f-stack/dpdk/lib/mempool/rte_mempool.h

1957 lines
62 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation.
* Copyright(c) 2016 6WIND S.A.
* Copyright(c) 2022 SmartShare Systems
*/
#ifndef _RTE_MEMPOOL_H_
#define _RTE_MEMPOOL_H_
/**
* @file
* RTE Mempool.
*
* A memory pool is an allocator of fixed-size object. It is
* identified by its name, and uses a ring to store free objects. It
* provides some other optional services, like a per-core object
* cache, and an alignment helper to ensure that objects are padded
* to spread them equally on all RAM channels, ranks, and so on.
*
* Objects owned by a mempool should never be added in another
* mempool. When an object is freed using rte_mempool_put() or
* equivalent, the object data is not modified; the user can save some
* meta-data in the object data and retrieve them when allocating a
* new object.
*
* Note: the mempool implementation is not preemptible. An lcore must not be
* interrupted by another task that uses the same mempool (because it uses a
* ring which is not preemptible). Also, usual mempool functions like
* rte_mempool_get() or rte_mempool_put() are designed to be called from an EAL
* thread due to the internal per-lcore cache. Due to the lack of caching,
* rte_mempool_get() or rte_mempool_put() performance will suffer when called
* by unregistered non-EAL threads. Instead, unregistered non-EAL threads
* should call rte_mempool_generic_get() or rte_mempool_generic_put() with a
* user cache created with rte_mempool_cache_create().
*/
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <rte_compat.h>
#include <rte_config.h>
#include <rte_spinlock.h>
#include <rte_debug.h>
#include <rte_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_memcpy.h>
#include <rte_common.h>
#include "rte_mempool_trace_fp.h"
#ifdef __cplusplus
extern "C" {
#endif
#define RTE_MEMPOOL_HEADER_COOKIE1 0xbadbadbadadd2e55ULL /**< Header cookie. */
#define RTE_MEMPOOL_HEADER_COOKIE2 0xf2eef2eedadd2e55ULL /**< Header cookie. */
#define RTE_MEMPOOL_TRAILER_COOKIE 0xadd2e55badbadbadULL /**< Trailer cookie.*/
#ifdef RTE_LIBRTE_MEMPOOL_STATS
/**
* A structure that stores the mempool statistics (per-lcore).
* Note: Cache stats (put_cache_bulk/objs, get_cache_bulk/objs) are not
* captured since they can be calculated from other stats.
* For example: put_cache_objs = put_objs - put_common_pool_objs.
*/
struct rte_mempool_debug_stats {
uint64_t put_bulk; /**< Number of puts. */
uint64_t put_objs; /**< Number of objects successfully put. */
uint64_t put_common_pool_bulk; /**< Number of bulks enqueued in common pool. */
uint64_t put_common_pool_objs; /**< Number of objects enqueued in common pool. */
uint64_t get_common_pool_bulk; /**< Number of bulks dequeued from common pool. */
uint64_t get_common_pool_objs; /**< Number of objects dequeued from common pool. */
uint64_t get_success_bulk; /**< Successful allocation number. */
uint64_t get_success_objs; /**< Objects successfully allocated. */
uint64_t get_fail_bulk; /**< Failed allocation number. */
uint64_t get_fail_objs; /**< Objects that failed to be allocated. */
uint64_t get_success_blks; /**< Successful allocation number of contiguous blocks. */
uint64_t get_fail_blks; /**< Failed allocation number of contiguous blocks. */
} __rte_cache_aligned;
#endif
/**
* A structure that stores a per-core object cache.
*/
struct rte_mempool_cache {
uint32_t size; /**< Size of the cache */
uint32_t flushthresh; /**< Threshold before we flush excess elements */
uint32_t len; /**< Current cache count */
#ifdef RTE_LIBRTE_MEMPOOL_STATS
uint32_t unused;
/*
* Alternative location for the most frequently updated mempool statistics (per-lcore),
* providing faster update access when using a mempool cache.
*/
struct {
uint64_t put_bulk; /**< Number of puts. */
uint64_t put_objs; /**< Number of objects successfully put. */
uint64_t get_success_bulk; /**< Successful allocation number. */
uint64_t get_success_objs; /**< Objects successfully allocated. */
} stats; /**< Statistics */
#endif
/**
* Cache objects
*
* Cache is allocated to this size to allow it to overflow in certain
* cases to avoid needless emptying of cache.
*/
void *objs[RTE_MEMPOOL_CACHE_MAX_SIZE * 2] __rte_cache_aligned;
} __rte_cache_aligned;
/**
* A structure that stores the size of mempool elements.
*/
struct rte_mempool_objsz {
uint32_t elt_size; /**< Size of an element. */
uint32_t header_size; /**< Size of header (before elt). */
uint32_t trailer_size; /**< Size of trailer (after elt). */
uint32_t total_size;
/**< Total size of an object (header + elt + trailer). */
};
/**< Maximum length of a memory pool's name. */
#define RTE_MEMPOOL_NAMESIZE (RTE_RING_NAMESIZE - \
sizeof(RTE_MEMPOOL_MZ_PREFIX) + 1)
#define RTE_MEMPOOL_MZ_PREFIX "MP_"
/* "MP_<name>" */
#define RTE_MEMPOOL_MZ_FORMAT RTE_MEMPOOL_MZ_PREFIX "%s"
#ifndef RTE_MEMPOOL_ALIGN
/**
* Alignment of elements inside mempool.
*/
#define RTE_MEMPOOL_ALIGN RTE_CACHE_LINE_SIZE
#endif
#define RTE_MEMPOOL_ALIGN_MASK (RTE_MEMPOOL_ALIGN - 1)
/**
* Mempool object header structure
*
* Each object stored in mempools are prefixed by this header structure,
* it allows to retrieve the mempool pointer from the object and to
* iterate on all objects attached to a mempool. When debug is enabled,
* a cookie is also added in this structure preventing corruptions and
* double-frees.
*/
struct rte_mempool_objhdr {
RTE_STAILQ_ENTRY(rte_mempool_objhdr) next; /**< Next in list. */
struct rte_mempool *mp; /**< The mempool owning the object. */
rte_iova_t iova; /**< IO address of the object. */
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
uint64_t cookie; /**< Debug cookie. */
#endif
};
/**
* A list of object headers type
*/
RTE_STAILQ_HEAD(rte_mempool_objhdr_list, rte_mempool_objhdr);
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
/**
* Mempool object trailer structure
*
* In debug mode, each object stored in mempools are suffixed by this
* trailer structure containing a cookie preventing memory corruptions.
*/
struct rte_mempool_objtlr {
uint64_t cookie; /**< Debug cookie. */
};
#endif
/**
* A list of memory where objects are stored
*/
RTE_STAILQ_HEAD(rte_mempool_memhdr_list, rte_mempool_memhdr);
/**
* Callback used to free a memory chunk
*/
typedef void (rte_mempool_memchunk_free_cb_t)(struct rte_mempool_memhdr *memhdr,
void *opaque);
/**
* Mempool objects memory header structure
*
* The memory chunks where objects are stored. Each chunk is virtually
* and physically contiguous.
*/
struct rte_mempool_memhdr {
RTE_STAILQ_ENTRY(rte_mempool_memhdr) next; /**< Next in list. */
struct rte_mempool *mp; /**< The mempool owning the chunk */
void *addr; /**< Virtual address of the chunk */
rte_iova_t iova; /**< IO address of the chunk */
size_t len; /**< length of the chunk */
rte_mempool_memchunk_free_cb_t *free_cb; /**< Free callback */
void *opaque; /**< Argument passed to the free callback */
};
/**
* Additional information about the mempool
*
* The structure is cache-line aligned to avoid ABI breakages in
* a number of cases when something small is added.
*/
struct rte_mempool_info {
/** Number of objects in the contiguous block */
unsigned int contig_block_size;
} __rte_cache_aligned;
/**
* The RTE mempool structure.
*/
struct rte_mempool {
char name[RTE_MEMPOOL_NAMESIZE]; /**< Name of mempool. */
RTE_STD_C11
union {
void *pool_data; /**< Ring or pool to store objects. */
uint64_t pool_id; /**< External mempool identifier. */
};
void *pool_config; /**< optional args for ops alloc. */
const struct rte_memzone *mz; /**< Memzone where pool is alloc'd. */
unsigned int flags; /**< Flags of the mempool. */
int socket_id; /**< Socket id passed at create. */
uint32_t size; /**< Max size of the mempool. */
uint32_t cache_size;
/**< Size of per-lcore default local cache. */
uint32_t elt_size; /**< Size of an element. */
uint32_t header_size; /**< Size of header (before elt). */
uint32_t trailer_size; /**< Size of trailer (after elt). */
unsigned private_data_size; /**< Size of private data. */
/**
* Index into rte_mempool_ops_table array of mempool ops
* structs, which contain callback function pointers.
* We're using an index here rather than pointers to the callbacks
* to facilitate any secondary processes that may want to use
* this mempool.
*/
int32_t ops_index;
struct rte_mempool_cache *local_cache; /**< Per-lcore local cache */
uint32_t populated_size; /**< Number of populated objects. */
struct rte_mempool_objhdr_list elt_list; /**< List of objects in pool */
uint32_t nb_mem_chunks; /**< Number of memory chunks */
struct rte_mempool_memhdr_list mem_list; /**< List of memory chunks */
#ifdef RTE_LIBRTE_MEMPOOL_STATS
/** Per-lcore statistics.
*
* Plus one, for unregistered non-EAL threads.
*/
struct rte_mempool_debug_stats stats[RTE_MAX_LCORE + 1];
#endif
} __rte_cache_aligned;
/** Spreading among memory channels not required. */
#define RTE_MEMPOOL_F_NO_SPREAD 0x0001
/**
* Backward compatibility synonym for RTE_MEMPOOL_F_NO_SPREAD.
* To be deprecated.
*/
#define MEMPOOL_F_NO_SPREAD RTE_MEMPOOL_F_NO_SPREAD
/** Do not align objects on cache lines. */
#define RTE_MEMPOOL_F_NO_CACHE_ALIGN 0x0002
/**
* Backward compatibility synonym for RTE_MEMPOOL_F_NO_CACHE_ALIGN.
* To be deprecated.
*/
#define MEMPOOL_F_NO_CACHE_ALIGN RTE_MEMPOOL_F_NO_CACHE_ALIGN
/** Default put is "single-producer". */
#define RTE_MEMPOOL_F_SP_PUT 0x0004
/**
* Backward compatibility synonym for RTE_MEMPOOL_F_SP_PUT.
* To be deprecated.
*/
#define MEMPOOL_F_SP_PUT RTE_MEMPOOL_F_SP_PUT
/** Default get is "single-consumer". */
#define RTE_MEMPOOL_F_SC_GET 0x0008
/**
* Backward compatibility synonym for RTE_MEMPOOL_F_SC_GET.
* To be deprecated.
*/
#define MEMPOOL_F_SC_GET RTE_MEMPOOL_F_SC_GET
/** Internal: pool is created. */
#define RTE_MEMPOOL_F_POOL_CREATED 0x0010
/** Don't need IOVA contiguous objects. */
#define RTE_MEMPOOL_F_NO_IOVA_CONTIG 0x0020
/**
* Backward compatibility synonym for RTE_MEMPOOL_F_NO_IOVA_CONTIG.
* To be deprecated.
*/
#define MEMPOOL_F_NO_IOVA_CONTIG RTE_MEMPOOL_F_NO_IOVA_CONTIG
/** Internal: no object from the pool can be used for device IO (DMA). */
#define RTE_MEMPOOL_F_NON_IO 0x0040
/**
* This macro lists all the mempool flags an application may request.
*/
#define RTE_MEMPOOL_VALID_USER_FLAGS (RTE_MEMPOOL_F_NO_SPREAD \
| RTE_MEMPOOL_F_NO_CACHE_ALIGN \
| RTE_MEMPOOL_F_SP_PUT \
| RTE_MEMPOOL_F_SC_GET \
| RTE_MEMPOOL_F_NO_IOVA_CONTIG \
)
/**
* @internal When stats is enabled, store some statistics.
*
* @param mp
* Pointer to the memory pool.
* @param name
* Name of the statistics field to increment in the memory pool.
* @param n
* Number to add to the statistics.
*/
#ifdef RTE_LIBRTE_MEMPOOL_STATS
#define RTE_MEMPOOL_STAT_ADD(mp, name, n) do { \
unsigned int __lcore_id = rte_lcore_id(); \
if (likely(__lcore_id < RTE_MAX_LCORE)) \
(mp)->stats[__lcore_id].name += (n); \
else \
__atomic_fetch_add(&((mp)->stats[RTE_MAX_LCORE].name), \
(n), __ATOMIC_RELAXED); \
} while (0)
#else
#define RTE_MEMPOOL_STAT_ADD(mp, name, n) do {} while (0)
#endif
/**
* @internal When stats is enabled, store some statistics.
*
* @param cache
* Pointer to the memory pool cache.
* @param name
* Name of the statistics field to increment in the memory pool cache.
* @param n
* Number to add to the statistics.
*/
#ifdef RTE_LIBRTE_MEMPOOL_STATS
#define RTE_MEMPOOL_CACHE_STAT_ADD(cache, name, n) ((cache)->stats.name += (n))
#else
#define RTE_MEMPOOL_CACHE_STAT_ADD(cache, name, n) do {} while (0)
#endif
/**
* @internal Calculate the size of the mempool header.
*
* @param mp
* Pointer to the memory pool.
* @param cs
* Size of the per-lcore cache.
*/
#define RTE_MEMPOOL_HEADER_SIZE(mp, cs) \
(sizeof(*(mp)) + (((cs) == 0) ? 0 : \
(sizeof(struct rte_mempool_cache) * RTE_MAX_LCORE)))
/* return the header of a mempool object (internal) */
static inline struct rte_mempool_objhdr *
rte_mempool_get_header(void *obj)
{
return (struct rte_mempool_objhdr *)RTE_PTR_SUB(obj,
sizeof(struct rte_mempool_objhdr));
}
/**
* Return a pointer to the mempool owning this object.
*
* @param obj
* An object that is owned by a pool. If this is not the case,
* the behavior is undefined.
* @return
* A pointer to the mempool structure.
*/
static inline struct rte_mempool *rte_mempool_from_obj(void *obj)
{
struct rte_mempool_objhdr *hdr = rte_mempool_get_header(obj);
return hdr->mp;
}
/* return the trailer of a mempool object (internal) */
static inline struct rte_mempool_objtlr *rte_mempool_get_trailer(void *obj)
{
struct rte_mempool *mp = rte_mempool_from_obj(obj);
return (struct rte_mempool_objtlr *)RTE_PTR_ADD(obj, mp->elt_size);
}
/**
* @internal Check and update cookies or panic.
*
* @param mp
* Pointer to the memory pool.
* @param obj_table_const
* Pointer to a table of void * pointers (objects).
* @param n
* Index of object in object table.
* @param free
* - 0: object is supposed to be allocated, mark it as free
* - 1: object is supposed to be free, mark it as allocated
* - 2: just check that cookie is valid (free or allocated)
*/
void rte_mempool_check_cookies(const struct rte_mempool *mp,
void * const *obj_table_const, unsigned n, int free);
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
#define RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table_const, n, free) \
rte_mempool_check_cookies(mp, obj_table_const, n, free)
#else
#define RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table_const, n, free) do {} while (0)
#endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
/**
* @internal Check contiguous object blocks and update cookies or panic.
*
* @param mp
* Pointer to the memory pool.
* @param first_obj_table_const
* Pointer to a table of void * pointers (first object of the contiguous
* object blocks).
* @param n
* Number of contiguous object blocks.
* @param free
* - 0: object is supposed to be allocated, mark it as free
* - 1: object is supposed to be free, mark it as allocated
* - 2: just check that cookie is valid (free or allocated)
*/
void rte_mempool_contig_blocks_check_cookies(const struct rte_mempool *mp,
void * const *first_obj_table_const, unsigned int n, int free);
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
#define RTE_MEMPOOL_CONTIG_BLOCKS_CHECK_COOKIES(mp, first_obj_table_const, n, \
free) \
rte_mempool_contig_blocks_check_cookies(mp, first_obj_table_const, n, \
free)
#else
#define RTE_MEMPOOL_CONTIG_BLOCKS_CHECK_COOKIES(mp, first_obj_table_const, n, \
free) \
do {} while (0)
#endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
#define RTE_MEMPOOL_OPS_NAMESIZE 32 /**< Max length of ops struct name. */
/**
* Prototype for implementation specific data provisioning function.
*
* The function should provide the implementation specific memory for
* use by the other mempool ops functions in a given mempool ops struct.
* E.g. the default ops provides an instance of the rte_ring for this purpose.
* it will most likely point to a different type of data structure, and
* will be transparent to the application programmer.
* This function should set mp->pool_data.
*/
typedef int (*rte_mempool_alloc_t)(struct rte_mempool *mp);
/**
* Free the opaque private data pointed to by mp->pool_data pointer.
*/
typedef void (*rte_mempool_free_t)(struct rte_mempool *mp);
/**
* Enqueue 'n' objects into the external pool.
* @return
* - 0: Success
* - <0: Error
*/
typedef int (*rte_mempool_enqueue_t)(struct rte_mempool *mp,
void * const *obj_table, unsigned int n);
/**
* Dequeue 'n' objects from the external pool.
* @return
* - 0: Success
* - <0: Error
*/
typedef int (*rte_mempool_dequeue_t)(struct rte_mempool *mp,
void **obj_table, unsigned int n);
/**
* Dequeue a number of contiguous object blocks from the external pool.
*/
typedef int (*rte_mempool_dequeue_contig_blocks_t)(struct rte_mempool *mp,
void **first_obj_table, unsigned int n);
/**
* Return the number of available objects in the external pool.
*/
typedef unsigned (*rte_mempool_get_count)(const struct rte_mempool *mp);
/**
* Calculate memory size required to store given number of objects.
*
* If mempool objects are not required to be IOVA-contiguous
* (the flag RTE_MEMPOOL_F_NO_IOVA_CONTIG is set), min_chunk_size defines
* virtually contiguous chunk size. Otherwise, if mempool objects must
* be IOVA-contiguous (the flag RTE_MEMPOOL_F_NO_IOVA_CONTIG is clear),
* min_chunk_size defines IOVA-contiguous chunk size.
*
* @param[in] mp
* Pointer to the memory pool.
* @param[in] obj_num
* Number of objects.
* @param[in] pg_shift
* LOG2 of the physical pages size. If set to 0, ignore page boundaries.
* @param[out] min_chunk_size
* Location for minimum size of the memory chunk which may be used to
* store memory pool objects.
* @param[out] align
* Location for required memory chunk alignment.
* @return
* Required memory size.
*/
typedef ssize_t (*rte_mempool_calc_mem_size_t)(const struct rte_mempool *mp,
uint32_t obj_num, uint32_t pg_shift,
size_t *min_chunk_size, size_t *align);
/**
* @internal Helper to calculate memory size required to store given
* number of objects.
*
* This function is internal to mempool library and mempool drivers.
*
* If page boundaries may be ignored, it is just a product of total
* object size including header and trailer and number of objects.
* Otherwise, it is a number of pages required to store given number of
* objects without crossing page boundary.
*
* Note that if object size is bigger than page size, then it assumes
* that pages are grouped in subsets of physically continuous pages big
* enough to store at least one object.
*
* Minimum size of memory chunk is the total element size.
* Required memory chunk alignment is the cache line size.
*
* @param[in] mp
* A pointer to the mempool structure.
* @param[in] obj_num
* Number of objects to be added in mempool.
* @param[in] pg_shift
* LOG2 of the physical pages size. If set to 0, ignore page boundaries.
* @param[in] chunk_reserve
* Amount of memory that must be reserved at the beginning of each page,
* or at the beginning of the memory area if pg_shift is 0.
* @param[out] min_chunk_size
* Location for minimum size of the memory chunk which may be used to
* store memory pool objects.
* @param[out] align
* Location for required memory chunk alignment.
* @return
* Required memory size.
*/
ssize_t rte_mempool_op_calc_mem_size_helper(const struct rte_mempool *mp,
uint32_t obj_num, uint32_t pg_shift, size_t chunk_reserve,
size_t *min_chunk_size, size_t *align);
/**
* Default way to calculate memory size required to store given number of
* objects.
*
* Equivalent to rte_mempool_op_calc_mem_size_helper(mp, obj_num, pg_shift,
* 0, min_chunk_size, align).
*/
ssize_t rte_mempool_op_calc_mem_size_default(const struct rte_mempool *mp,
uint32_t obj_num, uint32_t pg_shift,
size_t *min_chunk_size, size_t *align);
/**
* Function to be called for each populated object.
*
* @param[in] mp
* A pointer to the mempool structure.
* @param[in] opaque
* An opaque pointer passed to iterator.
* @param[in] vaddr
* Object virtual address.
* @param[in] iova
* Input/output virtual address of the object or RTE_BAD_IOVA.
*/
typedef void (rte_mempool_populate_obj_cb_t)(struct rte_mempool *mp,
void *opaque, void *vaddr, rte_iova_t iova);
/**
* Populate memory pool objects using provided memory chunk.
*
* Populated objects should be enqueued to the pool, e.g. using
* rte_mempool_ops_enqueue_bulk().
*
* If the given IO address is unknown (iova = RTE_BAD_IOVA),
* the chunk doesn't need to be physically contiguous (only virtually),
* and allocated objects may span two pages.
*
* @param[in] mp
* A pointer to the mempool structure.
* @param[in] max_objs
* Maximum number of objects to be populated.
* @param[in] vaddr
* The virtual address of memory that should be used to store objects.
* @param[in] iova
* The IO address
* @param[in] len
* The length of memory in bytes.
* @param[in] obj_cb
* Callback function to be executed for each populated object.
* @param[in] obj_cb_arg
* An opaque pointer passed to the callback function.
* @return
* The number of objects added on success.
* On error, no objects are populated and a negative errno is returned.
*/
typedef int (*rte_mempool_populate_t)(struct rte_mempool *mp,
unsigned int max_objs,
void *vaddr, rte_iova_t iova, size_t len,
rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
/**
* Align objects on addresses multiple of total_elt_sz.
*/
#define RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ 0x0001
/**
* @internal Helper to populate memory pool object using provided memory
* chunk: just slice objects one by one, taking care of not
* crossing page boundaries.
*
* If RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ is set in flags, the addresses
* of object headers will be aligned on a multiple of total_elt_sz.
* This feature is used by octeontx hardware.
*
* This function is internal to mempool library and mempool drivers.
*
* @param[in] mp
* A pointer to the mempool structure.
* @param[in] flags
* Logical OR of following flags:
* - RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ: align objects on addresses
* multiple of total_elt_sz.
* @param[in] max_objs
* Maximum number of objects to be added in mempool.
* @param[in] vaddr
* The virtual address of memory that should be used to store objects.
* @param[in] iova
* The IO address corresponding to vaddr, or RTE_BAD_IOVA.
* @param[in] len
* The length of memory in bytes.
* @param[in] obj_cb
* Callback function to be executed for each populated object.
* @param[in] obj_cb_arg
* An opaque pointer passed to the callback function.
* @return
* The number of objects added in mempool.
*/
int rte_mempool_op_populate_helper(struct rte_mempool *mp,
unsigned int flags, unsigned int max_objs,
void *vaddr, rte_iova_t iova, size_t len,
rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
/**
* Default way to populate memory pool object using provided memory chunk.
*
* Equivalent to rte_mempool_op_populate_helper(mp, 0, max_objs, vaddr, iova,
* len, obj_cb, obj_cb_arg).
*/
int rte_mempool_op_populate_default(struct rte_mempool *mp,
unsigned int max_objs,
void *vaddr, rte_iova_t iova, size_t len,
rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
/**
* Get some additional information about a mempool.
*/
typedef int (*rte_mempool_get_info_t)(const struct rte_mempool *mp,
struct rte_mempool_info *info);
/** Structure defining mempool operations structure */
struct rte_mempool_ops {
char name[RTE_MEMPOOL_OPS_NAMESIZE]; /**< Name of mempool ops struct. */
rte_mempool_alloc_t alloc; /**< Allocate private data. */
rte_mempool_free_t free; /**< Free the external pool. */
rte_mempool_enqueue_t enqueue; /**< Enqueue an object. */
rte_mempool_dequeue_t dequeue; /**< Dequeue an object. */
rte_mempool_get_count get_count; /**< Get qty of available objs. */
/**
* Optional callback to calculate memory size required to
* store specified number of objects.
*/
rte_mempool_calc_mem_size_t calc_mem_size;
/**
* Optional callback to populate mempool objects using
* provided memory chunk.
*/
rte_mempool_populate_t populate;
/**
* Get mempool info
*/
rte_mempool_get_info_t get_info;
/**
* Dequeue a number of contiguous object blocks.
*/
rte_mempool_dequeue_contig_blocks_t dequeue_contig_blocks;
} __rte_cache_aligned;
#define RTE_MEMPOOL_MAX_OPS_IDX 16 /**< Max registered ops structs */
/**
* Structure storing the table of registered ops structs, each of which contain
* the function pointers for the mempool ops functions.
* Each process has its own storage for this ops struct array so that
* the mempools can be shared across primary and secondary processes.
* The indices used to access the array are valid across processes, whereas
* any function pointers stored directly in the mempool struct would not be.
* This results in us simply having "ops_index" in the mempool struct.
*/
struct rte_mempool_ops_table {
rte_spinlock_t sl; /**< Spinlock for add/delete. */
uint32_t num_ops; /**< Number of used ops structs in the table. */
/**
* Storage for all possible ops structs.
*/
struct rte_mempool_ops ops[RTE_MEMPOOL_MAX_OPS_IDX];
} __rte_cache_aligned;
/** Array of registered ops structs. */
extern struct rte_mempool_ops_table rte_mempool_ops_table;
/**
* @internal Get the mempool ops struct from its index.
*
* @param ops_index
* The index of the ops struct in the ops struct table. It must be a valid
* index: (0 <= idx < num_ops).
* @return
* The pointer to the ops struct in the table.
*/
static inline struct rte_mempool_ops *
rte_mempool_get_ops(int ops_index)
{
RTE_VERIFY((ops_index >= 0) && (ops_index < RTE_MEMPOOL_MAX_OPS_IDX));
return &rte_mempool_ops_table.ops[ops_index];
}
/**
* @internal Wrapper for mempool_ops alloc callback.
*
* @param mp
* Pointer to the memory pool.
* @return
* - 0: Success; successfully allocated mempool pool_data.
* - <0: Error; code of alloc function.
*/
int
rte_mempool_ops_alloc(struct rte_mempool *mp);
/**
* @internal Wrapper for mempool_ops dequeue callback.
*
* @param mp
* Pointer to the memory pool.
* @param obj_table
* Pointer to a table of void * pointers (objects).
* @param n
* Number of objects to get.
* @return
* - 0: Success; got n objects.
* - <0: Error; code of dequeue function.
*/
static inline int
rte_mempool_ops_dequeue_bulk(struct rte_mempool *mp,
void **obj_table, unsigned n)
{
struct rte_mempool_ops *ops;
int ret;
rte_mempool_trace_ops_dequeue_bulk(mp, obj_table, n);
ops = rte_mempool_get_ops(mp->ops_index);
ret = ops->dequeue(mp, obj_table, n);
if (ret == 0) {
RTE_MEMPOOL_STAT_ADD(mp, get_common_pool_bulk, 1);
RTE_MEMPOOL_STAT_ADD(mp, get_common_pool_objs, n);
}
return ret;
}
/**
* @internal Wrapper for mempool_ops dequeue_contig_blocks callback.
*
* @param[in] mp
* Pointer to the memory pool.
* @param[out] first_obj_table
* Pointer to a table of void * pointers (first objects).
* @param[in] n
* Number of blocks to get.
* @return
* - 0: Success; got n objects.
* - <0: Error; code of dequeue function.
*/
static inline int
rte_mempool_ops_dequeue_contig_blocks(struct rte_mempool *mp,
void **first_obj_table, unsigned int n)
{
struct rte_mempool_ops *ops;
ops = rte_mempool_get_ops(mp->ops_index);
RTE_ASSERT(ops->dequeue_contig_blocks != NULL);
rte_mempool_trace_ops_dequeue_contig_blocks(mp, first_obj_table, n);
return ops->dequeue_contig_blocks(mp, first_obj_table, n);
}
/**
* @internal wrapper for mempool_ops enqueue callback.
*
* @param mp
* Pointer to the memory pool.
* @param obj_table
* Pointer to a table of void * pointers (objects).
* @param n
* Number of objects to put.
* @return
* - 0: Success; n objects supplied.
* - <0: Error; code of enqueue function.
*/
static inline int
rte_mempool_ops_enqueue_bulk(struct rte_mempool *mp, void * const *obj_table,
unsigned n)
{
struct rte_mempool_ops *ops;
int ret;
RTE_MEMPOOL_STAT_ADD(mp, put_common_pool_bulk, 1);
RTE_MEMPOOL_STAT_ADD(mp, put_common_pool_objs, n);
rte_mempool_trace_ops_enqueue_bulk(mp, obj_table, n);
ops = rte_mempool_get_ops(mp->ops_index);
ret = ops->enqueue(mp, obj_table, n);
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
if (unlikely(ret < 0))
RTE_LOG(CRIT, MEMPOOL, "cannot enqueue %u objects to mempool %s\n",
n, mp->name);
#endif
return ret;
}
/**
* @internal wrapper for mempool_ops get_count callback.
*
* @param mp
* Pointer to the memory pool.
* @return
* The number of available objects in the external pool.
*/
unsigned
rte_mempool_ops_get_count(const struct rte_mempool *mp);
/**
* @internal wrapper for mempool_ops calc_mem_size callback.
* API to calculate size of memory required to store specified number of
* object.
*
* @param[in] mp
* Pointer to the memory pool.
* @param[in] obj_num
* Number of objects.
* @param[in] pg_shift
* LOG2 of the physical pages size. If set to 0, ignore page boundaries.
* @param[out] min_chunk_size
* Location for minimum size of the memory chunk which may be used to
* store memory pool objects.
* @param[out] align
* Location for required memory chunk alignment.
* @return
* Required memory size aligned at page boundary.
*/
ssize_t rte_mempool_ops_calc_mem_size(const struct rte_mempool *mp,
uint32_t obj_num, uint32_t pg_shift,
size_t *min_chunk_size, size_t *align);
/**
* @internal wrapper for mempool_ops populate callback.
*
* Populate memory pool objects using provided memory chunk.
*
* @param[in] mp
* A pointer to the mempool structure.
* @param[in] max_objs
* Maximum number of objects to be populated.
* @param[in] vaddr
* The virtual address of memory that should be used to store objects.
* @param[in] iova
* The IO address
* @param[in] len
* The length of memory in bytes.
* @param[in] obj_cb
* Callback function to be executed for each populated object.
* @param[in] obj_cb_arg
* An opaque pointer passed to the callback function.
* @return
* The number of objects added on success.
* On error, no objects are populated and a negative errno is returned.
*/
int rte_mempool_ops_populate(struct rte_mempool *mp, unsigned int max_objs,
void *vaddr, rte_iova_t iova, size_t len,
rte_mempool_populate_obj_cb_t *obj_cb,
void *obj_cb_arg);
/**
* Wrapper for mempool_ops get_info callback.
*
* @param[in] mp
* Pointer to the memory pool.
* @param[out] info
* Pointer to the rte_mempool_info structure
* @return
* - 0: Success; The mempool driver supports retrieving supplementary
* mempool information
* - -ENOTSUP - doesn't support get_info ops (valid case).
*/
int rte_mempool_ops_get_info(const struct rte_mempool *mp,
struct rte_mempool_info *info);
/**
* @internal wrapper for mempool_ops free callback.
*
* @param mp
* Pointer to the memory pool.
*/
void
rte_mempool_ops_free(struct rte_mempool *mp);
/**
* Set the ops of a mempool.
*
* This can only be done on a mempool that is not populated, i.e. just after
* a call to rte_mempool_create_empty().
*
* @param mp
* Pointer to the memory pool.
* @param name
* Name of the ops structure to use for this mempool.
* @param pool_config
* Opaque data that can be passed by the application to the ops functions.
* @return
* - 0: Success; the mempool is now using the requested ops functions.
* - -EINVAL - Invalid ops struct name provided.
* - -EEXIST - mempool already has an ops struct assigned.
*/
int
rte_mempool_set_ops_byname(struct rte_mempool *mp, const char *name,
void *pool_config);
/**
* Register mempool operations.
*
* @param ops
* Pointer to an ops structure to register.
* @return
* - >=0: Success; return the index of the ops struct in the table.
* - -EINVAL - some missing callbacks while registering ops struct.
* - -ENOSPC - the maximum number of ops structs has been reached.
*/
int rte_mempool_register_ops(const struct rte_mempool_ops *ops);
/**
* Macro to statically register the ops of a mempool handler.
* Note that the rte_mempool_register_ops fails silently here when
* more than RTE_MEMPOOL_MAX_OPS_IDX is registered.
*/
#define RTE_MEMPOOL_REGISTER_OPS(ops) \
RTE_INIT(mp_hdlr_init_##ops) \
{ \
rte_mempool_register_ops(&ops); \
}
/**
* An object callback function for mempool.
*
* Used by rte_mempool_create() and rte_mempool_obj_iter().
*/
typedef void (rte_mempool_obj_cb_t)(struct rte_mempool *mp,
void *opaque, void *obj, unsigned obj_idx);
typedef rte_mempool_obj_cb_t rte_mempool_obj_ctor_t; /* compat */
/**
* A memory callback function for mempool.
*
* Used by rte_mempool_mem_iter().
*/
typedef void (rte_mempool_mem_cb_t)(struct rte_mempool *mp,
void *opaque, struct rte_mempool_memhdr *memhdr,
unsigned mem_idx);
/**
* A mempool constructor callback function.
*
* Arguments are the mempool and the opaque pointer given by the user in
* rte_mempool_create().
*/
typedef void (rte_mempool_ctor_t)(struct rte_mempool *, void *);
/**
* Create a new mempool named *name* in memory.
*
* This function uses ``rte_memzone_reserve()`` to allocate memory. The
* pool contains n elements of elt_size. Its size is set to n.
*
* @param name
* The name of the mempool.
* @param n
* The number of elements in the mempool. The optimum size (in terms of
* memory usage) for a mempool is when n is a power of two minus one:
* n = (2^q - 1).
* @param elt_size
* The size of each element.
* @param cache_size
* If cache_size is non-zero, the rte_mempool library will try to
* limit the accesses to the common lockless pool, by maintaining a
* per-lcore object cache. This argument must be lower or equal to
* RTE_MEMPOOL_CACHE_MAX_SIZE and n / 1.5. It is advised to choose
* cache_size to have "n modulo cache_size == 0": if this is
* not the case, some elements will always stay in the pool and will
* never be used. The access to the per-lcore table is of course
* faster than the multi-producer/consumer pool. The cache can be
* disabled if the cache_size argument is set to 0; it can be useful to
* avoid losing objects in cache.
* @param private_data_size
* The size of the private data appended after the mempool
* structure. This is useful for storing some private data after the
* mempool structure, as is done for rte_mbuf_pool for example.
* @param mp_init
* A function pointer that is called for initialization of the pool,
* before object initialization. The user can initialize the private
* data in this function if needed. This parameter can be NULL if
* not needed.
* @param mp_init_arg
* An opaque pointer to data that can be used in the mempool
* constructor function.
* @param obj_init
* A function pointer that is called for each object at
* initialization of the pool. The user can set some meta data in
* objects if needed. This parameter can be NULL if not needed.
* The obj_init() function takes the mempool pointer, the init_arg,
* the object pointer and the object number as parameters.
* @param obj_init_arg
* An opaque pointer to data that can be used as an argument for
* each call to the object constructor function.
* @param socket_id
* The *socket_id* argument is the socket identifier in the case of
* NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
* constraint for the reserved zone.
* @param flags
* The *flags* arguments is an OR of following flags:
* - RTE_MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread
* between channels in RAM: the pool allocator will add padding
* between objects depending on the hardware configuration. See
* Memory alignment constraints for details. If this flag is set,
* the allocator will just align them to a cache line.
* - RTE_MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are
* cache-aligned. This flag removes this constraint, and no
* padding will be present between objects. This flag implies
* RTE_MEMPOOL_F_NO_SPREAD.
* - RTE_MEMPOOL_F_SP_PUT: If this flag is set, the default behavior
* when using rte_mempool_put() or rte_mempool_put_bulk() is
* "single-producer". Otherwise, it is "multi-producers".
* - RTE_MEMPOOL_F_SC_GET: If this flag is set, the default behavior
* when using rte_mempool_get() or rte_mempool_get_bulk() is
* "single-consumer". Otherwise, it is "multi-consumers".
* - RTE_MEMPOOL_F_NO_IOVA_CONTIG: If set, allocated objects won't
* necessarily be contiguous in IO memory.
* @return
* The pointer to the new allocated mempool, on success. NULL on error
* with rte_errno set appropriately. Possible rte_errno values include:
* - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
* - EINVAL - cache size provided is too large or an unknown flag was passed
* - ENOSPC - the maximum number of memzones has already been allocated
* - EEXIST - a memzone with the same name already exists
* - ENOMEM - no appropriate memory area found in which to create memzone
*/
struct rte_mempool *
rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
unsigned cache_size, unsigned private_data_size,
rte_mempool_ctor_t *mp_init, void *mp_init_arg,
rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
int socket_id, unsigned flags);
/**
* Create an empty mempool
*
* The mempool is allocated and initialized, but it is not populated: no
* memory is allocated for the mempool elements. The user has to call
* rte_mempool_populate_*() to add memory chunks to the pool. Once
* populated, the user may also want to initialize each object with
* rte_mempool_obj_iter().
*
* @param name
* The name of the mempool.
* @param n
* The maximum number of elements that can be added in the mempool.
* The optimum size (in terms of memory usage) for a mempool is when n
* is a power of two minus one: n = (2^q - 1).
* @param elt_size
* The size of each element.
* @param cache_size
* Size of the cache. See rte_mempool_create() for details.
* @param private_data_size
* The size of the private data appended after the mempool
* structure. This is useful for storing some private data after the
* mempool structure, as is done for rte_mbuf_pool for example.
* @param socket_id
* The *socket_id* argument is the socket identifier in the case of
* NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
* constraint for the reserved zone.
* @param flags
* Flags controlling the behavior of the mempool. See
* rte_mempool_create() for details.
* @return
* The pointer to the new allocated mempool, on success. NULL on error
* with rte_errno set appropriately. See rte_mempool_create() for details.
*/
struct rte_mempool *
rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
unsigned cache_size, unsigned private_data_size,
int socket_id, unsigned flags);
/**
* Free a mempool
*
* Unlink the mempool from global list, free the memory chunks, and all
* memory referenced by the mempool. The objects must not be used by
* other cores as they will be freed.
*
* @param mp
* A pointer to the mempool structure.
* If NULL then, the function does nothing.
*/
void
rte_mempool_free(struct rte_mempool *mp);
/**
* Add physically contiguous memory for objects in the pool at init
*
* Add a virtually and physically contiguous memory chunk in the pool
* where objects can be instantiated.
*
* If the given IO address is unknown (iova = RTE_BAD_IOVA),
* the chunk doesn't need to be physically contiguous (only virtually),
* and allocated objects may span two pages.
*
* @param mp
* A pointer to the mempool structure.
* @param vaddr
* The virtual address of memory that should be used to store objects.
* @param iova
* The IO address
* @param len
* The length of memory in bytes.
* @param free_cb
* The callback used to free this chunk when destroying the mempool.
* @param opaque
* An opaque argument passed to free_cb.
* @return
* The number of objects added on success (strictly positive).
* On error, the chunk is not added in the memory list of the
* mempool the following code is returned:
* (0): not enough room in chunk for one object.
* (-ENOSPC): mempool is already populated.
* (-ENOMEM): allocation failure.
*/
int rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
void *opaque);
/**
* Add virtually contiguous memory for objects in the pool at init
*
* Add a virtually contiguous memory chunk in the pool where objects can
* be instantiated.
*
* @param mp
* A pointer to the mempool structure.
* @param addr
* The virtual address of memory that should be used to store objects.
* @param len
* The length of memory in bytes.
* @param pg_sz
* The size of memory pages in this virtual area.
* @param free_cb
* The callback used to free this chunk when destroying the mempool.
* @param opaque
* An opaque argument passed to free_cb.
* @return
* The number of objects added on success (strictly positive).
* On error, the chunk is not added in the memory list of the
* mempool the following code is returned:
* (0): not enough room in chunk for one object.
* (-ENOSPC): mempool is already populated.
* (-ENOMEM): allocation failure.
*/
int
rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
void *opaque);
/**
* Add memory for objects in the pool at init
*
* This is the default function used by rte_mempool_create() to populate
* the mempool. It adds memory allocated using rte_memzone_reserve().
*
* @param mp
* A pointer to the mempool structure.
* @return
* The number of objects added on success.
* On error, the chunk is not added in the memory list of the
* mempool and a negative errno is returned.
*/
int rte_mempool_populate_default(struct rte_mempool *mp);
/**
* Add memory from anonymous mapping for objects in the pool at init
*
* This function mmap an anonymous memory zone that is locked in
* memory to store the objects of the mempool.
*
* @param mp
* A pointer to the mempool structure.
* @return
* The number of objects added on success.
* On error, 0 is returned, rte_errno is set, and the chunk is not added in
* the memory list of the mempool.
*/
int rte_mempool_populate_anon(struct rte_mempool *mp);
/**
* Call a function for each mempool element
*
* Iterate across all objects attached to a rte_mempool and call the
* callback function on it.
*
* @param mp
* A pointer to an initialized mempool.
* @param obj_cb
* A function pointer that is called for each object.
* @param obj_cb_arg
* An opaque pointer passed to the callback function.
* @return
* Number of objects iterated.
*/
uint32_t rte_mempool_obj_iter(struct rte_mempool *mp,
rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg);
/**
* Call a function for each mempool memory chunk
*
* Iterate across all memory chunks attached to a rte_mempool and call
* the callback function on it.
*
* @param mp
* A pointer to an initialized mempool.
* @param mem_cb
* A function pointer that is called for each memory chunk.
* @param mem_cb_arg
* An opaque pointer passed to the callback function.
* @return
* Number of memory chunks iterated.
*/
uint32_t rte_mempool_mem_iter(struct rte_mempool *mp,
rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg);
/**
* Dump the status of the mempool to a file.
*
* @param f
* A pointer to a file for output
* @param mp
* A pointer to the mempool structure.
*/
void rte_mempool_dump(FILE *f, struct rte_mempool *mp);
/**
* Create a user-owned mempool cache.
*
* This can be used by unregistered non-EAL threads to enable caching when they
* interact with a mempool.
*
* @param size
* The size of the mempool cache. See rte_mempool_create()'s cache_size
* parameter description for more information. The same limits and
* considerations apply here too.
* @param socket_id
* The socket identifier in the case of NUMA. The value can be
* SOCKET_ID_ANY if there is no NUMA constraint for the reserved zone.
*/
struct rte_mempool_cache *
rte_mempool_cache_create(uint32_t size, int socket_id);
/**
* Free a user-owned mempool cache.
*
* @param cache
* A pointer to the mempool cache.
*/
void
rte_mempool_cache_free(struct rte_mempool_cache *cache);
/**
* Get a pointer to the per-lcore default mempool cache.
*
* @param mp
* A pointer to the mempool structure.
* @param lcore_id
* The logical core id.
* @return
* A pointer to the mempool cache or NULL if disabled or unregistered non-EAL
* thread.
*/
static __rte_always_inline struct rte_mempool_cache *
rte_mempool_default_cache(struct rte_mempool *mp, unsigned lcore_id)
{
if (mp->cache_size == 0)
return NULL;
if (lcore_id >= RTE_MAX_LCORE)
return NULL;
rte_mempool_trace_default_cache(mp, lcore_id,
&mp->local_cache[lcore_id]);
return &mp->local_cache[lcore_id];
}
/**
* Flush a user-owned mempool cache to the specified mempool.
*
* @param cache
* A pointer to the mempool cache.
* @param mp
* A pointer to the mempool.
*/
static __rte_always_inline void
rte_mempool_cache_flush(struct rte_mempool_cache *cache,
struct rte_mempool *mp)
{
if (cache == NULL)
cache = rte_mempool_default_cache(mp, rte_lcore_id());
if (cache == NULL || cache->len == 0)
return;
rte_mempool_trace_cache_flush(cache, mp);
rte_mempool_ops_enqueue_bulk(mp, cache->objs, cache->len);
cache->len = 0;
}
/**
* @internal Put several objects back in the mempool; used internally.
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* @param n
* The number of objects to store back in the mempool, must be strictly
* positive.
* @param cache
* A pointer to a mempool cache structure. May be NULL if not needed.
*/
static __rte_always_inline void
rte_mempool_do_generic_put(struct rte_mempool *mp, void * const *obj_table,
unsigned int n, struct rte_mempool_cache *cache)
{
void **cache_objs;
/* No cache provided */
if (unlikely(cache == NULL))
goto driver_enqueue;
/* increment stat now, adding in mempool always success */
RTE_MEMPOOL_CACHE_STAT_ADD(cache, put_bulk, 1);
RTE_MEMPOOL_CACHE_STAT_ADD(cache, put_objs, n);
/* The request itself is too big for the cache */
if (unlikely(n > cache->flushthresh))
goto driver_enqueue_stats_incremented;
/*
* The cache follows the following algorithm:
* 1. If the objects cannot be added to the cache without crossing
* the flush threshold, flush the cache to the backend.
* 2. Add the objects to the cache.
*/
if (cache->len + n <= cache->flushthresh) {
cache_objs = &cache->objs[cache->len];
cache->len += n;
} else {
cache_objs = &cache->objs[0];
rte_mempool_ops_enqueue_bulk(mp, cache_objs, cache->len);
cache->len = n;
}
/* Add the objects to the cache. */
rte_memcpy(cache_objs, obj_table, sizeof(void *) * n);
return;
driver_enqueue:
/* increment stat now, adding in mempool always success */
RTE_MEMPOOL_STAT_ADD(mp, put_bulk, 1);
RTE_MEMPOOL_STAT_ADD(mp, put_objs, n);
driver_enqueue_stats_incremented:
/* push objects to the backend */
rte_mempool_ops_enqueue_bulk(mp, obj_table, n);
}
/**
* Put several objects back in the mempool.
*
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* @param n
* The number of objects to add in the mempool from the obj_table.
* @param cache
* A pointer to a mempool cache structure. May be NULL if not needed.
*/
static __rte_always_inline void
rte_mempool_generic_put(struct rte_mempool *mp, void * const *obj_table,
unsigned int n, struct rte_mempool_cache *cache)
{
rte_mempool_trace_generic_put(mp, obj_table, n, cache);
RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table, n, 0);
rte_mempool_do_generic_put(mp, obj_table, n, cache);
}
/**
* Put several objects back in the mempool.
*
* This function calls the multi-producer or the single-producer
* version depending on the default behavior that was specified at
* mempool creation time (see flags).
*
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* @param n
* The number of objects to add in the mempool from obj_table.
*/
static __rte_always_inline void
rte_mempool_put_bulk(struct rte_mempool *mp, void * const *obj_table,
unsigned int n)
{
struct rte_mempool_cache *cache;
cache = rte_mempool_default_cache(mp, rte_lcore_id());
rte_mempool_trace_put_bulk(mp, obj_table, n, cache);
rte_mempool_generic_put(mp, obj_table, n, cache);
}
/**
* Put one object back in the mempool.
*
* This function calls the multi-producer or the single-producer
* version depending on the default behavior that was specified at
* mempool creation time (see flags).
*
* @param mp
* A pointer to the mempool structure.
* @param obj
* A pointer to the object to be added.
*/
static __rte_always_inline void
rte_mempool_put(struct rte_mempool *mp, void *obj)
{
rte_mempool_put_bulk(mp, &obj, 1);
}
/**
* @internal Get several objects from the mempool; used internally.
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* @param n
* The number of objects to get, must be strictly positive.
* @param cache
* A pointer to a mempool cache structure. May be NULL if not needed.
* @return
* - 0: Success.
* - <0: Error; code of driver dequeue function.
*/
static __rte_always_inline int
rte_mempool_do_generic_get(struct rte_mempool *mp, void **obj_table,
unsigned int n, struct rte_mempool_cache *cache)
{
int ret;
unsigned int remaining = n;
uint32_t index, len;
void **cache_objs;
/* No cache provided */
if (unlikely(cache == NULL))
goto driver_dequeue;
/* Use the cache as much as we have to return hot objects first */
len = RTE_MIN(remaining, cache->len);
cache_objs = &cache->objs[cache->len];
cache->len -= len;
remaining -= len;
for (index = 0; index < len; index++)
*obj_table++ = *--cache_objs;
if (remaining == 0) {
/* The entire request is satisfied from the cache. */
RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_bulk, 1);
RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_objs, n);
return 0;
}
/* if dequeue below would overflow mem allocated for cache */
if (unlikely(remaining > RTE_MEMPOOL_CACHE_MAX_SIZE))
goto driver_dequeue;
/* Fill the cache from the backend; fetch size + remaining objects. */
ret = rte_mempool_ops_dequeue_bulk(mp, cache->objs,
cache->size + remaining);
if (unlikely(ret < 0)) {
/*
* We are buffer constrained, and not able to allocate
* cache + remaining.
* Do not fill the cache, just satisfy the remaining part of
* the request directly from the backend.
*/
goto driver_dequeue;
}
/* Satisfy the remaining part of the request from the filled cache. */
cache_objs = &cache->objs[cache->size + remaining];
for (index = 0; index < remaining; index++)
*obj_table++ = *--cache_objs;
cache->len = cache->size;
RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_bulk, 1);
RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_objs, n);
return 0;
driver_dequeue:
/* Get remaining objects directly from the backend. */
ret = rte_mempool_ops_dequeue_bulk(mp, obj_table, remaining);
if (ret < 0) {
if (likely(cache != NULL)) {
cache->len = n - remaining;
/*
* No further action is required to roll the first part
* of the request back into the cache, as objects in
* the cache are intact.
*/
}
RTE_MEMPOOL_STAT_ADD(mp, get_fail_bulk, 1);
RTE_MEMPOOL_STAT_ADD(mp, get_fail_objs, n);
} else {
if (likely(cache != NULL)) {
RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_bulk, 1);
RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_objs, n);
} else {
RTE_MEMPOOL_STAT_ADD(mp, get_success_bulk, 1);
RTE_MEMPOOL_STAT_ADD(mp, get_success_objs, n);
}
}
return ret;
}
/**
* Get several objects from the mempool.
*
* If cache is enabled, objects will be retrieved first from cache,
* subsequently from the common pool. Note that it can return -ENOENT when
* the local cache and common pool are empty, even if cache from other
* lcores are full.
*
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects) that will be filled.
* @param n
* The number of objects to get from mempool to obj_table.
* @param cache
* A pointer to a mempool cache structure. May be NULL if not needed.
* @return
* - 0: Success; objects taken.
* - -ENOENT: Not enough entries in the mempool; no object is retrieved.
*/
static __rte_always_inline int
rte_mempool_generic_get(struct rte_mempool *mp, void **obj_table,
unsigned int n, struct rte_mempool_cache *cache)
{
int ret;
ret = rte_mempool_do_generic_get(mp, obj_table, n, cache);
if (ret == 0)
RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table, n, 1);
rte_mempool_trace_generic_get(mp, obj_table, n, cache);
return ret;
}
/**
* Get several objects from the mempool.
*
* This function calls the multi-consumers or the single-consumer
* version, depending on the default behaviour that was specified at
* mempool creation time (see flags).
*
* If cache is enabled, objects will be retrieved first from cache,
* subsequently from the common pool. Note that it can return -ENOENT when
* the local cache and common pool are empty, even if cache from other
* lcores are full.
*
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects) that will be filled.
* @param n
* The number of objects to get from the mempool to obj_table.
* @return
* - 0: Success; objects taken
* - -ENOENT: Not enough entries in the mempool; no object is retrieved.
*/
static __rte_always_inline int
rte_mempool_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned int n)
{
struct rte_mempool_cache *cache;
cache = rte_mempool_default_cache(mp, rte_lcore_id());
rte_mempool_trace_get_bulk(mp, obj_table, n, cache);
return rte_mempool_generic_get(mp, obj_table, n, cache);
}
/**
* Get one object from the mempool.
*
* This function calls the multi-consumers or the single-consumer
* version, depending on the default behavior that was specified at
* mempool creation (see flags).
*
* If cache is enabled, objects will be retrieved first from cache,
* subsequently from the common pool. Note that it can return -ENOENT when
* the local cache and common pool are empty, even if cache from other
* lcores are full.
*
* @param mp
* A pointer to the mempool structure.
* @param obj_p
* A pointer to a void * pointer (object) that will be filled.
* @return
* - 0: Success; objects taken.
* - -ENOENT: Not enough entries in the mempool; no object is retrieved.
*/
static __rte_always_inline int
rte_mempool_get(struct rte_mempool *mp, void **obj_p)
{
return rte_mempool_get_bulk(mp, obj_p, 1);
}
/**
* Get a contiguous blocks of objects from the mempool.
*
* If cache is enabled, consider to flush it first, to reuse objects
* as soon as possible.
*
* The application should check that the driver supports the operation
* by calling rte_mempool_ops_get_info() and checking that `contig_block_size`
* is not zero.
*
* @param mp
* A pointer to the mempool structure.
* @param first_obj_table
* A pointer to a pointer to the first object in each block.
* @param n
* The number of blocks to get from mempool.
* @return
* - 0: Success; blocks taken.
* - -ENOBUFS: Not enough entries in the mempool; no object is retrieved.
* - -EOPNOTSUPP: The mempool driver does not support block dequeue
*/
static __rte_always_inline int
rte_mempool_get_contig_blocks(struct rte_mempool *mp,
void **first_obj_table, unsigned int n)
{
int ret;
ret = rte_mempool_ops_dequeue_contig_blocks(mp, first_obj_table, n);
if (ret == 0) {
RTE_MEMPOOL_STAT_ADD(mp, get_success_bulk, 1);
RTE_MEMPOOL_STAT_ADD(mp, get_success_blks, n);
RTE_MEMPOOL_CONTIG_BLOCKS_CHECK_COOKIES(mp, first_obj_table, n,
1);
} else {
RTE_MEMPOOL_STAT_ADD(mp, get_fail_bulk, 1);
RTE_MEMPOOL_STAT_ADD(mp, get_fail_blks, n);
}
rte_mempool_trace_get_contig_blocks(mp, first_obj_table, n);
return ret;
}
/**
* Return the number of entries in the mempool.
*
* When cache is enabled, this function has to browse the length of
* all lcores, so it should not be used in a data path, but only for
* debug purposes. User-owned mempool caches are not accounted for.
*
* @param mp
* A pointer to the mempool structure.
* @return
* The number of entries in the mempool.
*/
unsigned int rte_mempool_avail_count(const struct rte_mempool *mp);
/**
* Return the number of elements which have been allocated from the mempool
*
* When cache is enabled, this function has to browse the length of
* all lcores, so it should not be used in a data path, but only for
* debug purposes.
*
* @param mp
* A pointer to the mempool structure.
* @return
* The number of free entries in the mempool.
*/
unsigned int
rte_mempool_in_use_count(const struct rte_mempool *mp);
/**
* Test if the mempool is full.
*
* When cache is enabled, this function has to browse the length of all
* lcores, so it should not be used in a data path, but only for debug
* purposes. User-owned mempool caches are not accounted for.
*
* @param mp
* A pointer to the mempool structure.
* @return
* - 1: The mempool is full.
* - 0: The mempool is not full.
*/
static inline int
rte_mempool_full(const struct rte_mempool *mp)
{
return rte_mempool_avail_count(mp) == mp->size;
}
/**
* Test if the mempool is empty.
*
* When cache is enabled, this function has to browse the length of all
* lcores, so it should not be used in a data path, but only for debug
* purposes. User-owned mempool caches are not accounted for.
*
* @param mp
* A pointer to the mempool structure.
* @return
* - 1: The mempool is empty.
* - 0: The mempool is not empty.
*/
static inline int
rte_mempool_empty(const struct rte_mempool *mp)
{
return rte_mempool_avail_count(mp) == 0;
}
/**
* Return the IO address of elt, which is an element of the pool mp.
*
* @param elt
* A pointer (virtual address) to the element of the pool.
* @return
* The IO address of the elt element.
* If the mempool was created with RTE_MEMPOOL_F_NO_IOVA_CONTIG, the
* returned value is RTE_BAD_IOVA.
*/
static inline rte_iova_t
rte_mempool_virt2iova(const void *elt)
{
const struct rte_mempool_objhdr *hdr;
hdr = (const struct rte_mempool_objhdr *)RTE_PTR_SUB(elt,
sizeof(*hdr));
return hdr->iova;
}
/**
* Check the consistency of mempool objects.
*
* Verify the coherency of fields in the mempool structure. Also check
* that the cookies of mempool objects (even the ones that are not
* present in pool) have a correct value. If not, a panic will occur.
*
* @param mp
* A pointer to the mempool structure.
*/
void rte_mempool_audit(struct rte_mempool *mp);
/**
* Return a pointer to the private data in an mempool structure.
*
* @param mp
* A pointer to the mempool structure.
* @return
* A pointer to the private data.
*/
static inline void *rte_mempool_get_priv(struct rte_mempool *mp)
{
return (char *)mp +
RTE_MEMPOOL_HEADER_SIZE(mp, mp->cache_size);
}
/**
* Dump the status of all mempools on the console
*
* @param f
* A pointer to a file for output
*/
void rte_mempool_list_dump(FILE *f);
/**
* Search a mempool from its name
*
* @param name
* The name of the mempool.
* @return
* The pointer to the mempool matching the name, or NULL if not found.
* NULL on error
* with rte_errno set appropriately. Possible rte_errno values include:
* - ENOENT - required entry not available to return.
*
*/
struct rte_mempool *rte_mempool_lookup(const char *name);
/**
* Get the header, trailer and total size of a mempool element.
*
* Given a desired size of the mempool element and mempool flags,
* calculates header, trailer, body and total sizes of the mempool object.
*
* @param elt_size
* The size of each element, without header and trailer.
* @param flags
* The flags used for the mempool creation.
* Consult rte_mempool_create() for more information about possible values.
* The size of each element.
* @param sz
* The calculated detailed size the mempool object. May be NULL.
* @return
* Total size of the mempool object.
*/
uint32_t rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
struct rte_mempool_objsz *sz);
/**
* Walk list of all memory pools
*
* @param func
* Iterator function
* @param arg
* Argument passed to iterator
*/
void rte_mempool_walk(void (*func)(struct rte_mempool *, void *arg),
void *arg);
/**
* @internal Get page size used for mempool object allocation.
* This function is internal to mempool library and mempool drivers.
*/
int
rte_mempool_get_page_size(struct rte_mempool *mp, size_t *pg_sz);
/**
* Mempool event type.
* @internal
*/
enum rte_mempool_event {
/** Occurs after a mempool is fully populated. */
RTE_MEMPOOL_EVENT_READY = 0,
/** Occurs before the destruction of a mempool begins. */
RTE_MEMPOOL_EVENT_DESTROY = 1,
};
/**
* @internal
* Mempool event callback.
*
* rte_mempool_event_callback_register() may be called from within the callback,
* but the callbacks registered this way will not be invoked for the same event.
* rte_mempool_event_callback_unregister() may only be safely called
* to remove the running callback.
*/
typedef void (rte_mempool_event_callback)(
enum rte_mempool_event event,
struct rte_mempool *mp,
void *user_data);
/**
* @internal
* Register a callback function invoked on mempool life cycle event.
* The function will be invoked in the process
* that performs an action which triggers the callback.
* Registration is process-private,
* i.e. each process must manage callbacks on its own if needed.
*
* @param func
* Callback function.
* @param user_data
* User data.
*
* @return
* 0 on success, negative on failure and rte_errno is set.
*/
__rte_internal
int
rte_mempool_event_callback_register(rte_mempool_event_callback *func,
void *user_data);
/**
* @internal
* Unregister a callback added with rte_mempool_event_callback_register().
* @p func and @p user_data must exactly match registration parameters.
*
* @param func
* Callback function.
* @param user_data
* User data.
*
* @return
* 0 on success, negative on failure and rte_errno is set.
*/
__rte_internal
int
rte_mempool_event_callback_unregister(rte_mempool_event_callback *func,
void *user_data);
#ifdef __cplusplus
}
#endif
#endif /* _RTE_MEMPOOL_H_ */