f-stack/dpdk/lib/vhost/virtio_net.c

3860 lines
98 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
*/
#include <stdint.h>
#include <stdbool.h>
#include <linux/virtio_net.h>
#include <rte_mbuf.h>
#include <rte_memcpy.h>
#include <rte_net.h>
#include <rte_ether.h>
#include <rte_ip.h>
#include <rte_dmadev.h>
#include <rte_vhost.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_sctp.h>
#include <rte_arp.h>
#include <rte_spinlock.h>
#include <rte_malloc.h>
#include <rte_vhost_async.h>
#include "iotlb.h"
#include "vhost.h"
#define MAX_BATCH_LEN 256
static __rte_always_inline uint16_t
async_poll_dequeue_completed(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf **pkts, uint16_t count, int16_t dma_id,
uint16_t vchan_id, bool legacy_ol_flags);
/* DMA device copy operation tracking array. */
struct async_dma_info dma_copy_track[RTE_DMADEV_DEFAULT_MAX];
static __rte_always_inline bool
rxvq_is_mergeable(struct virtio_net *dev)
{
return dev->features & (1ULL << VIRTIO_NET_F_MRG_RXBUF);
}
static __rte_always_inline bool
virtio_net_is_inorder(struct virtio_net *dev)
{
return dev->features & (1ULL << VIRTIO_F_IN_ORDER);
}
static bool
is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
{
return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
}
/*
* This function must be called with virtqueue's access_lock taken.
*/
static inline void
vhost_queue_stats_update(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf **pkts, uint16_t count)
{
struct virtqueue_stats *stats = &vq->stats;
int i;
if (!(dev->flags & VIRTIO_DEV_STATS_ENABLED))
return;
for (i = 0; i < count; i++) {
struct rte_ether_addr *ea;
struct rte_mbuf *pkt = pkts[i];
uint32_t pkt_len = rte_pktmbuf_pkt_len(pkt);
stats->packets++;
stats->bytes += pkt_len;
if (pkt_len == 64) {
stats->size_bins[1]++;
} else if (pkt_len > 64 && pkt_len < 1024) {
uint32_t bin;
/* count zeros, and offset into correct bin */
bin = (sizeof(pkt_len) * 8) - __builtin_clz(pkt_len) - 5;
stats->size_bins[bin]++;
} else {
if (pkt_len < 64)
stats->size_bins[0]++;
else if (pkt_len < 1519)
stats->size_bins[6]++;
else
stats->size_bins[7]++;
}
ea = rte_pktmbuf_mtod(pkt, struct rte_ether_addr *);
if (rte_is_multicast_ether_addr(ea)) {
if (rte_is_broadcast_ether_addr(ea))
stats->broadcast++;
else
stats->multicast++;
}
}
}
static __rte_always_inline int64_t
vhost_async_dma_transfer_one(struct virtio_net *dev, struct vhost_virtqueue *vq,
int16_t dma_id, uint16_t vchan_id, uint16_t flag_idx,
struct vhost_iov_iter *pkt)
{
struct async_dma_vchan_info *dma_info = &dma_copy_track[dma_id].vchans[vchan_id];
uint16_t ring_mask = dma_info->ring_mask;
static bool vhost_async_dma_copy_log;
struct vhost_iovec *iov = pkt->iov;
int copy_idx = 0;
uint32_t nr_segs = pkt->nr_segs;
uint16_t i;
if (rte_dma_burst_capacity(dma_id, vchan_id) < nr_segs)
return -1;
for (i = 0; i < nr_segs; i++) {
copy_idx = rte_dma_copy(dma_id, vchan_id, (rte_iova_t)iov[i].src_addr,
(rte_iova_t)iov[i].dst_addr, iov[i].len, RTE_DMA_OP_FLAG_LLC);
/**
* Since all memory is pinned and DMA vChannel
* ring has enough space, failure should be a
* rare case. If failure happens, it means DMA
* device encounters serious errors; in this
* case, please stop async data-path and check
* what has happened to DMA device.
*/
if (unlikely(copy_idx < 0)) {
if (!vhost_async_dma_copy_log) {
VHOST_LOG_DATA(dev->ifname, ERR,
"DMA copy failed for channel %d:%u\n",
dma_id, vchan_id);
vhost_async_dma_copy_log = true;
}
return -1;
}
}
/**
* Only store packet completion flag address in the last copy's
* slot, and other slots are set to NULL.
*/
dma_info->pkts_cmpl_flag_addr[copy_idx & ring_mask] = &vq->async->pkts_cmpl_flag[flag_idx];
return nr_segs;
}
static __rte_always_inline uint16_t
vhost_async_dma_transfer(struct virtio_net *dev, struct vhost_virtqueue *vq,
int16_t dma_id, uint16_t vchan_id, uint16_t head_idx,
struct vhost_iov_iter *pkts, uint16_t nr_pkts)
{
struct async_dma_vchan_info *dma_info = &dma_copy_track[dma_id].vchans[vchan_id];
int64_t ret, nr_copies = 0;
uint16_t pkt_idx;
rte_spinlock_lock(&dma_info->dma_lock);
for (pkt_idx = 0; pkt_idx < nr_pkts; pkt_idx++) {
ret = vhost_async_dma_transfer_one(dev, vq, dma_id, vchan_id, head_idx,
&pkts[pkt_idx]);
if (unlikely(ret < 0))
break;
nr_copies += ret;
head_idx++;
if (head_idx >= vq->size)
head_idx -= vq->size;
}
if (likely(nr_copies > 0))
rte_dma_submit(dma_id, vchan_id);
rte_spinlock_unlock(&dma_info->dma_lock);
return pkt_idx;
}
static __rte_always_inline uint16_t
vhost_async_dma_check_completed(struct virtio_net *dev, int16_t dma_id, uint16_t vchan_id,
uint16_t max_pkts)
{
struct async_dma_vchan_info *dma_info = &dma_copy_track[dma_id].vchans[vchan_id];
uint16_t ring_mask = dma_info->ring_mask;
uint16_t last_idx = 0;
uint16_t nr_copies;
uint16_t copy_idx;
uint16_t i;
bool has_error = false;
static bool vhost_async_dma_complete_log;
rte_spinlock_lock(&dma_info->dma_lock);
/**
* Print error log for debugging, if DMA reports error during
* DMA transfer. We do not handle error in vhost level.
*/
nr_copies = rte_dma_completed(dma_id, vchan_id, max_pkts, &last_idx, &has_error);
if (unlikely(!vhost_async_dma_complete_log && has_error)) {
VHOST_LOG_DATA(dev->ifname, ERR,
"DMA completion failure on channel %d:%u\n",
dma_id, vchan_id);
vhost_async_dma_complete_log = true;
} else if (nr_copies == 0) {
goto out;
}
copy_idx = last_idx - nr_copies + 1;
for (i = 0; i < nr_copies; i++) {
bool *flag;
flag = dma_info->pkts_cmpl_flag_addr[copy_idx & ring_mask];
if (flag) {
/**
* Mark the packet flag as received. The flag
* could belong to another virtqueue but write
* is atomic.
*/
*flag = true;
dma_info->pkts_cmpl_flag_addr[copy_idx & ring_mask] = NULL;
}
copy_idx++;
}
out:
rte_spinlock_unlock(&dma_info->dma_lock);
return nr_copies;
}
static inline void
do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
struct batch_copy_elem *elem = vq->batch_copy_elems;
uint16_t count = vq->batch_copy_nb_elems;
int i;
for (i = 0; i < count; i++) {
rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
vhost_log_cache_write_iova(dev, vq, elem[i].log_addr,
elem[i].len);
PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
}
vq->batch_copy_nb_elems = 0;
}
static inline void
do_data_copy_dequeue(struct vhost_virtqueue *vq)
{
struct batch_copy_elem *elem = vq->batch_copy_elems;
uint16_t count = vq->batch_copy_nb_elems;
int i;
for (i = 0; i < count; i++)
rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
vq->batch_copy_nb_elems = 0;
}
static __rte_always_inline void
do_flush_shadow_used_ring_split(struct virtio_net *dev,
struct vhost_virtqueue *vq,
uint16_t to, uint16_t from, uint16_t size)
{
rte_memcpy(&vq->used->ring[to],
&vq->shadow_used_split[from],
size * sizeof(struct vring_used_elem));
vhost_log_cache_used_vring(dev, vq,
offsetof(struct vring_used, ring[to]),
size * sizeof(struct vring_used_elem));
}
static __rte_always_inline void
flush_shadow_used_ring_split(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
if (used_idx + vq->shadow_used_idx <= vq->size) {
do_flush_shadow_used_ring_split(dev, vq, used_idx, 0,
vq->shadow_used_idx);
} else {
uint16_t size;
/* update used ring interval [used_idx, vq->size] */
size = vq->size - used_idx;
do_flush_shadow_used_ring_split(dev, vq, used_idx, 0, size);
/* update the left half used ring interval [0, left_size] */
do_flush_shadow_used_ring_split(dev, vq, 0, size,
vq->shadow_used_idx - size);
}
vq->last_used_idx += vq->shadow_used_idx;
vhost_log_cache_sync(dev, vq);
__atomic_add_fetch(&vq->used->idx, vq->shadow_used_idx,
__ATOMIC_RELEASE);
vq->shadow_used_idx = 0;
vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
sizeof(vq->used->idx));
}
static __rte_always_inline void
update_shadow_used_ring_split(struct vhost_virtqueue *vq,
uint16_t desc_idx, uint32_t len)
{
uint16_t i = vq->shadow_used_idx++;
vq->shadow_used_split[i].id = desc_idx;
vq->shadow_used_split[i].len = len;
}
static __rte_always_inline void
vhost_flush_enqueue_shadow_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq)
{
int i;
uint16_t used_idx = vq->last_used_idx;
uint16_t head_idx = vq->last_used_idx;
uint16_t head_flags = 0;
/* Split loop in two to save memory barriers */
for (i = 0; i < vq->shadow_used_idx; i++) {
vq->desc_packed[used_idx].id = vq->shadow_used_packed[i].id;
vq->desc_packed[used_idx].len = vq->shadow_used_packed[i].len;
used_idx += vq->shadow_used_packed[i].count;
if (used_idx >= vq->size)
used_idx -= vq->size;
}
/* The ordering for storing desc flags needs to be enforced. */
rte_atomic_thread_fence(__ATOMIC_RELEASE);
for (i = 0; i < vq->shadow_used_idx; i++) {
uint16_t flags;
if (vq->shadow_used_packed[i].len)
flags = VRING_DESC_F_WRITE;
else
flags = 0;
if (vq->used_wrap_counter) {
flags |= VRING_DESC_F_USED;
flags |= VRING_DESC_F_AVAIL;
} else {
flags &= ~VRING_DESC_F_USED;
flags &= ~VRING_DESC_F_AVAIL;
}
if (i > 0) {
vq->desc_packed[vq->last_used_idx].flags = flags;
vhost_log_cache_used_vring(dev, vq,
vq->last_used_idx *
sizeof(struct vring_packed_desc),
sizeof(struct vring_packed_desc));
} else {
head_idx = vq->last_used_idx;
head_flags = flags;
}
vq_inc_last_used_packed(vq, vq->shadow_used_packed[i].count);
}
vq->desc_packed[head_idx].flags = head_flags;
vhost_log_cache_used_vring(dev, vq,
head_idx *
sizeof(struct vring_packed_desc),
sizeof(struct vring_packed_desc));
vq->shadow_used_idx = 0;
vhost_log_cache_sync(dev, vq);
}
static __rte_always_inline void
vhost_flush_dequeue_shadow_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq)
{
struct vring_used_elem_packed *used_elem = &vq->shadow_used_packed[0];
vq->desc_packed[vq->shadow_last_used_idx].id = used_elem->id;
/* desc flags is the synchronization point for virtio packed vring */
__atomic_store_n(&vq->desc_packed[vq->shadow_last_used_idx].flags,
used_elem->flags, __ATOMIC_RELEASE);
vhost_log_cache_used_vring(dev, vq, vq->shadow_last_used_idx *
sizeof(struct vring_packed_desc),
sizeof(struct vring_packed_desc));
vq->shadow_used_idx = 0;
vhost_log_cache_sync(dev, vq);
}
static __rte_always_inline void
vhost_flush_enqueue_batch_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq,
uint64_t *lens,
uint16_t *ids)
{
uint16_t i;
uint16_t flags;
uint16_t last_used_idx;
struct vring_packed_desc *desc_base;
last_used_idx = vq->last_used_idx;
desc_base = &vq->desc_packed[last_used_idx];
flags = PACKED_DESC_ENQUEUE_USED_FLAG(vq->used_wrap_counter);
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
desc_base[i].id = ids[i];
desc_base[i].len = lens[i];
}
rte_atomic_thread_fence(__ATOMIC_RELEASE);
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
desc_base[i].flags = flags;
}
vhost_log_cache_used_vring(dev, vq, last_used_idx *
sizeof(struct vring_packed_desc),
sizeof(struct vring_packed_desc) *
PACKED_BATCH_SIZE);
vhost_log_cache_sync(dev, vq);
vq_inc_last_used_packed(vq, PACKED_BATCH_SIZE);
}
static __rte_always_inline void
vhost_shadow_dequeue_batch_packed_inorder(struct vhost_virtqueue *vq,
uint16_t id)
{
vq->shadow_used_packed[0].id = id;
if (!vq->shadow_used_idx) {
vq->shadow_last_used_idx = vq->last_used_idx;
vq->shadow_used_packed[0].flags =
PACKED_DESC_DEQUEUE_USED_FLAG(vq->used_wrap_counter);
vq->shadow_used_packed[0].len = 0;
vq->shadow_used_packed[0].count = 1;
vq->shadow_used_idx++;
}
vq_inc_last_used_packed(vq, PACKED_BATCH_SIZE);
}
static __rte_always_inline void
vhost_shadow_dequeue_batch_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq,
uint16_t *ids)
{
uint16_t flags;
uint16_t i;
uint16_t begin;
flags = PACKED_DESC_DEQUEUE_USED_FLAG(vq->used_wrap_counter);
if (!vq->shadow_used_idx) {
vq->shadow_last_used_idx = vq->last_used_idx;
vq->shadow_used_packed[0].id = ids[0];
vq->shadow_used_packed[0].len = 0;
vq->shadow_used_packed[0].count = 1;
vq->shadow_used_packed[0].flags = flags;
vq->shadow_used_idx++;
begin = 1;
} else
begin = 0;
vhost_for_each_try_unroll(i, begin, PACKED_BATCH_SIZE) {
vq->desc_packed[vq->last_used_idx + i].id = ids[i];
vq->desc_packed[vq->last_used_idx + i].len = 0;
}
rte_atomic_thread_fence(__ATOMIC_RELEASE);
vhost_for_each_try_unroll(i, begin, PACKED_BATCH_SIZE)
vq->desc_packed[vq->last_used_idx + i].flags = flags;
vhost_log_cache_used_vring(dev, vq, vq->last_used_idx *
sizeof(struct vring_packed_desc),
sizeof(struct vring_packed_desc) *
PACKED_BATCH_SIZE);
vhost_log_cache_sync(dev, vq);
vq_inc_last_used_packed(vq, PACKED_BATCH_SIZE);
}
static __rte_always_inline void
vhost_shadow_dequeue_single_packed(struct vhost_virtqueue *vq,
uint16_t buf_id,
uint16_t count)
{
uint16_t flags;
flags = vq->desc_packed[vq->last_used_idx].flags;
if (vq->used_wrap_counter) {
flags |= VRING_DESC_F_USED;
flags |= VRING_DESC_F_AVAIL;
} else {
flags &= ~VRING_DESC_F_USED;
flags &= ~VRING_DESC_F_AVAIL;
}
if (!vq->shadow_used_idx) {
vq->shadow_last_used_idx = vq->last_used_idx;
vq->shadow_used_packed[0].id = buf_id;
vq->shadow_used_packed[0].len = 0;
vq->shadow_used_packed[0].flags = flags;
vq->shadow_used_idx++;
} else {
vq->desc_packed[vq->last_used_idx].id = buf_id;
vq->desc_packed[vq->last_used_idx].len = 0;
vq->desc_packed[vq->last_used_idx].flags = flags;
}
vq_inc_last_used_packed(vq, count);
}
static __rte_always_inline void
vhost_shadow_dequeue_single_packed_inorder(struct vhost_virtqueue *vq,
uint16_t buf_id,
uint16_t count)
{
uint16_t flags;
vq->shadow_used_packed[0].id = buf_id;
flags = vq->desc_packed[vq->last_used_idx].flags;
if (vq->used_wrap_counter) {
flags |= VRING_DESC_F_USED;
flags |= VRING_DESC_F_AVAIL;
} else {
flags &= ~VRING_DESC_F_USED;
flags &= ~VRING_DESC_F_AVAIL;
}
if (!vq->shadow_used_idx) {
vq->shadow_last_used_idx = vq->last_used_idx;
vq->shadow_used_packed[0].len = 0;
vq->shadow_used_packed[0].flags = flags;
vq->shadow_used_idx++;
}
vq_inc_last_used_packed(vq, count);
}
static __rte_always_inline void
vhost_shadow_enqueue_packed(struct vhost_virtqueue *vq,
uint32_t *len,
uint16_t *id,
uint16_t *count,
uint16_t num_buffers)
{
uint16_t i;
for (i = 0; i < num_buffers; i++) {
/* enqueue shadow flush action aligned with batch num */
if (!vq->shadow_used_idx)
vq->shadow_aligned_idx = vq->last_used_idx &
PACKED_BATCH_MASK;
vq->shadow_used_packed[vq->shadow_used_idx].id = id[i];
vq->shadow_used_packed[vq->shadow_used_idx].len = len[i];
vq->shadow_used_packed[vq->shadow_used_idx].count = count[i];
vq->shadow_aligned_idx += count[i];
vq->shadow_used_idx++;
}
}
static __rte_always_inline void
vhost_shadow_enqueue_single_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq,
uint32_t *len,
uint16_t *id,
uint16_t *count,
uint16_t num_buffers)
{
vhost_shadow_enqueue_packed(vq, len, id, count, num_buffers);
if (vq->shadow_aligned_idx >= PACKED_BATCH_SIZE) {
do_data_copy_enqueue(dev, vq);
vhost_flush_enqueue_shadow_packed(dev, vq);
}
}
/* avoid write operation when necessary, to lessen cache issues */
#define ASSIGN_UNLESS_EQUAL(var, val) do { \
if ((var) != (val)) \
(var) = (val); \
} while (0)
static __rte_always_inline void
virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
{
uint64_t csum_l4 = m_buf->ol_flags & RTE_MBUF_F_TX_L4_MASK;
if (m_buf->ol_flags & RTE_MBUF_F_TX_TCP_SEG)
csum_l4 |= RTE_MBUF_F_TX_TCP_CKSUM;
if (csum_l4) {
/*
* Pseudo-header checksum must be set as per Virtio spec.
*
* Note: We don't propagate rte_net_intel_cksum_prepare()
* errors, as it would have an impact on performance, and an
* error would mean the packet is dropped by the guest instead
* of being dropped here.
*/
rte_net_intel_cksum_prepare(m_buf);
net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
switch (csum_l4) {
case RTE_MBUF_F_TX_TCP_CKSUM:
net_hdr->csum_offset = (offsetof(struct rte_tcp_hdr,
cksum));
break;
case RTE_MBUF_F_TX_UDP_CKSUM:
net_hdr->csum_offset = (offsetof(struct rte_udp_hdr,
dgram_cksum));
break;
case RTE_MBUF_F_TX_SCTP_CKSUM:
net_hdr->csum_offset = (offsetof(struct rte_sctp_hdr,
cksum));
break;
}
} else {
ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
}
/* IP cksum verification cannot be bypassed, then calculate here */
if (m_buf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
struct rte_ipv4_hdr *ipv4_hdr;
ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct rte_ipv4_hdr *,
m_buf->l2_len);
ipv4_hdr->hdr_checksum = 0;
ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
}
if (m_buf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
if (m_buf->ol_flags & RTE_MBUF_F_TX_IPV4)
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
else
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
net_hdr->gso_size = m_buf->tso_segsz;
net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
+ m_buf->l4_len;
} else if (m_buf->ol_flags & RTE_MBUF_F_TX_UDP_SEG) {
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP;
net_hdr->gso_size = m_buf->tso_segsz;
net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len +
m_buf->l4_len;
} else {
ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
}
}
static __rte_always_inline int
map_one_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct buf_vector *buf_vec, uint16_t *vec_idx,
uint64_t desc_iova, uint64_t desc_len, uint8_t perm)
{
uint16_t vec_id = *vec_idx;
while (desc_len) {
uint64_t desc_addr;
uint64_t desc_chunck_len = desc_len;
if (unlikely(vec_id >= BUF_VECTOR_MAX))
return -1;
desc_addr = vhost_iova_to_vva(dev, vq,
desc_iova,
&desc_chunck_len,
perm);
if (unlikely(!desc_addr))
return -1;
rte_prefetch0((void *)(uintptr_t)desc_addr);
buf_vec[vec_id].buf_iova = desc_iova;
buf_vec[vec_id].buf_addr = desc_addr;
buf_vec[vec_id].buf_len = desc_chunck_len;
desc_len -= desc_chunck_len;
desc_iova += desc_chunck_len;
vec_id++;
}
*vec_idx = vec_id;
return 0;
}
static __rte_always_inline int
fill_vec_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint32_t avail_idx, uint16_t *vec_idx,
struct buf_vector *buf_vec, uint16_t *desc_chain_head,
uint32_t *desc_chain_len, uint8_t perm)
{
uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
uint16_t vec_id = *vec_idx;
uint32_t len = 0;
uint64_t dlen;
uint32_t nr_descs = vq->size;
uint32_t cnt = 0;
struct vring_desc *descs = vq->desc;
struct vring_desc *idesc = NULL;
if (unlikely(idx >= vq->size))
return -1;
*desc_chain_head = idx;
if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
dlen = vq->desc[idx].len;
nr_descs = dlen / sizeof(struct vring_desc);
if (unlikely(nr_descs > vq->size))
return -1;
descs = (struct vring_desc *)(uintptr_t)
vhost_iova_to_vva(dev, vq, vq->desc[idx].addr,
&dlen,
VHOST_ACCESS_RO);
if (unlikely(!descs))
return -1;
if (unlikely(dlen < vq->desc[idx].len)) {
/*
* The indirect desc table is not contiguous
* in process VA space, we have to copy it.
*/
idesc = vhost_alloc_copy_ind_table(dev, vq,
vq->desc[idx].addr, vq->desc[idx].len);
if (unlikely(!idesc))
return -1;
descs = idesc;
}
idx = 0;
}
while (1) {
if (unlikely(idx >= nr_descs || cnt++ >= nr_descs)) {
free_ind_table(idesc);
return -1;
}
dlen = descs[idx].len;
len += dlen;
if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
descs[idx].addr, dlen,
perm))) {
free_ind_table(idesc);
return -1;
}
if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
break;
idx = descs[idx].next;
}
*desc_chain_len = len;
*vec_idx = vec_id;
if (unlikely(!!idesc))
free_ind_table(idesc);
return 0;
}
/*
* Returns -1 on fail, 0 on success
*/
static inline int
reserve_avail_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t size, struct buf_vector *buf_vec,
uint16_t *num_buffers, uint16_t avail_head,
uint16_t *nr_vec)
{
uint16_t cur_idx;
uint16_t vec_idx = 0;
uint16_t max_tries, tries = 0;
uint16_t head_idx = 0;
uint32_t len = 0;
*num_buffers = 0;
cur_idx = vq->last_avail_idx;
if (rxvq_is_mergeable(dev))
max_tries = vq->size - 1;
else
max_tries = 1;
while (size > 0) {
if (unlikely(cur_idx == avail_head))
return -1;
/*
* if we tried all available ring items, and still
* can't get enough buf, it means something abnormal
* happened.
*/
if (unlikely(++tries > max_tries))
return -1;
if (unlikely(fill_vec_buf_split(dev, vq, cur_idx,
&vec_idx, buf_vec,
&head_idx, &len,
VHOST_ACCESS_RW) < 0))
return -1;
len = RTE_MIN(len, size);
update_shadow_used_ring_split(vq, head_idx, len);
size -= len;
cur_idx++;
*num_buffers += 1;
}
*nr_vec = vec_idx;
return 0;
}
static __rte_always_inline int
fill_vec_buf_packed_indirect(struct virtio_net *dev,
struct vhost_virtqueue *vq,
struct vring_packed_desc *desc, uint16_t *vec_idx,
struct buf_vector *buf_vec, uint32_t *len, uint8_t perm)
{
uint16_t i;
uint32_t nr_descs;
uint16_t vec_id = *vec_idx;
uint64_t dlen;
struct vring_packed_desc *descs, *idescs = NULL;
dlen = desc->len;
descs = (struct vring_packed_desc *)(uintptr_t)
vhost_iova_to_vva(dev, vq, desc->addr, &dlen, VHOST_ACCESS_RO);
if (unlikely(!descs))
return -1;
if (unlikely(dlen < desc->len)) {
/*
* The indirect desc table is not contiguous
* in process VA space, we have to copy it.
*/
idescs = vhost_alloc_copy_ind_table(dev,
vq, desc->addr, desc->len);
if (unlikely(!idescs))
return -1;
descs = idescs;
}
nr_descs = desc->len / sizeof(struct vring_packed_desc);
if (unlikely(nr_descs >= vq->size)) {
free_ind_table(idescs);
return -1;
}
for (i = 0; i < nr_descs; i++) {
if (unlikely(vec_id >= BUF_VECTOR_MAX)) {
free_ind_table(idescs);
return -1;
}
dlen = descs[i].len;
*len += dlen;
if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
descs[i].addr, dlen,
perm)))
return -1;
}
*vec_idx = vec_id;
if (unlikely(!!idescs))
free_ind_table(idescs);
return 0;
}
static __rte_always_inline int
fill_vec_buf_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint16_t avail_idx, uint16_t *desc_count,
struct buf_vector *buf_vec, uint16_t *vec_idx,
uint16_t *buf_id, uint32_t *len, uint8_t perm)
{
bool wrap_counter = vq->avail_wrap_counter;
struct vring_packed_desc *descs = vq->desc_packed;
uint16_t vec_id = *vec_idx;
uint64_t dlen;
if (avail_idx < vq->last_avail_idx)
wrap_counter ^= 1;
/*
* Perform a load-acquire barrier in desc_is_avail to
* enforce the ordering between desc flags and desc
* content.
*/
if (unlikely(!desc_is_avail(&descs[avail_idx], wrap_counter)))
return -1;
*desc_count = 0;
*len = 0;
while (1) {
if (unlikely(vec_id >= BUF_VECTOR_MAX))
return -1;
if (unlikely(*desc_count >= vq->size))
return -1;
*desc_count += 1;
*buf_id = descs[avail_idx].id;
if (descs[avail_idx].flags & VRING_DESC_F_INDIRECT) {
if (unlikely(fill_vec_buf_packed_indirect(dev, vq,
&descs[avail_idx],
&vec_id, buf_vec,
len, perm) < 0))
return -1;
} else {
dlen = descs[avail_idx].len;
*len += dlen;
if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
descs[avail_idx].addr,
dlen,
perm)))
return -1;
}
if ((descs[avail_idx].flags & VRING_DESC_F_NEXT) == 0)
break;
if (++avail_idx >= vq->size) {
avail_idx -= vq->size;
wrap_counter ^= 1;
}
}
*vec_idx = vec_id;
return 0;
}
static __rte_noinline void
copy_vnet_hdr_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct buf_vector *buf_vec,
struct virtio_net_hdr_mrg_rxbuf *hdr)
{
uint64_t len;
uint64_t remain = dev->vhost_hlen;
uint64_t src = (uint64_t)(uintptr_t)hdr, dst;
uint64_t iova = buf_vec->buf_iova;
while (remain) {
len = RTE_MIN(remain,
buf_vec->buf_len);
dst = buf_vec->buf_addr;
rte_memcpy((void *)(uintptr_t)dst,
(void *)(uintptr_t)src,
len);
PRINT_PACKET(dev, (uintptr_t)dst,
(uint32_t)len, 0);
vhost_log_cache_write_iova(dev, vq,
iova, len);
remain -= len;
iova += len;
src += len;
buf_vec++;
}
}
static __rte_always_inline int
async_iter_initialize(struct virtio_net *dev, struct vhost_async *async)
{
struct vhost_iov_iter *iter;
if (unlikely(async->iovec_idx >= VHOST_MAX_ASYNC_VEC)) {
VHOST_LOG_DATA(dev->ifname, ERR, "no more async iovec available\n");
return -1;
}
iter = async->iov_iter + async->iter_idx;
iter->iov = async->iovec + async->iovec_idx;
iter->nr_segs = 0;
return 0;
}
static __rte_always_inline int
async_iter_add_iovec(struct virtio_net *dev, struct vhost_async *async,
void *src, void *dst, size_t len)
{
struct vhost_iov_iter *iter;
struct vhost_iovec *iovec;
if (unlikely(async->iovec_idx >= VHOST_MAX_ASYNC_VEC)) {
static bool vhost_max_async_vec_log;
if (!vhost_max_async_vec_log) {
VHOST_LOG_DATA(dev->ifname, ERR, "no more async iovec available\n");
vhost_max_async_vec_log = true;
}
return -1;
}
iter = async->iov_iter + async->iter_idx;
iovec = async->iovec + async->iovec_idx;
iovec->src_addr = src;
iovec->dst_addr = dst;
iovec->len = len;
iter->nr_segs++;
async->iovec_idx++;
return 0;
}
static __rte_always_inline void
async_iter_finalize(struct vhost_async *async)
{
async->iter_idx++;
}
static __rte_always_inline void
async_iter_cancel(struct vhost_async *async)
{
struct vhost_iov_iter *iter;
iter = async->iov_iter + async->iter_idx;
async->iovec_idx -= iter->nr_segs;
iter->nr_segs = 0;
iter->iov = NULL;
}
static __rte_always_inline void
async_iter_reset(struct vhost_async *async)
{
async->iter_idx = 0;
async->iovec_idx = 0;
}
static __rte_always_inline int
async_fill_seg(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf *m, uint32_t mbuf_offset,
uint64_t buf_iova, uint32_t cpy_len, bool to_desc)
{
struct vhost_async *async = vq->async;
uint64_t mapped_len;
uint32_t buf_offset = 0;
void *src, *dst;
void *host_iova;
while (cpy_len) {
host_iova = (void *)(uintptr_t)gpa_to_first_hpa(dev,
buf_iova + buf_offset, cpy_len, &mapped_len);
if (unlikely(!host_iova)) {
VHOST_LOG_DATA(dev->ifname, ERR,
"%s: failed to get host iova.\n",
__func__);
return -1;
}
if (to_desc) {
src = (void *)(uintptr_t)rte_pktmbuf_iova_offset(m, mbuf_offset);
dst = host_iova;
} else {
src = host_iova;
dst = (void *)(uintptr_t)rte_pktmbuf_iova_offset(m, mbuf_offset);
}
if (unlikely(async_iter_add_iovec(dev, async, src, dst, (size_t)mapped_len)))
return -1;
cpy_len -= (uint32_t)mapped_len;
mbuf_offset += (uint32_t)mapped_len;
buf_offset += (uint32_t)mapped_len;
}
return 0;
}
static __rte_always_inline void
sync_fill_seg(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf *m, uint32_t mbuf_offset,
uint64_t buf_addr, uint64_t buf_iova, uint32_t cpy_len, bool to_desc)
{
struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
if (likely(cpy_len > MAX_BATCH_LEN || vq->batch_copy_nb_elems >= vq->size)) {
if (to_desc) {
rte_memcpy((void *)((uintptr_t)(buf_addr)),
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
cpy_len);
vhost_log_cache_write_iova(dev, vq, buf_iova, cpy_len);
PRINT_PACKET(dev, (uintptr_t)(buf_addr), cpy_len, 0);
} else {
rte_memcpy(rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
(void *)((uintptr_t)(buf_addr)),
cpy_len);
}
} else {
if (to_desc) {
batch_copy[vq->batch_copy_nb_elems].dst =
(void *)((uintptr_t)(buf_addr));
batch_copy[vq->batch_copy_nb_elems].src =
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
batch_copy[vq->batch_copy_nb_elems].log_addr = buf_iova;
} else {
batch_copy[vq->batch_copy_nb_elems].dst =
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
batch_copy[vq->batch_copy_nb_elems].src =
(void *)((uintptr_t)(buf_addr));
}
batch_copy[vq->batch_copy_nb_elems].len = cpy_len;
vq->batch_copy_nb_elems++;
}
}
static __rte_always_inline int
mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf *m, struct buf_vector *buf_vec,
uint16_t nr_vec, uint16_t num_buffers, bool is_async)
{
uint32_t vec_idx = 0;
uint32_t mbuf_offset, mbuf_avail;
uint32_t buf_offset, buf_avail;
uint64_t buf_addr, buf_iova, buf_len;
uint32_t cpy_len;
uint64_t hdr_addr;
struct rte_mbuf *hdr_mbuf;
struct virtio_net_hdr_mrg_rxbuf tmp_hdr, *hdr = NULL;
struct vhost_async *async = vq->async;
if (unlikely(m == NULL))
return -1;
buf_addr = buf_vec[vec_idx].buf_addr;
buf_iova = buf_vec[vec_idx].buf_iova;
buf_len = buf_vec[vec_idx].buf_len;
if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1))
return -1;
hdr_mbuf = m;
hdr_addr = buf_addr;
if (unlikely(buf_len < dev->vhost_hlen)) {
memset(&tmp_hdr, 0, sizeof(struct virtio_net_hdr_mrg_rxbuf));
hdr = &tmp_hdr;
} else
hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)hdr_addr;
VHOST_LOG_DATA(dev->ifname, DEBUG, "RX: num merge buffers %d\n", num_buffers);
if (unlikely(buf_len < dev->vhost_hlen)) {
buf_offset = dev->vhost_hlen - buf_len;
vec_idx++;
buf_addr = buf_vec[vec_idx].buf_addr;
buf_iova = buf_vec[vec_idx].buf_iova;
buf_len = buf_vec[vec_idx].buf_len;
buf_avail = buf_len - buf_offset;
} else {
buf_offset = dev->vhost_hlen;
buf_avail = buf_len - dev->vhost_hlen;
}
mbuf_avail = rte_pktmbuf_data_len(m);
mbuf_offset = 0;
if (is_async) {
if (async_iter_initialize(dev, async))
return -1;
}
while (mbuf_avail != 0 || m->next != NULL) {
/* done with current buf, get the next one */
if (buf_avail == 0) {
vec_idx++;
if (unlikely(vec_idx >= nr_vec))
goto error;
buf_addr = buf_vec[vec_idx].buf_addr;
buf_iova = buf_vec[vec_idx].buf_iova;
buf_len = buf_vec[vec_idx].buf_len;
buf_offset = 0;
buf_avail = buf_len;
}
/* done with current mbuf, get the next one */
if (mbuf_avail == 0) {
m = m->next;
mbuf_offset = 0;
mbuf_avail = rte_pktmbuf_data_len(m);
}
if (hdr_addr) {
virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
if (rxvq_is_mergeable(dev))
ASSIGN_UNLESS_EQUAL(hdr->num_buffers,
num_buffers);
if (unlikely(hdr == &tmp_hdr)) {
copy_vnet_hdr_to_desc(dev, vq, buf_vec, hdr);
} else {
PRINT_PACKET(dev, (uintptr_t)hdr_addr,
dev->vhost_hlen, 0);
vhost_log_cache_write_iova(dev, vq,
buf_vec[0].buf_iova,
dev->vhost_hlen);
}
hdr_addr = 0;
}
cpy_len = RTE_MIN(buf_avail, mbuf_avail);
if (is_async) {
if (async_fill_seg(dev, vq, m, mbuf_offset,
buf_iova + buf_offset, cpy_len, true) < 0)
goto error;
} else {
sync_fill_seg(dev, vq, m, mbuf_offset,
buf_addr + buf_offset,
buf_iova + buf_offset, cpy_len, true);
}
mbuf_avail -= cpy_len;
mbuf_offset += cpy_len;
buf_avail -= cpy_len;
buf_offset += cpy_len;
}
if (is_async)
async_iter_finalize(async);
return 0;
error:
if (is_async)
async_iter_cancel(async);
return -1;
}
static __rte_always_inline int
vhost_enqueue_single_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq,
struct rte_mbuf *pkt,
struct buf_vector *buf_vec,
uint16_t *nr_descs)
{
uint16_t nr_vec = 0;
uint16_t avail_idx = vq->last_avail_idx;
uint16_t max_tries, tries = 0;
uint16_t buf_id = 0;
uint32_t len = 0;
uint16_t desc_count;
uint64_t size = pkt->pkt_len + sizeof(struct virtio_net_hdr_mrg_rxbuf);
uint16_t num_buffers = 0;
uint32_t buffer_len[vq->size];
uint16_t buffer_buf_id[vq->size];
uint16_t buffer_desc_count[vq->size];
if (rxvq_is_mergeable(dev))
max_tries = vq->size - 1;
else
max_tries = 1;
while (size > 0) {
/*
* if we tried all available ring items, and still
* can't get enough buf, it means something abnormal
* happened.
*/
if (unlikely(++tries > max_tries))
return -1;
if (unlikely(fill_vec_buf_packed(dev, vq,
avail_idx, &desc_count,
buf_vec, &nr_vec,
&buf_id, &len,
VHOST_ACCESS_RW) < 0))
return -1;
len = RTE_MIN(len, size);
size -= len;
buffer_len[num_buffers] = len;
buffer_buf_id[num_buffers] = buf_id;
buffer_desc_count[num_buffers] = desc_count;
num_buffers += 1;
*nr_descs += desc_count;
avail_idx += desc_count;
if (avail_idx >= vq->size)
avail_idx -= vq->size;
}
if (mbuf_to_desc(dev, vq, pkt, buf_vec, nr_vec, num_buffers, false) < 0)
return -1;
vhost_shadow_enqueue_single_packed(dev, vq, buffer_len, buffer_buf_id,
buffer_desc_count, num_buffers);
return 0;
}
static __rte_noinline uint32_t
virtio_dev_rx_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf **pkts, uint32_t count)
{
uint32_t pkt_idx = 0;
uint16_t num_buffers;
struct buf_vector buf_vec[BUF_VECTOR_MAX];
uint16_t avail_head;
/*
* The ordering between avail index and
* desc reads needs to be enforced.
*/
avail_head = __atomic_load_n(&vq->avail->idx, __ATOMIC_ACQUIRE);
rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
uint64_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
uint16_t nr_vec = 0;
if (unlikely(reserve_avail_buf_split(dev, vq,
pkt_len, buf_vec, &num_buffers,
avail_head, &nr_vec) < 0)) {
VHOST_LOG_DATA(dev->ifname, DEBUG,
"failed to get enough desc from vring\n");
vq->shadow_used_idx -= num_buffers;
break;
}
VHOST_LOG_DATA(dev->ifname, DEBUG,
"current index %d | end index %d\n",
vq->last_avail_idx, vq->last_avail_idx + num_buffers);
if (mbuf_to_desc(dev, vq, pkts[pkt_idx], buf_vec, nr_vec,
num_buffers, false) < 0) {
vq->shadow_used_idx -= num_buffers;
break;
}
vq->last_avail_idx += num_buffers;
}
do_data_copy_enqueue(dev, vq);
if (likely(vq->shadow_used_idx)) {
flush_shadow_used_ring_split(dev, vq);
vhost_vring_call_split(dev, vq);
}
return pkt_idx;
}
static __rte_always_inline int
virtio_dev_rx_sync_batch_check(struct virtio_net *dev,
struct vhost_virtqueue *vq,
struct rte_mbuf **pkts,
uint64_t *desc_addrs,
uint64_t *lens)
{
bool wrap_counter = vq->avail_wrap_counter;
struct vring_packed_desc *descs = vq->desc_packed;
uint16_t avail_idx = vq->last_avail_idx;
uint32_t buf_offset = sizeof(struct virtio_net_hdr_mrg_rxbuf);
uint16_t i;
if (unlikely(avail_idx & PACKED_BATCH_MASK))
return -1;
if (unlikely((avail_idx + PACKED_BATCH_SIZE) > vq->size))
return -1;
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
if (unlikely(pkts[i]->next != NULL))
return -1;
if (unlikely(!desc_is_avail(&descs[avail_idx + i],
wrap_counter)))
return -1;
}
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
lens[i] = descs[avail_idx + i].len;
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
if (unlikely(pkts[i]->pkt_len > (lens[i] - buf_offset)))
return -1;
}
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
desc_addrs[i] = vhost_iova_to_vva(dev, vq,
descs[avail_idx + i].addr,
&lens[i],
VHOST_ACCESS_RW);
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
if (unlikely(!desc_addrs[i]))
return -1;
if (unlikely(lens[i] != descs[avail_idx + i].len))
return -1;
}
return 0;
}
static __rte_always_inline void
virtio_dev_rx_batch_packed_copy(struct virtio_net *dev,
struct vhost_virtqueue *vq,
struct rte_mbuf **pkts,
uint64_t *desc_addrs,
uint64_t *lens)
{
uint32_t buf_offset = sizeof(struct virtio_net_hdr_mrg_rxbuf);
struct virtio_net_hdr_mrg_rxbuf *hdrs[PACKED_BATCH_SIZE];
struct vring_packed_desc *descs = vq->desc_packed;
uint16_t avail_idx = vq->last_avail_idx;
uint16_t ids[PACKED_BATCH_SIZE];
uint16_t i;
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
rte_prefetch0((void *)(uintptr_t)desc_addrs[i]);
hdrs[i] = (struct virtio_net_hdr_mrg_rxbuf *)
(uintptr_t)desc_addrs[i];
lens[i] = pkts[i]->pkt_len +
sizeof(struct virtio_net_hdr_mrg_rxbuf);
}
if (rxvq_is_mergeable(dev)) {
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
ASSIGN_UNLESS_EQUAL(hdrs[i]->num_buffers, 1);
}
}
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
virtio_enqueue_offload(pkts[i], &hdrs[i]->hdr);
vq_inc_last_avail_packed(vq, PACKED_BATCH_SIZE);
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
rte_memcpy((void *)(uintptr_t)(desc_addrs[i] + buf_offset),
rte_pktmbuf_mtod_offset(pkts[i], void *, 0),
pkts[i]->pkt_len);
}
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
vhost_log_cache_write_iova(dev, vq, descs[avail_idx + i].addr,
lens[i]);
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
ids[i] = descs[avail_idx + i].id;
vhost_flush_enqueue_batch_packed(dev, vq, lens, ids);
}
static __rte_always_inline int
virtio_dev_rx_sync_batch_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq,
struct rte_mbuf **pkts)
{
uint64_t desc_addrs[PACKED_BATCH_SIZE];
uint64_t lens[PACKED_BATCH_SIZE];
if (virtio_dev_rx_sync_batch_check(dev, vq, pkts, desc_addrs, lens) == -1)
return -1;
if (vq->shadow_used_idx) {
do_data_copy_enqueue(dev, vq);
vhost_flush_enqueue_shadow_packed(dev, vq);
}
virtio_dev_rx_batch_packed_copy(dev, vq, pkts, desc_addrs, lens);
return 0;
}
static __rte_always_inline int16_t
virtio_dev_rx_single_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq,
struct rte_mbuf *pkt)
{
struct buf_vector buf_vec[BUF_VECTOR_MAX];
uint16_t nr_descs = 0;
if (unlikely(vhost_enqueue_single_packed(dev, vq, pkt, buf_vec,
&nr_descs) < 0)) {
VHOST_LOG_DATA(dev->ifname, DEBUG, "failed to get enough desc from vring\n");
return -1;
}
VHOST_LOG_DATA(dev->ifname, DEBUG,
"current index %d | end index %d\n",
vq->last_avail_idx, vq->last_avail_idx + nr_descs);
vq_inc_last_avail_packed(vq, nr_descs);
return 0;
}
static __rte_noinline uint32_t
virtio_dev_rx_packed(struct virtio_net *dev,
struct vhost_virtqueue *__rte_restrict vq,
struct rte_mbuf **__rte_restrict pkts,
uint32_t count)
{
uint32_t pkt_idx = 0;
do {
rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]);
if (count - pkt_idx >= PACKED_BATCH_SIZE) {
if (!virtio_dev_rx_sync_batch_packed(dev, vq,
&pkts[pkt_idx])) {
pkt_idx += PACKED_BATCH_SIZE;
continue;
}
}
if (virtio_dev_rx_single_packed(dev, vq, pkts[pkt_idx]))
break;
pkt_idx++;
} while (pkt_idx < count);
if (vq->shadow_used_idx) {
do_data_copy_enqueue(dev, vq);
vhost_flush_enqueue_shadow_packed(dev, vq);
}
if (pkt_idx)
vhost_vring_call_packed(dev, vq);
return pkt_idx;
}
static __rte_always_inline uint32_t
virtio_dev_rx(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf **pkts, uint32_t count)
{
uint32_t nb_tx = 0;
VHOST_LOG_DATA(dev->ifname, DEBUG, "%s\n", __func__);
rte_spinlock_lock(&vq->access_lock);
if (unlikely(!vq->enabled))
goto out_access_unlock;
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_lock(vq);
if (unlikely(!vq->access_ok))
if (unlikely(vring_translate(dev, vq) < 0))
goto out;
count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
if (count == 0)
goto out;
if (vq_is_packed(dev))
nb_tx = virtio_dev_rx_packed(dev, vq, pkts, count);
else
nb_tx = virtio_dev_rx_split(dev, vq, pkts, count);
vhost_queue_stats_update(dev, vq, pkts, nb_tx);
out:
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_unlock(vq);
out_access_unlock:
rte_spinlock_unlock(&vq->access_lock);
return nb_tx;
}
uint16_t
rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
struct rte_mbuf **__rte_restrict pkts, uint16_t count)
{
struct virtio_net *dev = get_device(vid);
if (!dev)
return 0;
if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
VHOST_LOG_DATA(dev->ifname, ERR,
"%s: built-in vhost net backend is disabled.\n",
__func__);
return 0;
}
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
VHOST_LOG_DATA(dev->ifname, ERR,
"%s: invalid virtqueue idx %d.\n",
__func__, queue_id);
return 0;
}
return virtio_dev_rx(dev, dev->virtqueue[queue_id], pkts, count);
}
static __rte_always_inline uint16_t
async_get_first_inflight_pkt_idx(struct vhost_virtqueue *vq)
{
struct vhost_async *async = vq->async;
if (async->pkts_idx >= async->pkts_inflight_n)
return async->pkts_idx - async->pkts_inflight_n;
else
return vq->size - async->pkts_inflight_n + async->pkts_idx;
}
static __rte_always_inline void
store_dma_desc_info_split(struct vring_used_elem *s_ring, struct vring_used_elem *d_ring,
uint16_t ring_size, uint16_t s_idx, uint16_t d_idx, uint16_t count)
{
size_t elem_size = sizeof(struct vring_used_elem);
if (d_idx + count <= ring_size) {
rte_memcpy(d_ring + d_idx, s_ring + s_idx, count * elem_size);
} else {
uint16_t size = ring_size - d_idx;
rte_memcpy(d_ring + d_idx, s_ring + s_idx, size * elem_size);
rte_memcpy(d_ring, s_ring + s_idx + size, (count - size) * elem_size);
}
}
static __rte_always_inline void
store_dma_desc_info_packed(struct vring_used_elem_packed *s_ring,
struct vring_used_elem_packed *d_ring,
uint16_t ring_size, uint16_t s_idx, uint16_t d_idx, uint16_t count)
{
size_t elem_size = sizeof(struct vring_used_elem_packed);
if (d_idx + count <= ring_size) {
rte_memcpy(d_ring + d_idx, s_ring + s_idx, count * elem_size);
} else {
uint16_t size = ring_size - d_idx;
rte_memcpy(d_ring + d_idx, s_ring + s_idx, size * elem_size);
rte_memcpy(d_ring, s_ring + s_idx + size, (count - size) * elem_size);
}
}
static __rte_noinline uint32_t
virtio_dev_rx_async_submit_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf **pkts, uint32_t count, int16_t dma_id, uint16_t vchan_id)
{
struct buf_vector buf_vec[BUF_VECTOR_MAX];
uint32_t pkt_idx = 0;
uint16_t num_buffers;
uint16_t avail_head;
struct vhost_async *async = vq->async;
struct async_inflight_info *pkts_info = async->pkts_info;
uint32_t pkt_err = 0;
uint16_t n_xfer;
uint16_t slot_idx = 0;
/*
* The ordering between avail index and desc reads need to be enforced.
*/
avail_head = __atomic_load_n(&vq->avail->idx, __ATOMIC_ACQUIRE);
rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
async_iter_reset(async);
for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
uint64_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
uint16_t nr_vec = 0;
if (unlikely(reserve_avail_buf_split(dev, vq, pkt_len, buf_vec,
&num_buffers, avail_head, &nr_vec) < 0)) {
VHOST_LOG_DATA(dev->ifname, DEBUG,
"failed to get enough desc from vring\n");
vq->shadow_used_idx -= num_buffers;
break;
}
VHOST_LOG_DATA(dev->ifname, DEBUG,
"current index %d | end index %d\n",
vq->last_avail_idx, vq->last_avail_idx + num_buffers);
if (mbuf_to_desc(dev, vq, pkts[pkt_idx], buf_vec, nr_vec, num_buffers, true) < 0) {
vq->shadow_used_idx -= num_buffers;
break;
}
slot_idx = (async->pkts_idx + pkt_idx) & (vq->size - 1);
pkts_info[slot_idx].descs = num_buffers;
pkts_info[slot_idx].mbuf = pkts[pkt_idx];
vq->last_avail_idx += num_buffers;
}
if (unlikely(pkt_idx == 0))
return 0;
n_xfer = vhost_async_dma_transfer(dev, vq, dma_id, vchan_id, async->pkts_idx,
async->iov_iter, pkt_idx);
pkt_err = pkt_idx - n_xfer;
if (unlikely(pkt_err)) {
uint16_t num_descs = 0;
VHOST_LOG_DATA(dev->ifname, DEBUG,
"%s: failed to transfer %u packets for queue %u.\n",
__func__, pkt_err, vq->index);
/* update number of completed packets */
pkt_idx = n_xfer;
/* calculate the sum of descriptors to revert */
while (pkt_err-- > 0) {
num_descs += pkts_info[slot_idx & (vq->size - 1)].descs;
slot_idx--;
}
/* recover shadow used ring and available ring */
vq->shadow_used_idx -= num_descs;
vq->last_avail_idx -= num_descs;
}
/* keep used descriptors */
if (likely(vq->shadow_used_idx)) {
uint16_t to = async->desc_idx_split & (vq->size - 1);
store_dma_desc_info_split(vq->shadow_used_split,
async->descs_split, vq->size, 0, to,
vq->shadow_used_idx);
async->desc_idx_split += vq->shadow_used_idx;
async->pkts_idx += pkt_idx;
if (async->pkts_idx >= vq->size)
async->pkts_idx -= vq->size;
async->pkts_inflight_n += pkt_idx;
vq->shadow_used_idx = 0;
}
return pkt_idx;
}
static __rte_always_inline int
vhost_enqueue_async_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq,
struct rte_mbuf *pkt,
struct buf_vector *buf_vec,
uint16_t *nr_descs,
uint16_t *nr_buffers)
{
uint16_t nr_vec = 0;
uint16_t avail_idx = vq->last_avail_idx;
uint16_t max_tries, tries = 0;
uint16_t buf_id = 0;
uint32_t len = 0;
uint16_t desc_count = 0;
uint64_t size = pkt->pkt_len + sizeof(struct virtio_net_hdr_mrg_rxbuf);
uint32_t buffer_len[vq->size];
uint16_t buffer_buf_id[vq->size];
uint16_t buffer_desc_count[vq->size];
if (rxvq_is_mergeable(dev))
max_tries = vq->size - 1;
else
max_tries = 1;
do {
/*
* if we tried all available ring items, and still
* can't get enough buf, it means something abnormal
* happened.
*/
if (unlikely(++tries > max_tries))
return -1;
if (unlikely(fill_vec_buf_packed(dev, vq,
avail_idx, &desc_count,
buf_vec, &nr_vec,
&buf_id, &len,
VHOST_ACCESS_RW) < 0))
return -1;
len = RTE_MIN(len, size);
size -= len;
buffer_len[*nr_buffers] = len;
buffer_buf_id[*nr_buffers] = buf_id;
buffer_desc_count[*nr_buffers] = desc_count;
*nr_buffers += 1;
*nr_descs += desc_count;
avail_idx += desc_count;
if (avail_idx >= vq->size)
avail_idx -= vq->size;
} while (size > 0);
if (unlikely(mbuf_to_desc(dev, vq, pkt, buf_vec, nr_vec, *nr_buffers, true) < 0))
return -1;
vhost_shadow_enqueue_packed(vq, buffer_len, buffer_buf_id, buffer_desc_count, *nr_buffers);
return 0;
}
static __rte_always_inline int16_t
virtio_dev_rx_async_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf *pkt, uint16_t *nr_descs, uint16_t *nr_buffers)
{
struct buf_vector buf_vec[BUF_VECTOR_MAX];
if (unlikely(vhost_enqueue_async_packed(dev, vq, pkt, buf_vec,
nr_descs, nr_buffers) < 0)) {
VHOST_LOG_DATA(dev->ifname, DEBUG, "failed to get enough desc from vring\n");
return -1;
}
VHOST_LOG_DATA(dev->ifname, DEBUG,
"current index %d | end index %d\n",
vq->last_avail_idx, vq->last_avail_idx + *nr_descs);
return 0;
}
static __rte_always_inline void
dma_error_handler_packed(struct vhost_virtqueue *vq, uint16_t slot_idx,
uint32_t nr_err, uint32_t *pkt_idx)
{
uint16_t descs_err = 0;
uint16_t buffers_err = 0;
struct async_inflight_info *pkts_info = vq->async->pkts_info;
*pkt_idx -= nr_err;
/* calculate the sum of buffers and descs of DMA-error packets. */
while (nr_err-- > 0) {
descs_err += pkts_info[slot_idx % vq->size].descs;
buffers_err += pkts_info[slot_idx % vq->size].nr_buffers;
slot_idx--;
}
if (vq->last_avail_idx >= descs_err) {
vq->last_avail_idx -= descs_err;
} else {
vq->last_avail_idx = vq->last_avail_idx + vq->size - descs_err;
vq->avail_wrap_counter ^= 1;
}
vq->shadow_used_idx -= buffers_err;
}
static __rte_noinline uint32_t
virtio_dev_rx_async_submit_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf **pkts, uint32_t count, int16_t dma_id, uint16_t vchan_id)
{
uint32_t pkt_idx = 0;
uint16_t n_xfer;
uint16_t num_buffers;
uint16_t num_descs;
struct vhost_async *async = vq->async;
struct async_inflight_info *pkts_info = async->pkts_info;
uint32_t pkt_err = 0;
uint16_t slot_idx = 0;
do {
rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]);
num_buffers = 0;
num_descs = 0;
if (unlikely(virtio_dev_rx_async_packed(dev, vq, pkts[pkt_idx],
&num_descs, &num_buffers) < 0))
break;
slot_idx = (async->pkts_idx + pkt_idx) % vq->size;
pkts_info[slot_idx].descs = num_descs;
pkts_info[slot_idx].nr_buffers = num_buffers;
pkts_info[slot_idx].mbuf = pkts[pkt_idx];
pkt_idx++;
vq_inc_last_avail_packed(vq, num_descs);
} while (pkt_idx < count);
if (unlikely(pkt_idx == 0))
return 0;
n_xfer = vhost_async_dma_transfer(dev, vq, dma_id, vchan_id, async->pkts_idx,
async->iov_iter, pkt_idx);
async_iter_reset(async);
pkt_err = pkt_idx - n_xfer;
if (unlikely(pkt_err)) {
VHOST_LOG_DATA(dev->ifname, DEBUG,
"%s: failed to transfer %u packets for queue %u.\n",
__func__, pkt_err, vq->index);
dma_error_handler_packed(vq, slot_idx, pkt_err, &pkt_idx);
}
if (likely(vq->shadow_used_idx)) {
/* keep used descriptors. */
store_dma_desc_info_packed(vq->shadow_used_packed, async->buffers_packed,
vq->size, 0, async->buffer_idx_packed,
vq->shadow_used_idx);
async->buffer_idx_packed += vq->shadow_used_idx;
if (async->buffer_idx_packed >= vq->size)
async->buffer_idx_packed -= vq->size;
async->pkts_idx += pkt_idx;
if (async->pkts_idx >= vq->size)
async->pkts_idx -= vq->size;
vq->shadow_used_idx = 0;
async->pkts_inflight_n += pkt_idx;
}
return pkt_idx;
}
static __rte_always_inline void
write_back_completed_descs_split(struct vhost_virtqueue *vq, uint16_t n_descs)
{
struct vhost_async *async = vq->async;
uint16_t nr_left = n_descs;
uint16_t nr_copy;
uint16_t to, from;
do {
from = async->last_desc_idx_split & (vq->size - 1);
nr_copy = nr_left + from <= vq->size ? nr_left : vq->size - from;
to = vq->last_used_idx & (vq->size - 1);
if (to + nr_copy <= vq->size) {
rte_memcpy(&vq->used->ring[to], &async->descs_split[from],
nr_copy * sizeof(struct vring_used_elem));
} else {
uint16_t size = vq->size - to;
rte_memcpy(&vq->used->ring[to], &async->descs_split[from],
size * sizeof(struct vring_used_elem));
rte_memcpy(&vq->used->ring[0], &async->descs_split[from + size],
(nr_copy - size) * sizeof(struct vring_used_elem));
}
async->last_desc_idx_split += nr_copy;
vq->last_used_idx += nr_copy;
nr_left -= nr_copy;
} while (nr_left > 0);
}
static __rte_always_inline void
write_back_completed_descs_packed(struct vhost_virtqueue *vq,
uint16_t n_buffers)
{
struct vhost_async *async = vq->async;
uint16_t from = async->last_buffer_idx_packed;
uint16_t used_idx = vq->last_used_idx;
uint16_t head_idx = vq->last_used_idx;
uint16_t head_flags = 0;
uint16_t i;
/* Split loop in two to save memory barriers */
for (i = 0; i < n_buffers; i++) {
vq->desc_packed[used_idx].id = async->buffers_packed[from].id;
vq->desc_packed[used_idx].len = async->buffers_packed[from].len;
used_idx += async->buffers_packed[from].count;
if (used_idx >= vq->size)
used_idx -= vq->size;
from++;
if (from >= vq->size)
from = 0;
}
/* The ordering for storing desc flags needs to be enforced. */
rte_atomic_thread_fence(__ATOMIC_RELEASE);
from = async->last_buffer_idx_packed;
for (i = 0; i < n_buffers; i++) {
uint16_t flags;
if (async->buffers_packed[from].len)
flags = VRING_DESC_F_WRITE;
else
flags = 0;
if (vq->used_wrap_counter) {
flags |= VRING_DESC_F_USED;
flags |= VRING_DESC_F_AVAIL;
} else {
flags &= ~VRING_DESC_F_USED;
flags &= ~VRING_DESC_F_AVAIL;
}
if (i > 0) {
vq->desc_packed[vq->last_used_idx].flags = flags;
} else {
head_idx = vq->last_used_idx;
head_flags = flags;
}
vq_inc_last_used_packed(vq, async->buffers_packed[from].count);
from++;
if (from == vq->size)
from = 0;
}
vq->desc_packed[head_idx].flags = head_flags;
async->last_buffer_idx_packed = from;
}
static __rte_always_inline uint16_t
vhost_poll_enqueue_completed(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf **pkts, uint16_t count, int16_t dma_id, uint16_t vchan_id)
{
struct vhost_async *async = vq->async;
struct async_inflight_info *pkts_info = async->pkts_info;
uint16_t nr_cpl_pkts = 0;
uint16_t n_descs = 0, n_buffers = 0;
uint16_t start_idx, from, i;
/* Check completed copies for the given DMA vChannel */
vhost_async_dma_check_completed(dev, dma_id, vchan_id, VHOST_DMA_MAX_COPY_COMPLETE);
start_idx = async_get_first_inflight_pkt_idx(vq);
/**
* Calculate the number of copy completed packets.
* Note that there may be completed packets even if
* no copies are reported done by the given DMA vChannel,
* as it's possible that a virtqueue uses multiple DMA
* vChannels.
*/
from = start_idx;
while (vq->async->pkts_cmpl_flag[from] && count--) {
vq->async->pkts_cmpl_flag[from] = false;
from++;
if (from >= vq->size)
from -= vq->size;
nr_cpl_pkts++;
}
if (nr_cpl_pkts == 0)
return 0;
for (i = 0; i < nr_cpl_pkts; i++) {
from = (start_idx + i) % vq->size;
/* Only used with packed ring */
n_buffers += pkts_info[from].nr_buffers;
/* Only used with split ring */
n_descs += pkts_info[from].descs;
pkts[i] = pkts_info[from].mbuf;
}
async->pkts_inflight_n -= nr_cpl_pkts;
if (likely(vq->enabled && vq->access_ok)) {
if (vq_is_packed(dev)) {
write_back_completed_descs_packed(vq, n_buffers);
vhost_vring_call_packed(dev, vq);
} else {
write_back_completed_descs_split(vq, n_descs);
__atomic_add_fetch(&vq->used->idx, n_descs, __ATOMIC_RELEASE);
vhost_vring_call_split(dev, vq);
}
} else {
if (vq_is_packed(dev)) {
async->last_buffer_idx_packed += n_buffers;
if (async->last_buffer_idx_packed >= vq->size)
async->last_buffer_idx_packed -= vq->size;
} else {
async->last_desc_idx_split += n_descs;
}
}
return nr_cpl_pkts;
}
uint16_t
rte_vhost_poll_enqueue_completed(int vid, uint16_t queue_id,
struct rte_mbuf **pkts, uint16_t count, int16_t dma_id,
uint16_t vchan_id)
{
struct virtio_net *dev = get_device(vid);
struct vhost_virtqueue *vq;
uint16_t n_pkts_cpl = 0;
if (unlikely(!dev))
return 0;
VHOST_LOG_DATA(dev->ifname, DEBUG, "%s\n", __func__);
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
VHOST_LOG_DATA(dev->ifname, ERR,
"%s: invalid virtqueue idx %d.\n",
__func__, queue_id);
return 0;
}
if (unlikely(!dma_copy_track[dma_id].vchans ||
!dma_copy_track[dma_id].vchans[vchan_id].pkts_cmpl_flag_addr)) {
VHOST_LOG_DATA(dev->ifname, ERR,
"%s: invalid channel %d:%u.\n",
__func__, dma_id, vchan_id);
return 0;
}
vq = dev->virtqueue[queue_id];
if (!rte_spinlock_trylock(&vq->access_lock)) {
VHOST_LOG_DATA(dev->ifname, DEBUG,
"%s: virtqueue %u is busy.\n",
__func__, queue_id);
return 0;
}
if (unlikely(!vq->async)) {
VHOST_LOG_DATA(dev->ifname, ERR,
"%s: async not registered for virtqueue %d.\n",
__func__, queue_id);
goto out;
}
n_pkts_cpl = vhost_poll_enqueue_completed(dev, vq, pkts, count, dma_id, vchan_id);
vhost_queue_stats_update(dev, vq, pkts, n_pkts_cpl);
vq->stats.inflight_completed += n_pkts_cpl;
out:
rte_spinlock_unlock(&vq->access_lock);
return n_pkts_cpl;
}
uint16_t
rte_vhost_clear_queue_thread_unsafe(int vid, uint16_t queue_id,
struct rte_mbuf **pkts, uint16_t count, int16_t dma_id,
uint16_t vchan_id)
{
struct virtio_net *dev = get_device(vid);
struct vhost_virtqueue *vq;
uint16_t n_pkts_cpl = 0;
if (!dev)
return 0;
VHOST_LOG_DATA(dev->ifname, DEBUG, "%s\n", __func__);
if (unlikely(queue_id >= dev->nr_vring)) {
VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid virtqueue idx %d.\n",
__func__, queue_id);
return 0;
}
if (unlikely(dma_id < 0 || dma_id >= RTE_DMADEV_DEFAULT_MAX)) {
VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid dma id %d.\n",
__func__, dma_id);
return 0;
}
vq = dev->virtqueue[queue_id];
if (unlikely(!rte_spinlock_is_locked(&vq->access_lock))) {
VHOST_LOG_DATA(dev->ifname, ERR, "%s() called without access lock taken.\n",
__func__);
return -1;
}
if (unlikely(!vq->async)) {
VHOST_LOG_DATA(dev->ifname, ERR,
"%s: async not registered for virtqueue %d.\n",
__func__, queue_id);
return 0;
}
if (unlikely(!dma_copy_track[dma_id].vchans ||
!dma_copy_track[dma_id].vchans[vchan_id].pkts_cmpl_flag_addr)) {
VHOST_LOG_DATA(dev->ifname, ERR,
"%s: invalid channel %d:%u.\n",
__func__, dma_id, vchan_id);
return 0;
}
if ((queue_id & 1) == 0)
n_pkts_cpl = vhost_poll_enqueue_completed(dev, vq, pkts, count,
dma_id, vchan_id);
else
n_pkts_cpl = async_poll_dequeue_completed(dev, vq, pkts, count,
dma_id, vchan_id, dev->flags & VIRTIO_DEV_LEGACY_OL_FLAGS);
vhost_queue_stats_update(dev, vq, pkts, n_pkts_cpl);
vq->stats.inflight_completed += n_pkts_cpl;
return n_pkts_cpl;
}
uint16_t
rte_vhost_clear_queue(int vid, uint16_t queue_id, struct rte_mbuf **pkts,
uint16_t count, int16_t dma_id, uint16_t vchan_id)
{
struct virtio_net *dev = get_device(vid);
struct vhost_virtqueue *vq;
uint16_t n_pkts_cpl = 0;
if (!dev)
return 0;
VHOST_LOG_DATA(dev->ifname, DEBUG, "%s\n", __func__);
if (unlikely(queue_id >= dev->nr_vring)) {
VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid virtqueue idx %u.\n",
__func__, queue_id);
return 0;
}
if (unlikely(dma_id < 0 || dma_id >= RTE_DMADEV_DEFAULT_MAX)) {
VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid dma id %d.\n",
__func__, dma_id);
return 0;
}
vq = dev->virtqueue[queue_id];
if (!rte_spinlock_trylock(&vq->access_lock)) {
VHOST_LOG_DATA(dev->ifname, DEBUG, "%s: virtqueue %u is busy.\n",
__func__, queue_id);
return 0;
}
if (unlikely(!vq->async)) {
VHOST_LOG_DATA(dev->ifname, ERR, "%s: async not registered for queue id %u.\n",
__func__, queue_id);
goto out_access_unlock;
}
if (unlikely(!dma_copy_track[dma_id].vchans ||
!dma_copy_track[dma_id].vchans[vchan_id].pkts_cmpl_flag_addr)) {
VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid channel %d:%u.\n",
__func__, dma_id, vchan_id);
goto out_access_unlock;
}
if ((queue_id & 1) == 0)
n_pkts_cpl = vhost_poll_enqueue_completed(dev, vq, pkts, count,
dma_id, vchan_id);
else
n_pkts_cpl = async_poll_dequeue_completed(dev, vq, pkts, count,
dma_id, vchan_id, dev->flags & VIRTIO_DEV_LEGACY_OL_FLAGS);
vhost_queue_stats_update(dev, vq, pkts, n_pkts_cpl);
vq->stats.inflight_completed += n_pkts_cpl;
out_access_unlock:
rte_spinlock_unlock(&vq->access_lock);
return n_pkts_cpl;
}
static __rte_always_inline uint32_t
virtio_dev_rx_async_submit(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf **pkts, uint32_t count, int16_t dma_id, uint16_t vchan_id)
{
uint32_t nb_tx = 0;
VHOST_LOG_DATA(dev->ifname, DEBUG, "%s\n", __func__);
if (unlikely(!dma_copy_track[dma_id].vchans ||
!dma_copy_track[dma_id].vchans[vchan_id].pkts_cmpl_flag_addr)) {
VHOST_LOG_DATA(dev->ifname, ERR,
"%s: invalid channel %d:%u.\n",
__func__, dma_id, vchan_id);
return 0;
}
rte_spinlock_lock(&vq->access_lock);
if (unlikely(!vq->enabled || !vq->async))
goto out_access_unlock;
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_lock(vq);
if (unlikely(!vq->access_ok))
if (unlikely(vring_translate(dev, vq) < 0))
goto out;
count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
if (count == 0)
goto out;
if (vq_is_packed(dev))
nb_tx = virtio_dev_rx_async_submit_packed(dev, vq, pkts, count,
dma_id, vchan_id);
else
nb_tx = virtio_dev_rx_async_submit_split(dev, vq, pkts, count,
dma_id, vchan_id);
vq->stats.inflight_submitted += nb_tx;
out:
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_unlock(vq);
out_access_unlock:
rte_spinlock_unlock(&vq->access_lock);
return nb_tx;
}
uint16_t
rte_vhost_submit_enqueue_burst(int vid, uint16_t queue_id,
struct rte_mbuf **pkts, uint16_t count, int16_t dma_id,
uint16_t vchan_id)
{
struct virtio_net *dev = get_device(vid);
if (!dev)
return 0;
if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
VHOST_LOG_DATA(dev->ifname, ERR,
"%s: built-in vhost net backend is disabled.\n",
__func__);
return 0;
}
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
VHOST_LOG_DATA(dev->ifname, ERR,
"%s: invalid virtqueue idx %d.\n",
__func__, queue_id);
return 0;
}
return virtio_dev_rx_async_submit(dev, dev->virtqueue[queue_id], pkts, count,
dma_id, vchan_id);
}
static inline bool
virtio_net_with_host_offload(struct virtio_net *dev)
{
if (dev->features &
((1ULL << VIRTIO_NET_F_CSUM) |
(1ULL << VIRTIO_NET_F_HOST_ECN) |
(1ULL << VIRTIO_NET_F_HOST_TSO4) |
(1ULL << VIRTIO_NET_F_HOST_TSO6) |
(1ULL << VIRTIO_NET_F_HOST_UFO)))
return true;
return false;
}
static int
parse_headers(struct rte_mbuf *m, uint8_t *l4_proto)
{
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_ipv6_hdr *ipv6_hdr;
struct rte_ether_hdr *eth_hdr;
uint16_t ethertype;
uint16_t data_len = rte_pktmbuf_data_len(m);
if (data_len < sizeof(struct rte_ether_hdr))
return -EINVAL;
eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
m->l2_len = sizeof(struct rte_ether_hdr);
ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
if (ethertype == RTE_ETHER_TYPE_VLAN) {
if (data_len < sizeof(struct rte_ether_hdr) +
sizeof(struct rte_vlan_hdr))
goto error;
struct rte_vlan_hdr *vlan_hdr =
(struct rte_vlan_hdr *)(eth_hdr + 1);
m->l2_len += sizeof(struct rte_vlan_hdr);
ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
}
switch (ethertype) {
case RTE_ETHER_TYPE_IPV4:
if (data_len < m->l2_len + sizeof(struct rte_ipv4_hdr))
goto error;
ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
m->l2_len);
m->l3_len = rte_ipv4_hdr_len(ipv4_hdr);
if (data_len < m->l2_len + m->l3_len)
goto error;
m->ol_flags |= RTE_MBUF_F_TX_IPV4;
*l4_proto = ipv4_hdr->next_proto_id;
break;
case RTE_ETHER_TYPE_IPV6:
if (data_len < m->l2_len + sizeof(struct rte_ipv6_hdr))
goto error;
ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
m->l2_len);
m->l3_len = sizeof(struct rte_ipv6_hdr);
m->ol_flags |= RTE_MBUF_F_TX_IPV6;
*l4_proto = ipv6_hdr->proto;
break;
default:
/* a valid L3 header is needed for further L4 parsing */
goto error;
}
/* both CSUM and GSO need a valid L4 header */
switch (*l4_proto) {
case IPPROTO_TCP:
if (data_len < m->l2_len + m->l3_len +
sizeof(struct rte_tcp_hdr))
goto error;
break;
case IPPROTO_UDP:
if (data_len < m->l2_len + m->l3_len +
sizeof(struct rte_udp_hdr))
goto error;
break;
case IPPROTO_SCTP:
if (data_len < m->l2_len + m->l3_len +
sizeof(struct rte_sctp_hdr))
goto error;
break;
default:
goto error;
}
return 0;
error:
m->l2_len = 0;
m->l3_len = 0;
m->ol_flags = 0;
return -EINVAL;
}
static __rte_always_inline void
vhost_dequeue_offload_legacy(struct virtio_net *dev, struct virtio_net_hdr *hdr,
struct rte_mbuf *m)
{
uint8_t l4_proto = 0;
struct rte_tcp_hdr *tcp_hdr = NULL;
uint16_t tcp_len;
uint16_t data_len = rte_pktmbuf_data_len(m);
if (parse_headers(m, &l4_proto) < 0)
return;
if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
if (hdr->csum_start == (m->l2_len + m->l3_len)) {
switch (hdr->csum_offset) {
case (offsetof(struct rte_tcp_hdr, cksum)):
if (l4_proto != IPPROTO_TCP)
goto error;
m->ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM;
break;
case (offsetof(struct rte_udp_hdr, dgram_cksum)):
if (l4_proto != IPPROTO_UDP)
goto error;
m->ol_flags |= RTE_MBUF_F_TX_UDP_CKSUM;
break;
case (offsetof(struct rte_sctp_hdr, cksum)):
if (l4_proto != IPPROTO_SCTP)
goto error;
m->ol_flags |= RTE_MBUF_F_TX_SCTP_CKSUM;
break;
default:
goto error;
}
} else {
goto error;
}
}
if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
case VIRTIO_NET_HDR_GSO_TCPV4:
case VIRTIO_NET_HDR_GSO_TCPV6:
if (l4_proto != IPPROTO_TCP)
goto error;
tcp_hdr = rte_pktmbuf_mtod_offset(m,
struct rte_tcp_hdr *,
m->l2_len + m->l3_len);
tcp_len = (tcp_hdr->data_off & 0xf0) >> 2;
if (data_len < m->l2_len + m->l3_len + tcp_len)
goto error;
m->ol_flags |= RTE_MBUF_F_TX_TCP_SEG;
m->tso_segsz = hdr->gso_size;
m->l4_len = tcp_len;
break;
case VIRTIO_NET_HDR_GSO_UDP:
if (l4_proto != IPPROTO_UDP)
goto error;
m->ol_flags |= RTE_MBUF_F_TX_UDP_SEG;
m->tso_segsz = hdr->gso_size;
m->l4_len = sizeof(struct rte_udp_hdr);
break;
default:
VHOST_LOG_DATA(dev->ifname, WARNING,
"unsupported gso type %u.\n",
hdr->gso_type);
goto error;
}
}
return;
error:
m->l2_len = 0;
m->l3_len = 0;
m->ol_flags = 0;
}
static __rte_always_inline void
vhost_dequeue_offload(struct virtio_net *dev, struct virtio_net_hdr *hdr,
struct rte_mbuf *m, bool legacy_ol_flags)
{
struct rte_net_hdr_lens hdr_lens;
int l4_supported = 0;
uint32_t ptype;
if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
return;
if (legacy_ol_flags) {
vhost_dequeue_offload_legacy(dev, hdr, m);
return;
}
m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN;
ptype = rte_net_get_ptype(m, &hdr_lens, RTE_PTYPE_ALL_MASK);
m->packet_type = ptype;
if ((ptype & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_TCP ||
(ptype & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_UDP ||
(ptype & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_SCTP)
l4_supported = 1;
/* According to Virtio 1.1 spec, the device only needs to look at
* VIRTIO_NET_HDR_F_NEEDS_CSUM in the packet transmission path.
* This differs from the processing incoming packets path where the
* driver could rely on VIRTIO_NET_HDR_F_DATA_VALID flag set by the
* device.
*
* 5.1.6.2.1 Driver Requirements: Packet Transmission
* The driver MUST NOT set the VIRTIO_NET_HDR_F_DATA_VALID and
* VIRTIO_NET_HDR_F_RSC_INFO bits in flags.
*
* 5.1.6.2.2 Device Requirements: Packet Transmission
* The device MUST ignore flag bits that it does not recognize.
*/
if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
uint32_t hdrlen;
hdrlen = hdr_lens.l2_len + hdr_lens.l3_len + hdr_lens.l4_len;
if (hdr->csum_start <= hdrlen && l4_supported != 0) {
m->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_NONE;
} else {
/* Unknown proto or tunnel, do sw cksum. We can assume
* the cksum field is in the first segment since the
* buffers we provided to the host are large enough.
* In case of SCTP, this will be wrong since it's a CRC
* but there's nothing we can do.
*/
uint16_t csum = 0, off;
if (rte_raw_cksum_mbuf(m, hdr->csum_start,
rte_pktmbuf_pkt_len(m) - hdr->csum_start, &csum) < 0)
return;
if (likely(csum != 0xffff))
csum = ~csum;
off = hdr->csum_offset + hdr->csum_start;
if (rte_pktmbuf_data_len(m) >= off + 1)
*rte_pktmbuf_mtod_offset(m, uint16_t *, off) = csum;
}
}
if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
if (hdr->gso_size == 0)
return;
switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
case VIRTIO_NET_HDR_GSO_TCPV4:
case VIRTIO_NET_HDR_GSO_TCPV6:
if ((ptype & RTE_PTYPE_L4_MASK) != RTE_PTYPE_L4_TCP)
break;
m->ol_flags |= RTE_MBUF_F_RX_LRO | RTE_MBUF_F_RX_L4_CKSUM_NONE;
m->tso_segsz = hdr->gso_size;
break;
case VIRTIO_NET_HDR_GSO_UDP:
if ((ptype & RTE_PTYPE_L4_MASK) != RTE_PTYPE_L4_UDP)
break;
m->ol_flags |= RTE_MBUF_F_RX_LRO | RTE_MBUF_F_RX_L4_CKSUM_NONE;
m->tso_segsz = hdr->gso_size;
break;
default:
break;
}
}
}
static __rte_noinline void
copy_vnet_hdr_from_desc(struct virtio_net_hdr *hdr,
struct buf_vector *buf_vec)
{
uint64_t len;
uint64_t remain = sizeof(struct virtio_net_hdr);
uint64_t src;
uint64_t dst = (uint64_t)(uintptr_t)hdr;
while (remain) {
len = RTE_MIN(remain, buf_vec->buf_len);
src = buf_vec->buf_addr;
rte_memcpy((void *)(uintptr_t)dst,
(void *)(uintptr_t)src, len);
remain -= len;
dst += len;
buf_vec++;
}
}
static __rte_always_inline int
desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct buf_vector *buf_vec, uint16_t nr_vec,
struct rte_mbuf *m, struct rte_mempool *mbuf_pool,
bool legacy_ol_flags, uint16_t slot_idx, bool is_async)
{
uint32_t buf_avail, buf_offset, buf_len;
uint64_t buf_addr, buf_iova;
uint32_t mbuf_avail, mbuf_offset;
uint32_t hdr_remain = dev->vhost_hlen;
uint32_t cpy_len;
struct rte_mbuf *cur = m, *prev = m;
struct virtio_net_hdr tmp_hdr;
struct virtio_net_hdr *hdr = NULL;
uint16_t vec_idx;
struct vhost_async *async = vq->async;
struct async_inflight_info *pkts_info;
/*
* The caller has checked the descriptors chain is larger than the
* header size.
*/
if (virtio_net_with_host_offload(dev)) {
if (unlikely(buf_vec[0].buf_len < sizeof(struct virtio_net_hdr))) {
/*
* No luck, the virtio-net header doesn't fit
* in a contiguous virtual area.
*/
copy_vnet_hdr_from_desc(&tmp_hdr, buf_vec);
hdr = &tmp_hdr;
} else {
hdr = (struct virtio_net_hdr *)((uintptr_t)buf_vec[0].buf_addr);
}
}
for (vec_idx = 0; vec_idx < nr_vec; vec_idx++) {
if (buf_vec[vec_idx].buf_len > hdr_remain)
break;
hdr_remain -= buf_vec[vec_idx].buf_len;
}
buf_addr = buf_vec[vec_idx].buf_addr;
buf_iova = buf_vec[vec_idx].buf_iova;
buf_len = buf_vec[vec_idx].buf_len;
buf_offset = hdr_remain;
buf_avail = buf_vec[vec_idx].buf_len - hdr_remain;
PRINT_PACKET(dev,
(uintptr_t)(buf_addr + buf_offset),
(uint32_t)buf_avail, 0);
mbuf_offset = 0;
mbuf_avail = m->buf_len - RTE_PKTMBUF_HEADROOM;
if (is_async) {
pkts_info = async->pkts_info;
if (async_iter_initialize(dev, async))
return -1;
}
while (1) {
cpy_len = RTE_MIN(buf_avail, mbuf_avail);
if (is_async) {
if (async_fill_seg(dev, vq, cur, mbuf_offset,
buf_iova + buf_offset, cpy_len, false) < 0)
goto error;
} else if (likely(hdr && cur == m)) {
rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *, mbuf_offset),
(void *)((uintptr_t)(buf_addr + buf_offset)),
cpy_len);
} else {
sync_fill_seg(dev, vq, cur, mbuf_offset,
buf_addr + buf_offset,
buf_iova + buf_offset, cpy_len, false);
}
mbuf_avail -= cpy_len;
mbuf_offset += cpy_len;
buf_avail -= cpy_len;
buf_offset += cpy_len;
/* This buf reaches to its end, get the next one */
if (buf_avail == 0) {
if (++vec_idx >= nr_vec)
break;
buf_addr = buf_vec[vec_idx].buf_addr;
buf_iova = buf_vec[vec_idx].buf_iova;
buf_len = buf_vec[vec_idx].buf_len;
buf_offset = 0;
buf_avail = buf_len;
PRINT_PACKET(dev, (uintptr_t)buf_addr,
(uint32_t)buf_avail, 0);
}
/*
* This mbuf reaches to its end, get a new one
* to hold more data.
*/
if (mbuf_avail == 0) {
cur = rte_pktmbuf_alloc(mbuf_pool);
if (unlikely(cur == NULL)) {
VHOST_LOG_DATA(dev->ifname, ERR,
"failed to allocate memory for mbuf.\n");
goto error;
}
prev->next = cur;
prev->data_len = mbuf_offset;
m->nb_segs += 1;
m->pkt_len += mbuf_offset;
prev = cur;
mbuf_offset = 0;
mbuf_avail = cur->buf_len - RTE_PKTMBUF_HEADROOM;
}
}
prev->data_len = mbuf_offset;
m->pkt_len += mbuf_offset;
if (is_async) {
async_iter_finalize(async);
if (hdr)
pkts_info[slot_idx].nethdr = *hdr;
} else if (hdr) {
vhost_dequeue_offload(dev, hdr, m, legacy_ol_flags);
}
return 0;
error:
if (is_async)
async_iter_cancel(async);
return -1;
}
static void
virtio_dev_extbuf_free(void *addr __rte_unused, void *opaque)
{
rte_free(opaque);
}
static int
virtio_dev_extbuf_alloc(struct virtio_net *dev, struct rte_mbuf *pkt, uint32_t size)
{
struct rte_mbuf_ext_shared_info *shinfo = NULL;
uint32_t total_len = RTE_PKTMBUF_HEADROOM + size;
uint16_t buf_len;
rte_iova_t iova;
void *buf;
total_len += sizeof(*shinfo) + sizeof(uintptr_t);
total_len = RTE_ALIGN_CEIL(total_len, sizeof(uintptr_t));
if (unlikely(total_len > UINT16_MAX))
return -ENOSPC;
buf_len = total_len;
buf = rte_malloc(NULL, buf_len, RTE_CACHE_LINE_SIZE);
if (unlikely(buf == NULL))
return -ENOMEM;
/* Initialize shinfo */
shinfo = rte_pktmbuf_ext_shinfo_init_helper(buf, &buf_len,
virtio_dev_extbuf_free, buf);
if (unlikely(shinfo == NULL)) {
rte_free(buf);
VHOST_LOG_DATA(dev->ifname, ERR, "failed to init shinfo\n");
return -1;
}
iova = rte_malloc_virt2iova(buf);
rte_pktmbuf_attach_extbuf(pkt, buf, iova, buf_len, shinfo);
rte_pktmbuf_reset_headroom(pkt);
return 0;
}
/*
* Prepare a host supported pktmbuf.
*/
static __rte_always_inline int
virtio_dev_pktmbuf_prep(struct virtio_net *dev, struct rte_mbuf *pkt,
uint32_t data_len)
{
if (rte_pktmbuf_tailroom(pkt) >= data_len)
return 0;
/* attach an external buffer if supported */
if (dev->extbuf && !virtio_dev_extbuf_alloc(dev, pkt, data_len))
return 0;
/* check if chained buffers are allowed */
if (!dev->linearbuf)
return 0;
return -1;
}
__rte_always_inline
static uint16_t
virtio_dev_tx_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count,
bool legacy_ol_flags)
{
uint16_t i;
uint16_t avail_entries;
static bool allocerr_warned;
/*
* The ordering between avail index and
* desc reads needs to be enforced.
*/
avail_entries = __atomic_load_n(&vq->avail->idx, __ATOMIC_ACQUIRE) -
vq->last_avail_idx;
if (avail_entries == 0)
return 0;
rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
VHOST_LOG_DATA(dev->ifname, DEBUG, "%s\n", __func__);
count = RTE_MIN(count, MAX_PKT_BURST);
count = RTE_MIN(count, avail_entries);
VHOST_LOG_DATA(dev->ifname, DEBUG, "about to dequeue %u buffers\n", count);
if (rte_pktmbuf_alloc_bulk(mbuf_pool, pkts, count))
return 0;
for (i = 0; i < count; i++) {
struct buf_vector buf_vec[BUF_VECTOR_MAX];
uint16_t head_idx;
uint32_t buf_len;
uint16_t nr_vec = 0;
int err;
if (unlikely(fill_vec_buf_split(dev, vq,
vq->last_avail_idx + i,
&nr_vec, buf_vec,
&head_idx, &buf_len,
VHOST_ACCESS_RO) < 0))
break;
update_shadow_used_ring_split(vq, head_idx, 0);
if (unlikely(buf_len <= dev->vhost_hlen))
break;
buf_len -= dev->vhost_hlen;
err = virtio_dev_pktmbuf_prep(dev, pkts[i], buf_len);
if (unlikely(err)) {
/*
* mbuf allocation fails for jumbo packets when external
* buffer allocation is not allowed and linear buffer
* is required. Drop this packet.
*/
if (!allocerr_warned) {
VHOST_LOG_DATA(dev->ifname, ERR,
"failed mbuf alloc of size %d from %s.\n",
buf_len, mbuf_pool->name);
allocerr_warned = true;
}
break;
}
err = desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i],
mbuf_pool, legacy_ol_flags, 0, false);
if (unlikely(err)) {
if (!allocerr_warned) {
VHOST_LOG_DATA(dev->ifname, ERR, "failed to copy desc to mbuf.\n");
allocerr_warned = true;
}
break;
}
}
if (unlikely(count != i))
rte_pktmbuf_free_bulk(&pkts[i], count - i);
if (likely(vq->shadow_used_idx)) {
vq->last_avail_idx += vq->shadow_used_idx;
do_data_copy_dequeue(vq);
flush_shadow_used_ring_split(dev, vq);
vhost_vring_call_split(dev, vq);
}
return i;
}
__rte_noinline
static uint16_t
virtio_dev_tx_split_legacy(struct virtio_net *dev,
struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool,
struct rte_mbuf **pkts, uint16_t count)
{
return virtio_dev_tx_split(dev, vq, mbuf_pool, pkts, count, true);
}
__rte_noinline
static uint16_t
virtio_dev_tx_split_compliant(struct virtio_net *dev,
struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool,
struct rte_mbuf **pkts, uint16_t count)
{
return virtio_dev_tx_split(dev, vq, mbuf_pool, pkts, count, false);
}
static __rte_always_inline int
vhost_reserve_avail_batch_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq,
struct rte_mbuf **pkts,
uint16_t avail_idx,
uintptr_t *desc_addrs,
uint16_t *ids)
{
bool wrap = vq->avail_wrap_counter;
struct vring_packed_desc *descs = vq->desc_packed;
uint64_t lens[PACKED_BATCH_SIZE];
uint64_t buf_lens[PACKED_BATCH_SIZE];
uint32_t buf_offset = sizeof(struct virtio_net_hdr_mrg_rxbuf);
uint16_t flags, i;
if (unlikely(avail_idx & PACKED_BATCH_MASK))
return -1;
if (unlikely((avail_idx + PACKED_BATCH_SIZE) > vq->size))
return -1;
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
flags = descs[avail_idx + i].flags;
if (unlikely((wrap != !!(flags & VRING_DESC_F_AVAIL)) ||
(wrap == !!(flags & VRING_DESC_F_USED)) ||
(flags & PACKED_DESC_SINGLE_DEQUEUE_FLAG)))
return -1;
}
rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
lens[i] = descs[avail_idx + i].len;
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
desc_addrs[i] = vhost_iova_to_vva(dev, vq,
descs[avail_idx + i].addr,
&lens[i], VHOST_ACCESS_RW);
}
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
if (unlikely(!desc_addrs[i]))
return -1;
if (unlikely((lens[i] != descs[avail_idx + i].len)))
return -1;
}
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
if (virtio_dev_pktmbuf_prep(dev, pkts[i], lens[i]))
goto err;
}
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
buf_lens[i] = pkts[i]->buf_len - pkts[i]->data_off;
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
if (unlikely(buf_lens[i] < (lens[i] - buf_offset)))
goto err;
}
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
pkts[i]->pkt_len = lens[i] - buf_offset;
pkts[i]->data_len = pkts[i]->pkt_len;
ids[i] = descs[avail_idx + i].id;
}
return 0;
err:
return -1;
}
static __rte_always_inline int
virtio_dev_tx_batch_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq,
struct rte_mbuf **pkts,
bool legacy_ol_flags)
{
uint16_t avail_idx = vq->last_avail_idx;
uint32_t buf_offset = sizeof(struct virtio_net_hdr_mrg_rxbuf);
struct virtio_net_hdr *hdr;
uintptr_t desc_addrs[PACKED_BATCH_SIZE];
uint16_t ids[PACKED_BATCH_SIZE];
uint16_t i;
if (vhost_reserve_avail_batch_packed(dev, vq, pkts, avail_idx,
desc_addrs, ids))
return -1;
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
rte_prefetch0((void *)(uintptr_t)desc_addrs[i]);
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
rte_memcpy(rte_pktmbuf_mtod_offset(pkts[i], void *, 0),
(void *)(uintptr_t)(desc_addrs[i] + buf_offset),
pkts[i]->pkt_len);
if (virtio_net_with_host_offload(dev)) {
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
hdr = (struct virtio_net_hdr *)(desc_addrs[i]);
vhost_dequeue_offload(dev, hdr, pkts[i], legacy_ol_flags);
}
}
if (virtio_net_is_inorder(dev))
vhost_shadow_dequeue_batch_packed_inorder(vq,
ids[PACKED_BATCH_SIZE - 1]);
else
vhost_shadow_dequeue_batch_packed(dev, vq, ids);
vq_inc_last_avail_packed(vq, PACKED_BATCH_SIZE);
return 0;
}
static __rte_always_inline int
vhost_dequeue_single_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq,
struct rte_mempool *mbuf_pool,
struct rte_mbuf *pkts,
uint16_t *buf_id,
uint16_t *desc_count,
bool legacy_ol_flags)
{
struct buf_vector buf_vec[BUF_VECTOR_MAX];
uint32_t buf_len;
uint16_t nr_vec = 0;
int err;
static bool allocerr_warned;
if (unlikely(fill_vec_buf_packed(dev, vq,
vq->last_avail_idx, desc_count,
buf_vec, &nr_vec,
buf_id, &buf_len,
VHOST_ACCESS_RO) < 0))
return -1;
if (unlikely(buf_len <= dev->vhost_hlen))
return -1;
buf_len -= dev->vhost_hlen;
if (unlikely(virtio_dev_pktmbuf_prep(dev, pkts, buf_len))) {
if (!allocerr_warned) {
VHOST_LOG_DATA(dev->ifname, ERR,
"failed mbuf alloc of size %d from %s.\n",
buf_len, mbuf_pool->name);
allocerr_warned = true;
}
return -1;
}
err = desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts,
mbuf_pool, legacy_ol_flags, 0, false);
if (unlikely(err)) {
if (!allocerr_warned) {
VHOST_LOG_DATA(dev->ifname, ERR, "failed to copy desc to mbuf.\n");
allocerr_warned = true;
}
return -1;
}
return 0;
}
static __rte_always_inline int
virtio_dev_tx_single_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq,
struct rte_mempool *mbuf_pool,
struct rte_mbuf *pkts,
bool legacy_ol_flags)
{
uint16_t buf_id, desc_count = 0;
int ret;
ret = vhost_dequeue_single_packed(dev, vq, mbuf_pool, pkts, &buf_id,
&desc_count, legacy_ol_flags);
if (likely(desc_count > 0)) {
if (virtio_net_is_inorder(dev))
vhost_shadow_dequeue_single_packed_inorder(vq, buf_id,
desc_count);
else
vhost_shadow_dequeue_single_packed(vq, buf_id,
desc_count);
vq_inc_last_avail_packed(vq, desc_count);
}
return ret;
}
__rte_always_inline
static uint16_t
virtio_dev_tx_packed(struct virtio_net *dev,
struct vhost_virtqueue *__rte_restrict vq,
struct rte_mempool *mbuf_pool,
struct rte_mbuf **__rte_restrict pkts,
uint32_t count,
bool legacy_ol_flags)
{
uint32_t pkt_idx = 0;
if (rte_pktmbuf_alloc_bulk(mbuf_pool, pkts, count))
return 0;
do {
rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]);
if (count - pkt_idx >= PACKED_BATCH_SIZE) {
if (!virtio_dev_tx_batch_packed(dev, vq,
&pkts[pkt_idx],
legacy_ol_flags)) {
pkt_idx += PACKED_BATCH_SIZE;
continue;
}
}
if (virtio_dev_tx_single_packed(dev, vq, mbuf_pool,
pkts[pkt_idx],
legacy_ol_flags))
break;
pkt_idx++;
} while (pkt_idx < count);
if (pkt_idx != count)
rte_pktmbuf_free_bulk(&pkts[pkt_idx], count - pkt_idx);
if (vq->shadow_used_idx) {
do_data_copy_dequeue(vq);
vhost_flush_dequeue_shadow_packed(dev, vq);
vhost_vring_call_packed(dev, vq);
}
return pkt_idx;
}
__rte_noinline
static uint16_t
virtio_dev_tx_packed_legacy(struct virtio_net *dev,
struct vhost_virtqueue *__rte_restrict vq, struct rte_mempool *mbuf_pool,
struct rte_mbuf **__rte_restrict pkts, uint32_t count)
{
return virtio_dev_tx_packed(dev, vq, mbuf_pool, pkts, count, true);
}
__rte_noinline
static uint16_t
virtio_dev_tx_packed_compliant(struct virtio_net *dev,
struct vhost_virtqueue *__rte_restrict vq, struct rte_mempool *mbuf_pool,
struct rte_mbuf **__rte_restrict pkts, uint32_t count)
{
return virtio_dev_tx_packed(dev, vq, mbuf_pool, pkts, count, false);
}
uint16_t
rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
{
struct virtio_net *dev;
struct rte_mbuf *rarp_mbuf = NULL;
struct vhost_virtqueue *vq;
int16_t success = 1;
dev = get_device(vid);
if (!dev)
return 0;
if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
VHOST_LOG_DATA(dev->ifname, ERR,
"%s: built-in vhost net backend is disabled.\n",
__func__);
return 0;
}
if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
VHOST_LOG_DATA(dev->ifname, ERR,
"%s: invalid virtqueue idx %d.\n",
__func__, queue_id);
return 0;
}
vq = dev->virtqueue[queue_id];
if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0))
return 0;
if (unlikely(!vq->enabled)) {
count = 0;
goto out_access_unlock;
}
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_lock(vq);
if (unlikely(!vq->access_ok))
if (unlikely(vring_translate(dev, vq) < 0)) {
count = 0;
goto out;
}
/*
* Construct a RARP broadcast packet, and inject it to the "pkts"
* array, to looks like that guest actually send such packet.
*
* Check user_send_rarp() for more information.
*
* broadcast_rarp shares a cacheline in the virtio_net structure
* with some fields that are accessed during enqueue and
* __atomic_compare_exchange_n causes a write if performed compare
* and exchange. This could result in false sharing between enqueue
* and dequeue.
*
* Prevent unnecessary false sharing by reading broadcast_rarp first
* and only performing compare and exchange if the read indicates it
* is likely to be set.
*/
if (unlikely(__atomic_load_n(&dev->broadcast_rarp, __ATOMIC_ACQUIRE) &&
__atomic_compare_exchange_n(&dev->broadcast_rarp,
&success, 0, 0, __ATOMIC_RELEASE, __ATOMIC_RELAXED))) {
rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac);
if (rarp_mbuf == NULL) {
VHOST_LOG_DATA(dev->ifname, ERR, "failed to make RARP packet.\n");
count = 0;
goto out;
}
/*
* Inject it to the head of "pkts" array, so that switch's mac
* learning table will get updated first.
*/
pkts[0] = rarp_mbuf;
vhost_queue_stats_update(dev, vq, pkts, 1);
pkts++;
count -= 1;
}
if (vq_is_packed(dev)) {
if (dev->flags & VIRTIO_DEV_LEGACY_OL_FLAGS)
count = virtio_dev_tx_packed_legacy(dev, vq, mbuf_pool, pkts, count);
else
count = virtio_dev_tx_packed_compliant(dev, vq, mbuf_pool, pkts, count);
} else {
if (dev->flags & VIRTIO_DEV_LEGACY_OL_FLAGS)
count = virtio_dev_tx_split_legacy(dev, vq, mbuf_pool, pkts, count);
else
count = virtio_dev_tx_split_compliant(dev, vq, mbuf_pool, pkts, count);
}
vhost_queue_stats_update(dev, vq, pkts, count);
out:
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_unlock(vq);
out_access_unlock:
rte_spinlock_unlock(&vq->access_lock);
if (unlikely(rarp_mbuf != NULL))
count += 1;
return count;
}
static __rte_always_inline uint16_t
async_poll_dequeue_completed(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf **pkts, uint16_t count, int16_t dma_id,
uint16_t vchan_id, bool legacy_ol_flags)
{
uint16_t start_idx, from, i;
uint16_t nr_cpl_pkts = 0;
struct async_inflight_info *pkts_info = vq->async->pkts_info;
vhost_async_dma_check_completed(dev, dma_id, vchan_id, VHOST_DMA_MAX_COPY_COMPLETE);
start_idx = async_get_first_inflight_pkt_idx(vq);
from = start_idx;
while (vq->async->pkts_cmpl_flag[from] && count--) {
vq->async->pkts_cmpl_flag[from] = false;
from = (from + 1) % vq->size;
nr_cpl_pkts++;
}
if (nr_cpl_pkts == 0)
return 0;
for (i = 0; i < nr_cpl_pkts; i++) {
from = (start_idx + i) % vq->size;
pkts[i] = pkts_info[from].mbuf;
if (virtio_net_with_host_offload(dev))
vhost_dequeue_offload(dev, &pkts_info[from].nethdr, pkts[i],
legacy_ol_flags);
}
/* write back completed descs to used ring and update used idx */
if (vq_is_packed(dev)) {
write_back_completed_descs_packed(vq, nr_cpl_pkts);
vhost_vring_call_packed(dev, vq);
} else {
write_back_completed_descs_split(vq, nr_cpl_pkts);
__atomic_add_fetch(&vq->used->idx, nr_cpl_pkts, __ATOMIC_RELEASE);
vhost_vring_call_split(dev, vq);
}
vq->async->pkts_inflight_n -= nr_cpl_pkts;
return nr_cpl_pkts;
}
static __rte_always_inline uint16_t
virtio_dev_tx_async_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count,
int16_t dma_id, uint16_t vchan_id, bool legacy_ol_flags)
{
static bool allocerr_warned;
bool dropped = false;
uint16_t avail_entries;
uint16_t pkt_idx, slot_idx = 0;
uint16_t nr_done_pkts = 0;
uint16_t pkt_err = 0;
uint16_t n_xfer;
struct vhost_async *async = vq->async;
struct async_inflight_info *pkts_info = async->pkts_info;
struct rte_mbuf *pkts_prealloc[MAX_PKT_BURST];
uint16_t pkts_size = count;
/**
* The ordering between avail index and
* desc reads needs to be enforced.
*/
avail_entries = __atomic_load_n(&vq->avail->idx, __ATOMIC_ACQUIRE) -
vq->last_avail_idx;
if (avail_entries == 0)
goto out;
rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
async_iter_reset(async);
count = RTE_MIN(count, MAX_PKT_BURST);
count = RTE_MIN(count, avail_entries);
VHOST_LOG_DATA(dev->ifname, DEBUG, "about to dequeue %u buffers\n", count);
if (rte_pktmbuf_alloc_bulk(mbuf_pool, pkts_prealloc, count))
goto out;
for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
uint16_t head_idx = 0;
uint16_t nr_vec = 0;
uint16_t to;
uint32_t buf_len;
int err;
struct buf_vector buf_vec[BUF_VECTOR_MAX];
struct rte_mbuf *pkt = pkts_prealloc[pkt_idx];
if (unlikely(fill_vec_buf_split(dev, vq, vq->last_avail_idx,
&nr_vec, buf_vec,
&head_idx, &buf_len,
VHOST_ACCESS_RO) < 0)) {
dropped = true;
break;
}
if (unlikely(buf_len <= dev->vhost_hlen)) {
dropped = true;
break;
}
buf_len -= dev->vhost_hlen;
err = virtio_dev_pktmbuf_prep(dev, pkt, buf_len);
if (unlikely(err)) {
/**
* mbuf allocation fails for jumbo packets when external
* buffer allocation is not allowed and linear buffer
* is required. Drop this packet.
*/
if (!allocerr_warned) {
VHOST_LOG_DATA(dev->ifname, ERR,
"%s: Failed mbuf alloc of size %d from %s\n",
__func__, buf_len, mbuf_pool->name);
allocerr_warned = true;
}
dropped = true;
slot_idx--;
break;
}
slot_idx = (async->pkts_idx + pkt_idx) & (vq->size - 1);
err = desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkt, mbuf_pool,
legacy_ol_flags, slot_idx, true);
if (unlikely(err)) {
if (!allocerr_warned) {
VHOST_LOG_DATA(dev->ifname, ERR,
"%s: Failed to offload copies to async channel.\n",
__func__);
allocerr_warned = true;
}
dropped = true;
slot_idx--;
break;
}
pkts_info[slot_idx].mbuf = pkt;
/* store used descs */
to = async->desc_idx_split & (vq->size - 1);
async->descs_split[to].id = head_idx;
async->descs_split[to].len = 0;
async->desc_idx_split++;
vq->last_avail_idx++;
}
if (unlikely(dropped))
rte_pktmbuf_free_bulk(&pkts_prealloc[pkt_idx], count - pkt_idx);
n_xfer = vhost_async_dma_transfer(dev, vq, dma_id, vchan_id, async->pkts_idx,
async->iov_iter, pkt_idx);
async->pkts_inflight_n += n_xfer;
pkt_err = pkt_idx - n_xfer;
if (unlikely(pkt_err)) {
VHOST_LOG_DATA(dev->ifname, DEBUG, "%s: failed to transfer data.\n",
__func__);
pkt_idx = n_xfer;
/* recover available ring */
vq->last_avail_idx -= pkt_err;
/**
* recover async channel copy related structures and free pktmbufs
* for error pkts.
*/
async->desc_idx_split -= pkt_err;
while (pkt_err-- > 0) {
rte_pktmbuf_free(pkts_info[slot_idx & (vq->size - 1)].mbuf);
slot_idx--;
}
}
async->pkts_idx += pkt_idx;
if (async->pkts_idx >= vq->size)
async->pkts_idx -= vq->size;
out:
/* DMA device may serve other queues, unconditionally check completed. */
nr_done_pkts = async_poll_dequeue_completed(dev, vq, pkts, pkts_size,
dma_id, vchan_id, legacy_ol_flags);
return nr_done_pkts;
}
__rte_noinline
static uint16_t
virtio_dev_tx_async_split_legacy(struct virtio_net *dev,
struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool,
struct rte_mbuf **pkts, uint16_t count,
int16_t dma_id, uint16_t vchan_id)
{
return virtio_dev_tx_async_split(dev, vq, mbuf_pool,
pkts, count, dma_id, vchan_id, true);
}
__rte_noinline
static uint16_t
virtio_dev_tx_async_split_compliant(struct virtio_net *dev,
struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool,
struct rte_mbuf **pkts, uint16_t count,
int16_t dma_id, uint16_t vchan_id)
{
return virtio_dev_tx_async_split(dev, vq, mbuf_pool,
pkts, count, dma_id, vchan_id, false);
}
static __rte_always_inline void
vhost_async_shadow_dequeue_single_packed(struct vhost_virtqueue *vq,
uint16_t buf_id, uint16_t count)
{
struct vhost_async *async = vq->async;
uint16_t idx = async->buffer_idx_packed;
async->buffers_packed[idx].id = buf_id;
async->buffers_packed[idx].len = 0;
async->buffers_packed[idx].count = count;
async->buffer_idx_packed++;
if (async->buffer_idx_packed >= vq->size)
async->buffer_idx_packed -= vq->size;
}
static __rte_always_inline int
virtio_dev_tx_async_single_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq,
struct rte_mempool *mbuf_pool,
struct rte_mbuf *pkts,
uint16_t slot_idx,
bool legacy_ol_flags)
{
int err;
uint16_t buf_id, desc_count = 0;
uint16_t nr_vec = 0;
uint32_t buf_len;
struct buf_vector buf_vec[BUF_VECTOR_MAX];
struct vhost_async *async = vq->async;
struct async_inflight_info *pkts_info = async->pkts_info;
static bool allocerr_warned;
if (unlikely(fill_vec_buf_packed(dev, vq, vq->last_avail_idx, &desc_count,
buf_vec, &nr_vec, &buf_id, &buf_len,
VHOST_ACCESS_RO) < 0))
return -1;
if (unlikely(virtio_dev_pktmbuf_prep(dev, pkts, buf_len))) {
if (!allocerr_warned) {
VHOST_LOG_DATA(dev->ifname, ERR, "Failed mbuf alloc of size %d from %s.\n",
buf_len, mbuf_pool->name);
allocerr_warned = true;
}
return -1;
}
err = desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts, mbuf_pool,
legacy_ol_flags, slot_idx, true);
if (unlikely(err)) {
rte_pktmbuf_free(pkts);
if (!allocerr_warned) {
VHOST_LOG_DATA(dev->ifname, ERR, "Failed to copy desc to mbuf on.\n");
allocerr_warned = true;
}
return -1;
}
pkts_info[slot_idx].descs = desc_count;
/* update async shadow packed ring */
vhost_async_shadow_dequeue_single_packed(vq, buf_id, desc_count);
vq_inc_last_avail_packed(vq, desc_count);
return err;
}
static __rte_always_inline uint16_t
virtio_dev_tx_async_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts,
uint16_t count, uint16_t dma_id, uint16_t vchan_id, bool legacy_ol_flags)
{
uint16_t pkt_idx;
uint16_t slot_idx = 0;
uint16_t nr_done_pkts = 0;
uint16_t pkt_err = 0;
uint32_t n_xfer;
struct vhost_async *async = vq->async;
struct async_inflight_info *pkts_info = async->pkts_info;
struct rte_mbuf *pkts_prealloc[MAX_PKT_BURST];
VHOST_LOG_DATA(dev->ifname, DEBUG, "(%d) about to dequeue %u buffers\n", dev->vid, count);
async_iter_reset(async);
if (rte_pktmbuf_alloc_bulk(mbuf_pool, pkts_prealloc, count))
goto out;
for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
struct rte_mbuf *pkt = pkts_prealloc[pkt_idx];
rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]);
slot_idx = (async->pkts_idx + pkt_idx) % vq->size;
if (unlikely(virtio_dev_tx_async_single_packed(dev, vq, mbuf_pool, pkt,
slot_idx, legacy_ol_flags))) {
rte_pktmbuf_free_bulk(&pkts_prealloc[pkt_idx], count - pkt_idx);
if (slot_idx == 0)
slot_idx = vq->size - 1;
else
slot_idx--;
break;
}
pkts_info[slot_idx].mbuf = pkt;
}
n_xfer = vhost_async_dma_transfer(dev, vq, dma_id, vchan_id, async->pkts_idx,
async->iov_iter, pkt_idx);
async->pkts_inflight_n += n_xfer;
pkt_err = pkt_idx - n_xfer;
if (unlikely(pkt_err)) {
uint16_t descs_err = 0;
pkt_idx -= pkt_err;
/**
* recover DMA-copy related structures and free pktmbuf for DMA-error pkts.
*/
if (async->buffer_idx_packed >= pkt_err)
async->buffer_idx_packed -= pkt_err;
else
async->buffer_idx_packed += vq->size - pkt_err;
while (pkt_err-- > 0) {
rte_pktmbuf_free(pkts_info[slot_idx].mbuf);
descs_err += pkts_info[slot_idx].descs;
if (slot_idx == 0)
slot_idx = vq->size - 1;
else
slot_idx--;
}
/* recover available ring */
if (vq->last_avail_idx >= descs_err) {
vq->last_avail_idx -= descs_err;
} else {
vq->last_avail_idx += vq->size - descs_err;
vq->avail_wrap_counter ^= 1;
}
}
async->pkts_idx += pkt_idx;
if (async->pkts_idx >= vq->size)
async->pkts_idx -= vq->size;
out:
nr_done_pkts = async_poll_dequeue_completed(dev, vq, pkts, count,
dma_id, vchan_id, legacy_ol_flags);
return nr_done_pkts;
}
__rte_noinline
static uint16_t
virtio_dev_tx_async_packed_legacy(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts,
uint16_t count, uint16_t dma_id, uint16_t vchan_id)
{
return virtio_dev_tx_async_packed(dev, vq, mbuf_pool,
pkts, count, dma_id, vchan_id, true);
}
__rte_noinline
static uint16_t
virtio_dev_tx_async_packed_compliant(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts,
uint16_t count, uint16_t dma_id, uint16_t vchan_id)
{
return virtio_dev_tx_async_packed(dev, vq, mbuf_pool,
pkts, count, dma_id, vchan_id, false);
}
uint16_t
rte_vhost_async_try_dequeue_burst(int vid, uint16_t queue_id,
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count,
int *nr_inflight, int16_t dma_id, uint16_t vchan_id)
{
struct virtio_net *dev;
struct rte_mbuf *rarp_mbuf = NULL;
struct vhost_virtqueue *vq;
int16_t success = 1;
dev = get_device(vid);
if (!dev || !nr_inflight)
return 0;
*nr_inflight = -1;
if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
VHOST_LOG_DATA(dev->ifname, ERR, "%s: built-in vhost net backend is disabled.\n",
__func__);
return 0;
}
if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid virtqueue idx %d.\n",
__func__, queue_id);
return 0;
}
if (unlikely(dma_id < 0 || dma_id >= RTE_DMADEV_DEFAULT_MAX)) {
VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid dma id %d.\n",
__func__, dma_id);
return 0;
}
if (unlikely(!dma_copy_track[dma_id].vchans ||
!dma_copy_track[dma_id].vchans[vchan_id].pkts_cmpl_flag_addr)) {
VHOST_LOG_DATA(dev->ifname, ERR, "%s: invalid channel %d:%u.\n",
__func__, dma_id, vchan_id);
return 0;
}
vq = dev->virtqueue[queue_id];
if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0))
return 0;
if (unlikely(vq->enabled == 0)) {
count = 0;
goto out_access_unlock;
}
if (unlikely(!vq->async)) {
VHOST_LOG_DATA(dev->ifname, ERR, "%s: async not registered for queue id %d.\n",
__func__, queue_id);
count = 0;
goto out_access_unlock;
}
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_lock(vq);
if (unlikely(vq->access_ok == 0))
if (unlikely(vring_translate(dev, vq) < 0)) {
count = 0;
goto out;
}
/*
* Construct a RARP broadcast packet, and inject it to the "pkts"
* array, to looks like that guest actually send such packet.
*
* Check user_send_rarp() for more information.
*
* broadcast_rarp shares a cacheline in the virtio_net structure
* with some fields that are accessed during enqueue and
* __atomic_compare_exchange_n causes a write if performed compare
* and exchange. This could result in false sharing between enqueue
* and dequeue.
*
* Prevent unnecessary false sharing by reading broadcast_rarp first
* and only performing compare and exchange if the read indicates it
* is likely to be set.
*/
if (unlikely(__atomic_load_n(&dev->broadcast_rarp, __ATOMIC_ACQUIRE) &&
__atomic_compare_exchange_n(&dev->broadcast_rarp,
&success, 0, 0, __ATOMIC_RELEASE, __ATOMIC_RELAXED))) {
rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac);
if (rarp_mbuf == NULL) {
VHOST_LOG_DATA(dev->ifname, ERR, "failed to make RARP packet.\n");
count = 0;
goto out;
}
/*
* Inject it to the head of "pkts" array, so that switch's mac
* learning table will get updated first.
*/
pkts[0] = rarp_mbuf;
vhost_queue_stats_update(dev, vq, pkts, 1);
pkts++;
count -= 1;
}
if (vq_is_packed(dev)) {
if (dev->flags & VIRTIO_DEV_LEGACY_OL_FLAGS)
count = virtio_dev_tx_async_packed_legacy(dev, vq, mbuf_pool,
pkts, count, dma_id, vchan_id);
else
count = virtio_dev_tx_async_packed_compliant(dev, vq, mbuf_pool,
pkts, count, dma_id, vchan_id);
} else {
if (dev->flags & VIRTIO_DEV_LEGACY_OL_FLAGS)
count = virtio_dev_tx_async_split_legacy(dev, vq, mbuf_pool,
pkts, count, dma_id, vchan_id);
else
count = virtio_dev_tx_async_split_compliant(dev, vq, mbuf_pool,
pkts, count, dma_id, vchan_id);
}
*nr_inflight = vq->async->pkts_inflight_n;
vhost_queue_stats_update(dev, vq, pkts, count);
out:
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_unlock(vq);
out_access_unlock:
rte_spinlock_unlock(&vq->access_lock);
if (unlikely(rarp_mbuf != NULL))
count += 1;
return count;
}