f-stack/dpdk/lib/gro/gro_vxlan_udp4.c

545 lines
15 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Inspur Corporation
*/
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_ethdev.h>
#include <rte_udp.h>
#include "gro_vxlan_udp4.h"
void *
gro_vxlan_udp4_tbl_create(uint16_t socket_id,
uint16_t max_flow_num,
uint16_t max_item_per_flow)
{
struct gro_vxlan_udp4_tbl *tbl;
size_t size;
uint32_t entries_num, i;
entries_num = max_flow_num * max_item_per_flow;
entries_num = RTE_MIN(entries_num, GRO_VXLAN_UDP4_TBL_MAX_ITEM_NUM);
if (entries_num == 0)
return NULL;
tbl = rte_zmalloc_socket(__func__,
sizeof(struct gro_vxlan_udp4_tbl),
RTE_CACHE_LINE_SIZE,
socket_id);
if (tbl == NULL)
return NULL;
size = sizeof(struct gro_vxlan_udp4_item) * entries_num;
tbl->items = rte_zmalloc_socket(__func__,
size,
RTE_CACHE_LINE_SIZE,
socket_id);
if (tbl->items == NULL) {
rte_free(tbl);
return NULL;
}
tbl->max_item_num = entries_num;
size = sizeof(struct gro_vxlan_udp4_flow) * entries_num;
tbl->flows = rte_zmalloc_socket(__func__,
size,
RTE_CACHE_LINE_SIZE,
socket_id);
if (tbl->flows == NULL) {
rte_free(tbl->items);
rte_free(tbl);
return NULL;
}
for (i = 0; i < entries_num; i++)
tbl->flows[i].start_index = INVALID_ARRAY_INDEX;
tbl->max_flow_num = entries_num;
return tbl;
}
void
gro_vxlan_udp4_tbl_destroy(void *tbl)
{
struct gro_vxlan_udp4_tbl *vxlan_tbl = tbl;
if (vxlan_tbl) {
rte_free(vxlan_tbl->items);
rte_free(vxlan_tbl->flows);
}
rte_free(vxlan_tbl);
}
static inline uint32_t
find_an_empty_item(struct gro_vxlan_udp4_tbl *tbl)
{
uint32_t max_item_num = tbl->max_item_num, i;
for (i = 0; i < max_item_num; i++)
if (tbl->items[i].inner_item.firstseg == NULL)
return i;
return INVALID_ARRAY_INDEX;
}
static inline uint32_t
find_an_empty_flow(struct gro_vxlan_udp4_tbl *tbl)
{
uint32_t max_flow_num = tbl->max_flow_num, i;
for (i = 0; i < max_flow_num; i++)
if (tbl->flows[i].start_index == INVALID_ARRAY_INDEX)
return i;
return INVALID_ARRAY_INDEX;
}
static inline uint32_t
insert_new_item(struct gro_vxlan_udp4_tbl *tbl,
struct rte_mbuf *pkt,
uint64_t start_time,
uint32_t prev_idx,
uint16_t frag_offset,
uint8_t is_last_frag)
{
uint32_t item_idx;
item_idx = find_an_empty_item(tbl);
if (unlikely(item_idx == INVALID_ARRAY_INDEX))
return INVALID_ARRAY_INDEX;
tbl->items[item_idx].inner_item.firstseg = pkt;
tbl->items[item_idx].inner_item.lastseg = rte_pktmbuf_lastseg(pkt);
tbl->items[item_idx].inner_item.start_time = start_time;
tbl->items[item_idx].inner_item.next_pkt_idx = INVALID_ARRAY_INDEX;
tbl->items[item_idx].inner_item.frag_offset = frag_offset;
tbl->items[item_idx].inner_item.is_last_frag = is_last_frag;
tbl->items[item_idx].inner_item.nb_merged = 1;
tbl->item_num++;
/* If the previous packet exists, chain the new one with it. */
if (prev_idx != INVALID_ARRAY_INDEX) {
tbl->items[item_idx].inner_item.next_pkt_idx =
tbl->items[prev_idx].inner_item.next_pkt_idx;
tbl->items[prev_idx].inner_item.next_pkt_idx = item_idx;
}
return item_idx;
}
static inline uint32_t
delete_item(struct gro_vxlan_udp4_tbl *tbl,
uint32_t item_idx,
uint32_t prev_item_idx)
{
uint32_t next_idx = tbl->items[item_idx].inner_item.next_pkt_idx;
/* NULL indicates an empty item. */
tbl->items[item_idx].inner_item.firstseg = NULL;
tbl->item_num--;
if (prev_item_idx != INVALID_ARRAY_INDEX)
tbl->items[prev_item_idx].inner_item.next_pkt_idx = next_idx;
return next_idx;
}
static inline uint32_t
insert_new_flow(struct gro_vxlan_udp4_tbl *tbl,
struct vxlan_udp4_flow_key *src,
uint32_t item_idx)
{
struct vxlan_udp4_flow_key *dst;
uint32_t flow_idx;
flow_idx = find_an_empty_flow(tbl);
if (unlikely(flow_idx == INVALID_ARRAY_INDEX))
return INVALID_ARRAY_INDEX;
dst = &(tbl->flows[flow_idx].key);
rte_ether_addr_copy(&(src->inner_key.eth_saddr),
&(dst->inner_key.eth_saddr));
rte_ether_addr_copy(&(src->inner_key.eth_daddr),
&(dst->inner_key.eth_daddr));
dst->inner_key.ip_src_addr = src->inner_key.ip_src_addr;
dst->inner_key.ip_dst_addr = src->inner_key.ip_dst_addr;
dst->inner_key.ip_id = src->inner_key.ip_id;
dst->vxlan_hdr.vx_flags = src->vxlan_hdr.vx_flags;
dst->vxlan_hdr.vx_vni = src->vxlan_hdr.vx_vni;
rte_ether_addr_copy(&(src->outer_eth_saddr), &(dst->outer_eth_saddr));
rte_ether_addr_copy(&(src->outer_eth_daddr), &(dst->outer_eth_daddr));
dst->outer_ip_src_addr = src->outer_ip_src_addr;
dst->outer_ip_dst_addr = src->outer_ip_dst_addr;
dst->outer_dst_port = src->outer_dst_port;
tbl->flows[flow_idx].start_index = item_idx;
tbl->flow_num++;
return flow_idx;
}
static inline int
is_same_vxlan_udp4_flow(struct vxlan_udp4_flow_key k1,
struct vxlan_udp4_flow_key k2)
{
/* For VxLAN packet, outer udp src port is calculated from
* inner packet RSS hash, udp src port of the first UDP
* fragment is different from one of other UDP fragments
* even if they are same flow, so we have to skip outer udp
* src port comparison here.
*/
return (rte_is_same_ether_addr(&k1.outer_eth_saddr,
&k2.outer_eth_saddr) &&
rte_is_same_ether_addr(&k1.outer_eth_daddr,
&k2.outer_eth_daddr) &&
(k1.outer_ip_src_addr == k2.outer_ip_src_addr) &&
(k1.outer_ip_dst_addr == k2.outer_ip_dst_addr) &&
(k1.outer_dst_port == k2.outer_dst_port) &&
(k1.vxlan_hdr.vx_flags == k2.vxlan_hdr.vx_flags) &&
(k1.vxlan_hdr.vx_vni == k2.vxlan_hdr.vx_vni) &&
is_same_udp4_flow(k1.inner_key, k2.inner_key));
}
static inline int
udp4_check_vxlan_neighbor(struct gro_vxlan_udp4_item *item,
uint16_t frag_offset,
uint16_t ip_dl)
{
struct rte_mbuf *pkt = item->inner_item.firstseg;
int cmp;
uint16_t l2_offset;
int ret = 0;
/* Note: if outer DF bit is set, i.e outer_is_atomic is 0,
* we needn't compare outer_ip_id because they are same,
* for the case outer_is_atomic is 1, we also have no way
* to compare outer_ip_id because the difference between
* outer_ip_ids of two received packets isn't always +/-1.
* So skip outer_ip_id comparison here.
*/
l2_offset = pkt->outer_l2_len + pkt->outer_l3_len;
cmp = udp4_check_neighbor(&item->inner_item, frag_offset, ip_dl,
l2_offset);
if (cmp > 0)
/* Append the new packet. */
ret = 1;
else if (cmp < 0)
/* Prepend the new packet. */
ret = -1;
return ret;
}
static inline int
merge_two_vxlan_udp4_packets(struct gro_vxlan_udp4_item *item,
struct rte_mbuf *pkt,
int cmp,
uint16_t frag_offset,
uint8_t is_last_frag)
{
if (merge_two_udp4_packets(&item->inner_item, pkt, cmp, frag_offset,
is_last_frag,
pkt->outer_l2_len + pkt->outer_l3_len)) {
return 1;
}
return 0;
}
static inline void
update_vxlan_header(struct gro_vxlan_udp4_item *item)
{
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_udp_hdr *udp_hdr;
struct rte_mbuf *pkt = item->inner_item.firstseg;
uint16_t len;
uint16_t frag_offset;
/* Update the outer IPv4 header. */
len = pkt->pkt_len - pkt->outer_l2_len;
ipv4_hdr = (struct rte_ipv4_hdr *)(rte_pktmbuf_mtod(pkt, char *) +
pkt->outer_l2_len);
ipv4_hdr->total_length = rte_cpu_to_be_16(len);
/* Update the outer UDP header. */
len -= pkt->outer_l3_len;
udp_hdr = (struct rte_udp_hdr *)((char *)ipv4_hdr + pkt->outer_l3_len);
udp_hdr->dgram_len = rte_cpu_to_be_16(len);
/* Update the inner IPv4 header. */
len -= pkt->l2_len;
ipv4_hdr = (struct rte_ipv4_hdr *)((char *)udp_hdr + pkt->l2_len);
ipv4_hdr->total_length = rte_cpu_to_be_16(len);
/* Clear MF bit if it is last fragment */
if (item->inner_item.is_last_frag) {
frag_offset = rte_be_to_cpu_16(ipv4_hdr->fragment_offset);
ipv4_hdr->fragment_offset =
rte_cpu_to_be_16(frag_offset & ~RTE_IPV4_HDR_MF_FLAG);
}
}
int32_t
gro_vxlan_udp4_reassemble(struct rte_mbuf *pkt,
struct gro_vxlan_udp4_tbl *tbl,
uint64_t start_time)
{
struct rte_ether_hdr *outer_eth_hdr, *eth_hdr;
struct rte_ipv4_hdr *outer_ipv4_hdr, *ipv4_hdr;
struct rte_udp_hdr *udp_hdr;
struct rte_vxlan_hdr *vxlan_hdr;
uint16_t frag_offset;
uint8_t is_last_frag;
int16_t ip_dl;
uint16_t ip_id;
struct vxlan_udp4_flow_key key;
uint32_t cur_idx, prev_idx, item_idx;
uint32_t i, max_flow_num, remaining_flow_num;
int cmp;
uint16_t hdr_len;
uint8_t find;
outer_eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
outer_ipv4_hdr = (struct rte_ipv4_hdr *)((char *)outer_eth_hdr +
pkt->outer_l2_len);
udp_hdr = (struct rte_udp_hdr *)((char *)outer_ipv4_hdr +
pkt->outer_l3_len);
vxlan_hdr = (struct rte_vxlan_hdr *)((char *)udp_hdr +
sizeof(struct rte_udp_hdr));
eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_hdr +
sizeof(struct rte_vxlan_hdr));
/* l2_len = outer udp hdr len + vxlan hdr len + inner l2 len */
ipv4_hdr = (struct rte_ipv4_hdr *)((char *)udp_hdr + pkt->l2_len);
/*
* Don't process the packet which has non-fragment inner IP.
*/
if (!is_ipv4_fragment(ipv4_hdr))
return -1;
hdr_len = pkt->outer_l2_len + pkt->outer_l3_len + pkt->l2_len +
pkt->l3_len;
/*
* Don't process the packet whose payload length is less than or
* equal to 0.
*/
if (pkt->pkt_len <= hdr_len)
return -1;
ip_dl = pkt->pkt_len - hdr_len;
ip_id = rte_be_to_cpu_16(ipv4_hdr->packet_id);
frag_offset = rte_be_to_cpu_16(ipv4_hdr->fragment_offset);
is_last_frag = ((frag_offset & RTE_IPV4_HDR_MF_FLAG) == 0) ? 1 : 0;
frag_offset = (uint16_t)(frag_offset & RTE_IPV4_HDR_OFFSET_MASK) << 3;
rte_ether_addr_copy(&(eth_hdr->src_addr), &(key.inner_key.eth_saddr));
rte_ether_addr_copy(&(eth_hdr->dst_addr), &(key.inner_key.eth_daddr));
key.inner_key.ip_src_addr = ipv4_hdr->src_addr;
key.inner_key.ip_dst_addr = ipv4_hdr->dst_addr;
key.inner_key.ip_id = ip_id;
key.vxlan_hdr.vx_flags = vxlan_hdr->vx_flags;
key.vxlan_hdr.vx_vni = vxlan_hdr->vx_vni;
rte_ether_addr_copy(&(outer_eth_hdr->src_addr), &(key.outer_eth_saddr));
rte_ether_addr_copy(&(outer_eth_hdr->dst_addr), &(key.outer_eth_daddr));
key.outer_ip_src_addr = outer_ipv4_hdr->src_addr;
key.outer_ip_dst_addr = outer_ipv4_hdr->dst_addr;
/* Note: It is unnecessary to save outer_src_port here because it can
* be different for VxLAN UDP fragments from the same flow.
*/
key.outer_dst_port = udp_hdr->dst_port;
/* Search for a matched flow. */
max_flow_num = tbl->max_flow_num;
remaining_flow_num = tbl->flow_num;
find = 0;
for (i = 0; i < max_flow_num && remaining_flow_num; i++) {
if (tbl->flows[i].start_index != INVALID_ARRAY_INDEX) {
if (is_same_vxlan_udp4_flow(tbl->flows[i].key, key)) {
find = 1;
break;
}
remaining_flow_num--;
}
}
/*
* Can't find a matched flow. Insert a new flow and store the
* packet into the flow.
*/
if (find == 0) {
item_idx = insert_new_item(tbl, pkt, start_time,
INVALID_ARRAY_INDEX, frag_offset,
is_last_frag);
if (unlikely(item_idx == INVALID_ARRAY_INDEX))
return -1;
if (insert_new_flow(tbl, &key, item_idx) ==
INVALID_ARRAY_INDEX) {
/*
* Fail to insert a new flow, so
* delete the inserted packet.
*/
delete_item(tbl, item_idx, INVALID_ARRAY_INDEX);
return -1;
}
return 0;
}
/* Check all packets in the flow and try to find a neighbor. */
cur_idx = tbl->flows[i].start_index;
prev_idx = cur_idx;
do {
cmp = udp4_check_vxlan_neighbor(&(tbl->items[cur_idx]),
frag_offset, ip_dl);
if (cmp) {
if (merge_two_vxlan_udp4_packets(
&(tbl->items[cur_idx]),
pkt, cmp, frag_offset,
is_last_frag)) {
return 1;
}
/*
* Can't merge two packets, as the packet
* length will be greater than the max value.
* Insert the packet into the flow.
*/
if (insert_new_item(tbl, pkt, start_time, prev_idx,
frag_offset, is_last_frag) ==
INVALID_ARRAY_INDEX)
return -1;
return 0;
}
/* Ensure inserted items are ordered by frag_offset */
if (frag_offset
< tbl->items[cur_idx].inner_item.frag_offset) {
break;
}
prev_idx = cur_idx;
cur_idx = tbl->items[cur_idx].inner_item.next_pkt_idx;
} while (cur_idx != INVALID_ARRAY_INDEX);
/* Can't find neighbor. Insert the packet into the flow. */
if (cur_idx == tbl->flows[i].start_index) {
/* Insert it before the first packet of the flow */
item_idx = insert_new_item(tbl, pkt, start_time,
INVALID_ARRAY_INDEX, frag_offset,
is_last_frag);
if (unlikely(item_idx == INVALID_ARRAY_INDEX))
return -1;
tbl->items[item_idx].inner_item.next_pkt_idx = cur_idx;
tbl->flows[i].start_index = item_idx;
} else {
if (insert_new_item(tbl, pkt, start_time, prev_idx,
frag_offset, is_last_frag
) == INVALID_ARRAY_INDEX)
return -1;
}
return 0;
}
static int
gro_vxlan_udp4_merge_items(struct gro_vxlan_udp4_tbl *tbl,
uint32_t start_idx)
{
uint16_t frag_offset;
uint8_t is_last_frag;
int16_t ip_dl;
struct rte_mbuf *pkt;
int cmp;
uint32_t item_idx;
uint16_t hdr_len;
item_idx = tbl->items[start_idx].inner_item.next_pkt_idx;
while (item_idx != INVALID_ARRAY_INDEX) {
pkt = tbl->items[item_idx].inner_item.firstseg;
hdr_len = pkt->outer_l2_len + pkt->outer_l3_len + pkt->l2_len +
pkt->l3_len;
ip_dl = pkt->pkt_len - hdr_len;
frag_offset = tbl->items[item_idx].inner_item.frag_offset;
is_last_frag = tbl->items[item_idx].inner_item.is_last_frag;
cmp = udp4_check_vxlan_neighbor(&(tbl->items[start_idx]),
frag_offset, ip_dl);
if (cmp) {
if (merge_two_vxlan_udp4_packets(
&(tbl->items[start_idx]),
pkt, cmp, frag_offset,
is_last_frag)) {
item_idx = delete_item(tbl, item_idx,
INVALID_ARRAY_INDEX);
tbl->items[start_idx].inner_item.next_pkt_idx
= item_idx;
} else
return 0;
} else
return 0;
}
return 0;
}
uint16_t
gro_vxlan_udp4_tbl_timeout_flush(struct gro_vxlan_udp4_tbl *tbl,
uint64_t flush_timestamp,
struct rte_mbuf **out,
uint16_t nb_out)
{
uint16_t k = 0;
uint32_t i, j;
uint32_t max_flow_num = tbl->max_flow_num;
for (i = 0; i < max_flow_num; i++) {
if (unlikely(tbl->flow_num == 0))
return k;
j = tbl->flows[i].start_index;
while (j != INVALID_ARRAY_INDEX) {
if (tbl->items[j].inner_item.start_time <=
flush_timestamp) {
gro_vxlan_udp4_merge_items(tbl, j);
out[k++] = tbl->items[j].inner_item.firstseg;
if (tbl->items[j].inner_item.nb_merged > 1)
update_vxlan_header(&(tbl->items[j]));
/*
* Delete the item and get the next packet
* index.
*/
j = delete_item(tbl, j, INVALID_ARRAY_INDEX);
tbl->flows[i].start_index = j;
if (j == INVALID_ARRAY_INDEX)
tbl->flow_num--;
if (unlikely(k == nb_out))
return k;
} else
/*
* Flushing packets does not strictly follow
* timestamp. It does not flush left packets of
* the flow this time once it finds one item
* whose start_time is greater than
* flush_timestamp. So go to check other flows.
*/
break;
}
}
return k;
}
uint32_t
gro_vxlan_udp4_tbl_pkt_count(void *tbl)
{
struct gro_vxlan_udp4_tbl *gro_tbl = tbl;
if (gro_tbl)
return gro_tbl->item_num;
return 0;
}