFL;
/* Don't need to set TUOFL or IPOFL, they default to 1 */
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
/* Generate RSS hash based on packet types, TCP/UDP
* port numbers and/or IPv4/v6 src and dst addresses
*/
mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
E1000_MRQC_RSS_FIELD_IPV4_TCP |
E1000_MRQC_RSS_FIELD_IPV6 |
E1000_MRQC_RSS_FIELD_IPV6_TCP |
E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
/* If VMDq is enabled then we set the appropriate mode for that, else
* we default to RSS so that an RSS hash is calculated per packet even
* if we are only using one queue */
if (adapter->vfs_allocated_count || adapter->vmdq_pools) {
if (hw->mac.type > e1000_82575) {
/* Set the default pool for the PF's first queue */
u32 vtctl = E1000_READ_REG(hw, E1000_VT_CTL);
vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
E1000_VT_CTL_DISABLE_DEF_POOL);
vtctl |= adapter->vfs_allocated_count <<
E1000_VT_CTL_DEFAULT_POOL_SHIFT;
E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl);
} else if (adapter->rss_queues > 1) {
/* set default queue for pool 1 to queue 2 */
E1000_WRITE_REG(hw, E1000_VT_CTL,
adapter->rss_queues << 7);
}
if (adapter->rss_queues > 1)
mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
else
mrqc |= E1000_MRQC_ENABLE_VMDQ;
} else {
mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
}
igb_vmm_control(adapter);
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
}
/**
* igb_setup_rctl - configure the receive control registers
* @adapter: Board private structure
**/
void igb_setup_rctl(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
/*
* enable stripping of CRC. It's unlikely this will break BMC
* redirection as it did with e1000. Newer features require
* that the HW strips the CRC.
*/
rctl |= E1000_RCTL_SECRC;
/* disable store bad packets and clear size bits. */
rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
/* enable LPE to prevent packets larger than max_frame_size */
rctl |= E1000_RCTL_LPE;
/* disable queue 0 to prevent tail write w/o re-config */
E1000_WRITE_REG(hw, E1000_RXDCTL(0), 0);
/* Attention!!! For SR-IOV PF driver operations you must enable
* queue drop for all VF and PF queues to prevent head of line blocking
* if an un-trusted VF does not provide descriptors to hardware.
*/
if (adapter->vfs_allocated_count) {
/* set all queue drop enable bits */
E1000_WRITE_REG(hw, E1000_QDE, ALL_QUEUES);
}
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
int vfn)
{
struct e1000_hw *hw = &adapter->hw;
u32 vmolr;
/* if it isn't the PF check to see if VFs are enabled and
* increase the size to support vlan tags */
if (vfn < adapter->vfs_allocated_count &&
adapter->vf_data[vfn].vlans_enabled)
size += VLAN_HLEN;
#ifdef CONFIG_IGB_VMDQ_NETDEV
if (vfn >= adapter->vfs_allocated_count) {
int queue = vfn - adapter->vfs_allocated_count;
struct igb_vmdq_adapter *vadapter;
vadapter = netdev_priv(adapter->vmdq_netdev[queue-1]);
if (vadapter->vlgrp)
size += VLAN_HLEN;
}
#endif
vmolr = E1000_READ_REG(hw, E1000_VMOLR(vfn));
vmolr &= ~E1000_VMOLR_RLPML_MASK;
vmolr |= size | E1000_VMOLR_LPE;
E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
return 0;
}
/**
* igb_rlpml_set - set maximum receive packet size
* @adapter: board private structure
*
* Configure maximum receivable packet size.
**/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
u32 max_frame_size = adapter->max_frame_size;
struct e1000_hw *hw = &adapter->hw;
u16 pf_id = adapter->vfs_allocated_count;
if (adapter->vmdq_pools && hw->mac.type != e1000_82575) {
int i;
for (i = 0; i < adapter->vmdq_pools; i++)
igb_set_vf_rlpml(adapter, max_frame_size, pf_id + i);
/*
* If we're in VMDQ or SR-IOV mode, then set global RLPML
* to our max jumbo frame size, in case we need to enable
* jumbo frames on one of the rings later.
* This will not pass over-length frames into the default
* queue because it's gated by the VMOLR.RLPML.
*/
max_frame_size = MAX_JUMBO_FRAME_SIZE;
}
/* Set VF RLPML for the PF device. */
if (adapter->vfs_allocated_count)
igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
E1000_WRITE_REG(hw, E1000_RLPML, max_frame_size);
}
static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
int vfn, bool enable)
{
struct e1000_hw *hw = &adapter->hw;
u32 val;
void __iomem *reg;
if (hw->mac.type < e1000_82576)
return;
if (hw->mac.type == e1000_i350)
reg = hw->hw_addr + E1000_DVMOLR(vfn);
else
reg = hw->hw_addr + E1000_VMOLR(vfn);
val = readl(reg);
if (enable)
val |= E1000_VMOLR_STRVLAN;
else
val &= ~(E1000_VMOLR_STRVLAN);
writel(val, reg);
}
static inline void igb_set_vmolr(struct igb_adapter *adapter,
int vfn, bool aupe)
{
struct e1000_hw *hw = &adapter->hw;
u32 vmolr;
/*
* This register exists only on 82576 and newer so if we are older then
* we should exit and do nothing
*/
if (hw->mac.type < e1000_82576)
return;
vmolr = E1000_READ_REG(hw, E1000_VMOLR(vfn));
if (aupe)
vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
else
vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
/* clear all bits that might not be set */
vmolr &= ~E1000_VMOLR_RSSE;
if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
vmolr |= E1000_VMOLR_LPE; /* Accept long packets */
E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
}
/**
* igb_configure_rx_ring - Configure a receive ring after Reset
* @adapter: board private structure
* @ring: receive ring to be configured
*
* Configure the Rx unit of the MAC after a reset.
**/
void igb_configure_rx_ring(struct igb_adapter *adapter,
struct igb_ring *ring)
{
struct e1000_hw *hw = &adapter->hw;
u64 rdba = ring->dma;
int reg_idx = ring->reg_idx;
u32 srrctl = 0, rxdctl = 0;
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
/*
* RLPML prevents us from receiving a frame larger than max_frame so
* it is safe to just set the rx_buffer_len to max_frame without the
* risk of an skb over panic.
*/
ring->rx_buffer_len = max_t(u32, adapter->max_frame_size,
MAXIMUM_ETHERNET_VLAN_SIZE);
#endif
/* disable the queue */
E1000_WRITE_REG(hw, E1000_RXDCTL(reg_idx), 0);
/* Set DMA base address registers */
E1000_WRITE_REG(hw, E1000_RDBAL(reg_idx),
rdba & 0x00000000ffffffffULL);
E1000_WRITE_REG(hw, E1000_RDBAH(reg_idx), rdba >> 32);
E1000_WRITE_REG(hw, E1000_RDLEN(reg_idx),
ring->count * sizeof(union e1000_adv_rx_desc));
/* initialize head and tail */
ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
E1000_WRITE_REG(hw, E1000_RDH(reg_idx), 0);
writel(0, ring->tail);
/* reset next-to- use/clean to place SW in sync with hardwdare */
ring->next_to_clean = 0;
ring->next_to_use = 0;
#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
ring->next_to_alloc = 0;
#endif
/* set descriptor configuration */
#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
#else /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
E1000_SRRCTL_BSIZEPKT_SHIFT;
#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
#ifdef HAVE_PTP_1588_CLOCK
if (hw->mac.type >= e1000_82580)
srrctl |= E1000_SRRCTL_TIMESTAMP;
#endif /* HAVE_PTP_1588_CLOCK */
/*
* We should set the drop enable bit if:
* SR-IOV is enabled
* or
* Flow Control is disabled and number of RX queues > 1
*
* This allows us to avoid head of line blocking for security
* and performance reasons.
*/
if (adapter->vfs_allocated_count ||
(adapter->num_rx_queues > 1 &&
(hw->fc.requested_mode == e1000_fc_none ||
hw->fc.requested_mode == e1000_fc_rx_pause)))
srrctl |= E1000_SRRCTL_DROP_EN;
E1000_WRITE_REG(hw, E1000_SRRCTL(reg_idx), srrctl);
/* set filtering for VMDQ pools */
igb_set_vmolr(adapter, reg_idx & 0x7, true);
rxdctl |= IGB_RX_PTHRESH;
rxdctl |= IGB_RX_HTHRESH << 8;
rxdctl |= IGB_RX_WTHRESH << 16;
/* enable receive descriptor fetching */
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
E1000_WRITE_REG(hw, E1000_RXDCTL(reg_idx), rxdctl);
}
/**
* igb_configure_rx - Configure receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void igb_configure_rx(struct igb_adapter *adapter)
{
int i;
/* set UTA to appropriate mode */
igb_set_uta(adapter);
igb_full_sync_mac_table(adapter);
/* Setup the HW Rx Head and Tail Descriptor Pointers and
* the Base and Length of the Rx Descriptor Ring */
for (i = 0; i < adapter->num_rx_queues; i++)
igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
}
/**
* igb_free_tx_resources - Free Tx Resources per Queue
* @tx_ring: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
**/
void igb_free_tx_resources(struct igb_ring *tx_ring)
{
igb_clean_tx_ring(tx_ring);
vfree(tx_ring->tx_buffer_info);
tx_ring->tx_buffer_info = NULL;
/* if not set, then don't free */
if (!tx_ring->desc)
return;
dma_free_coherent(tx_ring->dev, tx_ring->size,
tx_ring->desc, tx_ring->dma);
tx_ring->desc = NULL;
}
/**
* igb_free_all_tx_resources - Free Tx Resources for All Queues
* @adapter: board private structure
*
* Free all transmit software resources
**/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
igb_free_tx_resources(adapter->tx_ring[i]);
}
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
struct igb_tx_buffer *tx_buffer)
{
if (tx_buffer->skb) {
dev_kfree_skb_any(tx_buffer->skb);
if (dma_unmap_len(tx_buffer, len))
dma_unmap_single(ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
} else if (dma_unmap_len(tx_buffer, len)) {
dma_unmap_page(ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
}
tx_buffer->next_to_watch = NULL;
tx_buffer->skb = NULL;
dma_unmap_len_set(tx_buffer, len, 0);
/* buffer_info must be completely set up in the transmit path */
}
/**
* igb_clean_tx_ring - Free Tx Buffers
* @tx_ring: ring to be cleaned
**/
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
{
struct igb_tx_buffer *buffer_info;
unsigned long size;
u16 i;
if (!tx_ring->tx_buffer_info)
return;
/* Free all the Tx ring sk_buffs */
for (i = 0; i < tx_ring->count; i++) {
buffer_info = &tx_ring->tx_buffer_info[i];
igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
}
netdev_tx_reset_queue(txring_txq(tx_ring));
size = sizeof(struct igb_tx_buffer) * tx_ring->count;
memset(tx_ring->tx_buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(tx_ring->desc, 0, tx_ring->size);
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
}
/**
* igb_clean_all_tx_rings - Free Tx Buffers for all queues
* @adapter: board private structure
**/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
igb_clean_tx_ring(adapter->tx_ring[i]);
}
/**
* igb_free_rx_resources - Free Rx Resources
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
**/
void igb_free_rx_resources(struct igb_ring *rx_ring)
{
igb_clean_rx_ring(rx_ring);
vfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
/* if not set, then don't free */
if (!rx_ring->desc)
return;
dma_free_coherent(rx_ring->dev, rx_ring->size,
rx_ring->desc, rx_ring->dma);
rx_ring->desc = NULL;
}
/**
* igb_free_all_rx_resources - Free Rx Resources for All Queues
* @adapter: board private structure
*
* Free all receive software resources
**/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
igb_free_rx_resources(adapter->rx_ring[i]);
}
/**
* igb_clean_rx_ring - Free Rx Buffers per Queue
* @rx_ring: ring to free buffers from
**/
void igb_clean_rx_ring(struct igb_ring *rx_ring)
{
unsigned long size;
u16 i;
if (!rx_ring->rx_buffer_info)
return;
#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
if (rx_ring->skb)
dev_kfree_skb(rx_ring->skb);
rx_ring->skb = NULL;
#endif
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rx_ring->count; i++) {
struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
if (buffer_info->dma) {
dma_unmap_single(rx_ring->dev,
buffer_info->dma,
rx_ring->rx_buffer_len,
DMA_FROM_DEVICE);
buffer_info->dma = 0;
}
if (buffer_info->skb) {
dev_kfree_skb(buffer_info->skb);
buffer_info->skb = NULL;
}
#else
if (!buffer_info->page)
continue;
dma_unmap_page(rx_ring->dev,
buffer_info->dma,
PAGE_SIZE,
DMA_FROM_DEVICE);
__free_page(buffer_info->page);
buffer_info->page = NULL;
#endif
}
size = sizeof(struct igb_rx_buffer) * rx_ring->count;
memset(rx_ring->rx_buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(rx_ring->desc, 0, rx_ring->size);
rx_ring->next_to_alloc = 0;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
}
/**
* igb_clean_all_rx_rings - Free Rx Buffers for all queues
* @adapter: board private structure
**/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
igb_clean_rx_ring(adapter->rx_ring[i]);
}
/**
* igb_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
**/
static int igb_set_mac(struct net_device *netdev, void *p)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
igb_del_mac_filter(adapter, hw->mac.addr,
adapter->vfs_allocated_count);
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
/* set the correct pool for the new PF MAC address in entry 0 */
return igb_add_mac_filter(adapter, hw->mac.addr,
adapter->vfs_allocated_count);
}
/**
* igb_write_mc_addr_list - write multicast addresses to MTA
* @netdev: network interface device structure
*
* Writes multicast address list to the MTA hash table.
* Returns: -ENOMEM on failure
* 0 on no addresses written
* X on writing X addresses to MTA
**/
int igb_write_mc_addr_list(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
#ifdef NETDEV_HW_ADDR_T_MULTICAST
struct netdev_hw_addr *ha;
#else
struct dev_mc_list *ha;
#endif
u8 *mta_list;
int i, count;
#ifdef CONFIG_IGB_VMDQ_NETDEV
int vm;
#endif
count = netdev_mc_count(netdev);
#ifdef CONFIG_IGB_VMDQ_NETDEV
for (vm = 1; vm < adapter->vmdq_pools; vm++) {
if (!adapter->vmdq_netdev[vm])
break;
if (!netif_running(adapter->vmdq_netdev[vm]))
continue;
count += netdev_mc_count(adapter->vmdq_netdev[vm]);
}
#endif
if (!count) {
e1000_update_mc_addr_list(hw, NULL, 0);
return 0;
}
mta_list = kzalloc(count * 6, GFP_ATOMIC);
if (!mta_list)
return -ENOMEM;
/* The shared function expects a packed array of only addresses. */
i = 0;
netdev_for_each_mc_addr(ha, netdev)
#ifdef NETDEV_HW_ADDR_T_MULTICAST
memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
#else
memcpy(mta_list + (i++ * ETH_ALEN), ha->dmi_addr, ETH_ALEN);
#endif
#ifdef CONFIG_IGB_VMDQ_NETDEV
for (vm = 1; vm < adapter->vmdq_pools; vm++) {
if (!adapter->vmdq_netdev[vm])
break;
if (!netif_running(adapter->vmdq_netdev[vm]) ||
!netdev_mc_count(adapter->vmdq_netdev[vm]))
continue;
netdev_for_each_mc_addr(ha, adapter->vmdq_netdev[vm])
#ifdef NETDEV_HW_ADDR_T_MULTICAST
memcpy(mta_list + (i++ * ETH_ALEN),
ha->addr, ETH_ALEN);
#else
memcpy(mta_list + (i++ * ETH_ALEN),
ha->dmi_addr, ETH_ALEN);
#endif
}
#endif
e1000_update_mc_addr_list(hw, mta_list, i);
kfree(mta_list);
return count;
}
void igb_rar_set(struct igb_adapter *adapter, u32 index)
{
u32 rar_low, rar_high;
struct e1000_hw *hw = &adapter->hw;
u8 *addr = adapter->mac_table[index].addr;
/* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
((u32) addr[2] << 16) | ((u32) addr[3] << 24));
rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
/* Indicate to hardware the Address is Valid. */
if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE)
rar_high |= E1000_RAH_AV;
if (hw->mac.type == e1000_82575)
rar_high |= E1000_RAH_POOL_1 * adapter->mac_table[index].queue;
else
rar_high |= E1000_RAH_POOL_1 << adapter->mac_table[index].queue;
E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
E1000_WRITE_FLUSH(hw);
}
void igb_full_sync_mac_table(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
for (i = 0; i < hw->mac.rar_entry_count; i++) {
igb_rar_set(adapter, i);
}
}
void igb_sync_mac_table(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
for (i = 0; i < hw->mac.rar_entry_count; i++) {
if (adapter->mac_table[i].state & IGB_MAC_STATE_MODIFIED)
igb_rar_set(adapter, i);
adapter->mac_table[i].state &= ~(IGB_MAC_STATE_MODIFIED);
}
}
int igb_available_rars(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i, count = 0;
for (i = 0; i < hw->mac.rar_entry_count; i++) {
if (adapter->mac_table[i].state == 0)
count++;
}
return count;
}
#ifdef HAVE_SET_RX_MODE
/**
* igb_write_uc_addr_list - write unicast addresses to RAR table
* @netdev: network interface device structure
*
* Writes unicast address list to the RAR table.
* Returns: -ENOMEM on failure/insufficient address space
* 0 on no addresses written
* X on writing X addresses to the RAR table
**/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
unsigned int vfn = adapter->vfs_allocated_count;
int count = 0;
/* return ENOMEM indicating insufficient memory for addresses */
if (netdev_uc_count(netdev) > igb_available_rars(adapter))
return -ENOMEM;
if (!netdev_uc_empty(netdev)) {
#ifdef NETDEV_HW_ADDR_T_UNICAST
struct netdev_hw_addr *ha;
#else
struct dev_mc_list *ha;
#endif
netdev_for_each_uc_addr(ha, netdev) {
#ifdef NETDEV_HW_ADDR_T_UNICAST
igb_del_mac_filter(adapter, ha->addr, vfn);
igb_add_mac_filter(adapter, ha->addr, vfn);
#else
igb_del_mac_filter(adapter, ha->da_addr, vfn);
igb_add_mac_filter(adapter, ha->da_addr, vfn);
#endif
count++;
}
}
return count;
}
#endif /* HAVE_SET_RX_MODE */
/**
* igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_rx_mode entry point is called whenever the unicast or multicast
* address lists or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper unicast, multicast,
* promiscuous mode, and all-multi behavior.
**/
static void igb_set_rx_mode(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
unsigned int vfn = adapter->vfs_allocated_count;
u32 rctl, vmolr = 0;
int count;
/* Check for Promiscuous and All Multicast modes */
rctl = E1000_READ_REG(hw, E1000_RCTL);
/* clear the effected bits */
rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
if (netdev->flags & IFF_PROMISC) {
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
/* retain VLAN HW filtering if in VT mode */
if (adapter->vfs_allocated_count || adapter->vmdq_pools)
rctl |= E1000_RCTL_VFE;
} else {
if (netdev->flags & IFF_ALLMULTI) {
rctl |= E1000_RCTL_MPE;
vmolr |= E1000_VMOLR_MPME;
} else {
/*
* Write addresses to the MTA, if the attempt fails
* then we should just turn on promiscuous mode so
* that we can at least receive multicast traffic
*/
count = igb_write_mc_addr_list(netdev);
if (count < 0) {
rctl |= E1000_RCTL_MPE;
vmolr |= E1000_VMOLR_MPME;
} else if (count) {
vmolr |= E1000_VMOLR_ROMPE;
}
}
#ifdef HAVE_SET_RX_MODE
/*
* Write addresses to available RAR registers, if there is not
* sufficient space to store all the addresses then enable
* unicast promiscuous mode
*/
count = igb_write_uc_addr_list(netdev);
if (count < 0) {
rctl |= E1000_RCTL_UPE;
vmolr |= E1000_VMOLR_ROPE;
}
#endif /* HAVE_SET_RX_MODE */
rctl |= E1000_RCTL_VFE;
}
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
/*
* In order to support SR-IOV and eventually VMDq it is necessary to set
* the VMOLR to enable the appropriate modes. Without this workaround
* we will have issues with VLAN tag stripping not being done for frames
* that are only arriving because we are the default pool
*/
if (hw->mac.type < e1000_82576)
return;
vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) &
~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
igb_restore_vf_multicasts(adapter);
}
static void igb_check_wvbr(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 wvbr = 0;
switch (hw->mac.type) {
case e1000_82576:
case e1000_i350:
if (!(wvbr = E1000_READ_REG(hw, E1000_WVBR)))
return;
break;
default:
break;
}
adapter->wvbr |= wvbr;
}
#define IGB_STAGGERED_QUEUE_OFFSET 8
static void igb_spoof_check(struct igb_adapter *adapter)
{
int j;
if (!adapter->wvbr)
return;
switch (adapter->hw.mac.type) {
case e1000_82576:
for (j = 0; j < adapter->vfs_allocated_count; j++) {
if (adapter->wvbr & (1 << j) ||
adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
DPRINTK(DRV, WARNING,
"Spoof event(s) detected on VF %d\n", j);
adapter->wvbr &=
~((1 << j) |
(1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
}
}
break;
case e1000_i350:
for (j = 0; j < adapter->vfs_allocated_count; j++) {
if (adapter->wvbr & (1 << j)) {
DPRINTK(DRV, WARNING,
"Spoof event(s) detected on VF %d\n", j);
adapter->wvbr &= ~(1 << j);
}
}
break;
default:
break;
}
}
/* Need to wait a few seconds after link up to get diagnostic information from
* the phy */
#ifdef HAVE_TIMER_SETUP
static void igb_update_phy_info(struct timer_list *t)
{
struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
#else
static void igb_update_phy_info(unsigned long data)
{
struct igb_adapter *adapter = (struct igb_adapter *) data;
#endif
e1000_get_phy_info(&adapter->hw);
}
/**
* igb_has_link - check shared code for link and determine up/down
* @adapter: pointer to driver private info
**/
bool igb_has_link(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
bool link_active = FALSE;
/* get_link_status is set on LSC (link status) interrupt or
* rx sequence error interrupt. get_link_status will stay
* false until the e1000_check_for_link establishes link
* for copper adapters ONLY
*/
switch (hw->phy.media_type) {
case e1000_media_type_copper:
if (!hw->mac.get_link_status)
return true;
case e1000_media_type_internal_serdes:
e1000_check_for_link(hw);
link_active = !hw->mac.get_link_status;
break;
case e1000_media_type_unknown:
default:
break;
}
if (((hw->mac.type == e1000_i210) ||
(hw->mac.type == e1000_i211)) &&
(hw->phy.id == I210_I_PHY_ID)) {
if (!netif_carrier_ok(adapter->netdev)) {
adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
adapter->link_check_timeout = jiffies;
}
}
return link_active;
}
/**
* igb_watchdog - Timer Call-back
* @data: pointer to adapter cast into an unsigned long
**/
#ifdef HAVE_TIMER_SETUP
static void igb_watchdog(struct timer_list *t)
{
struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
#else
static void igb_watchdog(unsigned long data)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
#endif
/* Do the rest outside of interrupt context */
schedule_work(&adapter->watchdog_task);
}
static void igb_watchdog_task(struct work_struct *work)
{
struct igb_adapter *adapter = container_of(work,
struct igb_adapter,
watchdog_task);
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u32 link;
int i;
u32 thstat, ctrl_ext;
u32 connsw;
link = igb_has_link(adapter);
/* Force link down if we have fiber to swap to */
if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
if (hw->phy.media_type == e1000_media_type_copper) {
connsw = E1000_READ_REG(hw, E1000_CONNSW);
if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
link = 0;
}
}
if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
else
link = FALSE;
}
if (link) {
/* Perform a reset if the media type changed. */
if (hw->dev_spec._82575.media_changed) {
hw->dev_spec._82575.media_changed = false;
adapter->flags |= IGB_FLAG_MEDIA_RESET;
igb_reset(adapter);
}
/* Cancel scheduled suspend requests. */
pm_runtime_resume(netdev->dev.parent);
if (!netif_carrier_ok(netdev)) {
u32 ctrl;
e1000_get_speed_and_duplex(hw,
&adapter->link_speed,
&adapter->link_duplex);
ctrl = E1000_READ_REG(hw, E1000_CTRL);
/* Links status message must follow this format */
printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
"Flow Control: %s\n",
netdev->name,
adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ?
"Full Duplex" : "Half Duplex",
((ctrl & E1000_CTRL_TFCE) &&
(ctrl & E1000_CTRL_RFCE)) ? "RX/TX":
((ctrl & E1000_CTRL_RFCE) ? "RX" :
((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
/* adjust timeout factor according to speed/duplex */
adapter->tx_timeout_factor = 1;
switch (adapter->link_speed) {
case SPEED_10:
adapter->tx_timeout_factor = 14;
break;
case SPEED_100:
/* maybe add some timeout factor ? */
break;
default:
break;
}
netif_carrier_on(netdev);
netif_tx_wake_all_queues(netdev);
igb_ping_all_vfs(adapter);
#ifdef IFLA_VF_MAX
igb_check_vf_rate_limit(adapter);
#endif /* IFLA_VF_MAX */
/* link state has changed, schedule phy info update */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
}
} else {
if (netif_carrier_ok(netdev)) {
adapter->link_speed = 0;
adapter->link_duplex = 0;
/* check for thermal sensor event on i350 */
if (hw->mac.type == e1000_i350) {
thstat = E1000_READ_REG(hw, E1000_THSTAT);
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
if ((hw->phy.media_type ==
e1000_media_type_copper) &&
!(ctrl_ext &
E1000_CTRL_EXT_LINK_MODE_SGMII)) {
if (thstat & E1000_THSTAT_PWR_DOWN) {
printk(KERN_ERR "igb: %s The "
"network adapter was stopped "
"because it overheated.\n",
netdev->name);
}
if (thstat & E1000_THSTAT_LINK_THROTTLE) {
printk(KERN_INFO
"igb: %s The network "
"adapter supported "
"link speed "
"was downshifted "
"because it "
"overheated.\n",
netdev->name);
}
}
}
/* Links status message must follow this format */
printk(KERN_INFO "igb: %s NIC Link is Down\n",
netdev->name);
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
igb_ping_all_vfs(adapter);
/* link state has changed, schedule phy info update */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
/* link is down, time to check for alternate media */
if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
igb_check_swap_media(adapter);
if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
schedule_work(&adapter->reset_task);
/* return immediately */
return;
}
}
pm_schedule_suspend(netdev->dev.parent,
MSEC_PER_SEC * 5);
/* also check for alternate media here */
} else if (!netif_carrier_ok(netdev) &&
(adapter->flags & IGB_FLAG_MAS_ENABLE)) {
hw->mac.ops.power_up_serdes(hw);
igb_check_swap_media(adapter);
if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
schedule_work(&adapter->reset_task);
/* return immediately */
return;
}
}
}
igb_update_stats(adapter);
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igb_ring *tx_ring = adapter->tx_ring[i];
if (!netif_carrier_ok(netdev)) {
/* We've lost link, so the controller stops DMA,
* but we've got queued Tx work that's never going
* to get done, so reset controller to flush Tx.
* (Do the reset outside of interrupt context). */
if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
/* return immediately since reset is imminent */
return;
}
}
/* Force detection of hung controller every watchdog period */
set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
}
/* Cause software interrupt to ensure rx ring is cleaned */
if (adapter->msix_entries) {
u32 eics = 0;
for (i = 0; i < adapter->num_q_vectors; i++)
eics |= adapter->q_vector[i]->eims_value;
E1000_WRITE_REG(hw, E1000_EICS, eics);
} else {
E1000_WRITE_REG(hw, E1000_ICS, E1000_ICS_RXDMT0);
}
igb_spoof_check(adapter);
/* Reset the timer */
if (!test_bit(__IGB_DOWN, &adapter->state)) {
if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + HZ));
else
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + 2 * HZ));
}
}
static void igb_dma_err_task(struct work_struct *work)
{
struct igb_adapter *adapter = container_of(work,
struct igb_adapter,
dma_err_task);
int vf;
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u32 hgptc;
u32 ciaa, ciad;
hgptc = E1000_READ_REG(hw, E1000_HGPTC);
if (hgptc) /* If incrementing then no need for the check below */
goto dma_timer_reset;
/*
* Check to see if a bad DMA write target from an errant or
* malicious VF has caused a PCIe error. If so then we can
* issue a VFLR to the offending VF(s) and then resume without
* requesting a full slot reset.
*/
for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
ciaa = (vf << 16) | 0x80000000;
/* 32 bit read so align, we really want status at offset 6 */
ciaa |= PCI_COMMAND;
E1000_WRITE_REG(hw, E1000_CIAA, ciaa);
ciad = E1000_READ_REG(hw, E1000_CIAD);
ciaa &= 0x7FFFFFFF;
/* disable debug mode asap after reading data */
E1000_WRITE_REG(hw, E1000_CIAA, ciaa);
/* Get the upper 16 bits which will be the PCI status reg */
ciad >>= 16;
if (ciad & (PCI_STATUS_REC_MASTER_ABORT |
PCI_STATUS_REC_TARGET_ABORT |
PCI_STATUS_SIG_SYSTEM_ERROR)) {
netdev_err(netdev, "VF %d suffered error\n", vf);
/* Issue VFLR */
ciaa = (vf << 16) | 0x80000000;
ciaa |= 0xA8;
E1000_WRITE_REG(hw, E1000_CIAA, ciaa);
ciad = 0x00008000; /* VFLR */
E1000_WRITE_REG(hw, E1000_CIAD, ciad);
ciaa &= 0x7FFFFFFF;
E1000_WRITE_REG(hw, E1000_CIAA, ciaa);
}
}
dma_timer_reset:
/* Reset the timer */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->dma_err_timer,
round_jiffies(jiffies + HZ / 10));
}
/**
* igb_dma_err_timer - Timer Call-back
* @data: pointer to adapter cast into an unsigned long
**/
#ifdef HAVE_TIMER_SETUP
static void igb_dma_err_timer(struct timer_list *t)
{
struct igb_adapter *adapter = from_timer(adapter, t, dma_err_timer);
#else
static void igb_dma_err_timer(unsigned long data)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
#endif
/* Do the rest outside of interrupt context */
schedule_work(&adapter->dma_err_task);
}
enum latency_range {
lowest_latency = 0,
low_latency = 1,
bulk_latency = 2,
latency_invalid = 255
};
/**
* igb_update_ring_itr - update the dynamic ITR value based on packet size
*
* Stores a new ITR value based on strictly on packet size. This
* algorithm is less sophisticated than that used in igb_update_itr,
* due to the difficulty of synchronizing statistics across multiple
* receive rings. The divisors and thresholds used by this function
* were determined based on theoretical maximum wire speed and testing
* data, in order to minimize response time while increasing bulk
* throughput.
* This functionality is controlled by the InterruptThrottleRate module
* parameter (see igb_param.c)
* NOTE: This function is called only when operating in a multiqueue
* receive environment.
* @q_vector: pointer to q_vector
**/
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
{
int new_val = q_vector->itr_val;
int avg_wire_size = 0;
struct igb_adapter *adapter = q_vector->adapter;
unsigned int packets;
/* For non-gigabit speeds, just fix the interrupt rate at 4000
* ints/sec - ITR timer value of 120 ticks.
*/
switch (adapter->link_speed) {
case SPEED_10:
case SPEED_100:
new_val = IGB_4K_ITR;
goto set_itr_val;
default:
break;
}
packets = q_vector->rx.total_packets;
if (packets)
avg_wire_size = q_vector->rx.total_bytes / packets;
packets = q_vector->tx.total_packets;
if (packets)
avg_wire_size = max_t(u32, avg_wire_size,
q_vector->tx.total_bytes / packets);
/* if avg_wire_size isn't set no work was done */
if (!avg_wire_size)
goto clear_counts;
/* Add 24 bytes to size to account for CRC, preamble, and gap */
avg_wire_size += 24;
/* Don't starve jumbo frames */
avg_wire_size = min(avg_wire_size, 3000);
/* Give a little boost to mid-size frames */
if ((avg_wire_size > 300) && (avg_wire_size < 1200))
new_val = avg_wire_size / 3;
else
new_val = avg_wire_size / 2;
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (new_val < IGB_20K_ITR &&
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
new_val = IGB_20K_ITR;
set_itr_val:
if (new_val != q_vector->itr_val) {
q_vector->itr_val = new_val;
q_vector->set_itr = 1;
}
clear_counts:
q_vector->rx.total_bytes = 0;
q_vector->rx.total_packets = 0;
q_vector->tx.total_bytes = 0;
q_vector->tx.total_packets = 0;
}
/**
* igb_update_itr - update the dynamic ITR value based on statistics
* Stores a new ITR value based on packets and byte
* counts during the last interrupt. The advantage of per interrupt
* computation is faster updates and more accurate ITR for the current
* traffic pattern. Constants in this function were computed
* based on theoretical maximum wire speed and thresholds were set based
* on testing data as well as attempting to minimize response time
* while increasing bulk throughput.
* this functionality is controlled by the InterruptThrottleRate module
* parameter (see igb_param.c)
* NOTE: These calculations are only valid when operating in a single-
* queue environment.
* @q_vector: pointer to q_vector
* @ring_container: ring info to update the itr for
**/
static void igb_update_itr(struct igb_q_vector *q_vector,
struct igb_ring_container *ring_container)
{
unsigned int packets = ring_container->total_packets;
unsigned int bytes = ring_container->total_bytes;
u8 itrval = ring_container->itr;
/* no packets, exit with status unchanged */
if (packets == 0)
return;
switch (itrval) {
case lowest_latency:
/* handle TSO and jumbo frames */
if (bytes/packets > 8000)
itrval = bulk_latency;
else if ((packets < 5) && (bytes > 512))
itrval = low_latency;
break;
case low_latency: /* 50 usec aka 20000 ints/s */
if (bytes > 10000) {
/* this if handles the TSO accounting */
if (bytes/packets > 8000) {
itrval = bulk_latency;
} else if ((packets < 10) || ((bytes/packets) > 1200)) {
itrval = bulk_latency;
} else if (packets > 35) {
itrval = lowest_latency;
}
} else if (bytes/packets > 2000) {
itrval = bulk_latency;
} else if (packets <= 2 && bytes < 512) {
itrval = lowest_latency;
}
break;
case bulk_latency: /* 250 usec aka 4000 ints/s */
if (bytes > 25000) {
if (packets > 35)
itrval = low_latency;
} else if (bytes < 1500) {
itrval = low_latency;
}
break;
}
/* clear work counters since we have the values we need */
ring_container->total_bytes = 0;
ring_container->total_packets = 0;
/* write updated itr to ring container */
ring_container->itr = itrval;
}
static void igb_set_itr(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
u32 new_itr = q_vector->itr_val;
u8 current_itr = 0;
/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
switch (adapter->link_speed) {
case SPEED_10:
case SPEED_100:
current_itr = 0;
new_itr = IGB_4K_ITR;
goto set_itr_now;
default:
break;
}
igb_update_itr(q_vector, &q_vector->tx);
igb_update_itr(q_vector, &q_vector->rx);
current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (current_itr == lowest_latency &&
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
current_itr = low_latency;
switch (current_itr) {
/* counts and packets in update_itr are dependent on these numbers */
case lowest_latency:
new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
break;
case low_latency:
new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
break;
case bulk_latency:
new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
break;
default:
break;
}
set_itr_now:
if (new_itr != q_vector->itr_val) {
/* this attempts to bias the interrupt rate towards Bulk
* by adding intermediate steps when interrupt rate is
* increasing */
new_itr = new_itr > q_vector->itr_val ?
max((new_itr * q_vector->itr_val) /
(new_itr + (q_vector->itr_val >> 2)),
new_itr) :
new_itr;
/* Don't write the value here; it resets the adapter's
* internal timer, and causes us to delay far longer than
* we should between interrupts. Instead, we write the ITR
* value at the beginning of the next interrupt so the timing
* ends up being correct.
*/
q_vector->itr_val = new_itr;
q_vector->set_itr = 1;
}
}
void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
u32 type_tucmd, u32 mss_l4len_idx)
{
struct e1000_adv_tx_context_desc *context_desc;
u16 i = tx_ring->next_to_use;
context_desc = IGB_TX_CTXTDESC(tx_ring, i);
i++;
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
/* set bits to identify this as an advanced context descriptor */
type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
/* For 82575, context index must be unique per ring. */
if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
mss_l4len_idx |= tx_ring->reg_idx << 4;
context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
context_desc->seqnum_seed = 0;
context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
}
static int igb_tso(struct igb_ring *tx_ring,
struct igb_tx_buffer *first,
u8 *hdr_len)
{
#ifdef NETIF_F_TSO
struct sk_buff *skb = first->skb;
u32 vlan_macip_lens, type_tucmd;
u32 mss_l4len_idx, l4len;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (!skb_is_gso(skb))
#endif /* NETIF_F_TSO */
return 0;
#ifdef NETIF_F_TSO
if (skb_header_cloned(skb)) {
int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
if (err)
return err;
}
/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
if (first->protocol == __constant_htons(ETH_P_IP)) {
struct iphdr *iph = ip_hdr(skb);
iph->tot_len = 0;
iph->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, 0,
IPPROTO_TCP,
0);
type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
first->tx_flags |= IGB_TX_FLAGS_TSO |
IGB_TX_FLAGS_CSUM |
IGB_TX_FLAGS_IPV4;
#ifdef NETIF_F_TSO6
} else if (skb_is_gso_v6(skb)) {
ipv6_hdr(skb)->payload_len = 0;
tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
first->tx_flags |= IGB_TX_FLAGS_TSO |
IGB_TX_FLAGS_CSUM;
#endif
}
/* compute header lengths */
l4len = tcp_hdrlen(skb);
*hdr_len = skb_transport_offset(skb) + l4len;
/* update gso size and bytecount with header size */
first->gso_segs = skb_shinfo(skb)->gso_segs;
first->bytecount += (first->gso_segs - 1) * *hdr_len;
/* MSS L4LEN IDX */
mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
/* VLAN MACLEN IPLEN */
vlan_macip_lens = skb_network_header_len(skb);
vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
return 1;
#endif /* NETIF_F_TSO */
}
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
{
struct sk_buff *skb = first->skb;
u32 vlan_macip_lens = 0;
u32 mss_l4len_idx = 0;
u32 type_tucmd = 0;
if (skb->ip_summed != CHECKSUM_PARTIAL) {
if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
return;
} else {
u8 nexthdr = 0;
switch (first->protocol) {
case __constant_htons(ETH_P_IP):
vlan_macip_lens |= skb_network_header_len(skb);
type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
nexthdr = ip_hdr(skb)->protocol;
break;
#ifdef NETIF_F_IPV6_CSUM
case __constant_htons(ETH_P_IPV6):
vlan_macip_lens |= skb_network_header_len(skb);
nexthdr = ipv6_hdr(skb)->nexthdr;
break;
#endif
default:
if (unlikely(net_ratelimit())) {
dev_warn(tx_ring->dev,
"partial checksum but proto=%x!\n",
first->protocol);
}
break;
}
switch (nexthdr) {
case IPPROTO_TCP:
type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
mss_l4len_idx = tcp_hdrlen(skb) <<
E1000_ADVTXD_L4LEN_SHIFT;
break;
#ifdef HAVE_SCTP
case IPPROTO_SCTP:
type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
mss_l4len_idx = sizeof(struct sctphdr) <<
E1000_ADVTXD_L4LEN_SHIFT;
break;
#endif
case IPPROTO_UDP:
mss_l4len_idx = sizeof(struct udphdr) <<
E1000_ADVTXD_L4LEN_SHIFT;
break;
default:
if (unlikely(net_ratelimit())) {
dev_warn(tx_ring->dev,
"partial checksum but l4 proto=%x!\n",
nexthdr);
}
break;
}
/* update TX checksum flag */
first->tx_flags |= IGB_TX_FLAGS_CSUM;
}
vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
}
#define IGB_SET_FLAG(_input, _flag, _result) \
((_flag <= _result) ? \
((u32)(_input & _flag) * (_result / _flag)) : \
((u32)(_input & _flag) / (_flag / _result)))
static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
{
/* set type for advanced descriptor with frame checksum insertion */
u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
E1000_ADVTXD_DCMD_DEXT |
E1000_ADVTXD_DCMD_IFCS;
/* set HW vlan bit if vlan is present */
cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
(E1000_ADVTXD_DCMD_VLE));
/* set segmentation bits for TSO */
cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
(E1000_ADVTXD_DCMD_TSE));
/* set timestamp bit if present */
cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
(E1000_ADVTXD_MAC_TSTAMP));
return cmd_type;
}
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
union e1000_adv_tx_desc *tx_desc,
u32 tx_flags, unsigned int paylen)
{
u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
/* 82575 requires a unique index per ring */
if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
olinfo_status |= tx_ring->reg_idx << 4;
/* insert L4 checksum */
olinfo_status |= IGB_SET_FLAG(tx_flags,
IGB_TX_FLAGS_CSUM,
(E1000_TXD_POPTS_TXSM << 8));
/* insert IPv4 checksum */
olinfo_status |= IGB_SET_FLAG(tx_flags,
IGB_TX_FLAGS_IPV4,
(E1000_TXD_POPTS_IXSM << 8));
tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
}
static void igb_tx_map(struct igb_ring *tx_ring,
struct igb_tx_buffer *first,
const u8 hdr_len)
{
struct sk_buff *skb = first->skb;
struct igb_tx_buffer *tx_buffer;
union e1000_adv_tx_desc *tx_desc;
skb_frag_t *frag;
dma_addr_t dma;
unsigned int data_len, size;
u32 tx_flags = first->tx_flags;
u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
u16 i = tx_ring->next_to_use;
tx_desc = IGB_TX_DESC(tx_ring, i);
igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
size = skb_headlen(skb);
data_len = skb->data_len;
dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
tx_buffer = first;
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
if (dma_mapping_error(tx_ring->dev, dma))
goto dma_error;
/* record length, and DMA address */
dma_unmap_len_set(tx_buffer, len, size);
dma_unmap_addr_set(tx_buffer, dma, dma);
tx_desc->read.buffer_addr = cpu_to_le64(dma);
while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
tx_desc->read.cmd_type_len =
cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
i++;
tx_desc++;
if (i == tx_ring->count) {
tx_desc = IGB_TX_DESC(tx_ring, 0);
i = 0;
}
tx_desc->read.olinfo_status = 0;
dma += IGB_MAX_DATA_PER_TXD;
size -= IGB_MAX_DATA_PER_TXD;
tx_desc->read.buffer_addr = cpu_to_le64(dma);
}
if (likely(!data_len))
break;
tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
i++;
tx_desc++;
if (i == tx_ring->count) {
tx_desc = IGB_TX_DESC(tx_ring, 0);
i = 0;
}
tx_desc->read.olinfo_status = 0;
size = skb_frag_size(frag);
data_len -= size;
dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
size, DMA_TO_DEVICE);
tx_buffer = &tx_ring->tx_buffer_info[i];
}
/* write last descriptor with RS and EOP bits */
cmd_type |= size | IGB_TXD_DCMD;
tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
/* set the timestamp */
first->time_stamp = jiffies;
/*
* Force memory writes to complete before letting h/w know there
* are new descriptors to fetch. (Only applicable for weak-ordered
* memory model archs, such as IA-64).
*
* We also need this memory barrier to make certain all of the
* status bits have been updated before next_to_watch is written.
*/
wmb();
/* set next_to_watch value indicating a packet is present */
first->next_to_watch = tx_desc;
i++;
if (i == tx_ring->count)
i = 0;
tx_ring->next_to_use = i;
writel(i, tx_ring->tail);
/* we need this if more than one processor can write to our tail
* at a time, it syncronizes IO on IA64/Altix systems */
mmiowb();
return;
dma_error:
dev_err(tx_ring->dev, "TX DMA map failed\n");
/* clear dma mappings for failed tx_buffer_info map */
for (;;) {
tx_buffer = &tx_ring->tx_buffer_info[i];
igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
if (tx_buffer == first)
break;
if (i == 0)
i = tx_ring->count;
i--;
}
tx_ring->next_to_use = i;
}
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
{
struct net_device *netdev = netdev_ring(tx_ring);
if (netif_is_multiqueue(netdev))
netif_stop_subqueue(netdev, ring_queue_index(tx_ring));
else
netif_stop_queue(netdev);
/* Herbert's original patch had:
* smp_mb__after_netif_stop_queue();
* but since that doesn't exist yet, just open code it. */
smp_mb();
/* We need to check again in a case another CPU has just
* made room available. */
if (igb_desc_unused(tx_ring) < size)
return -EBUSY;
/* A reprieve! */
if (netif_is_multiqueue(netdev))
netif_wake_subqueue(netdev, ring_queue_index(tx_ring));
else
netif_wake_queue(netdev);
tx_ring->tx_stats.restart_queue++;
return 0;
}
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
{
if (igb_desc_unused(tx_ring) >= size)
return 0;
return __igb_maybe_stop_tx(tx_ring, size);
}
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
struct igb_ring *tx_ring)
{
struct igb_tx_buffer *first;
int tso;
u32 tx_flags = 0;
#if PAGE_SIZE > IGB_MAX_DATA_PER_TXD
unsigned short f;
#endif
u16 count = TXD_USE_COUNT(skb_headlen(skb));
__be16 protocol = vlan_get_protocol(skb);
u8 hdr_len = 0;
/*
* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
* + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
* + 2 desc gap to keep tail from touching head,
* + 1 desc for context descriptor,
* otherwise try next time
*/
#if PAGE_SIZE > IGB_MAX_DATA_PER_TXD
for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
#else
count += skb_shinfo(skb)->nr_frags;
#endif
if (igb_maybe_stop_tx(tx_ring, count + 3)) {
/* this is a hard error */
return NETDEV_TX_BUSY;
}
/* record the location of the first descriptor for this packet */
first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
first->skb = skb;
first->bytecount = skb->len;
first->gso_segs = 1;
skb_tx_timestamp(skb);
#ifdef HAVE_PTP_1588_CLOCK
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
if (!adapter->ptp_tx_skb) {
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
tx_flags |= IGB_TX_FLAGS_TSTAMP;
adapter->ptp_tx_skb = skb_get(skb);
adapter->ptp_tx_start = jiffies;
if (adapter->hw.mac.type == e1000_82576)
schedule_work(&adapter->ptp_tx_work);
}
}
#endif /* HAVE_PTP_1588_CLOCK */
if (vlan_tx_tag_present(skb)) {
tx_flags |= IGB_TX_FLAGS_VLAN;
tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
}
/* record initial flags and protocol */
first->tx_flags = tx_flags;
first->protocol = protocol;
tso = igb_tso(tx_ring, first, &hdr_len);
if (tso < 0)
goto out_drop;
else if (!tso)
igb_tx_csum(tx_ring, first);
igb_tx_map(tx_ring, first, hdr_len);
#ifndef HAVE_TRANS_START_IN_QUEUE
netdev_ring(tx_ring)->trans_start = jiffies;
#endif
/* Make sure there is space in the ring for the next send. */
igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
return NETDEV_TX_OK;
out_drop:
igb_unmap_and_free_tx_resource(tx_ring, first);
return NETDEV_TX_OK;
}
#ifdef HAVE_TX_MQ
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
struct sk_buff *skb)
{
unsigned int r_idx = skb->queue_mapping;
if (r_idx >= adapter->num_tx_queues)
r_idx = r_idx % adapter->num_tx_queues;
return adapter->tx_ring[r_idx];
}
#else
#define igb_tx_queue_mapping(_adapter, _skb) (_adapter)->tx_ring[0]
#endif
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if (test_bit(__IGB_DOWN, &adapter->state)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (skb->len <= 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/*
* The minimum packet size with TCTL.PSP set is 17 so pad the skb
* in order to meet this minimum size requirement.
*/
if (skb->len < 17) {
if (skb_padto(skb, 17))
return NETDEV_TX_OK;
skb->len = 17;
}
return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
}
/**
* igb_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
**/
static void igb_tx_timeout(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
/* Do the reset outside of interrupt context */
adapter->tx_timeout_count++;
if (hw->mac.type >= e1000_82580)
hw->dev_spec._82575.global_device_reset = true;
schedule_work(&adapter->reset_task);
E1000_WRITE_REG(hw, E1000_EICS,
(adapter->eims_enable_mask & ~adapter->eims_other));
}
static void igb_reset_task(struct work_struct *work)
{
struct igb_adapter *adapter;
adapter = container_of(work, struct igb_adapter, reset_task);
igb_reinit_locked(adapter);
}
/**
* igb_get_stats - Get System Network Statistics
* @netdev: network interface device structure
*
* Returns the address of the device statistics structure.
* The statistics are updated here and also from the timer callback.
**/
static struct net_device_stats *igb_get_stats(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if (!test_bit(__IGB_RESETTING, &adapter->state))
igb_update_stats(adapter);
#ifdef HAVE_NETDEV_STATS_IN_NETDEV
/* only return the current stats */
return &netdev->stats;
#else
/* only return the current stats */
return &adapter->net_stats;
#endif /* HAVE_NETDEV_STATS_IN_NETDEV */
}
/**
* igb_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
**/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
dev_err(pci_dev_to_dev(pdev), "Invalid MTU setting\n");
return -EINVAL;
}
#define MAX_STD_JUMBO_FRAME_SIZE 9238
if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
dev_err(pci_dev_to_dev(pdev), "MTU > 9216 not supported.\n");
return -EINVAL;
}
/* adjust max frame to be at least the size of a standard frame */
if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
usleep_range(1000, 2000);
/* igb_down has a dependency on max_frame_size */
adapter->max_frame_size = max_frame;
if (netif_running(netdev))
igb_down(adapter);
dev_info(pci_dev_to_dev(pdev), "changing MTU from %d to %d\n",
netdev->mtu, new_mtu);
netdev->mtu = new_mtu;
hw->dev_spec._82575.mtu = new_mtu;
if (netif_running(netdev))
igb_up(adapter);
else
igb_reset(adapter);
clear_bit(__IGB_RESETTING, &adapter->state);
return 0;
}
/**
* igb_update_stats - Update the board statistics counters
* @adapter: board private structure
**/
void igb_update_stats(struct igb_adapter *adapter)
{
#ifdef HAVE_NETDEV_STATS_IN_NETDEV
struct net_device_stats *net_stats = &adapter->netdev->stats;
#else
struct net_device_stats *net_stats = &adapter->net_stats;
#endif /* HAVE_NETDEV_STATS_IN_NETDEV */
struct e1000_hw *hw = &adapter->hw;
#ifdef HAVE_PCI_ERS
struct pci_dev *pdev = adapter->pdev;
#endif
u32 reg, mpc;
u16 phy_tmp;
int i;
u64 bytes, packets;
#ifndef IGB_NO_LRO
u32 flushed = 0, coal = 0;
struct igb_q_vector *q_vector;
#endif
#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
/*
* Prevent stats update while adapter is being reset, or if the pci
* connection is down.
*/
if (adapter->link_speed == 0)
return;
#ifdef HAVE_PCI_ERS
if (pci_channel_offline(pdev))
return;
#endif
#ifndef IGB_NO_LRO
for (i = 0; i < adapter->num_q_vectors; i++) {
q_vector = adapter->q_vector[i];
if (!q_vector)
continue;
flushed += q_vector->lrolist.stats.flushed;
coal += q_vector->lrolist.stats.coal;
}
adapter->lro_stats.flushed = flushed;
adapter->lro_stats.coal = coal;
#endif
bytes = 0;
packets = 0;
for (i = 0; i < adapter->num_rx_queues; i++) {
u32 rqdpc_tmp = E1000_READ_REG(hw, E1000_RQDPC(i)) & 0x0FFF;
struct igb_ring *ring = adapter->rx_ring[i];
ring->rx_stats.drops += rqdpc_tmp;
net_stats->rx_fifo_errors += rqdpc_tmp;
#ifdef CONFIG_IGB_VMDQ_NETDEV
if (!ring->vmdq_netdev) {
bytes += ring->rx_stats.bytes;
packets += ring->rx_stats.packets;
}
#else
bytes += ring->rx_stats.bytes;
packets += ring->rx_stats.packets;
#endif
}
net_stats->rx_bytes = bytes;
net_stats->rx_packets = packets;
bytes = 0;
packets = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igb_ring *ring = adapter->tx_ring[i];
#ifdef CONFIG_IGB_VMDQ_NETDEV
if (!ring->vmdq_netdev) {
bytes += ring->tx_stats.bytes;
packets += ring->tx_stats.packets;
}
#else
bytes += ring->tx_stats.bytes;
packets += ring->tx_stats.packets;
#endif
}
net_stats->tx_bytes = bytes;
net_stats->tx_packets = packets;
/* read stats registers */
adapter->stats.crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
adapter->stats.gprc += E1000_READ_REG(hw, E1000_GPRC);
adapter->stats.gorc += E1000_READ_REG(hw, E1000_GORCL);
E1000_READ_REG(hw, E1000_GORCH); /* clear GORCL */
adapter->stats.bprc += E1000_READ_REG(hw, E1000_BPRC);
adapter->stats.mprc += E1000_READ_REG(hw, E1000_MPRC);
adapter->stats.roc += E1000_READ_REG(hw, E1000_ROC);
adapter->stats.prc64 += E1000_READ_REG(hw, E1000_PRC64);
adapter->stats.prc127 += E1000_READ_REG(hw, E1000_PRC127);
adapter->stats.prc255 += E1000_READ_REG(hw, E1000_PRC255);
adapter->stats.prc511 += E1000_READ_REG(hw, E1000_PRC511);
adapter->stats.prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
adapter->stats.prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
adapter->stats.symerrs += E1000_READ_REG(hw, E1000_SYMERRS);
adapter->stats.sec += E1000_READ_REG(hw, E1000_SEC);
mpc = E1000_READ_REG(hw, E1000_MPC);
adapter->stats.mpc += mpc;
net_stats->rx_fifo_errors += mpc;
adapter->stats.scc += E1000_READ_REG(hw, E1000_SCC);
adapter->stats.ecol += E1000_READ_REG(hw, E1000_ECOL);
adapter->stats.mcc += E1000_READ_REG(hw, E1000_MCC);
adapter->stats.latecol += E1000_READ_REG(hw, E1000_LATECOL);
adapter->stats.dc += E1000_READ_REG(hw, E1000_DC);
adapter->stats.rlec += E1000_READ_REG(hw, E1000_RLEC);
adapter->stats.xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
adapter->stats.xontxc += E1000_READ_REG(hw, E1000_XONTXC);
adapter->stats.xoffrxc += E1000_READ_REG(hw, E1000_XOFFRXC);
adapter->stats.xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
adapter->stats.fcruc += E1000_READ_REG(hw, E1000_FCRUC);
adapter->stats.gptc += E1000_READ_REG(hw, E1000_GPTC);
adapter->stats.gotc += E1000_READ_REG(hw, E1000_GOTCL);
E1000_READ_REG(hw, E1000_GOTCH); /* clear GOTCL */
adapter->stats.rnbc += E1000_READ_REG(hw, E1000_RNBC);
adapter->stats.ruc += E1000_READ_REG(hw, E1000_RUC);
adapter->stats.rfc += E1000_READ_REG(hw, E1000_RFC);
adapter->stats.rjc += E1000_READ_REG(hw, E1000_RJC);
adapter->stats.tor += E1000_READ_REG(hw, E1000_TORH);
adapter->stats.tot += E1000_READ_REG(hw, E1000_TOTH);
adapter->stats.tpr += E1000_READ_REG(hw, E1000_TPR);
adapter->stats.ptc64 += E1000_READ_REG(hw, E1000_PTC64);
adapter->stats.ptc127 += E1000_READ_REG(hw, E1000_PTC127);
adapter->stats.ptc255 += E1000_READ_REG(hw, E1000_PTC255);
adapter->stats.ptc511 += E1000_READ_REG(hw, E1000_PTC511);
adapter->stats.ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
adapter->stats.ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
adapter->stats.mptc += E1000_READ_REG(hw, E1000_MPTC);
adapter->stats.bptc += E1000_READ_REG(hw, E1000_BPTC);
adapter->stats.tpt += E1000_READ_REG(hw, E1000_TPT);
adapter->stats.colc += E1000_READ_REG(hw, E1000_COLC);
adapter->stats.algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
/* read internal phy sepecific stats */
reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
adapter->stats.rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
/* this stat has invalid values on i210/i211 */
if ((hw->mac.type != e1000_i210) &&
(hw->mac.type != e1000_i211))
adapter->stats.tncrs += E1000_READ_REG(hw, E1000_TNCRS);
}
adapter->stats.tsctc += E1000_READ_REG(hw, E1000_TSCTC);
adapter->stats.tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
adapter->stats.iac += E1000_READ_REG(hw, E1000_IAC);
adapter->stats.icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
adapter->stats.icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
adapter->stats.icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
adapter->stats.ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
adapter->stats.ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
adapter->stats.ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
adapter->stats.ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
adapter->stats.icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
/* Fill out the OS statistics structure */
net_stats->multicast = adapter->stats.mprc;
net_stats->collisions = adapter->stats.colc;
/* Rx Errors */
/* RLEC on some newer hardware can be incorrect so build
* our own version based on RUC and ROC */
net_stats->rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc +
adapter->stats.cexterr;
net_stats->rx_length_errors = adapter->stats.ruc +
adapter->stats.roc;
net_stats->rx_crc_errors = adapter->stats.crcerrs;
net_stats->rx_frame_errors = adapter->stats.algnerrc;
net_stats->rx_missed_errors = adapter->stats.mpc;
/* Tx Errors */
net_stats->tx_errors = adapter->stats.ecol +
adapter->stats.latecol;
net_stats->tx_aborted_errors = adapter->stats.ecol;
net_stats->tx_window_errors = adapter->stats.latecol;
net_stats->tx_carrier_errors = adapter->stats.tncrs;
/* Tx Dropped needs to be maintained elsewhere */
/* Phy Stats */
if (hw->phy.media_type == e1000_media_type_copper) {
if ((adapter->link_speed == SPEED_1000) &&
(!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
adapter->phy_stats.idle_errors += phy_tmp;
}
}
/* Management Stats */
adapter->stats.mgptc += E1000_READ_REG(hw, E1000_MGTPTC);
adapter->stats.mgprc += E1000_READ_REG(hw, E1000_MGTPRC);
if (hw->mac.type > e1000_82580) {
adapter->stats.o2bgptc += E1000_READ_REG(hw, E1000_O2BGPTC);
adapter->stats.o2bspc += E1000_READ_REG(hw, E1000_O2BSPC);
adapter->stats.b2ospc += E1000_READ_REG(hw, E1000_B2OSPC);
adapter->stats.b2ogprc += E1000_READ_REG(hw, E1000_B2OGPRC);
}
}
static irqreturn_t igb_msix_other(int irq, void *data)
{
struct igb_adapter *adapter = data;
struct e1000_hw *hw = &adapter->hw;
u32 icr = E1000_READ_REG(hw, E1000_ICR);
/* reading ICR causes bit 31 of EICR to be cleared */
if (icr & E1000_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (icr & E1000_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
/* The DMA Out of Sync is also indication of a spoof event
* in IOV mode. Check the Wrong VM Behavior register to
* see if it is really a spoof event. */
igb_check_wvbr(adapter);
}
/* Check for a mailbox event */
if (icr & E1000_ICR_VMMB)
igb_msg_task(adapter);
if (icr & E1000_ICR_LSC) {
hw->mac.get_link_status = 1;
/* guard against interrupt when we're going down */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
#ifdef HAVE_PTP_1588_CLOCK
if (icr & E1000_ICR_TS) {
u32 tsicr = E1000_READ_REG(hw, E1000_TSICR);
if (tsicr & E1000_TSICR_TXTS) {
/* acknowledge the interrupt */
E1000_WRITE_REG(hw, E1000_TSICR, E1000_TSICR_TXTS);
/* retrieve hardware timestamp */
schedule_work(&adapter->ptp_tx_work);
}
}
#endif /* HAVE_PTP_1588_CLOCK */
/* Check for MDD event */
if (icr & E1000_ICR_MDDET)
igb_process_mdd_event(adapter);
E1000_WRITE_REG(hw, E1000_EIMS, adapter->eims_other);
return IRQ_HANDLED;
}
static void igb_write_itr(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
u32 itr_val = q_vector->itr_val & 0x7FFC;
if (!q_vector->set_itr)
return;
if (!itr_val)
itr_val = 0x4;
if (adapter->hw.mac.type == e1000_82575)
itr_val |= itr_val << 16;
else
itr_val |= E1000_EITR_CNT_IGNR;
writel(itr_val, q_vector->itr_register);
q_vector->set_itr = 0;
}
static irqreturn_t igb_msix_ring(int irq, void *data)
{
struct igb_q_vector *q_vector = data;
/* Write the ITR value calculated from the previous interrupt. */
igb_write_itr(q_vector);
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
#ifdef IGB_DCA
static void igb_update_tx_dca(struct igb_adapter *adapter,
struct igb_ring *tx_ring,
int cpu)
{
struct e1000_hw *hw = &adapter->hw;
u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
if (hw->mac.type != e1000_82575)
txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT_82576;
/*
* We can enable relaxed ordering for reads, but not writes when
* DCA is enabled. This is due to a known issue in some chipsets
* which will cause the DCA tag to be cleared.
*/
txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
E1000_DCA_TXCTRL_DATA_RRO_EN |
E1000_DCA_TXCTRL_DESC_DCA_EN;
E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}
static void igb_update_rx_dca(struct igb_adapter *adapter,
struct igb_ring *rx_ring,
int cpu)
{
struct e1000_hw *hw = &adapter->hw;
u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
if (hw->mac.type != e1000_82575)
rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT_82576;
/*
* We can enable relaxed ordering for reads, but not writes when
* DCA is enabled. This is due to a known issue in some chipsets
* which will cause the DCA tag to be cleared.
*/
rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
E1000_DCA_RXCTRL_DESC_DCA_EN;
E1000_WRITE_REG(hw, E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}
static void igb_update_dca(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
int cpu = get_cpu();
if (q_vector->cpu == cpu)
goto out_no_update;
if (q_vector->tx.ring)
igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
if (q_vector->rx.ring)
igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
q_vector->cpu = cpu;
out_no_update:
put_cpu();
}
static void igb_setup_dca(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
return;
/* Always use CB2 mode, difference is masked in the CB driver. */
E1000_WRITE_REG(hw, E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
for (i = 0; i < adapter->num_q_vectors; i++) {
adapter->q_vector[i]->cpu = -1;
igb_update_dca(adapter->q_vector[i]);
}
}
static int __igb_notify_dca(struct device *dev, void *data)
{
struct net_device *netdev = dev_get_drvdata(dev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
unsigned long event = *(unsigned long *)data;
switch (event) {
case DCA_PROVIDER_ADD:
/* if already enabled, don't do it again */
if (adapter->flags & IGB_FLAG_DCA_ENABLED)
break;
if (dca_add_requester(dev) == E1000_SUCCESS) {
adapter->flags |= IGB_FLAG_DCA_ENABLED;
dev_info(pci_dev_to_dev(pdev), "DCA enabled\n");
igb_setup_dca(adapter);
break;
}
/* Fall Through since DCA is disabled. */
case DCA_PROVIDER_REMOVE:
if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
/* without this a class_device is left
* hanging around in the sysfs model */
dca_remove_requester(dev);
dev_info(pci_dev_to_dev(pdev), "DCA disabled\n");
adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
E1000_WRITE_REG(hw, E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_DISABLE);
}
break;
}
return E1000_SUCCESS;
}
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
void *p)
{
int ret_val;
ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
__igb_notify_dca);
return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
#endif /* IGB_DCA */
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
unsigned char mac_addr[ETH_ALEN];
random_ether_addr(mac_addr);
igb_set_vf_mac(adapter, vf, mac_addr);
#ifdef IFLA_VF_MAX
#ifdef HAVE_VF_SPOOFCHK_CONFIGURE
/* By default spoof check is enabled for all VFs */
adapter->vf_data[vf].spoofchk_enabled = true;
#endif
#endif
return true;
}
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ping;
int i;
for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
ping = E1000_PF_CONTROL_MSG;
if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
ping |= E1000_VT_MSGTYPE_CTS;
e1000_write_mbx(hw, &ping, 1, i);
}
}
/**
* igb_mta_set_ - Set multicast filter table address
* @adapter: pointer to the adapter structure
* @hash_value: determines the MTA register and bit to set
*
* The multicast table address is a register array of 32-bit registers.
* The hash_value is used to determine what register the bit is in, the
* current value is read, the new bit is OR'd in and the new value is
* written back into the register.
**/
void igb_mta_set(struct igb_adapter *adapter, u32 hash_value)
{
struct e1000_hw *hw = &adapter->hw;
u32 hash_bit, hash_reg, mta;
/*
* The MTA is a register array of 32-bit registers. It is
* treated like an array of (32*mta_reg_count) bits. We want to
* set bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write
* back the new value. The (hw->mac.mta_reg_count - 1) serves as a
* mask to bits 31:5 of the hash value which gives us the
* register we're modifying. The hash bit within that register
* is determined by the lower 5 bits of the hash value.
*/
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
hash_bit = hash_value & 0x1F;
mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
mta |= (1 << hash_bit);
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
E1000_WRITE_FLUSH(hw);
}
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
u32 vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
IGB_VF_FLAG_MULTI_PROMISC);
vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
#ifdef IGB_ENABLE_VF_PROMISC
if (*msgbuf & E1000_VF_SET_PROMISC_UNICAST) {
vmolr |= E1000_VMOLR_ROPE;
vf_data->flags |= IGB_VF_FLAG_UNI_PROMISC;
*msgbuf &= ~E1000_VF_SET_PROMISC_UNICAST;
}
#endif
if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
vmolr |= E1000_VMOLR_MPME;
vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
} else {
/*
* if we have hashes and we are clearing a multicast promisc
* flag we need to write the hashes to the MTA as this step
* was previously skipped
*/
if (vf_data->num_vf_mc_hashes > 30) {
vmolr |= E1000_VMOLR_MPME;
} else if (vf_data->num_vf_mc_hashes) {
int j;
vmolr |= E1000_VMOLR_ROMPE;
for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
igb_mta_set(adapter, vf_data->vf_mc_hashes[j]);
}
}
E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
/* there are flags left unprocessed, likely not supported */
if (*msgbuf & E1000_VT_MSGINFO_MASK)
return -EINVAL;
return 0;
}
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
u32 *msgbuf, u32 vf)
{
int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
u16 *hash_list = (u16 *)&msgbuf[1];
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
int i;
/* salt away the number of multicast addresses assigned
* to this VF for later use to restore when the PF multi cast
* list changes
*/
vf_data->num_vf_mc_hashes = n;
/* only up to 30 hash values supported */
if (n > 30)
n = 30;
/* store the hashes for later use */
for (i = 0; i < n; i++)
vf_data->vf_mc_hashes[i] = hash_list[i];
/* Flush and reset the mta with the new values */
igb_set_rx_mode(adapter->netdev);
return 0;
}
static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct vf_data_storage *vf_data;
int i, j;
for (i = 0; i < adapter->vfs_allocated_count; i++) {
u32 vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
vf_data = &adapter->vf_data[i];
if ((vf_data->num_vf_mc_hashes > 30) ||
(vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
vmolr |= E1000_VMOLR_MPME;
} else if (vf_data->num_vf_mc_hashes) {
vmolr |= E1000_VMOLR_ROMPE;
for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
igb_mta_set(adapter, vf_data->vf_mc_hashes[j]);
}
E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
}
}
static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
u32 pool_mask, reg, vid;
u16 vlan_default;
int i;
pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
/* Find the vlan filter for this id */
for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
reg = E1000_READ_REG(hw, E1000_VLVF(i));
/* remove the vf from the pool */
reg &= ~pool_mask;
/* if pool is empty then remove entry from vfta */
if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
(reg & E1000_VLVF_VLANID_ENABLE)) {
reg = 0;
vid = reg & E1000_VLVF_VLANID_MASK;
igb_vfta_set(adapter, vid, FALSE);
}
E1000_WRITE_REG(hw, E1000_VLVF(i), reg);
}
adapter->vf_data[vf].vlans_enabled = 0;
vlan_default = adapter->vf_data[vf].default_vf_vlan_id;
if (vlan_default)
igb_vlvf_set(adapter, vlan_default, true, vf);
}
s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
u32 reg, i;
/* The vlvf table only exists on 82576 hardware and newer */
if (hw->mac.type < e1000_82576)
return -1;
/* we only need to do this if VMDq is enabled */
if (!adapter->vmdq_pools)
return -1;
/* Find the vlan filter for this id */
for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
reg = E1000_READ_REG(hw, E1000_VLVF(i));
if ((reg & E1000_VLVF_VLANID_ENABLE) &&
vid == (reg & E1000_VLVF_VLANID_MASK))
break;
}
if (add) {
if (i == E1000_VLVF_ARRAY_SIZE) {
/* Did not find a matching VLAN ID entry that was
* enabled. Search for a free filter entry, i.e.
* one without the enable bit set
*/
for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
reg = E1000_READ_REG(hw, E1000_VLVF(i));
if (!(reg & E1000_VLVF_VLANID_ENABLE))
break;
}
}
if (i < E1000_VLVF_ARRAY_SIZE) {
/* Found an enabled/available entry */
reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
/* if !enabled we need to set this up in vfta */
if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
/* add VID to filter table */
igb_vfta_set(adapter, vid, TRUE);
reg |= E1000_VLVF_VLANID_ENABLE;
}
reg &= ~E1000_VLVF_VLANID_MASK;
reg |= vid;
E1000_WRITE_REG(hw, E1000_VLVF(i), reg);
/* do not modify RLPML for PF devices */
if (vf >= adapter->vfs_allocated_count)
return E1000_SUCCESS;
if (!adapter->vf_data[vf].vlans_enabled) {
u32 size;
reg = E1000_READ_REG(hw, E1000_VMOLR(vf));
size = reg & E1000_VMOLR_RLPML_MASK;
size += 4;
reg &= ~E1000_VMOLR_RLPML_MASK;
reg |= size;
E1000_WRITE_REG(hw, E1000_VMOLR(vf), reg);
}
adapter->vf_data[vf].vlans_enabled++;
}
} else {
if (i < E1000_VLVF_ARRAY_SIZE) {
/* remove vf from the pool */
reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
/* if pool is empty then remove entry from vfta */
if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
reg = 0;
igb_vfta_set(adapter, vid, FALSE);
}
E1000_WRITE_REG(hw, E1000_VLVF(i), reg);
/* do not modify RLPML for PF devices */
if (vf >= adapter->vfs_allocated_count)
return E1000_SUCCESS;
adapter->vf_data[vf].vlans_enabled--;
if (!adapter->vf_data[vf].vlans_enabled) {
u32 size;
reg = E1000_READ_REG(hw, E1000_VMOLR(vf));
size = reg & E1000_VMOLR_RLPML_MASK;
size -= 4;
reg &= ~E1000_VMOLR_RLPML_MASK;
reg |= size;
E1000_WRITE_REG(hw, E1000_VMOLR(vf), reg);
}
}
}
return E1000_SUCCESS;
}
#ifdef IFLA_VF_MAX
static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
if (vid)
E1000_WRITE_REG(hw, E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
else
E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0);
}
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
#ifdef HAVE_VF_VLAN_PROTO
int vf, u16 vlan, u8 qos, __be16 vlan_proto)
#else
int vf, u16 vlan, u8 qos)
#endif
{
int err = 0;
struct igb_adapter *adapter = netdev_priv(netdev);
/* VLAN IDs accepted range 0-4094 */
if ((vf >= adapter->vfs_allocated_count) || (vlan > VLAN_VID_MASK-1) || (qos > 7))
return -EINVAL;
#ifdef HAVE_VF_VLAN_PROTO
if (vlan_proto != htons(ETH_P_8021Q))
return -EPROTONOSUPPORT;
#endif
if (vlan || qos) {
err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
if (err)
goto out;
igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
igb_set_vmolr(adapter, vf, !vlan);
adapter->vf_data[vf].pf_vlan = vlan;
adapter->vf_data[vf].pf_qos = qos;
igb_set_vf_vlan_strip(adapter, vf, true);
dev_info(&adapter->pdev->dev,
"Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
if (test_bit(__IGB_DOWN, &adapter->state)) {
dev_warn(&adapter->pdev->dev,
"The VF VLAN has been set,"
" but the PF device is not up.\n");
dev_warn(&adapter->pdev->dev,
"Bring the PF device up before"
" attempting to use the VF device.\n");
}
} else {
if (adapter->vf_data[vf].pf_vlan)
dev_info(&adapter->pdev->dev,
"Clearing VLAN on VF %d\n", vf);
igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
false, vf);
igb_set_vmvir(adapter, vlan, vf);
igb_set_vmolr(adapter, vf, true);
igb_set_vf_vlan_strip(adapter, vf, false);
adapter->vf_data[vf].pf_vlan = 0;
adapter->vf_data[vf].pf_qos = 0;
}
out:
return err;
}
#ifdef HAVE_VF_SPOOFCHK_CONFIGURE
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
bool setting)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 dtxswc, reg_offset;
if (!adapter->vfs_allocated_count)
return -EOPNOTSUPP;
if (vf >= adapter->vfs_allocated_count)
return -EINVAL;
reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
dtxswc = E1000_READ_REG(hw, reg_offset);
if (setting)
dtxswc |= ((1 << vf) |
(1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
else
dtxswc &= ~((1 << vf) |
(1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
E1000_WRITE_REG(hw, reg_offset, dtxswc);
adapter->vf_data[vf].spoofchk_enabled = setting;
return E1000_SUCCESS;
}
#endif /* HAVE_VF_SPOOFCHK_CONFIGURE */
#endif /* IFLA_VF_MAX */
static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
{
struct e1000_hw *hw = &adapter->hw;
int i;
u32 reg;
/* Find the vlan filter for this id */
for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
reg = E1000_READ_REG(hw, E1000_VLVF(i));
if ((reg & E1000_VLVF_VLANID_ENABLE) &&
vid == (reg & E1000_VLVF_VLANID_MASK))
break;
}
if (i >= E1000_VLVF_ARRAY_SIZE)
i = -1;
return i;
}
static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
int err = 0;
if (vid)
igb_set_vf_vlan_strip(adapter, vf, true);
else
igb_set_vf_vlan_strip(adapter, vf, false);
/* If in promiscuous mode we need to make sure the PF also has
* the VLAN filter set.
*/
if (add && (adapter->netdev->flags & IFF_PROMISC))
err = igb_vlvf_set(adapter, vid, add,
adapter->vfs_allocated_count);
if (err)
goto out;
err = igb_vlvf_set(adapter, vid, add, vf);
if (err)
goto out;
/* Go through all the checks to see if the VLAN filter should
* be wiped completely.
*/
if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
u32 vlvf, bits;
int regndx = igb_find_vlvf_entry(adapter, vid);
if (regndx < 0)
goto out;
/* See if any other pools are set for this VLAN filter
* entry other than the PF.
*/
vlvf = bits = E1000_READ_REG(hw, E1000_VLVF(regndx));
bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
adapter->vfs_allocated_count);
/* If the filter was removed then ensure PF pool bit
* is cleared if the PF only added itself to the pool
* because the PF is in promiscuous mode.
*/
if ((vlvf & VLAN_VID_MASK) == vid &&
#ifndef HAVE_VLAN_RX_REGISTER
!test_bit(vid, adapter->active_vlans) &&
#endif
!bits)
igb_vlvf_set(adapter, vid, add,
adapter->vfs_allocated_count);
}
out:
return err;
}
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
/* clear flags except flag that the PF has set the MAC */
adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
adapter->vf_data[vf].last_nack = jiffies;
/* reset offloads to defaults */
igb_set_vmolr(adapter, vf, true);
/* reset vlans for device */
igb_clear_vf_vfta(adapter, vf);
#ifdef IFLA_VF_MAX
if (adapter->vf_data[vf].pf_vlan)
igb_ndo_set_vf_vlan(adapter->netdev, vf,
adapter->vf_data[vf].pf_vlan,
#ifdef HAVE_VF_VLAN_PROTO
adapter->vf_data[vf].pf_qos,
htons(ETH_P_8021Q));
#else
adapter->vf_data[vf].pf_qos);
#endif
else
igb_clear_vf_vfta(adapter, vf);
#endif
/* reset multicast table array for vf */
adapter->vf_data[vf].num_vf_mc_hashes = 0;
/* Flush and reset the mta with the new values */
igb_set_rx_mode(adapter->netdev);
/*
* Reset the VFs TDWBAL and TDWBAH registers which are not
* cleared by a VFLR
*/
E1000_WRITE_REG(hw, E1000_TDWBAH(vf), 0);
E1000_WRITE_REG(hw, E1000_TDWBAL(vf), 0);
if (hw->mac.type == e1000_82576) {
E1000_WRITE_REG(hw, E1000_TDWBAH(IGB_MAX_VF_FUNCTIONS + vf), 0);
E1000_WRITE_REG(hw, E1000_TDWBAL(IGB_MAX_VF_FUNCTIONS + vf), 0);
}
}
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
/* generate a new mac address as we were hotplug removed/added */
if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
random_ether_addr(vf_mac);
/* process remaining reset events */
igb_vf_reset(adapter, vf);
}
static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
u32 reg, msgbuf[3];
u8 *addr = (u8 *)(&msgbuf[1]);
/* process all the same items cleared in a function level reset */
igb_vf_reset(adapter, vf);
/* set vf mac address */
igb_del_mac_filter(adapter, vf_mac, vf);
igb_add_mac_filter(adapter, vf_mac, vf);
/* enable transmit and receive for vf */
reg = E1000_READ_REG(hw, E1000_VFTE);
E1000_WRITE_REG(hw, E1000_VFTE, reg | (1 << vf));
reg = E1000_READ_REG(hw, E1000_VFRE);
E1000_WRITE_REG(hw, E1000_VFRE, reg | (1 << vf));
adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
/* reply to reset with ack and vf mac address */
msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
memcpy(addr, vf_mac, 6);
e1000_write_mbx(hw, msgbuf, 3, vf);
}
static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
/*
* The VF MAC Address is stored in a packed array of bytes
* starting at the second 32 bit word of the msg array
*/
unsigned char *addr = (unsigned char *)&msg[1];
int err = -1;
if (is_valid_ether_addr(addr))
err = igb_set_vf_mac(adapter, vf, addr);
return err;
}
static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
u32 msg = E1000_VT_MSGTYPE_NACK;
/* if device isn't clear to send it shouldn't be reading either */
if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
e1000_write_mbx(hw, &msg, 1, vf);
vf_data->last_nack = jiffies;
}
}
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
{
struct pci_dev *pdev = adapter->pdev;
u32 msgbuf[E1000_VFMAILBOX_SIZE];
struct e1000_hw *hw = &adapter->hw;
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
s32 retval;
retval = e1000_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
if (retval) {
dev_err(pci_dev_to_dev(pdev), "Error receiving message from VF\n");
return;
}
/* this is a message we already processed, do nothing */
if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
return;
/*
* until the vf completes a reset it should not be
* allowed to start any configuration.
*/
if (msgbuf[0] == E1000_VF_RESET) {
igb_vf_reset_msg(adapter, vf);
return;
}
if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
msgbuf[0] = E1000_VT_MSGTYPE_NACK;
if (time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
e1000_write_mbx(hw, msgbuf, 1, vf);
vf_data->last_nack = jiffies;
}
return;
}
switch ((msgbuf[0] & 0xFFFF)) {
case E1000_VF_SET_MAC_ADDR:
retval = -EINVAL;
#ifndef IGB_DISABLE_VF_MAC_SET
if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
else
DPRINTK(DRV, INFO,
"VF %d attempted to override administratively "
"set MAC address\nReload the VF driver to "
"resume operations\n", vf);
#endif
break;
case E1000_VF_SET_PROMISC:
retval = igb_set_vf_promisc(adapter, msgbuf, vf);
break;
case E1000_VF_SET_MULTICAST:
retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
break;
case E1000_VF_SET_LPE:
retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
break;
case E1000_VF_SET_VLAN:
retval = -1;
#ifdef IFLA_VF_MAX
if (vf_data->pf_vlan)
DPRINTK(DRV, INFO,
"VF %d attempted to override administratively "
"set VLAN tag\nReload the VF driver to "
"resume operations\n", vf);
else
#endif
retval = igb_set_vf_vlan(adapter, msgbuf, vf);
break;
default:
dev_err(pci_dev_to_dev(pdev), "Unhandled Msg %08x\n", msgbuf[0]);
retval = -E1000_ERR_MBX;
break;
}
/* notify the VF of the results of what it sent us */
if (retval)
msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
else
msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
e1000_write_mbx(hw, msgbuf, 1, vf);
}
static void igb_msg_task(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 vf;
for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
/* process any reset requests */
if (!e1000_check_for_rst(hw, vf))
igb_vf_reset_event(adapter, vf);
/* process any messages pending */
if (!e1000_check_for_msg(hw, vf))
igb_rcv_msg_from_vf(adapter, vf);
/* process any acks */
if (!e1000_check_for_ack(hw, vf))
igb_rcv_ack_from_vf(adapter, vf);
}
}
/**
* igb_set_uta - Set unicast filter table address
* @adapter: board private structure
*
* The unicast table address is a register array of 32-bit registers.
* The table is meant to be used in a way similar to how the MTA is used
* however due to certain limitations in the hardware it is necessary to
* set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
* enable bit to allow vlan tag stripping when promiscuous mode is enabled
**/
static void igb_set_uta(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
/* The UTA table only exists on 82576 hardware and newer */
if (hw->mac.type < e1000_82576)
return;
/* we only need to do this if VMDq is enabled */
if (!adapter->vmdq_pools)
return;
for (i = 0; i < hw->mac.uta_reg_count; i++)
E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, ~0);
}
/**
* igb_intr_msi - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
struct igb_adapter *adapter = data;
struct igb_q_vector *q_vector = adapter->q_vector[0];
struct e1000_hw *hw = &adapter->hw;
/* read ICR disables interrupts using IAM */
u32 icr = E1000_READ_REG(hw, E1000_ICR);
igb_write_itr(q_vector);
if (icr & E1000_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (icr & E1000_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
}
if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
hw->mac.get_link_status = 1;
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
#ifdef HAVE_PTP_1588_CLOCK
if (icr & E1000_ICR_TS) {
u32 tsicr = E1000_READ_REG(hw, E1000_TSICR);
if (tsicr & E1000_TSICR_TXTS) {
/* acknowledge the interrupt */
E1000_WRITE_REG(hw, E1000_TSICR, E1000_TSICR_TXTS);
/* retrieve hardware timestamp */
schedule_work(&adapter->ptp_tx_work);
}
}
#endif /* HAVE_PTP_1588_CLOCK */
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
/**
* igb_intr - Legacy Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t igb_intr(int irq, void *data)
{
struct igb_adapter *adapter = data;
struct igb_q_vector *q_vector = adapter->q_vector[0];
struct e1000_hw *hw = &adapter->hw;
/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
* need for the IMC write */
u32 icr = E1000_READ_REG(hw, E1000_ICR);
/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
* not set, then the adapter didn't send an interrupt */
if (!(icr & E1000_ICR_INT_ASSERTED))
return IRQ_NONE;
igb_write_itr(q_vector);
if (icr & E1000_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (icr & E1000_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
}
if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
hw->mac.get_link_status = 1;
/* guard against interrupt when we're going down */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
#ifdef HAVE_PTP_1588_CLOCK
if (icr & E1000_ICR_TS) {
u32 tsicr = E1000_READ_REG(hw, E1000_TSICR);
if (tsicr & E1000_TSICR_TXTS) {
/* acknowledge the interrupt */
E1000_WRITE_REG(hw, E1000_TSICR, E1000_TSICR_TXTS);
/* retrieve hardware timestamp */
schedule_work(&adapter->ptp_tx_work);
}
}
#endif /* HAVE_PTP_1588_CLOCK */
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
void igb_ring_irq_enable(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
struct e1000_hw *hw = &adapter->hw;
if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
(!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
igb_set_itr(q_vector);
else
igb_update_ring_itr(q_vector);
}
if (!test_bit(__IGB_DOWN, &adapter->state)) {
if (adapter->msix_entries)
E1000_WRITE_REG(hw, E1000_EIMS, q_vector->eims_value);
else
igb_irq_enable(adapter);
}
}
/**
* igb_poll - NAPI Rx polling callback
* @napi: napi polling structure
* @budget: count of how many packets we should handle
**/
static int igb_poll(struct napi_struct *napi, int budget)
{
struct igb_q_vector *q_vector = container_of(napi, struct igb_q_vector, napi);
bool clean_complete = true;
#ifdef IGB_DCA
if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
igb_update_dca(q_vector);
#endif
if (q_vector->tx.ring)
clean_complete = igb_clean_tx_irq(q_vector);
if (q_vector->rx.ring)
clean_complete &= igb_clean_rx_irq(q_vector, budget);
#ifndef HAVE_NETDEV_NAPI_LIST
/* if netdev is disabled we need to stop polling */
if (!netif_running(q_vector->adapter->netdev))
clean_complete = true;
#endif
/* If all work not completed, return budget and keep polling */
if (!clean_complete)
return budget;
/* If not enough Rx work done, exit the polling mode */
napi_complete(napi);
igb_ring_irq_enable(q_vector);
return 0;
}
/**
* igb_clean_tx_irq - Reclaim resources after transmit completes
* @q_vector: pointer to q_vector containing needed info
* returns TRUE if ring is completely cleaned
**/
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
struct igb_ring *tx_ring = q_vector->tx.ring;
struct igb_tx_buffer *tx_buffer;
union e1000_adv_tx_desc *tx_desc;
unsigned int total_bytes = 0, total_packets = 0;
unsigned int budget = q_vector->tx.work_limit;
unsigned int i = tx_ring->next_to_clean;
if (test_bit(__IGB_DOWN, &adapter->state))
return true;
tx_buffer = &tx_ring->tx_buffer_info[i];
tx_desc = IGB_TX_DESC(tx_ring, i);
i -= tx_ring->count;
do {
union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
/* if next_to_watch is not set then there is no work pending */
if (!eop_desc)
break;
/* prevent any other reads prior to eop_desc */
read_barrier_depends();
/* if DD is not set pending work has not been completed */
if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
break;
/* clear next_to_watch to prevent false hangs */
tx_buffer->next_to_watch = NULL;
/* update the statistics for this packet */
total_bytes += tx_buffer->bytecount;
total_packets += tx_buffer->gso_segs;
/* free the skb */
dev_kfree_skb_any(tx_buffer->skb);
/* unmap skb header data */
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
/* clear tx_buffer data */
tx_buffer->skb = NULL;
dma_unmap_len_set(tx_buffer, len, 0);
/* clear last DMA location and unmap remaining buffers */
while (tx_desc != eop_desc) {
tx_buffer++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = IGB_TX_DESC(tx_ring, 0);
}
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buffer, len)) {
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buffer, len, 0);
}
}
/* move us one more past the eop_desc for start of next pkt */
tx_buffer++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = IGB_TX_DESC(tx_ring, 0);
}
/* issue prefetch for next Tx descriptor */
prefetch(tx_desc);
/* update budget accounting */
budget--;
} while (likely(budget));
netdev_tx_completed_queue(txring_txq(tx_ring),
total_packets, total_bytes);
i += tx_ring->count;
tx_ring->next_to_clean = i;
tx_ring->tx_stats.bytes += total_bytes;
tx_ring->tx_stats.packets += total_packets;
q_vector->tx.total_bytes += total_bytes;
q_vector->tx.total_packets += total_packets;
#ifdef DEBUG
if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags) &&
!(adapter->disable_hw_reset && adapter->tx_hang_detected)) {
#else
if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
#endif
struct e1000_hw *hw = &adapter->hw;
/* Detect a transmit hang in hardware, this serializes the
* check with the clearing of time_stamp and movement of i */
clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
if (tx_buffer->next_to_watch &&
time_after(jiffies, tx_buffer->time_stamp +
(adapter->tx_timeout_factor * HZ))
&& !(E1000_READ_REG(hw, E1000_STATUS) &
E1000_STATUS_TXOFF)) {
/* detected Tx unit hang */
#ifdef DEBUG
adapter->tx_hang_detected = TRUE;
if (adapter->disable_hw_reset) {
DPRINTK(DRV, WARNING,
"Deactivating netdev watchdog timer\n");
if (del_timer(&netdev_ring(tx_ring)->watchdog_timer))
dev_put(netdev_ring(tx_ring));
#ifndef HAVE_NET_DEVICE_OPS
netdev_ring(tx_ring)->tx_timeout = NULL;
#endif
}
#endif /* DEBUG */
dev_err(tx_ring->dev,
"Detected Tx Unit Hang\n"
" Tx Queue <%d>\n"
" TDH <%x>\n"
" TDT <%x>\n"
" next_to_use <%x>\n"
" next_to_clean <%x>\n"
"buffer_info[next_to_clean]\n"
" time_stamp <%lx>\n"
" next_to_watch <%p>\n"
" jiffies <%lx>\n"
" desc.status <%x>\n",
tx_ring->queue_index,
E1000_READ_REG(hw, E1000_TDH(tx_ring->reg_idx)),
readl(tx_ring->tail),
tx_ring->next_to_use,
tx_ring->next_to_clean,
tx_buffer->time_stamp,
tx_buffer->next_to_watch,
jiffies,
tx_buffer->next_to_watch->wb.status);
if (netif_is_multiqueue(netdev_ring(tx_ring)))
netif_stop_subqueue(netdev_ring(tx_ring),
ring_queue_index(tx_ring));
else
netif_stop_queue(netdev_ring(tx_ring));
/* we are about to reset, no point in enabling stuff */
return true;
}
}
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
if (unlikely(total_packets &&
netif_carrier_ok(netdev_ring(tx_ring)) &&
igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (netif_is_multiqueue(netdev_ring(tx_ring))) {
if (__netif_subqueue_stopped(netdev_ring(tx_ring),
ring_queue_index(tx_ring)) &&
!(test_bit(__IGB_DOWN, &adapter->state))) {
netif_wake_subqueue(netdev_ring(tx_ring),
ring_queue_index(tx_ring));
tx_ring->tx_stats.restart_queue++;
}
} else {
if (netif_queue_stopped(netdev_ring(tx_ring)) &&
!(test_bit(__IGB_DOWN, &adapter->state))) {
netif_wake_queue(netdev_ring(tx_ring));
tx_ring->tx_stats.restart_queue++;
}
}
}
return !!budget;
}
#ifdef HAVE_VLAN_RX_REGISTER
/**
* igb_receive_skb - helper function to handle rx indications
* @q_vector: structure containing interrupt and ring information
* @skb: packet to send up
**/
static void igb_receive_skb(struct igb_q_vector *q_vector,
struct sk_buff *skb)
{
struct vlan_group **vlgrp = netdev_priv(skb->dev);
if (IGB_CB(skb)->vid) {
if (*vlgrp) {
vlan_gro_receive(&q_vector->napi, *vlgrp,
IGB_CB(skb)->vid, skb);
} else {
dev_kfree_skb_any(skb);
}
} else {
napi_gro_receive(&q_vector->napi, skb);
}
}
#endif /* HAVE_VLAN_RX_REGISTER */
#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
/**
* igb_reuse_rx_page - page flip buffer and store it back on the ring
* @rx_ring: rx descriptor ring to store buffers on
* @old_buff: donor buffer to have page reused
*
* Synchronizes page for reuse by the adapter
**/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
struct igb_rx_buffer *old_buff)
{
struct igb_rx_buffer *new_buff;
u16 nta = rx_ring->next_to_alloc;
new_buff = &rx_ring->rx_buffer_info[nta];
/* update, and store next to alloc */
nta++;
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
/* transfer page from old buffer to new buffer */
memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
/* sync the buffer for use by the device */
dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
old_buff->page_offset,
IGB_RX_BUFSZ,
DMA_FROM_DEVICE);
}
static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
struct page *page,
unsigned int truesize)
{
/* avoid re-using remote pages */
if (unlikely(page_to_nid(page) != numa_node_id()))
return false;
#if (PAGE_SIZE < 8192)
/* if we are only owner of page we can reuse it */
if (unlikely(page_count(page) != 1))
return false;
/* flip page offset to other buffer */
rx_buffer->page_offset ^= IGB_RX_BUFSZ;
#else
/* move offset up to the next cache line */
rx_buffer->page_offset += truesize;
if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
return false;
#endif
/* bump ref count on page before it is given to the stack */
get_page(page);
return true;
}
/**
* igb_add_rx_frag - Add contents of Rx buffer to sk_buff
* @rx_ring: rx descriptor ring to transact packets on
* @rx_buffer: buffer containing page to add
* @rx_desc: descriptor containing length of buffer written by hardware
* @skb: sk_buff to place the data into
*
* This function will add the data contained in rx_buffer->page to the skb.
* This is done either through a direct copy if the data in the buffer is
* less than the skb header size, otherwise it will just attach the page as
* a frag to the skb.
*
* The function will then update the page offset if necessary and return
* true if the buffer can be reused by the adapter.
**/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
struct igb_rx_buffer *rx_buffer,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
struct page *page = rx_buffer->page;
unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
#if (PAGE_SIZE < 8192)
unsigned int truesize = IGB_RX_BUFSZ;
#else
unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
unsigned char *va = page_address(page) + rx_buffer->page_offset;
#ifdef HAVE_PTP_1588_CLOCK
if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
va += IGB_TS_HDR_LEN;
size -= IGB_TS_HDR_LEN;
}
#endif /* HAVE_PTP_1588_CLOCK */
memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
/* we can reuse buffer as-is, just make sure it is local */
if (likely(page_to_nid(page) == numa_node_id()))
return true;
/* this page cannot be reused so discard it */
put_page(page);
return false;
}
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
rx_buffer->page_offset, size, truesize);
return igb_can_reuse_rx_page(rx_buffer, page, truesize);
}
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
struct igb_rx_buffer *rx_buffer;
struct page *page;
rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
page = rx_buffer->page;
prefetchw(page);
if (likely(!skb)) {
void *page_addr = page_address(page) +
rx_buffer->page_offset;
/* prefetch first cache line of first page */
prefetch(page_addr);
#if L1_CACHE_BYTES < 128
prefetch(page_addr + L1_CACHE_BYTES);
#endif
/* allocate a skb to store the frags */
skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
IGB_RX_HDR_LEN);
if (unlikely(!skb)) {
rx_ring->rx_stats.alloc_failed++;
return NULL;
}
/*
* we will be copying header into skb->data in
* pskb_may_pull so it is in our interest to prefetch
* it now to avoid a possible cache miss
*/
prefetchw(skb->data);
}
/* we are reusing so sync this buffer for CPU use */
dma_sync_single_range_for_cpu(rx_ring->dev,
rx_buffer->dma,
rx_buffer->page_offset,
IGB_RX_BUFSZ,
DMA_FROM_DEVICE);
/* pull page into skb */
if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
/* hand second half of page back to the ring */
igb_reuse_rx_page(rx_ring, rx_buffer);
} else {
/* we are not reusing the buffer so unmap it */
dma_unmap_page(rx_ring->dev, rx_buffer->dma,
PAGE_SIZE, DMA_FROM_DEVICE);
}
/* clear contents of rx_buffer */
rx_buffer->page = NULL;
return skb;
}
#endif
static inline void igb_rx_checksum(struct igb_ring *ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
skb_checksum_none_assert(skb);
/* Ignore Checksum bit is set */
if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
return;
/* Rx checksum disabled via ethtool */
if (!(netdev_ring(ring)->features & NETIF_F_RXCSUM))
return;
/* TCP/UDP checksum error bit is set */
if (igb_test_staterr(rx_desc,
E1000_RXDEXT_STATERR_TCPE |
E1000_RXDEXT_STATERR_IPE)) {
/*
* work around errata with sctp packets where the TCPE aka
* L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
* packets, (aka let the stack check the crc32c)
*/
if (!((skb->len == 60) &&
test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags)))
ring->rx_stats.csum_err++;
/* let the stack verify checksum errors */
return;
}
/* It must be a TCP or UDP packet with a valid checksum */
if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
E1000_RXD_STAT_UDPCS))
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
#ifdef NETIF_F_RXHASH
static inline void igb_rx_hash(struct igb_ring *ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
if (netdev_ring(ring)->features & NETIF_F_RXHASH)
skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
PKT_HASH_TYPE_L3);
}
#endif
#ifndef IGB_NO_LRO
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
/**
* igb_merge_active_tail - merge active tail into lro skb
* @tail: pointer to active tail in frag_list
*
* This function merges the length and data of an active tail into the
* skb containing the frag_list. It resets the tail's pointer to the head,
* but it leaves the heads pointer to tail intact.
**/
static inline struct sk_buff *igb_merge_active_tail(struct sk_buff *tail)
{
struct sk_buff *head = IGB_CB(tail)->head;
if (!head)
return tail;
head->len += tail->len;
head->data_len += tail->len;
head->truesize += tail->len;
IGB_CB(tail)->head = NULL;
return head;
}
/**
* igb_add_active_tail - adds an active tail into the skb frag_list
* @head: pointer to the start of the skb
* @tail: pointer to active tail to add to frag_list
*
* This function adds an active tail to the end of the frag list. This tail
* will still be receiving data so we cannot yet ad it's stats to the main
* skb. That is done via igb_merge_active_tail.
**/
static inline void igb_add_active_tail(struct sk_buff *head, struct sk_buff *tail)
{
struct sk_buff *old_tail = IGB_CB(head)->tail;
if (old_tail) {
igb_merge_active_tail(old_tail);
old_tail->next = tail;
} else {
skb_shinfo(head)->frag_list = tail;
}
IGB_CB(tail)->head = head;
IGB_CB(head)->tail = tail;
IGB_CB(head)->append_cnt++;
}
/**
* igb_close_active_frag_list - cleanup pointers on a frag_list skb
* @head: pointer to head of an active frag list
*
* This function will clear the frag_tail_tracker pointer on an active
* frag_list and returns true if the pointer was actually set
**/
static inline bool igb_close_active_frag_list(struct sk_buff *head)
{
struct sk_buff *tail = IGB_CB(head)->tail;
if (!tail)
return false;
igb_merge_active_tail(tail);
IGB_CB(head)->tail = NULL;
return true;
}
#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
/**
* igb_can_lro - returns true if packet is TCP/IPV4 and LRO is enabled
* @adapter: board private structure
* @rx_desc: pointer to the rx descriptor
* @skb: pointer to the skb to be merged
*
**/
static inline bool igb_can_lro(struct igb_ring *rx_ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
struct iphdr *iph = (struct iphdr *)skb->data;
__le16 pkt_info = rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
/* verify hardware indicates this is IPv4/TCP */
if((!(pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_TCP)) ||
!(pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV4))))
return false;
/* .. and LRO is enabled */
if (!(netdev_ring(rx_ring)->features & NETIF_F_LRO))
return false;
/* .. and we are not in promiscuous mode */
if (netdev_ring(rx_ring)->flags & IFF_PROMISC)
return false;
/* .. and the header is large enough for us to read IP/TCP fields */
if (!pskb_may_pull(skb, sizeof(struct igb_lrohdr)))
return false;
/* .. and there are no VLANs on packet */
if (skb->protocol != __constant_htons(ETH_P_IP))
return false;
/* .. and we are version 4 with no options */
if (*(u8 *)iph != 0x45)
return false;
/* .. and the packet is not fragmented */
if (iph->frag_off & htons(IP_MF | IP_OFFSET))
return false;
/* .. and that next header is TCP */
if (iph->protocol != IPPROTO_TCP)
return false;
return true;
}
static inline struct igb_lrohdr *igb_lro_hdr(struct sk_buff *skb)
{
return (struct igb_lrohdr *)skb->data;
}
/**
* igb_lro_flush - Indicate packets to upper layer.
*
* Update IP and TCP header part of head skb if more than one
* skb's chained and indicate packets to upper layer.
**/
static void igb_lro_flush(struct igb_q_vector *q_vector,
struct sk_buff *skb)
{
struct igb_lro_list *lrolist = &q_vector->lrolist;
__skb_unlink(skb, &lrolist->active);
if (IGB_CB(skb)->append_cnt) {
struct igb_lrohdr *lroh = igb_lro_hdr(skb);
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
/* close any active lro contexts */
igb_close_active_frag_list(skb);
#endif
/* incorporate ip header and re-calculate checksum */
lroh->iph.tot_len = ntohs(skb->len);
lroh->iph.check = 0;
/* header length is 5 since we know no options exist */
lroh->iph.check = ip_fast_csum((u8 *)lroh, 5);
/* clear TCP checksum to indicate we are an LRO frame */
lroh->th.check = 0;
/* incorporate latest timestamp into the tcp header */
if (IGB_CB(skb)->tsecr) {
lroh->ts[2] = IGB_CB(skb)->tsecr;
lroh->ts[1] = htonl(IGB_CB(skb)->tsval);
}
#ifdef NETIF_F_GSO
skb_shinfo(skb)->gso_size = IGB_CB(skb)->mss;
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
#endif
}
#ifdef HAVE_VLAN_RX_REGISTER
igb_receive_skb(q_vector, skb);
#else
napi_gro_receive(&q_vector->napi, skb);
#endif
lrolist->stats.flushed++;
}
static void igb_lro_flush_all(struct igb_q_vector *q_vector)
{
struct igb_lro_list *lrolist = &q_vector->lrolist;
struct sk_buff *skb, *tmp;
skb_queue_reverse_walk_safe(&lrolist->active, skb, tmp)
igb_lro_flush(q_vector, skb);
}
/*
* igb_lro_header_ok - Main LRO function.
**/
static void igb_lro_header_ok(struct sk_buff *skb)
{
struct igb_lrohdr *lroh = igb_lro_hdr(skb);
u16 opt_bytes, data_len;
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
IGB_CB(skb)->tail = NULL;
#endif
IGB_CB(skb)->tsecr = 0;
IGB_CB(skb)->append_cnt = 0;
IGB_CB(skb)->mss = 0;
/* ensure that the checksum is valid */
if (skb->ip_summed != CHECKSUM_UNNECESSARY)
return;
/* If we see CE codepoint in IP header, packet is not mergeable */
if (INET_ECN_is_ce(ipv4_get_dsfield(&lroh->iph)))
return;
/* ensure no bits set besides ack or psh */
if (lroh->th.fin || lroh->th.syn || lroh->th.rst ||
lroh->th.urg || lroh->th.ece || lroh->th.cwr ||
!lroh->th.ack)
return;
/* store the total packet length */
data_len = ntohs(lroh->iph.tot_len);
/* remove any padding from the end of the skb */
__pskb_trim(skb, data_len);
/* remove header length from data length */
data_len -= sizeof(struct igb_lrohdr);
/*
* check for timestamps. Since the only option we handle are timestamps,
* we only have to handle the simple case of aligned timestamps
*/
opt_bytes = (lroh->th.doff << 2) - sizeof(struct tcphdr);
if (opt_bytes != 0) {
if ((opt_bytes != TCPOLEN_TSTAMP_ALIGNED) ||
!pskb_may_pull(skb, sizeof(struct igb_lrohdr) +
TCPOLEN_TSTAMP_ALIGNED) ||
(lroh->ts[0] != htonl((TCPOPT_NOP << 24) |
(TCPOPT_NOP << 16) |
(TCPOPT_TIMESTAMP << 8) |
TCPOLEN_TIMESTAMP)) ||
(lroh->ts[2] == 0)) {
return;
}
IGB_CB(skb)->tsval = ntohl(lroh->ts[1]);
IGB_CB(skb)->tsecr = lroh->ts[2];
data_len -= TCPOLEN_TSTAMP_ALIGNED;
}
/* record data_len as mss for the packet */
IGB_CB(skb)->mss = data_len;
IGB_CB(skb)->next_seq = ntohl(lroh->th.seq);
}
#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
static void igb_merge_frags(struct sk_buff *lro_skb, struct sk_buff *new_skb)
{
struct skb_shared_info *sh_info;
struct skb_shared_info *new_skb_info;
unsigned int data_len;
sh_info = skb_shinfo(lro_skb);
new_skb_info = skb_shinfo(new_skb);
/* copy frags into the last skb */
memcpy(sh_info->frags + sh_info->nr_frags,
new_skb_info->frags,
new_skb_info->nr_frags * sizeof(skb_frag_t));
/* copy size data over */
sh_info->nr_frags += new_skb_info->nr_frags;
data_len = IGB_CB(new_skb)->mss;
lro_skb->len += data_len;
lro_skb->data_len += data_len;
lro_skb->truesize += data_len;
/* wipe record of data from new_skb */
new_skb_info->nr_frags = 0;
new_skb->len = new_skb->data_len = 0;
dev_kfree_skb_any(new_skb);
}
#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
/**
* igb_lro_receive - if able, queue skb into lro chain
* @q_vector: structure containing interrupt and ring information
* @new_skb: pointer to current skb being checked
*
* Checks whether the skb given is eligible for LRO and if that's
* fine chains it to the existing lro_skb based on flowid. If an LRO for
* the flow doesn't exist create one.
**/
static void igb_lro_receive(struct igb_q_vector *q_vector,
struct sk_buff *new_skb)
{
struct sk_buff *lro_skb;
struct igb_lro_list *lrolist = &q_vector->lrolist;
struct igb_lrohdr *lroh = igb_lro_hdr(new_skb);
__be32 saddr = lroh->iph.saddr;
__be32 daddr = lroh->iph.daddr;
__be32 tcp_ports = *(__be32 *)&lroh->th;
u16 data_len;
#ifdef HAVE_VLAN_RX_REGISTER
u16 vid = IGB_CB(new_skb)->vid;
#else
u16 vid = new_skb->vlan_tci;
#endif
igb_lro_header_ok(new_skb);
/*
* we have a packet that might be eligible for LRO,
* so see if it matches anything we might expect
*/
skb_queue_walk(&lrolist->active, lro_skb) {
if (*(__be32 *)&igb_lro_hdr(lro_skb)->th != tcp_ports ||
igb_lro_hdr(lro_skb)->iph.saddr != saddr ||
igb_lro_hdr(lro_skb)->iph.daddr != daddr)
continue;
#ifdef HAVE_VLAN_RX_REGISTER
if (IGB_CB(lro_skb)->vid != vid)
#else
if (lro_skb->vlan_tci != vid)
#endif
continue;
/* out of order packet */
if (IGB_CB(lro_skb)->next_seq != IGB_CB(new_skb)->next_seq) {
igb_lro_flush(q_vector, lro_skb);
IGB_CB(new_skb)->mss = 0;
break;
}
/* TCP timestamp options have changed */
if (!IGB_CB(lro_skb)->tsecr != !IGB_CB(new_skb)->tsecr) {
igb_lro_flush(q_vector, lro_skb);
break;
}
/* make sure timestamp values are increasing */
if (IGB_CB(lro_skb)->tsecr &&
IGB_CB(lro_skb)->tsval > IGB_CB(new_skb)->tsval) {
igb_lro_flush(q_vector, lro_skb);
IGB_CB(new_skb)->mss = 0;
break;
}
data_len = IGB_CB(new_skb)->mss;
/* Check for all of the above below
* malformed header
* no tcp data
* resultant packet would be too large
* new skb is larger than our current mss
* data would remain in header
* we would consume more frags then the sk_buff contains
* ack sequence numbers changed
* window size has changed
*/
if (data_len == 0 ||
data_len > IGB_CB(lro_skb)->mss ||
data_len > IGB_CB(lro_skb)->free ||
#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
data_len != new_skb->data_len ||
skb_shinfo(new_skb)->nr_frags >=
(MAX_SKB_FRAGS - skb_shinfo(lro_skb)->nr_frags) ||
#endif
igb_lro_hdr(lro_skb)->th.ack_seq != lroh->th.ack_seq ||
igb_lro_hdr(lro_skb)->th.window != lroh->th.window) {
igb_lro_flush(q_vector, lro_skb);
break;
}
/* Remove IP and TCP header*/
skb_pull(new_skb, new_skb->len - data_len);
/* update timestamp and timestamp echo response */
IGB_CB(lro_skb)->tsval = IGB_CB(new_skb)->tsval;
IGB_CB(lro_skb)->tsecr = IGB_CB(new_skb)->tsecr;
/* update sequence and free space */
IGB_CB(lro_skb)->next_seq += data_len;
IGB_CB(lro_skb)->free -= data_len;
/* update append_cnt */
IGB_CB(lro_skb)->append_cnt++;
#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
/* if header is empty pull pages into current skb */
igb_merge_frags(lro_skb, new_skb);
#else
/* chain this new skb in frag_list */
igb_add_active_tail(lro_skb, new_skb);
#endif
if ((data_len < IGB_CB(lro_skb)->mss) || lroh->th.psh ||
skb_shinfo(lro_skb)->nr_frags == MAX_SKB_FRAGS) {
igb_lro_hdr(lro_skb)->th.psh |= lroh->th.psh;
igb_lro_flush(q_vector, lro_skb);
}
lrolist->stats.coal++;
return;
}
if (IGB_CB(new_skb)->mss && !lroh->th.psh) {
/* if we are at capacity flush the tail */
if (skb_queue_len(&lrolist->active) >= IGB_LRO_MAX) {
lro_skb = skb_peek_tail(&lrolist->active);
if (lro_skb)
igb_lro_flush(q_vector, lro_skb);
}
/* update sequence and free space */
IGB_CB(new_skb)->next_seq += IGB_CB(new_skb)->mss;
IGB_CB(new_skb)->free = 65521 - new_skb->len;
/* .. and insert at the front of the active list */
__skb_queue_head(&lrolist->active, new_skb);
lrolist->stats.coal++;
return;
}
/* packet not handled by any of the above, pass it to the stack */
#ifdef HAVE_VLAN_RX_REGISTER
igb_receive_skb(q_vector, new_skb);
#else
napi_gro_receive(&q_vector->napi, new_skb);
#endif
}
#endif /* IGB_NO_LRO */
/**
* igb_process_skb_fields - Populate skb header fields from Rx descriptor
* @rx_ring: rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being populated
*
* This function checks the ring, descriptor, and packet information in
* order to populate the hash, checksum, VLAN, timestamp, protocol, and
* other fields within the skb.
**/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
struct net_device *dev = rx_ring->netdev;
__le16 pkt_info = rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
#ifdef NETIF_F_RXHASH
igb_rx_hash(rx_ring, rx_desc, skb);
#endif
igb_rx_checksum(rx_ring, rx_desc, skb);
/* update packet type stats */
if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV4))
rx_ring->rx_stats.ipv4_packets++;
else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV4_EX))
rx_ring->rx_stats.ipv4e_packets++;
else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV6))
rx_ring->rx_stats.ipv6_packets++;
else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV6_EX))
rx_ring->rx_stats.ipv6e_packets++;
else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_TCP))
rx_ring->rx_stats.tcp_packets++;
else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_UDP))
rx_ring->rx_stats.udp_packets++;
else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_SCTP))
rx_ring->rx_stats.sctp_packets++;
else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_NFS))
rx_ring->rx_stats.nfs_packets++;
#ifdef HAVE_PTP_1588_CLOCK
igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
#endif /* HAVE_PTP_1588_CLOCK */
#ifdef NETIF_F_HW_VLAN_CTAG_RX
if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
#else
if ((dev->features & NETIF_F_HW_VLAN_RX) &&
#endif
igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
u16 vid = 0;
if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
vid = be16_to_cpu(rx_desc->wb.upper.vlan);
else
vid = le16_to_cpu(rx_desc->wb.upper.vlan);
#ifdef HAVE_VLAN_RX_REGISTER
IGB_CB(skb)->vid = vid;
} else {
IGB_CB(skb)->vid = 0;
#else
#ifdef HAVE_VLAN_PROTOCOL
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
#else
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
#endif
#endif
}
skb_record_rx_queue(skb, rx_ring->queue_index);
skb->protocol = eth_type_trans(skb, dev);
}
/**
* igb_is_non_eop - process handling of non-EOP buffers
* @rx_ring: Rx ring being processed
* @rx_desc: Rx descriptor for current buffer
*
* This function updates next to clean. If the buffer is an EOP buffer
* this function exits returning false, otherwise it will place the
* sk_buff in the next buffer to be chained and return true indicating
* that this is in fact a non-EOP buffer.
**/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
union e1000_adv_rx_desc *rx_desc)
{
u32 ntc = rx_ring->next_to_clean + 1;
/* fetch, update, and store next to clean */
ntc = (ntc < rx_ring->count) ? ntc : 0;
rx_ring->next_to_clean = ntc;
prefetch(IGB_RX_DESC(rx_ring, ntc));
if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
return false;
return true;
}
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
/* igb_clean_rx_irq -- * legacy */
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
{
struct igb_ring *rx_ring = q_vector->rx.ring;
unsigned int total_bytes = 0, total_packets = 0;
u16 cleaned_count = igb_desc_unused(rx_ring);
do {
struct igb_rx_buffer *rx_buffer;
union e1000_adv_rx_desc *rx_desc;
struct sk_buff *skb;
u16 ntc;
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
igb_alloc_rx_buffers(rx_ring, cleaned_count);
cleaned_count = 0;
}
ntc = rx_ring->next_to_clean;
rx_desc = IGB_RX_DESC(rx_ring, ntc);
rx_buffer = &rx_ring->rx_buffer_info[ntc];
if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
break;
/*
* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we know the
* RXD_STAT_DD bit is set
*/
rmb();
skb = rx_buffer->skb;
prefetch(skb->data);
/* pull the header of the skb in */
__skb_put(skb, le16_to_cpu(rx_desc->wb.upper.length));
/* clear skb reference in buffer info structure */
rx_buffer->skb = NULL;
cleaned_count++;
BUG_ON(igb_is_non_eop(rx_ring, rx_desc));
dma_unmap_single(rx_ring->dev, rx_buffer->dma,
rx_ring->rx_buffer_len,
DMA_FROM_DEVICE);
rx_buffer->dma = 0;
if (igb_test_staterr(rx_desc,
E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
dev_kfree_skb_any(skb);
continue;
}
total_bytes += skb->len;
/* populate checksum, timestamp, VLAN, and protocol */
igb_process_skb_fields(rx_ring, rx_desc, skb);
#ifndef IGB_NO_LRO
if (igb_can_lro(rx_ring, rx_desc, skb))
igb_lro_receive(q_vector, skb);
else
#endif
#ifdef HAVE_VLAN_RX_REGISTER
igb_receive_skb(q_vector, skb);
#else
napi_gro_receive(&q_vector->napi, skb);
#endif
#ifndef NETIF_F_GRO
netdev_ring(rx_ring)->last_rx = jiffies;
#endif
/* update budget accounting */
total_packets++;
} while (likely(total_packets < budget));
rx_ring->rx_stats.packets += total_packets;
rx_ring->rx_stats.bytes += total_bytes;
q_vector->rx.total_packets += total_packets;
q_vector->rx.total_bytes += total_bytes;
if (cleaned_count)
igb_alloc_rx_buffers(rx_ring, cleaned_count);
#ifndef IGB_NO_LRO
igb_lro_flush_all(q_vector);
#endif /* IGB_NO_LRO */
return total_packets < budget;
}
#else /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
/**
* igb_get_headlen - determine size of header for LRO/GRO
* @data: pointer to the start of the headers
* @max_len: total length of section to find headers in
*
* This function is meant to determine the length of headers that will
* be recognized by hardware for LRO, and GRO offloads. The main
* motivation of doing this is to only perform one pull for IPv4 TCP
* packets so that we can do basic things like calculating the gso_size
* based on the average data per packet.
**/
static unsigned int igb_get_headlen(unsigned char *data,
unsigned int max_len)
{
union {
unsigned char *network;
/* l2 headers */
struct ethhdr *eth;
struct vlan_hdr *vlan;
/* l3 headers */
struct iphdr *ipv4;
struct ipv6hdr *ipv6;
} hdr;
__be16 protocol;
u8 nexthdr = 0; /* default to not TCP */
u8 hlen;
/* this should never happen, but better safe than sorry */
if (max_len < ETH_HLEN)
return max_len;
/* initialize network frame pointer */
hdr.network = data;
/* set first protocol and move network header forward */
protocol = hdr.eth->h_proto;
hdr.network += ETH_HLEN;
/* handle any vlan tag if present */
if (protocol == __constant_htons(ETH_P_8021Q)) {
if ((hdr.network - data) > (max_len - VLAN_HLEN))
return max_len;
protocol = hdr.vlan->h_vlan_encapsulated_proto;
hdr.network += VLAN_HLEN;
}
/* handle L3 protocols */
if (protocol == __constant_htons(ETH_P_IP)) {
if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
return max_len;
/* access ihl as a u8 to avoid unaligned access on ia64 */
hlen = (hdr.network[0] & 0x0F) << 2;
/* verify hlen meets minimum size requirements */
if (hlen < sizeof(struct iphdr))
return hdr.network - data;
/* record next protocol if header is present */
if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
nexthdr = hdr.ipv4->protocol;
#ifdef NETIF_F_TSO6
} else if (protocol == __constant_htons(ETH_P_IPV6)) {
if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
return max_len;
/* record next protocol */
nexthdr = hdr.ipv6->nexthdr;
hlen = sizeof(struct ipv6hdr);
#endif /* NETIF_F_TSO6 */
} else {
return hdr.network - data;
}
/* relocate pointer to start of L4 header */
hdr.network += hlen;
/* finally sort out TCP */
if (nexthdr == IPPROTO_TCP) {
if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
return max_len;
/* access doff as a u8 to avoid unaligned access on ia64 */
hlen = (hdr.network[12] & 0xF0) >> 2;
/* verify hlen meets minimum size requirements */
if (hlen < sizeof(struct tcphdr))
return hdr.network - data;
hdr.network += hlen;
} else if (nexthdr == IPPROTO_UDP) {
if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
return max_len;
hdr.network += sizeof(struct udphdr);
}
/*
* If everything has gone correctly hdr.network should be the
* data section of the packet and will be the end of the header.
* If not then it probably represents the end of the last recognized
* header.
*/
if ((hdr.network - data) < max_len)
return hdr.network - data;
else
return max_len;
}
/**
* igb_pull_tail - igb specific version of skb_pull_tail
* @rx_ring: rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being adjusted
*
* This function is an igb specific version of __pskb_pull_tail. The
* main difference between this version and the original function is that
* this function can make several assumptions about the state of things
* that allow for significant optimizations versus the standard function.
* As a result we can do things like drop a frag and maintain an accurate
* truesize for the skb.
*/
static void igb_pull_tail(struct igb_ring *rx_ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
unsigned char *va;
unsigned int pull_len;
/*
* it is valid to use page_address instead of kmap since we are
* working with pages allocated out of the lomem pool per
* alloc_page(GFP_ATOMIC)
*/
va = skb_frag_address(frag);
#ifdef HAVE_PTP_1588_CLOCK
if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
/* retrieve timestamp from buffer */
igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
/* update pointers to remove timestamp header */
skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
#if LINUX_VERSION_CODE < KERNEL_VERSION(5,4,0)
frag->page_offset += IGB_TS_HDR_LEN;
#else
frag->bv_offset += pull_len;
#endif
skb->data_len -= IGB_TS_HDR_LEN;
skb->len -= IGB_TS_HDR_LEN;
/* move va to start of packet data */
va += IGB_TS_HDR_LEN;
}
#endif /* HAVE_PTP_1588_CLOCK */
/*
* we need the header to contain the greater of either ETH_HLEN or
* 60 bytes if the skb->len is less than 60 for skb_pad.
*/
pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
/* align pull length to size of long to optimize memcpy performance */
skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
/* update all of the pointers */
skb_frag_size_sub(frag, pull_len);
#if LINUX_VERSION_CODE < KERNEL_VERSION(5,4,0)
frag->page_offset += pull_len;
#else
frag->bv_offset += pull_len;
#endif
skb->data_len -= pull_len;
skb->tail += pull_len;
}
/**
* igb_cleanup_headers - Correct corrupted or empty headers
* @rx_ring: rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being fixed
*
* Address the case where we are pulling data in on pages only
* and as such no data is present in the skb header.
*
* In addition if skb is not at least 60 bytes we need to pad it so that
* it is large enough to qualify as a valid Ethernet frame.
*
* Returns true if an error was encountered and skb was freed.
**/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
if (unlikely((igb_test_staterr(rx_desc,
E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
struct net_device *netdev = rx_ring->netdev;
if (!(netdev->features & NETIF_F_RXALL)) {
dev_kfree_skb_any(skb);
return true;
}
}
/* place header in linear portion of buffer */
if (skb_is_nonlinear(skb))
igb_pull_tail(rx_ring, rx_desc, skb);
/* if skb_pad returns an error the skb was freed */
if (unlikely(skb->len < 60)) {
int pad_len = 60 - skb->len;
if (skb_pad(skb, pad_len))
return true;
__skb_put(skb, pad_len);
}
return false;
}
/* igb_clean_rx_irq -- * packet split */
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
{
struct igb_ring *rx_ring = q_vector->rx.ring;
struct sk_buff *skb = rx_ring->skb;
unsigned int total_bytes = 0, total_packets = 0;
u16 cleaned_count = igb_desc_unused(rx_ring);
do {
union e1000_adv_rx_desc *rx_desc;
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
igb_alloc_rx_buffers(rx_ring, cleaned_count);
cleaned_count = 0;
}
rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
break;
/*
* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we know the
* RXD_STAT_DD bit is set
*/
rmb();
/* retrieve a buffer from the ring */
skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
/* exit if we failed to retrieve a buffer */
if (!skb)
break;
cleaned_count++;
/* fetch next buffer in frame if non-eop */
if (igb_is_non_eop(rx_ring, rx_desc))
continue;
/* verify the packet layout is correct */
if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
skb = NULL;
continue;
}
/* probably a little skewed due to removing CRC */
total_bytes += skb->len;
/* populate checksum, timestamp, VLAN, and protocol */
igb_process_skb_fields(rx_ring, rx_desc, skb);
#ifndef IGB_NO_LRO
if (igb_can_lro(rx_ring, rx_desc, skb))
igb_lro_receive(q_vector, skb);
else
#endif
#ifdef HAVE_VLAN_RX_REGISTER
igb_receive_skb(q_vector, skb);
#else
napi_gro_receive(&q_vector->napi, skb);
#endif
#ifndef NETIF_F_GRO
netdev_ring(rx_ring)->last_rx = jiffies;
#endif
/* reset skb pointer */
skb = NULL;
/* update budget accounting */
total_packets++;
} while (likely(total_packets < budget));
/* place incomplete frames back on ring for completion */
rx_ring->skb = skb;
rx_ring->rx_stats.packets += total_packets;
rx_ring->rx_stats.bytes += total_bytes;
q_vector->rx.total_packets += total_packets;
q_vector->rx.total_bytes += total_bytes;
if (cleaned_count)
igb_alloc_rx_buffers(rx_ring, cleaned_count);
#ifndef IGB_NO_LRO
igb_lro_flush_all(q_vector);
#endif /* IGB_NO_LRO */
return total_packets < budget;
}
#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
struct igb_rx_buffer *bi)
{
struct sk_buff *skb = bi->skb;
dma_addr_t dma = bi->dma;
if (dma)
return true;
if (likely(!skb)) {
skb = netdev_alloc_skb_ip_align(netdev_ring(rx_ring),
rx_ring->rx_buffer_len);
bi->skb = skb;
if (!skb) {
rx_ring->rx_stats.alloc_failed++;
return false;
}
/* initialize skb for ring */
skb_record_rx_queue(skb, ring_queue_index(rx_ring));
}
dma = dma_map_single(rx_ring->dev, skb->data,
rx_ring->rx_buffer_len, DMA_FROM_DEVICE);
/* if mapping failed free memory back to system since
* there isn't much point in holding memory we can't use
*/
if (dma_mapping_error(rx_ring->dev, dma)) {
dev_kfree_skb_any(skb);
bi->skb = NULL;
rx_ring->rx_stats.alloc_failed++;
return false;
}
bi->dma = dma;
return true;
}
#else /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
struct igb_rx_buffer *bi)
{
struct page *page = bi->page;
dma_addr_t dma;
/* since we are recycling buffers we should seldom need to alloc */
if (likely(page))
return true;
/* alloc new page for storage */
page = alloc_page(GFP_ATOMIC | __GFP_COLD);
if (unlikely(!page)) {
rx_ring->rx_stats.alloc_failed++;
return false;
}
/* map page for use */
dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
/*
* if mapping failed free memory back to system since
* there isn't much point in holding memory we can't use
*/
if (dma_mapping_error(rx_ring->dev, dma)) {
__free_page(page);
rx_ring->rx_stats.alloc_failed++;
return false;
}
bi->dma = dma;
bi->page = page;
bi->page_offset = 0;
return true;
}
#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
/**
* igb_alloc_rx_buffers - Replace used receive buffers; packet split
* @adapter: address of board private structure
**/
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
{
union e1000_adv_rx_desc *rx_desc;
struct igb_rx_buffer *bi;
u16 i = rx_ring->next_to_use;
/* nothing to do */
if (!cleaned_count)
return;
rx_desc = IGB_RX_DESC(rx_ring, i);
bi = &rx_ring->rx_buffer_info[i];
i -= rx_ring->count;
do {
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
if (!igb_alloc_mapped_skb(rx_ring, bi))
#else
if (!igb_alloc_mapped_page(rx_ring, bi))
#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
break;
/*
* Refresh the desc even if buffer_addrs didn't change
* because each write-back erases this info.
*/
#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
#else
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
#endif
rx_desc++;
bi++;
i++;
if (unlikely(!i)) {
rx_desc = IGB_RX_DESC(rx_ring, 0);
bi = rx_ring->rx_buffer_info;
i -= rx_ring->count;
}
/* clear the hdr_addr for the next_to_use descriptor */
rx_desc->read.hdr_addr = 0;
cleaned_count--;
} while (cleaned_count);
i += rx_ring->count;
if (rx_ring->next_to_use != i) {
/* record the next descriptor to use */
rx_ring->next_to_use = i;
#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
/* update next to alloc since we have filled the ring */
rx_ring->next_to_alloc = i;
#endif
/*
* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
writel(i, rx_ring->tail);
}
}
#ifdef SIOCGMIIPHY
/**
* igb_mii_ioctl -
* @netdev:
* @ifreq:
* @cmd:
**/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct mii_ioctl_data *data = if_mii(ifr);
if (adapter->hw.phy.media_type != e1000_media_type_copper)
return -EOPNOTSUPP;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = adapter->hw.phy.addr;
break;
case SIOCGMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
&data->val_out))
return -EIO;
break;
case SIOCSMIIREG:
default:
return -EOPNOTSUPP;
}
return E1000_SUCCESS;
}
#endif
/**
* igb_ioctl -
* @netdev:
* @ifreq:
* @cmd:
**/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
#ifdef SIOCGMIIPHY
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return igb_mii_ioctl(netdev, ifr, cmd);
#endif
#ifdef HAVE_PTP_1588_CLOCK
case SIOCSHWTSTAMP:
return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
#endif /* HAVE_PTP_1588_CLOCK */
#ifdef ETHTOOL_OPS_COMPAT
case SIOCETHTOOL:
return ethtool_ioctl(ifr);
#endif
default:
return -EOPNOTSUPP;
}
}
s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
struct igb_adapter *adapter = hw->back;
u16 cap_offset;
cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
if (!cap_offset)
return -E1000_ERR_CONFIG;
pci_read_config_word(adapter->pdev, cap_offset + reg, value);
return E1000_SUCCESS;
}
s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
struct igb_adapter *adapter = hw->back;
u16 cap_offset;
cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
if (!cap_offset)
return -E1000_ERR_CONFIG;
pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
return E1000_SUCCESS;
}
#ifdef HAVE_VLAN_RX_REGISTER
static void igb_vlan_mode(struct net_device *netdev, struct vlan_group *vlgrp)
#else
void igb_vlan_mode(struct net_device *netdev, u32 features)
#endif
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 ctrl, rctl;
int i;
#ifdef HAVE_VLAN_RX_REGISTER
bool enable = !!vlgrp;
igb_irq_disable(adapter);
adapter->vlgrp = vlgrp;
if (!test_bit(__IGB_DOWN, &adapter->state))
igb_irq_enable(adapter);
#else
#ifdef NETIF_F_HW_VLAN_CTAG_RX
bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
#else
bool enable = !!(features & NETIF_F_HW_VLAN_RX);
#endif
#endif
if (enable) {
/* enable VLAN tag insert/strip */
ctrl = E1000_READ_REG(hw, E1000_CTRL);
ctrl |= E1000_CTRL_VME;
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
/* Disable CFI check */
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl &= ~E1000_RCTL_CFIEN;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
} else {
/* disable VLAN tag insert/strip */
ctrl = E1000_READ_REG(hw, E1000_CTRL);
ctrl &= ~E1000_CTRL_VME;
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
}
#ifndef CONFIG_IGB_VMDQ_NETDEV
for (i = 0; i < adapter->vmdq_pools; i++) {
igb_set_vf_vlan_strip(adapter,
adapter->vfs_allocated_count + i,
enable);
}
#else
igb_set_vf_vlan_strip(adapter,
adapter->vfs_allocated_count,
enable);
for (i = 1; i < adapter->vmdq_pools; i++) {
#ifdef HAVE_VLAN_RX_REGISTER
struct igb_vmdq_adapter *vadapter;
vadapter = netdev_priv(adapter->vmdq_netdev[i-1]);
enable = !!vadapter->vlgrp;
#else
struct net_device *vnetdev;
vnetdev = adapter->vmdq_netdev[i-1];
#ifdef NETIF_F_HW_VLAN_CTAG_RX
enable = !!(vnetdev->features & NETIF_F_HW_VLAN_CTAG_RX);
#else
enable = !!(vnetdev->features & NETIF_F_HW_VLAN_RX);
#endif
#endif
igb_set_vf_vlan_strip(adapter,
adapter->vfs_allocated_count + i,
enable);
}
#endif
igb_rlpml_set(adapter);
}
#ifdef HAVE_VLAN_PROTOCOL
static int igb_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
#elif defined HAVE_INT_NDO_VLAN_RX_ADD_VID
#ifdef NETIF_F_HW_VLAN_CTAG_RX
static int igb_vlan_rx_add_vid(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
#else
static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
#endif
#else
static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
#endif
{
struct igb_adapter *adapter = netdev_priv(netdev);
int pf_id = adapter->vfs_allocated_count;
/* attempt to add filter to vlvf array */
igb_vlvf_set(adapter, vid, TRUE, pf_id);
/* add the filter since PF can receive vlans w/o entry in vlvf */
igb_vfta_set(adapter, vid, TRUE);
#ifndef HAVE_NETDEV_VLAN_FEATURES
/* Copy feature flags from netdev to the vlan netdev for this vid.
* This allows things like TSO to bubble down to our vlan device.
* There is no need to update netdev for vlan 0 (DCB), since it
* wouldn't has v_netdev.
*/
if (adapter->vlgrp) {
struct vlan_group *vlgrp = adapter->vlgrp;
struct net_device *v_netdev = vlan_group_get_device(vlgrp, vid);
if (v_netdev) {
v_netdev->features |= netdev->features;
vlan_group_set_device(vlgrp, vid, v_netdev);
}
}
#endif
#ifndef HAVE_VLAN_RX_REGISTER
set_bit(vid, adapter->active_vlans);
#endif
#ifdef HAVE_INT_NDO_VLAN_RX_ADD_VID
return 0;
#endif
}
#ifdef HAVE_VLAN_PROTOCOL
static int igb_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
#elif defined HAVE_INT_NDO_VLAN_RX_ADD_VID
#ifdef NETIF_F_HW_VLAN_CTAG_RX
static int igb_vlan_rx_kill_vid(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
#else
static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
#endif
#else
static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
#endif
{
struct igb_adapter *adapter = netdev_priv(netdev);
int pf_id = adapter->vfs_allocated_count;
s32 err;
#ifdef HAVE_VLAN_RX_REGISTER
igb_irq_disable(adapter);
vlan_group_set_device(adapter->vlgrp, vid, NULL);
if (!test_bit(__IGB_DOWN, &adapter->state))
igb_irq_enable(adapter);
#endif /* HAVE_VLAN_RX_REGISTER */
/* remove vlan from VLVF table array */
err = igb_vlvf_set(adapter, vid, FALSE, pf_id);
/* if vid was not present in VLVF just remove it from table */
if (err)
igb_vfta_set(adapter, vid, FALSE);
#ifndef HAVE_VLAN_RX_REGISTER
clear_bit(vid, adapter->active_vlans);
#endif
#ifdef HAVE_INT_NDO_VLAN_RX_ADD_VID
return 0;
#endif
}
static void igb_restore_vlan(struct igb_adapter *adapter)
{
#ifdef HAVE_VLAN_RX_REGISTER
igb_vlan_mode(adapter->netdev, adapter->vlgrp);
if (adapter->vlgrp) {
u16 vid;
for (vid = 0; vid < VLAN_N_VID; vid++) {
if (!vlan_group_get_device(adapter->vlgrp, vid))
continue;
#ifdef NETIF_F_HW_VLAN_CTAG_RX
igb_vlan_rx_add_vid(adapter->netdev,
htons(ETH_P_8021Q), vid);
#else
igb_vlan_rx_add_vid(adapter->netdev, vid);
#endif
}
}
#else
u16 vid;
igb_vlan_mode(adapter->netdev, adapter->netdev->features);
for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
#ifdef NETIF_F_HW_VLAN_CTAG_RX
igb_vlan_rx_add_vid(adapter->netdev,
htons(ETH_P_8021Q), vid);
#else
igb_vlan_rx_add_vid(adapter->netdev, vid);
#endif
#endif
}
int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
{
struct pci_dev *pdev = adapter->pdev;
struct e1000_mac_info *mac = &adapter->hw.mac;
mac->autoneg = 0;
/* SerDes device's does not support 10Mbps Full/duplex
* and 100Mbps Half duplex
*/
if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
switch (spddplx) {
case SPEED_10 + DUPLEX_HALF:
case SPEED_10 + DUPLEX_FULL:
case SPEED_100 + DUPLEX_HALF:
dev_err(pci_dev_to_dev(pdev),
"Unsupported Speed/Duplex configuration\n");
return -EINVAL;
default:
break;
}
}
switch (spddplx) {
case SPEED_10 + DUPLEX_HALF:
mac->forced_speed_duplex = ADVERTISE_10_HALF;
break;
case SPEED_10 + DUPLEX_FULL:
mac->forced_speed_duplex = ADVERTISE_10_FULL;
break;
case SPEED_100 + DUPLEX_HALF:
mac->forced_speed_duplex = ADVERTISE_100_HALF;
break;
case SPEED_100 + DUPLEX_FULL:
mac->forced_speed_duplex = ADVERTISE_100_FULL;
break;
case SPEED_1000 + DUPLEX_FULL:
mac->autoneg = 1;
adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
break;
case SPEED_1000 + DUPLEX_HALF: /* not supported */
default:
dev_err(pci_dev_to_dev(pdev), "Unsupported Speed/Duplex configuration\n");
return -EINVAL;
}
/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
adapter->hw.phy.mdix = AUTO_ALL_MODES;
return 0;
}
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
bool runtime)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 ctrl, rctl, status;
u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
#ifdef CONFIG_PM
int retval = 0;
#endif
netif_device_detach(netdev);
status = E1000_READ_REG(hw, E1000_STATUS);
if (status & E1000_STATUS_LU)
wufc &= ~E1000_WUFC_LNKC;
if (netif_running(netdev))
__igb_close(netdev, true);
igb_clear_interrupt_scheme(adapter);
#ifdef CONFIG_PM
retval = pci_save_state(pdev);
if (retval)
return retval;
#endif
if (wufc) {
igb_setup_rctl(adapter);
igb_set_rx_mode(netdev);
/* turn on all-multi mode if wake on multicast is enabled */
if (wufc & E1000_WUFC_MC) {
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl |= E1000_RCTL_MPE;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
ctrl = E1000_READ_REG(hw, E1000_CTRL);
/* phy power management enable */
#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
ctrl |= E1000_CTRL_ADVD3WUC;
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
/* Allow time for pending master requests to run */
e1000_disable_pcie_master(hw);
E1000_WRITE_REG(hw, E1000_WUC, E1000_WUC_PME_EN);
E1000_WRITE_REG(hw, E1000_WUFC, wufc);
} else {
E1000_WRITE_REG(hw, E1000_WUC, 0);
E1000_WRITE_REG(hw, E1000_WUFC, 0);
}
*enable_wake = wufc || adapter->en_mng_pt;
if (!*enable_wake)
igb_power_down_link(adapter);
else
igb_power_up_link(adapter);
/* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant. */
igb_release_hw_control(adapter);
pci_disable_device(pdev);
return 0;
}
#ifdef CONFIG_PM
#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
static int igb_suspend(struct device *dev)
#else
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
{
#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
struct pci_dev *pdev = to_pci_dev(dev);
#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
int retval;
bool wake;
retval = __igb_shutdown(pdev, &wake, 0);
if (retval)
return retval;
if (wake) {
pci_prepare_to_sleep(pdev);
} else {
pci_wake_from_d3(pdev, false);
pci_set_power_state(pdev, PCI_D3hot);
}
return 0;
}
#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
static int igb_resume(struct device *dev)
#else
static int igb_resume(struct pci_dev *pdev)
#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
{
#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
struct pci_dev *pdev = to_pci_dev(dev);
#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_save_state(pdev);
err = pci_enable_device_mem(pdev);
if (err) {
dev_err(pci_dev_to_dev(pdev),
"igb: Cannot enable PCI device from suspend\n");
return err;
}
pci_set_master(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
if (igb_init_interrupt_scheme(adapter, true)) {
dev_err(pci_dev_to_dev(pdev), "Unable to allocate memory for queues\n");
return -ENOMEM;
}
igb_reset(adapter);
/* let the f/w know that the h/w is now under the control of the
* driver. */
igb_get_hw_control(adapter);
E1000_WRITE_REG(hw, E1000_WUS, ~0);
if (netdev->flags & IFF_UP) {
rtnl_lock();
err = __igb_open(netdev, true);
rtnl_unlock();
if (err)
return err;
}
netif_device_attach(netdev);
return 0;
}
#ifdef CONFIG_PM_RUNTIME
#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
static int igb_runtime_idle(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
if (!igb_has_link(adapter))
pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
return -EBUSY;
}
static int igb_runtime_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
int retval;
bool wake;
retval = __igb_shutdown(pdev, &wake, 1);
if (retval)
return retval;
if (wake) {
pci_prepare_to_sleep(pdev);
} else {
pci_wake_from_d3(pdev, false);
pci_set_power_state(pdev, PCI_D3hot);
}
return 0;
}
static int igb_runtime_resume(struct device *dev)
{
return igb_resume(dev);
}
#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
#endif /* CONFIG_PM_RUNTIME */
#endif /* CONFIG_PM */
#ifdef USE_REBOOT_NOTIFIER
/* only want to do this for 2.4 kernels? */
static int igb_notify_reboot(struct notifier_block *nb, unsigned long event,
void *p)
{
struct pci_dev *pdev = NULL;
bool wake;
switch (event) {
case SYS_DOWN:
case SYS_HALT:
case SYS_POWER_OFF:
while ((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
if (pci_dev_driver(pdev) == &igb_driver) {
__igb_shutdown(pdev, &wake, 0);
if (event == SYS_POWER_OFF) {
pci_wake_from_d3(pdev, wake);
pci_set_power_state(pdev, PCI_D3hot);
}
}
}
}
return NOTIFY_DONE;
}
#else
static void igb_shutdown(struct pci_dev *pdev)
{
bool wake = false;
__igb_shutdown(pdev, &wake, 0);
if (system_state == SYSTEM_POWER_OFF) {
pci_wake_from_d3(pdev, wake);
pci_set_power_state(pdev, PCI_D3hot);
}
}
#endif /* USE_REBOOT_NOTIFIER */
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void igb_netpoll(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct igb_q_vector *q_vector;
int i;
for (i = 0; i < adapter->num_q_vectors; i++) {
q_vector = adapter->q_vector[i];
if (adapter->msix_entries)
E1000_WRITE_REG(hw, E1000_EIMC, q_vector->eims_value);
else
igb_irq_disable(adapter);
napi_schedule(&q_vector->napi);
}
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
#ifdef HAVE_PCI_ERS
#define E1000_DEV_ID_82576_VF 0x10CA
/**
* igb_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
#ifdef CONFIG_PCI_IOV__UNUSED
struct pci_dev *bdev, *vfdev;
u32 dw0, dw1, dw2, dw3;
int vf, pos;
u16 req_id, pf_func;
if (!(adapter->flags & IGB_FLAG_DETECT_BAD_DMA))
goto skip_bad_vf_detection;
bdev = pdev->bus->self;
while (bdev && (pci_pcie_type(bdev) != PCI_EXP_TYPE_ROOT_PORT))
bdev = bdev->bus->self;
if (!bdev)
goto skip_bad_vf_detection;
pos = pci_find_ext_capability(bdev, PCI_EXT_CAP_ID_ERR);
if (!pos)
goto skip_bad_vf_detection;
pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG, &dw0);
pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG + 4, &dw1);
pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG + 8, &dw2);
pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG + 12, &dw3);
req_id = dw1 >> 16;
/* On the 82576 if bit 7 of the requestor ID is set then it's a VF */
if (!(req_id & 0x0080))
goto skip_bad_vf_detection;
pf_func = req_id & 0x01;
if ((pf_func & 1) == (pdev->devfn & 1)) {
vf = (req_id & 0x7F) >> 1;
dev_err(pci_dev_to_dev(pdev),
"VF %d has caused a PCIe error\n", vf);
dev_err(pci_dev_to_dev(pdev),
"TLP: dw0: %8.8x\tdw1: %8.8x\tdw2: "
"%8.8x\tdw3: %8.8x\n",
dw0, dw1, dw2, dw3);
/* Find the pci device of the offending VF */
vfdev = pci_get_device(PCI_VENDOR_ID_INTEL,
E1000_DEV_ID_82576_VF, NULL);
while (vfdev) {
if (vfdev->devfn == (req_id & 0xFF))
break;
vfdev = pci_get_device(PCI_VENDOR_ID_INTEL,
E1000_DEV_ID_82576_VF, vfdev);
}
/*
* There's a slim chance the VF could have been hot plugged,
* so if it is no longer present we don't need to issue the
* VFLR. Just clean up the AER in that case.
*/
if (vfdev) {
dev_err(pci_dev_to_dev(pdev),
"Issuing VFLR to VF %d\n", vf);
pci_write_config_dword(vfdev, 0xA8, 0x00008000);
}
pci_cleanup_aer_uncorrect_error_status(pdev);
}
/*
* Even though the error may have occurred on the other port
* we still need to increment the vf error reference count for
* both ports because the I/O resume function will be called
* for both of them.
*/
adapter->vferr_refcount++;
return PCI_ERS_RESULT_RECOVERED;
skip_bad_vf_detection:
#endif /* CONFIG_PCI_IOV */
netif_device_detach(netdev);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (netif_running(netdev))
igb_down(adapter);
pci_disable_device(pdev);
/* Request a slot slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* igb_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot. Implementation
* resembles the first-half of the igb_resume routine.
*/
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
pci_ers_result_t result;
if (pci_enable_device_mem(pdev)) {
dev_err(pci_dev_to_dev(pdev),
"Cannot re-enable PCI device after reset.\n");
result = PCI_ERS_RESULT_DISCONNECT;
} else {
pci_set_master(pdev);
pci_restore_state(pdev);
pci_save_state(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
schedule_work(&adapter->reset_task);
E1000_WRITE_REG(hw, E1000_WUS, ~0);
result = PCI_ERS_RESULT_RECOVERED;
}
pci_cleanup_aer_uncorrect_error_status(pdev);
return result;
}
/**
* igb_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation. Implementation resembles the
* second-half of the igb_resume routine.
*/
static void igb_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
if (adapter->vferr_refcount) {
dev_info(pci_dev_to_dev(pdev), "Resuming after VF err\n");
adapter->vferr_refcount--;
return;
}
if (netif_running(netdev)) {
if (igb_up(adapter)) {
dev_err(pci_dev_to_dev(pdev), "igb_up failed after reset\n");
return;
}
}
netif_device_attach(netdev);
/* let the f/w know that the h/w is now under the control of the
* driver. */
igb_get_hw_control(adapter);
}
#endif /* HAVE_PCI_ERS */
int igb_add_mac_filter(struct igb_adapter *adapter, u8 *addr, u16 queue)
{
struct e1000_hw *hw = &adapter->hw;
int i;
if (is_zero_ether_addr(addr))
return 0;
for (i = 0; i < hw->mac.rar_entry_count; i++) {
if (adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)
continue;
adapter->mac_table[i].state = (IGB_MAC_STATE_MODIFIED |
IGB_MAC_STATE_IN_USE);
memcpy(adapter->mac_table[i].addr, addr, ETH_ALEN);
adapter->mac_table[i].queue = queue;
igb_sync_mac_table(adapter);
return 0;
}
return -ENOMEM;
}
int igb_del_mac_filter(struct igb_adapter *adapter, u8* addr, u16 queue)
{
/* search table for addr, if found, set to 0 and sync */
int i;
struct e1000_hw *hw = &adapter->hw;
if (is_zero_ether_addr(addr))
return 0;
for (i = 0; i < hw->mac.rar_entry_count; i++) {
if (ether_addr_equal(addr, adapter->mac_table[i].addr) &&
adapter->mac_table[i].queue == queue) {
adapter->mac_table[i].state = IGB_MAC_STATE_MODIFIED;
memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
adapter->mac_table[i].queue = 0;
igb_sync_mac_table(adapter);
return 0;
}
}
return -ENOMEM;
}
static int igb_set_vf_mac(struct igb_adapter *adapter,
int vf, unsigned char *mac_addr)
{
igb_del_mac_filter(adapter, adapter->vf_data[vf].vf_mac_addresses, vf);
memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
igb_add_mac_filter(adapter, mac_addr, vf);
return 0;
}
#ifdef IFLA_VF_MAX
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
return -EINVAL;
adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
" change effective.\n");
if (test_bit(__IGB_DOWN, &adapter->state)) {
dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
" but the PF device is not up.\n");
dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
" attempting to use the VF device.\n");
}
return igb_set_vf_mac(adapter, vf, mac);
}
static int igb_link_mbps(int internal_link_speed)
{
switch (internal_link_speed) {
case SPEED_100:
return 100;
case SPEED_1000:
return 1000;
case SPEED_2500:
return 2500;
default:
return 0;
}
}
static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
int link_speed)
{
int rf_dec, rf_int;
u32 bcnrc_val;
if (tx_rate != 0) {
/* Calculate the rate factor values to set */
rf_int = link_speed / tx_rate;
rf_dec = (link_speed - (rf_int * tx_rate));
rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
bcnrc_val = E1000_RTTBCNRC_RS_ENA;
bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
E1000_RTTBCNRC_RF_INT_MASK);
bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
} else {
bcnrc_val = 0;
}
E1000_WRITE_REG(hw, E1000_RTTDQSEL, vf); /* vf X uses queue X */
/*
* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
* register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
*/
E1000_WRITE_REG(hw, E1000_RTTBCNRM(0), 0x14);
E1000_WRITE_REG(hw, E1000_RTTBCNRC, bcnrc_val);
}
static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
int actual_link_speed, i;
bool reset_rate = false;
/* VF TX rate limit was not set */
if ((adapter->vf_rate_link_speed == 0) ||
(adapter->hw.mac.type != e1000_82576))
return;
actual_link_speed = igb_link_mbps(adapter->link_speed);
if (actual_link_speed != adapter->vf_rate_link_speed) {
reset_rate = true;
adapter->vf_rate_link_speed = 0;
dev_info(&adapter->pdev->dev,
"Link speed has been changed. VF Transmit rate is disabled\n");
}
for (i = 0; i < adapter->vfs_allocated_count; i++) {
if (reset_rate)
adapter->vf_data[i].tx_rate = 0;
igb_set_vf_rate_limit(&adapter->hw, i,
adapter->vf_data[i].tx_rate, actual_link_speed);
}
}
#ifdef HAVE_VF_MIN_MAX_TXRATE
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int min_tx_rate,
int tx_rate)
#else /* HAVE_VF_MIN_MAX_TXRATE */
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
#endif /* HAVE_VF_MIN_MAX_TXRATE */
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int actual_link_speed;
if (hw->mac.type != e1000_82576)
return -EOPNOTSUPP;
#ifdef HAVE_VF_MIN_MAX_TXRATE
if (min_tx_rate)
return -EINVAL;
#endif /* HAVE_VF_MIN_MAX_TXRATE */
actual_link_speed = igb_link_mbps(adapter->link_speed);
if ((vf >= adapter->vfs_allocated_count) ||
(!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) ||
(tx_rate < 0) || (tx_rate > actual_link_speed))
return -EINVAL;
adapter->vf_rate_link_speed = actual_link_speed;
adapter->vf_data[vf].tx_rate = (u16)tx_rate;
igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
return 0;
}
static int igb_ndo_get_vf_config(struct net_device *netdev,
int vf, struct ifla_vf_info *ivi)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if (vf >= adapter->vfs_allocated_count)
return -EINVAL;
ivi->vf = vf;
memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
#ifdef HAVE_VF_MIN_MAX_TXRATE
ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
ivi->min_tx_rate = 0;
#else /* HAVE_VF_MIN_MAX_TXRATE */
ivi->tx_rate = adapter->vf_data[vf].tx_rate;
#endif /* HAVE_VF_MIN_MAX_TXRATE */
ivi->vlan = adapter->vf_data[vf].pf_vlan;
ivi->qos = adapter->vf_data[vf].pf_qos;
#ifdef HAVE_VF_SPOOFCHK_CONFIGURE
ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
#endif
return 0;
}
#endif
static void igb_vmm_control(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int count;
u32 reg;
switch (hw->mac.type) {
case e1000_82575:
default:
/* replication is not supported for 82575 */
return;
case e1000_82576:
/* notify HW that the MAC is adding vlan tags */
reg = E1000_READ_REG(hw, E1000_DTXCTL);
reg |= (E1000_DTXCTL_VLAN_ADDED |
E1000_DTXCTL_SPOOF_INT);
E1000_WRITE_REG(hw, E1000_DTXCTL, reg);
case e1000_82580:
/* enable replication vlan tag stripping */
reg = E1000_READ_REG(hw, E1000_RPLOLR);
reg |= E1000_RPLOLR_STRVLAN;
E1000_WRITE_REG(hw, E1000_RPLOLR, reg);
case e1000_i350:
case e1000_i354:
/* none of the above registers are supported by i350 */
break;
}
/* Enable Malicious Driver Detection */
if ((adapter->vfs_allocated_count) &&
(adapter->mdd)) {
if (hw->mac.type == e1000_i350)
igb_enable_mdd(adapter);
}
/* enable replication and loopback support */
count = adapter->vfs_allocated_count || adapter->vmdq_pools;
if (adapter->flags & IGB_FLAG_LOOPBACK_ENABLE && count)
e1000_vmdq_set_loopback_pf(hw, 1);
e1000_vmdq_set_anti_spoofing_pf(hw,
adapter->vfs_allocated_count || adapter->vmdq_pools,
adapter->vfs_allocated_count);
e1000_vmdq_set_replication_pf(hw, adapter->vfs_allocated_count ||
adapter->vmdq_pools);
}
static void igb_init_fw(struct igb_adapter *adapter)
{
struct e1000_fw_drv_info fw_cmd;
struct e1000_hw *hw = &adapter->hw;
int i;
u16 mask;
if (hw->mac.type == e1000_i210)
mask = E1000_SWFW_EEP_SM;
else
mask = E1000_SWFW_PHY0_SM;
/* i211 parts do not support this feature */
if (hw->mac.type == e1000_i211)
hw->mac.arc_subsystem_valid = false;
if (!hw->mac.ops.acquire_swfw_sync(hw, mask)) {
for (i = 0; i <= FW_MAX_RETRIES; i++) {
E1000_WRITE_REG(hw, E1000_FWSTS, E1000_FWSTS_FWRI);
fw_cmd.hdr.cmd = FW_CMD_DRV_INFO;
fw_cmd.hdr.buf_len = FW_CMD_DRV_INFO_LEN;
fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CMD_RESERVED;
fw_cmd.port_num = hw->bus.func;
fw_cmd.drv_version = FW_FAMILY_DRV_VER;
fw_cmd.hdr.checksum = 0;
fw_cmd.hdr.checksum = e1000_calculate_checksum((u8 *)&fw_cmd,
(FW_HDR_LEN +
fw_cmd.hdr.buf_len));
e1000_host_interface_command(hw, (u8*)&fw_cmd,
sizeof(fw_cmd));
if (fw_cmd.hdr.cmd_or_resp.ret_status == FW_STATUS_SUCCESS)
break;
}
} else
dev_warn(pci_dev_to_dev(adapter->pdev),
"Unable to get semaphore, firmware init failed.\n");
hw->mac.ops.release_swfw_sync(hw, mask);
}
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
struct e1000_hw *hw = &adapter->hw;
u32 dmac_thr;
u16 hwm;
u32 status;
if (hw->mac.type == e1000_i211)
return;
if (hw->mac.type > e1000_82580) {
if (adapter->dmac != IGB_DMAC_DISABLE) {
u32 reg;
/* force threshold to 0. */
E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
/*
* DMA Coalescing high water mark needs to be greater
* than the Rx threshold. Set hwm to PBA - max frame
* size in 16B units, capping it at PBA - 6KB.
*/
hwm = 64 * pba - adapter->max_frame_size / 16;
if (hwm < 64 * (pba - 6))
hwm = 64 * (pba - 6);
reg = E1000_READ_REG(hw, E1000_FCRTC);
reg &= ~E1000_FCRTC_RTH_COAL_MASK;
reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
& E1000_FCRTC_RTH_COAL_MASK);
E1000_WRITE_REG(hw, E1000_FCRTC, reg);
/*
* Set the DMA Coalescing Rx threshold to PBA - 2 * max
* frame size, capping it at PBA - 10KB.
*/
dmac_thr = pba - adapter->max_frame_size / 512;
if (dmac_thr < pba - 10)
dmac_thr = pba - 10;
reg = E1000_READ_REG(hw, E1000_DMACR);
reg &= ~E1000_DMACR_DMACTHR_MASK;
reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
& E1000_DMACR_DMACTHR_MASK);
/* transition to L0x or L1 if available..*/
reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
/* Check if status is 2.5Gb backplane connection
* before configuration of watchdog timer, which is
* in msec values in 12.8usec intervals
* watchdog timer= msec values in 32usec intervals
* for non 2.5Gb connection
*/
if (hw->mac.type == e1000_i354) {
status = E1000_READ_REG(hw, E1000_STATUS);
if ((status & E1000_STATUS_2P5_SKU) &&
(!(status & E1000_STATUS_2P5_SKU_OVER)))
reg |= ((adapter->dmac * 5) >> 6);
else
reg |= ((adapter->dmac) >> 5);
} else {
reg |= ((adapter->dmac) >> 5);
}
/*
* Disable BMC-to-OS Watchdog enable
* on devices that support OS-to-BMC
*/
if (hw->mac.type != e1000_i354)
reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
E1000_WRITE_REG(hw, E1000_DMACR, reg);
/* no lower threshold to disable coalescing(smart fifb)-UTRESH=0*/
E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
/* This sets the time to wait before requesting
* transition to low power state to number of usecs
* needed to receive 1 512 byte frame at gigabit
* line rate. On i350 device, time to make transition
* to Lx state is delayed by 4 usec with flush disable
* bit set to avoid losing mailbox interrupts
*/
reg = E1000_READ_REG(hw, E1000_DMCTLX);
if (hw->mac.type == e1000_i350)
reg |= IGB_DMCTLX_DCFLUSH_DIS;
/* in 2.5Gb connection, TTLX unit is 0.4 usec
* which is 0x4*2 = 0xA. But delay is still 4 usec
*/
if (hw->mac.type == e1000_i354) {
status = E1000_READ_REG(hw, E1000_STATUS);
if ((status & E1000_STATUS_2P5_SKU) &&
(!(status & E1000_STATUS_2P5_SKU_OVER)))
reg |= 0xA;
else
reg |= 0x4;
} else {
reg |= 0x4;
}
E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
/* free space in tx packet buffer to wake from DMA coal */
E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
(IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
/* make low power state decision controlled by DMA coal */
reg = E1000_READ_REG(hw, E1000_PCIEMISC);
reg &= ~E1000_PCIEMISC_LX_DECISION;
E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
} /* endif adapter->dmac is not disabled */
} else if (hw->mac.type == e1000_82580) {
u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
E1000_WRITE_REG(hw, E1000_PCIEMISC,
reg & ~E1000_PCIEMISC_LX_DECISION);
E1000_WRITE_REG(hw, E1000_DMACR, 0);
}
}
#ifdef HAVE_I2C_SUPPORT
/* igb_read_i2c_byte - Reads 8 bit word over I2C
* @hw: pointer to hardware structure
* @byte_offset: byte offset to read
* @dev_addr: device address
* @data: value read
*
* Performs byte read operation over I2C interface at
* a specified device address.
*/
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
u8 dev_addr, u8 *data)
{
struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
struct i2c_client *this_client = adapter->i2c_client;
s32 status;
u16 swfw_mask = 0;
if (!this_client)
return E1000_ERR_I2C;
swfw_mask = E1000_SWFW_PHY0_SM;
if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
!= E1000_SUCCESS)
return E1000_ERR_SWFW_SYNC;
status = i2c_smbus_read_byte_data(this_client, byte_offset);
hw->mac.ops.release_swfw_sync(hw, swfw_mask);
if (status < 0)
return E1000_ERR_I2C;
else {
*data = status;
return E1000_SUCCESS;
}
}
/* igb_write_i2c_byte - Writes 8 bit word over I2C
* @hw: pointer to hardware structure
* @byte_offset: byte offset to write
* @dev_addr: device address
* @data: value to write
*
* Performs byte write operation over I2C interface at
* a specified device address.
*/
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
u8 dev_addr, u8 data)
{
struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
struct i2c_client *this_client = adapter->i2c_client;
s32 status;
u16 swfw_mask = E1000_SWFW_PHY0_SM;
if (!this_client)
return E1000_ERR_I2C;
if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
return E1000_ERR_SWFW_SYNC;
status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
hw->mac.ops.release_swfw_sync(hw, swfw_mask);
if (status)
return E1000_ERR_I2C;
else
return E1000_SUCCESS;
}
#endif /* HAVE_I2C_SUPPORT */
/* igb_main.c */
/**
* igb_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in igb_pci_tbl
*
* Returns 0 on success, negative on failure
*
* igb_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
**/
int igb_kni_probe(struct pci_dev *pdev,
struct net_device **lad_dev)
{
struct net_device *netdev;
struct igb_adapter *adapter;
struct e1000_hw *hw;
u16 eeprom_data = 0;
u8 pba_str[E1000_PBANUM_LENGTH];
s32 ret_val;
static int global_quad_port_a; /* global quad port a indication */
int i, err, pci_using_dac = 0;
static int cards_found;
err = pci_enable_device_mem(pdev);
if (err)
return err;
#ifdef NO_KNI
pci_using_dac = 0;
err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64));
if (!err) {
err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64));
if (!err)
pci_using_dac = 1;
} else {
err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32));
if (err) {
err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32));
if (err) {
IGB_ERR("No usable DMA configuration, "
"aborting\n");
goto err_dma;
}
}
}
#ifndef HAVE_ASPM_QUIRKS
/* 82575 requires that the pci-e link partner disable the L0s state */
switch (pdev->device) {
case E1000_DEV_ID_82575EB_COPPER:
case E1000_DEV_ID_82575EB_FIBER_SERDES:
case E1000_DEV_ID_82575GB_QUAD_COPPER:
pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S);
default:
break;
}
#endif /* HAVE_ASPM_QUIRKS */
err = pci_request_selected_regions(pdev,
pci_select_bars(pdev,
IORESOURCE_MEM),
igb_driver_name);
if (err)
goto err_pci_reg;
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
err = -ENOMEM;
#endif /* NO_KNI */
#ifdef HAVE_TX_MQ
netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
IGB_MAX_TX_QUEUES);
#else
netdev = alloc_etherdev(sizeof(struct igb_adapter));
#endif /* HAVE_TX_MQ */
if (!netdev)
goto err_alloc_etherdev;
SET_MODULE_OWNER(netdev);
SET_NETDEV_DEV(netdev, &pdev->dev);
//pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
hw = &adapter->hw;
hw->back = adapter;
adapter->port_num = hw->bus.func;
adapter->msg_enable = (1 << debug) - 1;
#ifdef HAVE_PCI_ERS
err = pci_save_state(pdev);
if (err)
goto err_ioremap;
#endif
err = -EIO;
hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!hw->hw_addr)
goto err_ioremap;
#ifdef HAVE_NET_DEVICE_OPS
netdev->netdev_ops = &igb_netdev_ops;
#else /* HAVE_NET_DEVICE_OPS */
netdev->open = &igb_open;
netdev->stop = &igb_close;
netdev->get_stats = &igb_get_stats;
#ifdef HAVE_SET_RX_MODE
netdev->set_rx_mode = &igb_set_rx_mode;
#endif
netdev->set_multicast_list = &igb_set_rx_mode;
netdev->set_mac_address = &igb_set_mac;
netdev->change_mtu = &igb_change_mtu;
netdev->do_ioctl = &igb_ioctl;
#ifdef HAVE_TX_TIMEOUT
netdev->tx_timeout = &igb_tx_timeout;
#endif
netdev->vlan_rx_register = igb_vlan_mode;
netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
#ifdef CONFIG_NET_POLL_CONTROLLER
netdev->poll_controller = igb_netpoll;
#endif
netdev->hard_start_xmit = &igb_xmit_frame;
#endif /* HAVE_NET_DEVICE_OPS */
igb_set_ethtool_ops(netdev);
#ifdef HAVE_TX_TIMEOUT
netdev->watchdog_timeo = 5 * HZ;
#endif
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
adapter->bd_number = cards_found;
/* setup the private structure */
err = igb_sw_init(adapter);
if (err)
goto err_sw_init;
e1000_get_bus_info(hw);
hw->phy.autoneg_wait_to_complete = FALSE;
hw->mac.adaptive_ifs = FALSE;
/* Copper options */
if (hw->phy.media_type == e1000_media_type_copper) {
hw->phy.mdix = AUTO_ALL_MODES;
hw->phy.disable_polarity_correction = FALSE;
hw->phy.ms_type = e1000_ms_hw_default;
}
if (e1000_check_reset_block(hw))
dev_info(pci_dev_to_dev(pdev),
"PHY reset is blocked due to SOL/IDER session.\n");
/*
* features is initialized to 0 in allocation, it might have bits
* set by igb_sw_init so we should use an or instead of an
* assignment.
*/
netdev->features |= NETIF_F_SG |
NETIF_F_IP_CSUM |
#ifdef NETIF_F_IPV6_CSUM
NETIF_F_IPV6_CSUM |
#endif
#ifdef NETIF_F_TSO
NETIF_F_TSO |
#ifdef NETIF_F_TSO6
NETIF_F_TSO6 |
#endif
#endif /* NETIF_F_TSO */
#ifdef NETIF_F_RXHASH
NETIF_F_RXHASH |
#endif
NETIF_F_RXCSUM |
#ifdef NETIF_F_HW_VLAN_CTAG_RX
NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_TX;
#else
NETIF_F_HW_VLAN_RX |
NETIF_F_HW_VLAN_TX;
#endif
if (hw->mac.type >= e1000_82576)
netdev->features |= NETIF_F_SCTP_CSUM;
#ifdef HAVE_NDO_SET_FEATURES
/* copy netdev features into list of user selectable features */
netdev->hw_features |= netdev->features;
#ifndef IGB_NO_LRO
/* give us the option of enabling LRO later */
netdev->hw_features |= NETIF_F_LRO;
#endif
#else
#ifdef NETIF_F_GRO
/* this is only needed on kernels prior to 2.6.39 */
netdev->features |= NETIF_F_GRO;
#endif
#endif
/* set this bit last since it cannot be part of hw_features */
#ifdef NETIF_F_HW_VLAN_CTAG_FILTER
netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
#else
netdev->features |= NETIF_F_HW_VLAN_FILTER;
#endif
#ifdef HAVE_NETDEV_VLAN_FEATURES
netdev->vlan_features |= NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_IP_CSUM |
NETIF_F_IPV6_CSUM |
NETIF_F_SG;
#endif
if (pci_using_dac)
netdev->features |= NETIF_F_HIGHDMA;
#ifdef NO_KNI
adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
#ifdef DEBUG
if (adapter->dmac != IGB_DMAC_DISABLE)
printk("%s: DMA Coalescing is enabled..\n", netdev->name);
#endif
/* before reading the NVM, reset the controller to put the device in a
* known good starting state */
e1000_reset_hw(hw);
#endif /* NO_KNI */
/* make sure the NVM is good */
if (e1000_validate_nvm_checksum(hw) < 0) {
dev_err(pci_dev_to_dev(pdev), "The NVM Checksum Is Not"
" Valid\n");
err = -EIO;
goto err_eeprom;
}
/* copy the MAC address out of the NVM */
if (e1000_read_mac_addr(hw))
dev_err(pci_dev_to_dev(pdev), "NVM Read Error\n");
memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
#ifdef ETHTOOL_GPERMADDR
memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->perm_addr)) {
#else
if (!is_valid_ether_addr(netdev->dev_addr)) {
#endif
dev_err(pci_dev_to_dev(pdev), "Invalid MAC Address\n");
err = -EIO;
goto err_eeprom;
}
memcpy(&adapter->mac_table[0].addr, hw->mac.addr, netdev->addr_len);
adapter->mac_table[0].queue = adapter->vfs_allocated_count;
adapter->mac_table[0].state = (IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE);
igb_rar_set(adapter, 0);
/* get firmware version for ethtool -i */
igb_set_fw_version(adapter);
/* Check if Media Autosense is enabled */
if (hw->mac.type == e1000_82580)
igb_init_mas(adapter);
#ifdef NO_KNI
#ifdef HAVE_TIMER_SETUP
timer_setup(&adapter->watchdog_timer, &igb_watchdog, 0);
if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
timer_setup(&adapter->dma_err_timer, &igb_dma_err_timer, 0);
timer_setup(&adapter->phy_info_timer, &igb_update_phy_info, 0);
#else
setup_timer(&adapter->watchdog_timer, &igb_watchdog,
(unsigned long) adapter);
if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
setup_timer(&adapter->dma_err_timer, &igb_dma_err_timer,
(unsigned long) adapter);
setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
(unsigned long) adapter);
#endif
INIT_WORK(&adapter->reset_task, igb_reset_task);
INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
INIT_WORK(&adapter->dma_err_task, igb_dma_err_task);
#endif
/* Initialize link properties that are user-changeable */
adapter->fc_autoneg = true;
hw->mac.autoneg = true;
hw->phy.autoneg_advertised = 0x2f;
hw->fc.requested_mode = e1000_fc_default;
hw->fc.current_mode = e1000_fc_default;
e1000_validate_mdi_setting(hw);
/* By default, support wake on port A */
if (hw->bus.func == 0)
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
/* Check the NVM for wake support for non-port A ports */
if (hw->mac.type >= e1000_82580)
hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
&eeprom_data);
else if (hw->bus.func == 1)
e1000_read_nvm(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
if (eeprom_data & IGB_EEPROM_APME)
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
/* now that we have the eeprom settings, apply the special cases where
* the eeprom may be wrong or the board simply won't support wake on
* lan on a particular port */
switch (pdev->device) {
case E1000_DEV_ID_82575GB_QUAD_COPPER:
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
break;
case E1000_DEV_ID_82575EB_FIBER_SERDES:
case E1000_DEV_ID_82576_FIBER:
case E1000_DEV_ID_82576_SERDES:
/* Wake events only supported on port A for dual fiber
* regardless of eeprom setting */
if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FUNC_1)
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
break;
case E1000_DEV_ID_82576_QUAD_COPPER:
case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
/* if quad port adapter, disable WoL on all but port A */
if (global_quad_port_a != 0)
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
else
adapter->flags |= IGB_FLAG_QUAD_PORT_A;
/* Reset for multiple quad port adapters */
if (++global_quad_port_a == 4)
global_quad_port_a = 0;
break;
default:
/* If the device can't wake, don't set software support */
if (!device_can_wakeup(&adapter->pdev->dev))
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
break;
}
/* initialize the wol settings based on the eeprom settings */
if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
adapter->wol |= E1000_WUFC_MAG;
/* Some vendors want WoL disabled by default, but still supported */
if ((hw->mac.type == e1000_i350) &&
(pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
adapter->wol = 0;
}
#ifdef NO_KNI
device_set_wakeup_enable(pci_dev_to_dev(adapter->pdev),
adapter->flags & IGB_FLAG_WOL_SUPPORTED);
/* reset the hardware with the new settings */
igb_reset(adapter);
adapter->devrc = 0;
#ifdef HAVE_I2C_SUPPORT
/* Init the I2C interface */
err = igb_init_i2c(adapter);
if (err) {
dev_err(&pdev->dev, "failed to init i2c interface\n");
goto err_eeprom;
}
#endif /* HAVE_I2C_SUPPORT */
/* let the f/w know that the h/w is now under the control of the
* driver. */
igb_get_hw_control(adapter);
strncpy(netdev->name, "eth%d", IFNAMSIZ);
err = register_netdev(netdev);
if (err)
goto err_register;
#ifdef CONFIG_IGB_VMDQ_NETDEV
err = igb_init_vmdq_netdevs(adapter);
if (err)
goto err_register;
#endif
/* carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
#ifdef IGB_DCA
if (dca_add_requester(&pdev->dev) == E1000_SUCCESS) {
adapter->flags |= IGB_FLAG_DCA_ENABLED;
dev_info(pci_dev_to_dev(pdev), "DCA enabled\n");
igb_setup_dca(adapter);
}
#endif
#ifdef HAVE_PTP_1588_CLOCK
/* do hw tstamp init after resetting */
igb_ptp_init(adapter);
#endif /* HAVE_PTP_1588_CLOCK */
#endif /* NO_KNI */
dev_info(pci_dev_to_dev(pdev), "Intel(R) Gigabit Ethernet Network Connection\n");
/* print bus type/speed/width info */
dev_info(pci_dev_to_dev(pdev), "%s: (PCIe:%s:%s) ",
netdev->name,
((hw->bus.speed == e1000_bus_speed_2500) ? "2.5GT/s" :
(hw->bus.speed == e1000_bus_speed_5000) ? "5.0GT/s" :
(hw->mac.type == e1000_i354) ? "integrated" :
"unknown"),
((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
(hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
(hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
(hw->mac.type == e1000_i354) ? "integrated" :
"unknown"));
dev_info(pci_dev_to_dev(pdev), "%s: MAC: ", netdev->name);
for (i = 0; i < 6; i++)
printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
ret_val = e1000_read_pba_string(hw, pba_str, E1000_PBANUM_LENGTH);
if (ret_val)
strncpy(pba_str, "Unknown", sizeof(pba_str) - 1);
dev_info(pci_dev_to_dev(pdev), "%s: PBA No: %s\n", netdev->name,
pba_str);
/* Initialize the thermal sensor on i350 devices. */
if (hw->mac.type == e1000_i350) {
if (hw->bus.func == 0) {
u16 ets_word;
/*
* Read the NVM to determine if this i350 device
* supports an external thermal sensor.
*/
e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_word);
if (ets_word != 0x0000 && ets_word != 0xFFFF)
adapter->ets = true;
else
adapter->ets = false;
}
#ifdef NO_KNI
#ifdef IGB_HWMON
igb_sysfs_init(adapter);
#else
#ifdef IGB_PROCFS
igb_procfs_init(adapter);
#endif /* IGB_PROCFS */
#endif /* IGB_HWMON */
#endif /* NO_KNI */
} else {
adapter->ets = false;
}
if (hw->phy.media_type == e1000_media_type_copper) {
switch (hw->mac.type) {
case e1000_i350:
case e1000_i210:
case e1000_i211:
/* Enable EEE for internal copper PHY devices */
err = e1000_set_eee_i350(hw);
if ((!err) &&
(adapter->flags & IGB_FLAG_EEE))
adapter->eee_advert =
MDIO_EEE_100TX | MDIO_EEE_1000T;
break;
case e1000_i354:
if ((E1000_READ_REG(hw, E1000_CTRL_EXT)) &
(E1000_CTRL_EXT_LINK_MODE_SGMII)) {
err = e1000_set_eee_i354(hw);
if ((!err) &&
(adapter->flags & IGB_FLAG_EEE))
adapter->eee_advert =
MDIO_EEE_100TX | MDIO_EEE_1000T;
}
break;
default:
break;
}
}
/* send driver version info to firmware */
if (hw->mac.type >= e1000_i350)
igb_init_fw(adapter);
#ifndef IGB_NO_LRO
if (netdev->features & NETIF_F_LRO)
dev_info(pci_dev_to_dev(pdev), "Internal LRO is enabled \n");
else
dev_info(pci_dev_to_dev(pdev), "LRO is disabled \n");
#endif
dev_info(pci_dev_to_dev(pdev),
"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
adapter->msix_entries ? "MSI-X" :
(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
adapter->num_rx_queues, adapter->num_tx_queues);
cards_found++;
*lad_dev = netdev;
pm_runtime_put_noidle(&pdev->dev);
return 0;
//err_register:
// igb_release_hw_control(adapter);
#ifdef HAVE_I2C_SUPPORT
memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
#endif /* HAVE_I2C_SUPPORT */
err_eeprom:
// if (!e1000_check_reset_block(hw))
// e1000_phy_hw_reset(hw);
if (hw->flash_address)
iounmap(hw->flash_address);
err_sw_init:
// igb_clear_interrupt_scheme(adapter);
// igb_reset_sriov_capability(adapter);
iounmap(hw->hw_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
// pci_release_selected_regions(pdev,
// pci_select_bars(pdev, IORESOURCE_MEM));
//err_pci_reg:
//err_dma:
pci_disable_device(pdev);
return err;
}
void igb_kni_remove(struct pci_dev *pdev)
{
pci_disable_device(pdev);
}