f-stack/dpdk/examples/eventdev_pipeline/pipeline_worker_tx.c

1015 lines
25 KiB
C

/*
* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
* Copyright 2017 Cavium, Inc.
*/
#include <stdlib.h>
#include "pipeline_common.h"
static __rte_always_inline void
worker_fwd_event(struct rte_event *ev, uint8_t sched)
{
ev->event_type = RTE_EVENT_TYPE_CPU;
ev->op = RTE_EVENT_OP_FORWARD;
ev->sched_type = sched;
}
static __rte_always_inline void
worker_event_enqueue(const uint8_t dev, const uint8_t port,
struct rte_event *ev)
{
while (!rte_event_enqueue_burst(dev, port, ev, 1) && !fdata->done)
rte_pause();
}
static __rte_always_inline uint16_t
worker_event_enqueue_burst(const uint8_t dev, const uint8_t port,
struct rte_event *ev, const uint16_t nb_rx)
{
uint16_t enq;
enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
while (enq < nb_rx && !fdata->done)
enq += rte_event_enqueue_burst(dev, port,
ev + enq, nb_rx - enq);
return enq;
}
static __rte_always_inline void
worker_tx_pkt(const uint8_t dev, const uint8_t port, struct rte_event *ev)
{
exchange_mac(ev->mbuf);
rte_event_eth_tx_adapter_txq_set(ev->mbuf, 0);
while (!rte_event_eth_tx_adapter_enqueue(dev, port, ev, 1, 0) &&
!fdata->done)
rte_pause();
}
/* Single stage pipeline workers */
static int
worker_do_tx_single(void *arg)
{
struct worker_data *data = (struct worker_data *)arg;
const uint8_t dev = data->dev_id;
const uint8_t port = data->port_id;
size_t fwd = 0, received = 0, tx = 0;
struct rte_event ev;
while (!fdata->done) {
if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
rte_pause();
continue;
}
received++;
if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
worker_tx_pkt(dev, port, &ev);
tx++;
} else {
work();
ev.queue_id++;
worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
worker_event_enqueue(dev, port, &ev);
fwd++;
}
}
if (ev.u64) {
ev.op = RTE_EVENT_OP_RELEASE;
rte_event_enqueue_burst(dev, port, &ev, 1);
}
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
rte_lcore_id(), received, fwd, tx);
return 0;
}
static int
worker_do_tx_single_atq(void *arg)
{
struct worker_data *data = (struct worker_data *)arg;
const uint8_t dev = data->dev_id;
const uint8_t port = data->port_id;
size_t fwd = 0, received = 0, tx = 0;
struct rte_event ev;
while (!fdata->done) {
if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
rte_pause();
continue;
}
received++;
if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
worker_tx_pkt(dev, port, &ev);
tx++;
} else {
work();
worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
worker_event_enqueue(dev, port, &ev);
fwd++;
}
}
if (ev.u64) {
ev.op = RTE_EVENT_OP_RELEASE;
rte_event_enqueue_burst(dev, port, &ev, 1);
}
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
rte_lcore_id(), received, fwd, tx);
return 0;
}
static int
worker_do_tx_single_burst(void *arg)
{
struct rte_event ev[BATCH_SIZE + 1];
struct worker_data *data = (struct worker_data *)arg;
const uint8_t dev = data->dev_id;
const uint8_t port = data->port_id;
size_t fwd = 0, received = 0, tx = 0;
uint16_t nb_tx = 0, nb_rx = 0, i;
while (!fdata->done) {
nb_rx = rte_event_dequeue_burst(dev, port, ev, BATCH_SIZE, 0);
if (!nb_rx) {
rte_pause();
continue;
}
received += nb_rx;
for (i = 0; i < nb_rx; i++) {
rte_prefetch0(ev[i + 1].mbuf);
if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
worker_tx_pkt(dev, port, &ev[i]);
ev[i].op = RTE_EVENT_OP_RELEASE;
tx++;
} else {
ev[i].queue_id++;
worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
}
work();
}
nb_tx = worker_event_enqueue_burst(dev, port, ev, nb_rx);
fwd += nb_tx;
}
worker_cleanup(dev, port, ev, nb_tx, nb_rx);
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
rte_lcore_id(), received, fwd, tx);
return 0;
}
static int
worker_do_tx_single_burst_atq(void *arg)
{
struct rte_event ev[BATCH_SIZE + 1];
struct worker_data *data = (struct worker_data *)arg;
const uint8_t dev = data->dev_id;
const uint8_t port = data->port_id;
size_t fwd = 0, received = 0, tx = 0;
uint16_t i, nb_rx = 0, nb_tx = 0;
while (!fdata->done) {
nb_rx = rte_event_dequeue_burst(dev, port, ev, BATCH_SIZE, 0);
if (!nb_rx) {
rte_pause();
continue;
}
received += nb_rx;
for (i = 0; i < nb_rx; i++) {
rte_prefetch0(ev[i + 1].mbuf);
if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
worker_tx_pkt(dev, port, &ev[i]);
ev[i].op = RTE_EVENT_OP_RELEASE;
tx++;
} else
worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
work();
}
nb_tx = worker_event_enqueue_burst(dev, port, ev, nb_rx);
fwd += nb_tx;
}
worker_cleanup(dev, port, ev, nb_tx, nb_rx);
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
rte_lcore_id(), received, fwd, tx);
return 0;
}
/* Multi stage Pipeline Workers */
static int
worker_do_tx(void *arg)
{
struct rte_event ev;
struct worker_data *data = (struct worker_data *)arg;
const uint8_t dev = data->dev_id;
const uint8_t port = data->port_id;
const uint8_t lst_qid = cdata.num_stages - 1;
size_t fwd = 0, received = 0, tx = 0;
while (!fdata->done) {
if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
rte_pause();
continue;
}
received++;
const uint8_t cq_id = ev.queue_id % cdata.num_stages;
if (cq_id >= lst_qid) {
if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
worker_tx_pkt(dev, port, &ev);
tx++;
continue;
}
worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
ev.queue_id = (cq_id == lst_qid) ?
cdata.next_qid[ev.queue_id] : ev.queue_id;
} else {
ev.queue_id = cdata.next_qid[ev.queue_id];
worker_fwd_event(&ev, cdata.queue_type);
}
work();
worker_event_enqueue(dev, port, &ev);
fwd++;
}
if (ev.u64) {
ev.op = RTE_EVENT_OP_RELEASE;
rte_event_enqueue_burst(dev, port, &ev, 1);
}
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
rte_lcore_id(), received, fwd, tx);
return 0;
}
static int
worker_do_tx_atq(void *arg)
{
struct rte_event ev;
struct worker_data *data = (struct worker_data *)arg;
const uint8_t dev = data->dev_id;
const uint8_t port = data->port_id;
const uint8_t lst_qid = cdata.num_stages - 1;
size_t fwd = 0, received = 0, tx = 0;
while (!fdata->done) {
if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
rte_pause();
continue;
}
received++;
const uint8_t cq_id = ev.sub_event_type % cdata.num_stages;
if (cq_id == lst_qid) {
if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
worker_tx_pkt(dev, port, &ev);
tx++;
continue;
}
worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
} else {
ev.sub_event_type++;
worker_fwd_event(&ev, cdata.queue_type);
}
work();
worker_event_enqueue(dev, port, &ev);
fwd++;
}
if (ev.u64) {
ev.op = RTE_EVENT_OP_RELEASE;
rte_event_enqueue_burst(dev, port, &ev, 1);
}
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
rte_lcore_id(), received, fwd, tx);
return 0;
}
static int
worker_do_tx_burst(void *arg)
{
struct rte_event ev[BATCH_SIZE];
struct worker_data *data = (struct worker_data *)arg;
uint8_t dev = data->dev_id;
uint8_t port = data->port_id;
uint8_t lst_qid = cdata.num_stages - 1;
size_t fwd = 0, received = 0, tx = 0;
uint16_t i, nb_rx = 0, nb_tx = 0;
while (!fdata->done) {
nb_rx = rte_event_dequeue_burst(dev, port, ev, BATCH_SIZE, 0);
if (nb_rx == 0) {
rte_pause();
continue;
}
received += nb_rx;
for (i = 0; i < nb_rx; i++) {
const uint8_t cq_id = ev[i].queue_id % cdata.num_stages;
if (cq_id >= lst_qid) {
if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
worker_tx_pkt(dev, port, &ev[i]);
tx++;
ev[i].op = RTE_EVENT_OP_RELEASE;
continue;
}
ev[i].queue_id = (cq_id == lst_qid) ?
cdata.next_qid[ev[i].queue_id] :
ev[i].queue_id;
worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
} else {
ev[i].queue_id = cdata.next_qid[ev[i].queue_id];
worker_fwd_event(&ev[i], cdata.queue_type);
}
work();
}
nb_tx = worker_event_enqueue_burst(dev, port, ev, nb_rx);
fwd += nb_tx;
}
worker_cleanup(dev, port, ev, nb_tx, nb_rx);
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
rte_lcore_id(), received, fwd, tx);
return 0;
}
static int
worker_do_tx_burst_atq(void *arg)
{
struct rte_event ev[BATCH_SIZE];
struct worker_data *data = (struct worker_data *)arg;
uint8_t dev = data->dev_id;
uint8_t port = data->port_id;
uint8_t lst_qid = cdata.num_stages - 1;
size_t fwd = 0, received = 0, tx = 0;
uint16_t i, nb_rx = 0, nb_tx = 0;
while (!fdata->done) {
nb_rx = rte_event_dequeue_burst(dev, port, ev, BATCH_SIZE, 0);
if (nb_rx == 0) {
rte_pause();
continue;
}
received += nb_rx;
for (i = 0; i < nb_rx; i++) {
const uint8_t cq_id = ev[i].sub_event_type %
cdata.num_stages;
if (cq_id == lst_qid) {
if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
worker_tx_pkt(dev, port, &ev[i]);
tx++;
ev[i].op = RTE_EVENT_OP_RELEASE;
continue;
}
worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
} else {
ev[i].sub_event_type++;
worker_fwd_event(&ev[i], cdata.queue_type);
}
work();
}
nb_tx = worker_event_enqueue_burst(dev, port, ev, nb_rx);
fwd += nb_tx;
}
worker_cleanup(dev, port, ev, nb_tx, nb_rx);
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
rte_lcore_id(), received, fwd, tx);
return 0;
}
static int
setup_eventdev_worker_tx_enq(struct worker_data *worker_data)
{
uint8_t i;
const uint8_t atq = cdata.all_type_queues ? 1 : 0;
const uint8_t dev_id = 0;
const uint8_t nb_ports = cdata.num_workers;
uint8_t nb_slots = 0;
uint8_t nb_queues = rte_eth_dev_count_avail();
/*
* In case where all type queues are not enabled, use queues equal to
* number of stages * eth_dev_count and one extra queue per pipeline
* for Tx.
*/
if (!atq) {
nb_queues *= cdata.num_stages;
nb_queues += rte_eth_dev_count_avail();
}
struct rte_event_dev_config config = {
.nb_event_queues = nb_queues,
.nb_event_ports = nb_ports,
.nb_single_link_event_port_queues = 0,
.nb_events_limit = 4096,
.nb_event_queue_flows = 1024,
.nb_event_port_dequeue_depth = 128,
.nb_event_port_enqueue_depth = 128,
};
struct rte_event_port_conf wkr_p_conf = {
.dequeue_depth = cdata.worker_cq_depth,
.enqueue_depth = 64,
.new_event_threshold = 4096,
.event_port_cfg = RTE_EVENT_PORT_CFG_HINT_WORKER,
};
struct rte_event_queue_conf wkr_q_conf = {
.schedule_type = cdata.queue_type,
.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
.nb_atomic_flows = 1024,
.nb_atomic_order_sequences = 1024,
};
int ret, ndev = rte_event_dev_count();
if (ndev < 1) {
printf("%d: No Eventdev Devices Found\n", __LINE__);
return -1;
}
struct rte_event_dev_info dev_info;
ret = rte_event_dev_info_get(dev_id, &dev_info);
printf("\tEventdev %d: %s\n", dev_id, dev_info.driver_name);
if (dev_info.max_num_events < config.nb_events_limit)
config.nb_events_limit = dev_info.max_num_events;
if (dev_info.max_event_port_dequeue_depth <
config.nb_event_port_dequeue_depth)
config.nb_event_port_dequeue_depth =
dev_info.max_event_port_dequeue_depth;
if (dev_info.max_event_port_enqueue_depth <
config.nb_event_port_enqueue_depth)
config.nb_event_port_enqueue_depth =
dev_info.max_event_port_enqueue_depth;
ret = rte_event_dev_configure(dev_id, &config);
if (ret < 0) {
printf("%d: Error configuring device\n", __LINE__);
return -1;
}
printf(" Stages:\n");
for (i = 0; i < nb_queues; i++) {
if (atq) {
nb_slots = cdata.num_stages;
wkr_q_conf.event_queue_cfg =
RTE_EVENT_QUEUE_CFG_ALL_TYPES;
} else {
uint8_t slot;
nb_slots = cdata.num_stages + 1;
slot = i % nb_slots;
wkr_q_conf.schedule_type = slot == cdata.num_stages ?
RTE_SCHED_TYPE_ATOMIC : cdata.queue_type;
}
if (rte_event_queue_setup(dev_id, i, &wkr_q_conf) < 0) {
printf("%d: error creating qid %d\n", __LINE__, i);
return -1;
}
cdata.qid[i] = i;
cdata.next_qid[i] = i+1;
if (cdata.enable_queue_priorities) {
const uint32_t prio_delta =
(RTE_EVENT_DEV_PRIORITY_LOWEST) /
nb_slots;
/* higher priority for queues closer to tx */
wkr_q_conf.priority =
RTE_EVENT_DEV_PRIORITY_LOWEST - prio_delta *
(i % nb_slots);
}
const char *type_str = "Atomic";
switch (wkr_q_conf.schedule_type) {
case RTE_SCHED_TYPE_ORDERED:
type_str = "Ordered";
break;
case RTE_SCHED_TYPE_PARALLEL:
type_str = "Parallel";
break;
}
printf("\tStage %d, Type %s\tPriority = %d\n", i, type_str,
wkr_q_conf.priority);
}
printf("\n");
if (wkr_p_conf.new_event_threshold > config.nb_events_limit)
wkr_p_conf.new_event_threshold = config.nb_events_limit;
if (wkr_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
wkr_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth;
if (wkr_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
wkr_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth;
/* set up one port per worker, linking to all stage queues */
for (i = 0; i < cdata.num_workers; i++) {
struct worker_data *w = &worker_data[i];
w->dev_id = dev_id;
if (rte_event_port_setup(dev_id, i, &wkr_p_conf) < 0) {
printf("Error setting up port %d\n", i);
return -1;
}
if (rte_event_port_link(dev_id, i, NULL, NULL, 0)
!= nb_queues) {
printf("%d: error creating link for port %d\n",
__LINE__, i);
return -1;
}
w->port_id = i;
}
/*
* Reduce the load on ingress event queue by splitting the traffic
* across multiple event queues.
* for example, nb_stages = 2 and nb_ethdev = 2 then
*
* nb_queues = (2 * 2) + 2 = 6 (non atq)
* rx_stride = 3
*
* So, traffic is split across queue 0 and queue 3 since queue id for
* rx adapter is chosen <ethport_id> * <rx_stride> i.e in the above
* case eth port 0, 1 will inject packets into event queue 0, 3
* respectively.
*
* This forms two set of queue pipelines 0->1->2->tx and 3->4->5->tx.
*/
cdata.rx_stride = atq ? 1 : nb_slots;
ret = rte_event_dev_service_id_get(dev_id,
&fdata->evdev_service_id);
if (ret != -ESRCH && ret != 0) {
printf("Error getting the service ID\n");
return -1;
}
rte_service_runstate_set(fdata->evdev_service_id, 1);
rte_service_set_runstate_mapped_check(fdata->evdev_service_id, 0);
if (rte_event_dev_start(dev_id) < 0)
rte_exit(EXIT_FAILURE, "Error starting eventdev");
return dev_id;
}
struct rx_adptr_services {
uint16_t nb_rx_adptrs;
uint32_t *rx_adpt_arr;
};
static int32_t
service_rx_adapter(void *arg)
{
int i;
struct rx_adptr_services *adptr_services = arg;
for (i = 0; i < adptr_services->nb_rx_adptrs; i++)
rte_service_run_iter_on_app_lcore(
adptr_services->rx_adpt_arr[i], 1);
return 0;
}
/*
* Initializes a given port using global settings and with the RX buffers
* coming from the mbuf_pool passed as a parameter.
*/
static inline int
port_init(uint8_t port, struct rte_mempool *mbuf_pool)
{
struct rte_eth_rxconf rx_conf;
static const struct rte_eth_conf port_conf_default = {
.rxmode = {
.mq_mode = RTE_ETH_MQ_RX_RSS,
},
.rx_adv_conf = {
.rss_conf = {
.rss_hf = RTE_ETH_RSS_IP |
RTE_ETH_RSS_TCP |
RTE_ETH_RSS_UDP,
}
}
};
const uint16_t rx_rings = 1, tx_rings = 1;
const uint16_t rx_ring_size = 512, tx_ring_size = 512;
struct rte_eth_conf port_conf = port_conf_default;
int retval;
uint16_t q;
struct rte_eth_dev_info dev_info;
struct rte_eth_txconf txconf;
if (!rte_eth_dev_is_valid_port(port))
return -1;
retval = rte_eth_dev_info_get(port, &dev_info);
if (retval != 0) {
printf("Error during getting device (port %u) info: %s\n",
port, strerror(-retval));
return retval;
}
if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
port_conf.txmode.offloads |=
RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
rx_conf = dev_info.default_rxconf;
rx_conf.offloads = port_conf.rxmode.offloads;
port_conf.rx_adv_conf.rss_conf.rss_hf &=
dev_info.flow_type_rss_offloads;
if (port_conf.rx_adv_conf.rss_conf.rss_hf !=
port_conf_default.rx_adv_conf.rss_conf.rss_hf) {
printf("Port %u modified RSS hash function based on hardware support,"
"requested:%#"PRIx64" configured:%#"PRIx64"\n",
port,
port_conf_default.rx_adv_conf.rss_conf.rss_hf,
port_conf.rx_adv_conf.rss_conf.rss_hf);
}
/* Configure the Ethernet device. */
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0)
return retval;
/* Allocate and set up 1 RX queue per Ethernet port. */
for (q = 0; q < rx_rings; q++) {
retval = rte_eth_rx_queue_setup(port, q, rx_ring_size,
rte_eth_dev_socket_id(port), &rx_conf,
mbuf_pool);
if (retval < 0)
return retval;
}
txconf = dev_info.default_txconf;
txconf.offloads = port_conf_default.txmode.offloads;
/* Allocate and set up 1 TX queue per Ethernet port. */
for (q = 0; q < tx_rings; q++) {
retval = rte_eth_tx_queue_setup(port, q, tx_ring_size,
rte_eth_dev_socket_id(port), &txconf);
if (retval < 0)
return retval;
}
/* Display the port MAC address. */
struct rte_ether_addr addr;
retval = rte_eth_macaddr_get(port, &addr);
if (retval != 0) {
printf("Failed to get MAC address (port %u): %s\n",
port, rte_strerror(-retval));
return retval;
}
printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
" %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
(unsigned int)port, RTE_ETHER_ADDR_BYTES(&addr));
/* Enable RX in promiscuous mode for the Ethernet device. */
retval = rte_eth_promiscuous_enable(port);
if (retval != 0)
return retval;
return 0;
}
static int
init_ports(uint16_t num_ports)
{
uint16_t portid;
if (!cdata.num_mbuf)
cdata.num_mbuf = 16384 * num_ports;
struct rte_mempool *mp = rte_pktmbuf_pool_create("packet_pool",
/* mbufs */ cdata.num_mbuf,
/* cache_size */ 512,
/* priv_size*/ 0,
/* data_room_size */ RTE_MBUF_DEFAULT_BUF_SIZE,
rte_socket_id());
RTE_ETH_FOREACH_DEV(portid)
if (port_init(portid, mp) != 0)
rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu16 "\n",
portid);
return 0;
}
static void
init_adapters(uint16_t nb_ports)
{
int i;
int ret;
uint8_t evdev_id = 0;
struct rx_adptr_services *adptr_services = NULL;
struct rte_event_dev_info dev_info;
ret = rte_event_dev_info_get(evdev_id, &dev_info);
adptr_services = rte_zmalloc(NULL, sizeof(struct rx_adptr_services), 0);
struct rte_event_port_conf adptr_p_conf = {
.dequeue_depth = cdata.worker_cq_depth,
.enqueue_depth = 64,
.new_event_threshold = 4096,
.event_port_cfg = RTE_EVENT_PORT_CFG_HINT_PRODUCER,
};
init_ports(nb_ports);
if (adptr_p_conf.new_event_threshold > dev_info.max_num_events)
adptr_p_conf.new_event_threshold = dev_info.max_num_events;
if (adptr_p_conf.dequeue_depth > dev_info.max_event_port_dequeue_depth)
adptr_p_conf.dequeue_depth =
dev_info.max_event_port_dequeue_depth;
if (adptr_p_conf.enqueue_depth > dev_info.max_event_port_enqueue_depth)
adptr_p_conf.enqueue_depth =
dev_info.max_event_port_enqueue_depth;
struct rte_event_eth_rx_adapter_queue_conf queue_conf;
memset(&queue_conf, 0, sizeof(queue_conf));
queue_conf.ev.sched_type = cdata.queue_type;
for (i = 0; i < nb_ports; i++) {
uint32_t cap;
uint32_t service_id;
ret = rte_event_eth_rx_adapter_create(i, evdev_id,
&adptr_p_conf);
if (ret)
rte_exit(EXIT_FAILURE,
"failed to create rx adapter[%d]", i);
ret = rte_event_eth_rx_adapter_caps_get(evdev_id, i, &cap);
if (ret)
rte_exit(EXIT_FAILURE,
"failed to get event rx adapter "
"capabilities");
queue_conf.ev.queue_id = cdata.rx_stride ?
(i * cdata.rx_stride)
: (uint8_t)cdata.qid[0];
ret = rte_event_eth_rx_adapter_queue_add(i, i, -1, &queue_conf);
if (ret)
rte_exit(EXIT_FAILURE,
"Failed to add queues to Rx adapter");
/* Producer needs to be scheduled. */
if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
ret = rte_event_eth_rx_adapter_service_id_get(i,
&service_id);
if (ret != -ESRCH && ret != 0) {
rte_exit(EXIT_FAILURE,
"Error getting the service ID for rx adptr\n");
}
rte_service_runstate_set(service_id, 1);
rte_service_set_runstate_mapped_check(service_id, 0);
adptr_services->nb_rx_adptrs++;
adptr_services->rx_adpt_arr = rte_realloc(
adptr_services->rx_adpt_arr,
adptr_services->nb_rx_adptrs *
sizeof(uint32_t), 0);
adptr_services->rx_adpt_arr[
adptr_services->nb_rx_adptrs - 1] =
service_id;
}
ret = rte_event_eth_rx_adapter_start(i);
if (ret)
rte_exit(EXIT_FAILURE, "Rx adapter[%d] start failed",
i);
}
/* We already know that Tx adapter has INTERNAL port cap*/
ret = rte_event_eth_tx_adapter_create(cdata.tx_adapter_id, evdev_id,
&adptr_p_conf);
if (ret)
rte_exit(EXIT_FAILURE, "failed to create tx adapter[%d]",
cdata.tx_adapter_id);
for (i = 0; i < nb_ports; i++) {
ret = rte_event_eth_tx_adapter_queue_add(cdata.tx_adapter_id, i,
-1);
if (ret)
rte_exit(EXIT_FAILURE,
"Failed to add queues to Tx adapter");
}
ret = rte_event_eth_tx_adapter_start(cdata.tx_adapter_id);
if (ret)
rte_exit(EXIT_FAILURE, "Tx adapter[%d] start failed",
cdata.tx_adapter_id);
if (adptr_services->nb_rx_adptrs) {
struct rte_service_spec service;
memset(&service, 0, sizeof(struct rte_service_spec));
snprintf(service.name, sizeof(service.name), "rx_service");
service.callback = service_rx_adapter;
service.callback_userdata = (void *)adptr_services;
int32_t ret = rte_service_component_register(&service,
&fdata->rxadptr_service_id);
if (ret)
rte_exit(EXIT_FAILURE,
"Rx adapter service register failed");
rte_service_runstate_set(fdata->rxadptr_service_id, 1);
rte_service_component_runstate_set(fdata->rxadptr_service_id,
1);
rte_service_set_runstate_mapped_check(fdata->rxadptr_service_id,
0);
} else {
memset(fdata->rx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
rte_free(adptr_services);
}
if (!adptr_services->nb_rx_adptrs && (dev_info.event_dev_cap &
RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED))
fdata->cap.scheduler = NULL;
}
static void
worker_tx_enq_opt_check(void)
{
int i;
int ret;
uint32_t cap = 0;
uint8_t rx_needed = 0;
uint8_t sched_needed = 0;
struct rte_event_dev_info eventdev_info;
memset(&eventdev_info, 0, sizeof(struct rte_event_dev_info));
rte_event_dev_info_get(0, &eventdev_info);
if (cdata.all_type_queues && !(eventdev_info.event_dev_cap &
RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES))
rte_exit(EXIT_FAILURE,
"Event dev doesn't support all type queues\n");
sched_needed = !(eventdev_info.event_dev_cap &
RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED);
RTE_ETH_FOREACH_DEV(i) {
ret = rte_event_eth_rx_adapter_caps_get(0, i, &cap);
if (ret)
rte_exit(EXIT_FAILURE,
"failed to get event rx adapter capabilities");
rx_needed |=
!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT);
}
if (cdata.worker_lcore_mask == 0 ||
(rx_needed && cdata.rx_lcore_mask == 0) ||
(sched_needed && cdata.sched_lcore_mask == 0)) {
printf("Core part of pipeline was not assigned any cores. "
"This will stall the pipeline, please check core masks "
"(use -h for details on setting core masks):\n"
"\trx: %"PRIu64"\n\tsched: %"PRIu64
"\n\tworkers: %"PRIu64"\n", cdata.rx_lcore_mask,
cdata.sched_lcore_mask, cdata.worker_lcore_mask);
rte_exit(-1, "Fix core masks\n");
}
if (!sched_needed)
memset(fdata->sched_core, 0,
sizeof(unsigned int) * MAX_NUM_CORE);
if (!rx_needed)
memset(fdata->rx_core, 0,
sizeof(unsigned int) * MAX_NUM_CORE);
memset(fdata->tx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
}
static worker_loop
get_worker_loop_single_burst(uint8_t atq)
{
if (atq)
return worker_do_tx_single_burst_atq;
return worker_do_tx_single_burst;
}
static worker_loop
get_worker_loop_single_non_burst(uint8_t atq)
{
if (atq)
return worker_do_tx_single_atq;
return worker_do_tx_single;
}
static worker_loop
get_worker_loop_burst(uint8_t atq)
{
if (atq)
return worker_do_tx_burst_atq;
return worker_do_tx_burst;
}
static worker_loop
get_worker_loop_non_burst(uint8_t atq)
{
if (atq)
return worker_do_tx_atq;
return worker_do_tx;
}
static worker_loop
get_worker_single_stage(bool burst)
{
uint8_t atq = cdata.all_type_queues ? 1 : 0;
if (burst)
return get_worker_loop_single_burst(atq);
return get_worker_loop_single_non_burst(atq);
}
static worker_loop
get_worker_multi_stage(bool burst)
{
uint8_t atq = cdata.all_type_queues ? 1 : 0;
if (burst)
return get_worker_loop_burst(atq);
return get_worker_loop_non_burst(atq);
}
void
set_worker_tx_enq_setup_data(struct setup_data *caps, bool burst)
{
if (cdata.num_stages == 1)
caps->worker = get_worker_single_stage(burst);
else
caps->worker = get_worker_multi_stage(burst);
caps->check_opt = worker_tx_enq_opt_check;
caps->scheduler = schedule_devices;
caps->evdev_setup = setup_eventdev_worker_tx_enq;
caps->adptr_setup = init_adapters;
}