f-stack/dpdk/drivers/net/ngbe/ngbe_rxtx.c

3319 lines
88 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2021 Beijing WangXun Technology Co., Ltd.
* Copyright(c) 2010-2017 Intel Corporation
*/
#include <sys/queue.h>
#include <stdint.h>
#include <rte_ethdev.h>
#include <ethdev_driver.h>
#include <rte_malloc.h>
#include <rte_net.h>
#include "ngbe_logs.h"
#include "base/ngbe.h"
#include "ngbe_ethdev.h"
#include "ngbe_rxtx.h"
#ifdef RTE_LIBRTE_IEEE1588
#define NGBE_TX_IEEE1588_TMST RTE_MBUF_F_TX_IEEE1588_TMST
#else
#define NGBE_TX_IEEE1588_TMST 0
#endif
/* Bit Mask to indicate what bits required for building Tx context */
static const u64 NGBE_TX_OFFLOAD_MASK = (RTE_MBUF_F_TX_IP_CKSUM |
RTE_MBUF_F_TX_IPV6 |
RTE_MBUF_F_TX_IPV4 |
RTE_MBUF_F_TX_VLAN |
RTE_MBUF_F_TX_L4_MASK |
RTE_MBUF_F_TX_TCP_SEG |
NGBE_TX_IEEE1588_TMST);
#define NGBE_TX_OFFLOAD_NOTSUP_MASK \
(RTE_MBUF_F_TX_OFFLOAD_MASK ^ NGBE_TX_OFFLOAD_MASK)
/*
* Prefetch a cache line into all cache levels.
*/
#define rte_ngbe_prefetch(p) rte_prefetch0(p)
/*********************************************************************
*
* Tx functions
*
**********************************************************************/
/*
* Check for descriptors with their DD bit set and free mbufs.
* Return the total number of buffers freed.
*/
static __rte_always_inline int
ngbe_tx_free_bufs(struct ngbe_tx_queue *txq)
{
struct ngbe_tx_entry *txep;
uint32_t status;
int i, nb_free = 0;
struct rte_mbuf *m, *free[RTE_NGBE_TX_MAX_FREE_BUF_SZ];
/* check DD bit on threshold descriptor */
status = txq->tx_ring[txq->tx_next_dd].dw3;
if (!(status & rte_cpu_to_le_32(NGBE_TXD_DD))) {
if (txq->nb_tx_free >> 1 < txq->tx_free_thresh)
ngbe_set32_masked(txq->tdc_reg_addr,
NGBE_TXCFG_FLUSH, NGBE_TXCFG_FLUSH);
return 0;
}
/*
* first buffer to free from S/W ring is at index
* tx_next_dd - (tx_free_thresh-1)
*/
txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_free_thresh - 1)];
for (i = 0; i < txq->tx_free_thresh; ++i, ++txep) {
/* free buffers one at a time */
m = rte_pktmbuf_prefree_seg(txep->mbuf);
txep->mbuf = NULL;
if (unlikely(m == NULL))
continue;
if (nb_free >= RTE_NGBE_TX_MAX_FREE_BUF_SZ ||
(nb_free > 0 && m->pool != free[0]->pool)) {
rte_mempool_put_bulk(free[0]->pool,
(void **)free, nb_free);
nb_free = 0;
}
free[nb_free++] = m;
}
if (nb_free > 0)
rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
/* buffers were freed, update counters */
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_free_thresh);
txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_free_thresh);
if (txq->tx_next_dd >= txq->nb_tx_desc)
txq->tx_next_dd = (uint16_t)(txq->tx_free_thresh - 1);
return txq->tx_free_thresh;
}
/* Populate 4 descriptors with data from 4 mbufs */
static inline void
tx4(volatile struct ngbe_tx_desc *txdp, struct rte_mbuf **pkts)
{
uint64_t buf_dma_addr;
uint32_t pkt_len;
int i;
for (i = 0; i < 4; ++i, ++txdp, ++pkts) {
buf_dma_addr = rte_mbuf_data_iova(*pkts);
pkt_len = (*pkts)->data_len;
/* write data to descriptor */
txdp->qw0 = rte_cpu_to_le_64(buf_dma_addr);
txdp->dw2 = cpu_to_le32(NGBE_TXD_FLAGS |
NGBE_TXD_DATLEN(pkt_len));
txdp->dw3 = cpu_to_le32(NGBE_TXD_PAYLEN(pkt_len));
rte_prefetch0(&(*pkts)->pool);
}
}
/* Populate 1 descriptor with data from 1 mbuf */
static inline void
tx1(volatile struct ngbe_tx_desc *txdp, struct rte_mbuf **pkts)
{
uint64_t buf_dma_addr;
uint32_t pkt_len;
buf_dma_addr = rte_mbuf_data_iova(*pkts);
pkt_len = (*pkts)->data_len;
/* write data to descriptor */
txdp->qw0 = cpu_to_le64(buf_dma_addr);
txdp->dw2 = cpu_to_le32(NGBE_TXD_FLAGS |
NGBE_TXD_DATLEN(pkt_len));
txdp->dw3 = cpu_to_le32(NGBE_TXD_PAYLEN(pkt_len));
rte_prefetch0(&(*pkts)->pool);
}
/*
* Fill H/W descriptor ring with mbuf data.
* Copy mbuf pointers to the S/W ring.
*/
static inline void
ngbe_tx_fill_hw_ring(struct ngbe_tx_queue *txq, struct rte_mbuf **pkts,
uint16_t nb_pkts)
{
volatile struct ngbe_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
struct ngbe_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
const int N_PER_LOOP = 4;
const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
int mainpart, leftover;
int i, j;
/*
* Process most of the packets in chunks of N pkts. Any
* leftover packets will get processed one at a time.
*/
mainpart = (nb_pkts & ((uint32_t)~N_PER_LOOP_MASK));
leftover = (nb_pkts & ((uint32_t)N_PER_LOOP_MASK));
for (i = 0; i < mainpart; i += N_PER_LOOP) {
/* Copy N mbuf pointers to the S/W ring */
for (j = 0; j < N_PER_LOOP; ++j)
(txep + i + j)->mbuf = *(pkts + i + j);
tx4(txdp + i, pkts + i);
}
if (unlikely(leftover > 0)) {
for (i = 0; i < leftover; ++i) {
(txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
tx1(txdp + mainpart + i, pkts + mainpart + i);
}
}
}
static inline uint16_t
tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct ngbe_tx_queue *txq = (struct ngbe_tx_queue *)tx_queue;
uint16_t n = 0;
/*
* Begin scanning the H/W ring for done descriptors when the
* number of available descriptors drops below tx_free_thresh.
* For each done descriptor, free the associated buffer.
*/
if (txq->nb_tx_free < txq->tx_free_thresh)
ngbe_tx_free_bufs(txq);
/* Only use descriptors that are available */
nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
if (unlikely(nb_pkts == 0))
return 0;
/* Use exactly nb_pkts descriptors */
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
/*
* At this point, we know there are enough descriptors in the
* ring to transmit all the packets. This assumes that each
* mbuf contains a single segment, and that no new offloads
* are expected, which would require a new context descriptor.
*/
/*
* See if we're going to wrap-around. If so, handle the top
* of the descriptor ring first, then do the bottom. If not,
* the processing looks just like the "bottom" part anyway...
*/
if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
ngbe_tx_fill_hw_ring(txq, tx_pkts, n);
txq->tx_tail = 0;
}
/* Fill H/W descriptor ring with mbuf data */
ngbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
/*
* Check for wrap-around. This would only happen if we used
* up to the last descriptor in the ring, no more, no less.
*/
if (txq->tx_tail >= txq->nb_tx_desc)
txq->tx_tail = 0;
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
(uint16_t)txq->port_id, (uint16_t)txq->queue_id,
(uint16_t)txq->tx_tail, (uint16_t)nb_pkts);
/* update tail pointer */
rte_wmb();
ngbe_set32_relaxed(txq->tdt_reg_addr, txq->tx_tail);
return nb_pkts;
}
uint16_t
ngbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx;
/* Try to transmit at least chunks of TX_MAX_BURST pkts */
if (likely(nb_pkts <= RTE_PMD_NGBE_TX_MAX_BURST))
return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts);
/* transmit more than the max burst, in chunks of TX_MAX_BURST */
nb_tx = 0;
while (nb_pkts != 0) {
uint16_t ret, n;
n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_NGBE_TX_MAX_BURST);
ret = tx_xmit_pkts(tx_queue, &tx_pkts[nb_tx], n);
nb_tx = (uint16_t)(nb_tx + ret);
nb_pkts = (uint16_t)(nb_pkts - ret);
if (ret < n)
break;
}
return nb_tx;
}
static inline void
ngbe_set_xmit_ctx(struct ngbe_tx_queue *txq,
volatile struct ngbe_tx_ctx_desc *ctx_txd,
uint64_t ol_flags, union ngbe_tx_offload tx_offload)
{
union ngbe_tx_offload tx_offload_mask;
uint32_t type_tucmd_mlhl;
uint32_t mss_l4len_idx;
uint32_t ctx_idx;
uint32_t vlan_macip_lens;
uint32_t tunnel_seed;
ctx_idx = txq->ctx_curr;
tx_offload_mask.data[0] = 0;
tx_offload_mask.data[1] = 0;
/* Specify which HW CTX to upload. */
mss_l4len_idx = NGBE_TXD_IDX(ctx_idx);
type_tucmd_mlhl = NGBE_TXD_CTXT;
tx_offload_mask.ptid |= ~0;
type_tucmd_mlhl |= NGBE_TXD_PTID(tx_offload.ptid);
/* check if TCP segmentation required for this packet */
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
tx_offload_mask.l2_len |= ~0;
tx_offload_mask.l3_len |= ~0;
tx_offload_mask.l4_len |= ~0;
tx_offload_mask.tso_segsz |= ~0;
mss_l4len_idx |= NGBE_TXD_MSS(tx_offload.tso_segsz);
mss_l4len_idx |= NGBE_TXD_L4LEN(tx_offload.l4_len);
} else { /* no TSO, check if hardware checksum is needed */
if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
tx_offload_mask.l2_len |= ~0;
tx_offload_mask.l3_len |= ~0;
}
switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
case RTE_MBUF_F_TX_UDP_CKSUM:
mss_l4len_idx |=
NGBE_TXD_L4LEN(sizeof(struct rte_udp_hdr));
tx_offload_mask.l2_len |= ~0;
tx_offload_mask.l3_len |= ~0;
break;
case RTE_MBUF_F_TX_TCP_CKSUM:
mss_l4len_idx |=
NGBE_TXD_L4LEN(sizeof(struct rte_tcp_hdr));
tx_offload_mask.l2_len |= ~0;
tx_offload_mask.l3_len |= ~0;
break;
case RTE_MBUF_F_TX_SCTP_CKSUM:
mss_l4len_idx |=
NGBE_TXD_L4LEN(sizeof(struct rte_sctp_hdr));
tx_offload_mask.l2_len |= ~0;
tx_offload_mask.l3_len |= ~0;
break;
default:
break;
}
}
vlan_macip_lens = NGBE_TXD_IPLEN(tx_offload.l3_len >> 1);
vlan_macip_lens |= NGBE_TXD_MACLEN(tx_offload.l2_len);
if (ol_flags & RTE_MBUF_F_TX_VLAN) {
tx_offload_mask.vlan_tci |= ~0;
vlan_macip_lens |= NGBE_TXD_VLAN(tx_offload.vlan_tci);
}
tunnel_seed = 0;
txq->ctx_cache[ctx_idx].flags = ol_flags;
txq->ctx_cache[ctx_idx].tx_offload.data[0] =
tx_offload_mask.data[0] & tx_offload.data[0];
txq->ctx_cache[ctx_idx].tx_offload.data[1] =
tx_offload_mask.data[1] & tx_offload.data[1];
txq->ctx_cache[ctx_idx].tx_offload_mask = tx_offload_mask;
ctx_txd->dw0 = rte_cpu_to_le_32(vlan_macip_lens);
ctx_txd->dw1 = rte_cpu_to_le_32(tunnel_seed);
ctx_txd->dw2 = rte_cpu_to_le_32(type_tucmd_mlhl);
ctx_txd->dw3 = rte_cpu_to_le_32(mss_l4len_idx);
}
/*
* Check which hardware context can be used. Use the existing match
* or create a new context descriptor.
*/
static inline uint32_t
what_ctx_update(struct ngbe_tx_queue *txq, uint64_t flags,
union ngbe_tx_offload tx_offload)
{
/* If match with the current used context */
if (likely(txq->ctx_cache[txq->ctx_curr].flags == flags &&
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
& tx_offload.data[0])) &&
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
& tx_offload.data[1]))))
return txq->ctx_curr;
/* What if match with the next context */
txq->ctx_curr ^= 1;
if (likely(txq->ctx_cache[txq->ctx_curr].flags == flags &&
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
& tx_offload.data[0])) &&
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
& tx_offload.data[1]))))
return txq->ctx_curr;
/* Mismatch, use the previous context */
return NGBE_CTX_NUM;
}
static inline uint32_t
tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
{
uint32_t tmp = 0;
if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) != RTE_MBUF_F_TX_L4_NO_CKSUM) {
tmp |= NGBE_TXD_CC;
tmp |= NGBE_TXD_L4CS;
}
if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
tmp |= NGBE_TXD_CC;
tmp |= NGBE_TXD_IPCS;
}
if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM) {
tmp |= NGBE_TXD_CC;
tmp |= NGBE_TXD_EIPCS;
}
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
tmp |= NGBE_TXD_CC;
/* implies IPv4 cksum */
if (ol_flags & RTE_MBUF_F_TX_IPV4)
tmp |= NGBE_TXD_IPCS;
tmp |= NGBE_TXD_L4CS;
}
if (ol_flags & RTE_MBUF_F_TX_VLAN)
tmp |= NGBE_TXD_CC;
return tmp;
}
static inline uint32_t
tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags)
{
uint32_t cmdtype = 0;
if (ol_flags & RTE_MBUF_F_TX_VLAN)
cmdtype |= NGBE_TXD_VLE;
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
cmdtype |= NGBE_TXD_TSE;
return cmdtype;
}
static inline uint32_t
tx_desc_ol_flags_to_ptype(uint64_t oflags)
{
uint32_t ptype;
/* L2 level */
ptype = RTE_PTYPE_L2_ETHER;
if (oflags & RTE_MBUF_F_TX_VLAN)
ptype |= RTE_PTYPE_L2_ETHER_VLAN;
/* L3 level */
if (oflags & (RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IP_CKSUM))
ptype |= RTE_PTYPE_L3_IPV4;
else if (oflags & (RTE_MBUF_F_TX_IPV6))
ptype |= RTE_PTYPE_L3_IPV6;
/* L4 level */
switch (oflags & (RTE_MBUF_F_TX_L4_MASK)) {
case RTE_MBUF_F_TX_TCP_CKSUM:
ptype |= RTE_PTYPE_L4_TCP;
break;
case RTE_MBUF_F_TX_UDP_CKSUM:
ptype |= RTE_PTYPE_L4_UDP;
break;
case RTE_MBUF_F_TX_SCTP_CKSUM:
ptype |= RTE_PTYPE_L4_SCTP;
break;
}
if (oflags & RTE_MBUF_F_TX_TCP_SEG)
ptype |= RTE_PTYPE_L4_TCP;
return ptype;
}
static inline uint8_t
tx_desc_ol_flags_to_ptid(uint64_t oflags)
{
uint32_t ptype;
ptype = tx_desc_ol_flags_to_ptype(oflags);
return ngbe_encode_ptype(ptype);
}
/* Reset transmit descriptors after they have been used */
static inline int
ngbe_xmit_cleanup(struct ngbe_tx_queue *txq)
{
struct ngbe_tx_entry *sw_ring = txq->sw_ring;
volatile struct ngbe_tx_desc *txr = txq->tx_ring;
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
uint16_t nb_tx_desc = txq->nb_tx_desc;
uint16_t desc_to_clean_to;
uint16_t nb_tx_to_clean;
uint32_t status;
/* Determine the last descriptor needing to be cleaned */
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_free_thresh);
if (desc_to_clean_to >= nb_tx_desc)
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
/* Check to make sure the last descriptor to clean is done */
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
status = txr[desc_to_clean_to].dw3;
if (!(status & rte_cpu_to_le_32(NGBE_TXD_DD))) {
PMD_TX_LOG(DEBUG,
"Tx descriptor %4u is not done"
"(port=%d queue=%d)",
desc_to_clean_to,
txq->port_id, txq->queue_id);
if (txq->nb_tx_free >> 1 < txq->tx_free_thresh)
ngbe_set32_masked(txq->tdc_reg_addr,
NGBE_TXCFG_FLUSH, NGBE_TXCFG_FLUSH);
/* Failed to clean any descriptors, better luck next time */
return -(1);
}
/* Figure out how many descriptors will be cleaned */
if (last_desc_cleaned > desc_to_clean_to)
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
desc_to_clean_to);
else
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
last_desc_cleaned);
PMD_TX_LOG(DEBUG,
"Cleaning %4u Tx descriptors: %4u to %4u (port=%d queue=%d)",
nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
txq->port_id, txq->queue_id);
/*
* The last descriptor to clean is done, so that means all the
* descriptors from the last descriptor that was cleaned
* up to the last descriptor with the RS bit set
* are done. Only reset the threshold descriptor.
*/
txr[desc_to_clean_to].dw3 = 0;
/* Update the txq to reflect the last descriptor that was cleaned */
txq->last_desc_cleaned = desc_to_clean_to;
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
/* No Error */
return 0;
}
uint16_t
ngbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct ngbe_tx_queue *txq;
struct ngbe_tx_entry *sw_ring;
struct ngbe_tx_entry *txe, *txn;
volatile struct ngbe_tx_desc *txr;
volatile struct ngbe_tx_desc *txd;
struct rte_mbuf *tx_pkt;
struct rte_mbuf *m_seg;
uint64_t buf_dma_addr;
uint32_t olinfo_status;
uint32_t cmd_type_len;
uint32_t pkt_len;
uint16_t slen;
uint64_t ol_flags;
uint16_t tx_id;
uint16_t tx_last;
uint16_t nb_tx;
uint16_t nb_used;
uint64_t tx_ol_req;
uint32_t ctx = 0;
uint32_t new_ctx;
union ngbe_tx_offload tx_offload;
tx_offload.data[0] = 0;
tx_offload.data[1] = 0;
txq = tx_queue;
sw_ring = txq->sw_ring;
txr = txq->tx_ring;
tx_id = txq->tx_tail;
txe = &sw_ring[tx_id];
/* Determine if the descriptor ring needs to be cleaned. */
if (txq->nb_tx_free < txq->tx_free_thresh)
ngbe_xmit_cleanup(txq);
rte_prefetch0(&txe->mbuf->pool);
/* Tx loop */
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
new_ctx = 0;
tx_pkt = *tx_pkts++;
pkt_len = tx_pkt->pkt_len;
/*
* Determine how many (if any) context descriptors
* are needed for offload functionality.
*/
ol_flags = tx_pkt->ol_flags;
/* If hardware offload required */
tx_ol_req = ol_flags & NGBE_TX_OFFLOAD_MASK;
if (tx_ol_req) {
tx_offload.ptid = tx_desc_ol_flags_to_ptid(tx_ol_req);
tx_offload.l2_len = tx_pkt->l2_len;
tx_offload.l3_len = tx_pkt->l3_len;
tx_offload.l4_len = tx_pkt->l4_len;
tx_offload.vlan_tci = tx_pkt->vlan_tci;
tx_offload.tso_segsz = tx_pkt->tso_segsz;
/* If new context need be built or reuse the exist ctx*/
ctx = what_ctx_update(txq, tx_ol_req, tx_offload);
/* Only allocate context descriptor if required */
new_ctx = (ctx == NGBE_CTX_NUM);
ctx = txq->ctx_curr;
}
/*
* Keep track of how many descriptors are used this loop
* This will always be the number of segments + the number of
* Context descriptors required to transmit the packet
*/
nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
/*
* The number of descriptors that must be allocated for a
* packet is the number of segments of that packet, plus 1
* Context Descriptor for the hardware offload, if any.
* Determine the last Tx descriptor to allocate in the Tx ring
* for the packet, starting from the current position (tx_id)
* in the ring.
*/
tx_last = (uint16_t)(tx_id + nb_used - 1);
/* Circular ring */
if (tx_last >= txq->nb_tx_desc)
tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
" tx_first=%u tx_last=%u",
(uint16_t)txq->port_id,
(uint16_t)txq->queue_id,
(uint32_t)pkt_len,
(uint16_t)tx_id,
(uint16_t)tx_last);
/*
* Make sure there are enough Tx descriptors available to
* transmit the entire packet.
* nb_used better be less than or equal to txq->tx_free_thresh
*/
if (nb_used > txq->nb_tx_free) {
PMD_TX_LOG(DEBUG,
"Not enough free Tx descriptors "
"nb_used=%4u nb_free=%4u "
"(port=%d queue=%d)",
nb_used, txq->nb_tx_free,
txq->port_id, txq->queue_id);
if (ngbe_xmit_cleanup(txq) != 0) {
/* Could not clean any descriptors */
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
/* nb_used better be <= txq->tx_free_thresh */
if (unlikely(nb_used > txq->tx_free_thresh)) {
PMD_TX_LOG(DEBUG,
"The number of descriptors needed to "
"transmit the packet exceeds the "
"RS bit threshold. This will impact "
"performance."
"nb_used=%4u nb_free=%4u "
"tx_free_thresh=%4u. "
"(port=%d queue=%d)",
nb_used, txq->nb_tx_free,
txq->tx_free_thresh,
txq->port_id, txq->queue_id);
/*
* Loop here until there are enough Tx
* descriptors or until the ring cannot be
* cleaned.
*/
while (nb_used > txq->nb_tx_free) {
if (ngbe_xmit_cleanup(txq) != 0) {
/*
* Could not clean any
* descriptors
*/
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
}
}
}
/*
* By now there are enough free Tx descriptors to transmit
* the packet.
*/
/*
* Set common flags of all Tx Data Descriptors.
*
* The following bits must be set in the first Data Descriptor
* and are ignored in the other ones:
* - NGBE_TXD_FCS
*
* The following bits must only be set in the last Data
* Descriptor:
* - NGBE_TXD_EOP
*/
cmd_type_len = NGBE_TXD_FCS;
#ifdef RTE_LIBRTE_IEEE1588
if (ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)
cmd_type_len |= NGBE_TXD_1588;
#endif
olinfo_status = 0;
if (tx_ol_req) {
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
/* when TSO is on, paylen in descriptor is the
* not the packet len but the tcp payload len
*/
pkt_len -= (tx_offload.l2_len +
tx_offload.l3_len + tx_offload.l4_len);
}
/*
* Setup the Tx Context Descriptor if required
*/
if (new_ctx) {
volatile struct ngbe_tx_ctx_desc *ctx_txd;
ctx_txd = (volatile struct ngbe_tx_ctx_desc *)
&txr[tx_id];
txn = &sw_ring[txe->next_id];
rte_prefetch0(&txn->mbuf->pool);
if (txe->mbuf != NULL) {
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = NULL;
}
ngbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
tx_offload);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
}
/*
* Setup the Tx Data Descriptor,
* This path will go through
* whatever new/reuse the context descriptor
*/
cmd_type_len |= tx_desc_ol_flags_to_cmdtype(ol_flags);
olinfo_status |=
tx_desc_cksum_flags_to_olinfo(ol_flags);
olinfo_status |= NGBE_TXD_IDX(ctx);
}
olinfo_status |= NGBE_TXD_PAYLEN(pkt_len);
m_seg = tx_pkt;
do {
txd = &txr[tx_id];
txn = &sw_ring[txe->next_id];
rte_prefetch0(&txn->mbuf->pool);
if (txe->mbuf != NULL)
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = m_seg;
/*
* Set up Transmit Data Descriptor.
*/
slen = m_seg->data_len;
buf_dma_addr = rte_mbuf_data_iova(m_seg);
txd->qw0 = rte_cpu_to_le_64(buf_dma_addr);
txd->dw2 = rte_cpu_to_le_32(cmd_type_len | slen);
txd->dw3 = rte_cpu_to_le_32(olinfo_status);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
m_seg = m_seg->next;
} while (m_seg != NULL);
/*
* The last packet data descriptor needs End Of Packet (EOP)
*/
cmd_type_len |= NGBE_TXD_EOP;
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
txd->dw2 |= rte_cpu_to_le_32(cmd_type_len);
}
end_of_tx:
rte_wmb();
/*
* Set the Transmit Descriptor Tail (TDT)
*/
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
(uint16_t)txq->port_id, (uint16_t)txq->queue_id,
(uint16_t)tx_id, (uint16_t)nb_tx);
ngbe_set32_relaxed(txq->tdt_reg_addr, tx_id);
txq->tx_tail = tx_id;
return nb_tx;
}
/*********************************************************************
*
* Tx prep functions
*
**********************************************************************/
uint16_t
ngbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
int i, ret;
uint64_t ol_flags;
struct rte_mbuf *m;
struct ngbe_tx_queue *txq = (struct ngbe_tx_queue *)tx_queue;
for (i = 0; i < nb_pkts; i++) {
m = tx_pkts[i];
ol_flags = m->ol_flags;
/**
* Check if packet meets requirements for number of segments
*
* NOTE: for ngbe it's always (40 - WTHRESH) for both TSO and
* non-TSO
*/
if (m->nb_segs > NGBE_TX_MAX_SEG - txq->wthresh) {
rte_errno = -EINVAL;
return i;
}
if (ol_flags & NGBE_TX_OFFLOAD_NOTSUP_MASK) {
rte_errno = -ENOTSUP;
return i;
}
#ifdef RTE_ETHDEV_DEBUG_TX
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = ret;
return i;
}
#endif
ret = rte_net_intel_cksum_prepare(m);
if (ret != 0) {
rte_errno = ret;
return i;
}
}
return i;
}
/*********************************************************************
*
* Rx functions
*
**********************************************************************/
static inline uint32_t
ngbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptid_mask)
{
uint16_t ptid = NGBE_RXD_PTID(pkt_info);
ptid &= ptid_mask;
return ngbe_decode_ptype(ptid);
}
static inline uint64_t
ngbe_rxd_pkt_info_to_pkt_flags(uint32_t pkt_info)
{
static uint64_t ip_rss_types_map[16] __rte_cache_aligned = {
0, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
0, RTE_MBUF_F_RX_RSS_HASH, 0, RTE_MBUF_F_RX_RSS_HASH,
RTE_MBUF_F_RX_RSS_HASH, 0, 0, 0,
0, 0, 0, RTE_MBUF_F_RX_FDIR,
};
#ifdef RTE_LIBRTE_IEEE1588
static uint64_t ip_pkt_etqf_map[8] = {
0, 0, 0, RTE_MBUF_F_RX_IEEE1588_PTP,
0, 0, 0, 0,
};
int etfid = ngbe_etflt_id(NGBE_RXD_PTID(pkt_info));
if (likely(-1 != etfid))
return ip_pkt_etqf_map[etfid] |
ip_rss_types_map[NGBE_RXD_RSSTYPE(pkt_info)];
else
return ip_rss_types_map[NGBE_RXD_RSSTYPE(pkt_info)];
#else
return ip_rss_types_map[NGBE_RXD_RSSTYPE(pkt_info)];
#endif
}
static inline uint64_t
rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags)
{
uint64_t pkt_flags;
/*
* Check if VLAN present only.
* Do not check whether L3/L4 rx checksum done by NIC or not,
* That can be found from rte_eth_rxmode.offloads flag
*/
pkt_flags = (rx_status & NGBE_RXD_STAT_VLAN &&
vlan_flags & RTE_MBUF_F_RX_VLAN_STRIPPED)
? vlan_flags : 0;
#ifdef RTE_LIBRTE_IEEE1588
if (rx_status & NGBE_RXD_STAT_1588)
pkt_flags = pkt_flags | RTE_MBUF_F_RX_IEEE1588_TMST;
#endif
return pkt_flags;
}
static inline uint64_t
rx_desc_error_to_pkt_flags(uint32_t rx_status)
{
uint64_t pkt_flags = 0;
/* checksum offload can't be disabled */
if (rx_status & NGBE_RXD_STAT_IPCS)
pkt_flags |= (rx_status & NGBE_RXD_ERR_IPCS
? RTE_MBUF_F_RX_IP_CKSUM_BAD : RTE_MBUF_F_RX_IP_CKSUM_GOOD);
if (rx_status & NGBE_RXD_STAT_L4CS)
pkt_flags |= (rx_status & NGBE_RXD_ERR_L4CS
? RTE_MBUF_F_RX_L4_CKSUM_BAD : RTE_MBUF_F_RX_L4_CKSUM_GOOD);
if (rx_status & NGBE_RXD_STAT_EIPCS &&
rx_status & NGBE_RXD_ERR_EIPCS)
pkt_flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
return pkt_flags;
}
/*
* LOOK_AHEAD defines how many desc statuses to check beyond the
* current descriptor.
* It must be a pound define for optimal performance.
* Do not change the value of LOOK_AHEAD, as the ngbe_rx_scan_hw_ring
* function only works with LOOK_AHEAD=8.
*/
#define LOOK_AHEAD 8
#if (LOOK_AHEAD != 8)
#error "PMD NGBE: LOOK_AHEAD must be 8\n"
#endif
static inline int
ngbe_rx_scan_hw_ring(struct ngbe_rx_queue *rxq)
{
volatile struct ngbe_rx_desc *rxdp;
struct ngbe_rx_entry *rxep;
struct rte_mbuf *mb;
uint16_t pkt_len;
uint64_t pkt_flags;
int nb_dd;
uint32_t s[LOOK_AHEAD];
uint32_t pkt_info[LOOK_AHEAD];
int i, j, nb_rx = 0;
uint32_t status;
/* get references to current descriptor and S/W ring entry */
rxdp = &rxq->rx_ring[rxq->rx_tail];
rxep = &rxq->sw_ring[rxq->rx_tail];
status = rxdp->qw1.lo.status;
/* check to make sure there is at least 1 packet to receive */
if (!(status & rte_cpu_to_le_32(NGBE_RXD_STAT_DD)))
return 0;
/*
* Scan LOOK_AHEAD descriptors at a time to determine which descriptors
* reference packets that are ready to be received.
*/
for (i = 0; i < RTE_PMD_NGBE_RX_MAX_BURST;
i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) {
/* Read desc statuses backwards to avoid race condition */
for (j = 0; j < LOOK_AHEAD; j++)
s[j] = rte_le_to_cpu_32(rxdp[j].qw1.lo.status);
rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
/* Compute how many status bits were set */
for (nb_dd = 0; nb_dd < LOOK_AHEAD &&
(s[nb_dd] & NGBE_RXD_STAT_DD); nb_dd++)
;
for (j = 0; j < nb_dd; j++)
pkt_info[j] = rte_le_to_cpu_32(rxdp[j].qw0.dw0);
nb_rx += nb_dd;
/* Translate descriptor info to mbuf format */
for (j = 0; j < nb_dd; ++j) {
mb = rxep[j].mbuf;
pkt_len = rte_le_to_cpu_16(rxdp[j].qw1.hi.len) -
rxq->crc_len;
mb->data_len = pkt_len;
mb->pkt_len = pkt_len;
mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].qw1.hi.tag);
/* convert descriptor fields to rte mbuf flags */
pkt_flags = rx_desc_status_to_pkt_flags(s[j],
rxq->vlan_flags);
pkt_flags |= rx_desc_error_to_pkt_flags(s[j]);
pkt_flags |=
ngbe_rxd_pkt_info_to_pkt_flags(pkt_info[j]);
mb->ol_flags = pkt_flags;
mb->packet_type =
ngbe_rxd_pkt_info_to_pkt_type(pkt_info[j],
NGBE_PTID_MASK);
if (likely(pkt_flags & RTE_MBUF_F_RX_RSS_HASH))
mb->hash.rss =
rte_le_to_cpu_32(rxdp[j].qw0.dw1);
}
/* Move mbuf pointers from the S/W ring to the stage */
for (j = 0; j < LOOK_AHEAD; ++j)
rxq->rx_stage[i + j] = rxep[j].mbuf;
/* stop if all requested packets could not be received */
if (nb_dd != LOOK_AHEAD)
break;
}
/* clear software ring entries so we can cleanup correctly */
for (i = 0; i < nb_rx; ++i)
rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
return nb_rx;
}
static inline int
ngbe_rx_alloc_bufs(struct ngbe_rx_queue *rxq, bool reset_mbuf)
{
volatile struct ngbe_rx_desc *rxdp;
struct ngbe_rx_entry *rxep;
struct rte_mbuf *mb;
uint16_t alloc_idx;
__le64 dma_addr;
int diag, i;
/* allocate buffers in bulk directly into the S/W ring */
alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1);
rxep = &rxq->sw_ring[alloc_idx];
diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
rxq->rx_free_thresh);
if (unlikely(diag != 0))
return -ENOMEM;
rxdp = &rxq->rx_ring[alloc_idx];
for (i = 0; i < rxq->rx_free_thresh; ++i) {
/* populate the static rte mbuf fields */
mb = rxep[i].mbuf;
if (reset_mbuf)
mb->port = rxq->port_id;
rte_mbuf_refcnt_set(mb, 1);
mb->data_off = RTE_PKTMBUF_HEADROOM;
/* populate the descriptors */
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
NGBE_RXD_HDRADDR(&rxdp[i], 0);
NGBE_RXD_PKTADDR(&rxdp[i], dma_addr);
}
/* update state of internal queue structure */
rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh;
if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
rxq->rx_free_trigger = rxq->rx_free_thresh - 1;
/* no errors */
return 0;
}
static inline uint16_t
ngbe_rx_fill_from_stage(struct ngbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
int i;
/* how many packets are ready to return? */
nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
/* copy mbuf pointers to the application's packet list */
for (i = 0; i < nb_pkts; ++i)
rx_pkts[i] = stage[i];
/* update internal queue state */
rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
return nb_pkts;
}
static inline uint16_t
ngbe_rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct ngbe_rx_queue *rxq = (struct ngbe_rx_queue *)rx_queue;
struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id];
uint16_t nb_rx = 0;
/* Any previously recv'd pkts will be returned from the Rx stage */
if (rxq->rx_nb_avail)
return ngbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
/* Scan the H/W ring for packets to receive */
nb_rx = (uint16_t)ngbe_rx_scan_hw_ring(rxq);
/* update internal queue state */
rxq->rx_next_avail = 0;
rxq->rx_nb_avail = nb_rx;
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
/* if required, allocate new buffers to replenish descriptors */
if (rxq->rx_tail > rxq->rx_free_trigger) {
uint16_t cur_free_trigger = rxq->rx_free_trigger;
if (ngbe_rx_alloc_bufs(rxq, true) != 0) {
int i, j;
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u", (uint16_t)rxq->port_id,
(uint16_t)rxq->queue_id);
dev->data->rx_mbuf_alloc_failed +=
rxq->rx_free_thresh;
/*
* Need to rewind any previous receives if we cannot
* allocate new buffers to replenish the old ones.
*/
rxq->rx_nb_avail = 0;
rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j)
rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
return 0;
}
/* update tail pointer */
rte_wmb();
ngbe_set32_relaxed(rxq->rdt_reg_addr, cur_free_trigger);
}
if (rxq->rx_tail >= rxq->nb_rx_desc)
rxq->rx_tail = 0;
/* received any packets this loop? */
if (rxq->rx_nb_avail)
return ngbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
return 0;
}
/* split requests into chunks of size RTE_PMD_NGBE_RX_MAX_BURST */
uint16_t
ngbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_rx;
if (unlikely(nb_pkts == 0))
return 0;
if (likely(nb_pkts <= RTE_PMD_NGBE_RX_MAX_BURST))
return ngbe_rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
/* request is relatively large, chunk it up */
nb_rx = 0;
while (nb_pkts) {
uint16_t ret, n;
n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_NGBE_RX_MAX_BURST);
ret = ngbe_rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
nb_rx = (uint16_t)(nb_rx + ret);
nb_pkts = (uint16_t)(nb_pkts - ret);
if (ret < n)
break;
}
return nb_rx;
}
uint16_t
ngbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct ngbe_rx_queue *rxq;
volatile struct ngbe_rx_desc *rx_ring;
volatile struct ngbe_rx_desc *rxdp;
struct ngbe_rx_entry *sw_ring;
struct ngbe_rx_entry *rxe;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
struct ngbe_rx_desc rxd;
uint64_t dma_addr;
uint32_t staterr;
uint32_t pkt_info;
uint16_t pkt_len;
uint16_t rx_id;
uint16_t nb_rx;
uint16_t nb_hold;
uint64_t pkt_flags;
nb_rx = 0;
nb_hold = 0;
rxq = rx_queue;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
sw_ring = rxq->sw_ring;
struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id];
while (nb_rx < nb_pkts) {
/*
* The order of operations here is important as the DD status
* bit must not be read after any other descriptor fields.
* rx_ring and rxdp are pointing to volatile data so the order
* of accesses cannot be reordered by the compiler. If they were
* not volatile, they could be reordered which could lead to
* using invalid descriptor fields when read from rxd.
*
* Meanwhile, to prevent the CPU from executing out of order, we
* need to use a proper memory barrier to ensure the memory
* ordering below.
*/
rxdp = &rx_ring[rx_id];
staterr = rxdp->qw1.lo.status;
if (!(staterr & rte_cpu_to_le_32(NGBE_RXD_STAT_DD)))
break;
/*
* Use acquire fence to ensure that status_error which includes
* DD bit is loaded before loading of other descriptor words.
*/
rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
rxd = *rxdp;
/*
* End of packet.
*
* If the NGBE_RXD_STAT_EOP flag is not set, the Rx packet
* is likely to be invalid and to be dropped by the various
* validation checks performed by the network stack.
*
* Allocate a new mbuf to replenish the RX ring descriptor.
* If the allocation fails:
* - arrange for that Rx descriptor to be the first one
* being parsed the next time the receive function is
* invoked [on the same queue].
*
* - Stop parsing the Rx ring and return immediately.
*
* This policy do not drop the packet received in the Rx
* descriptor for which the allocation of a new mbuf failed.
* Thus, it allows that packet to be later retrieved if
* mbuf have been freed in the mean time.
* As a side effect, holding Rx descriptors instead of
* systematically giving them back to the NIC may lead to
* Rx ring exhaustion situations.
* However, the NIC can gracefully prevent such situations
* to happen by sending specific "back-pressure" flow control
* frames to its peer(s).
*/
PMD_RX_LOG(DEBUG,
"port_id=%u queue_id=%u rx_id=%u ext_err_stat=0x%08x pkt_len=%u",
(uint16_t)rxq->port_id, (uint16_t)rxq->queue_id,
(uint16_t)rx_id, (uint32_t)staterr,
(uint16_t)rte_le_to_cpu_16(rxd.qw1.hi.len));
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
if (nmb == NULL) {
PMD_RX_LOG(DEBUG,
"Rx mbuf alloc failed port_id=%u queue_id=%u",
(uint16_t)rxq->port_id,
(uint16_t)rxq->queue_id);
dev->data->rx_mbuf_alloc_failed++;
break;
}
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf while processing current one. */
rte_ngbe_prefetch(sw_ring[rx_id].mbuf);
/*
* When next Rx descriptor is on a cache-line boundary,
* prefetch the next 4 Rx descriptors and the next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_ngbe_prefetch(&rx_ring[rx_id]);
rte_ngbe_prefetch(&sw_ring[rx_id]);
}
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
NGBE_RXD_HDRADDR(rxdp, 0);
NGBE_RXD_PKTADDR(rxdp, dma_addr);
/*
* Initialize the returned mbuf.
* 1) setup generic mbuf fields:
* - number of segments,
* - next segment,
* - packet length,
* - Rx port identifier.
* 2) integrate hardware offload data, if any:
* - RSS flag & hash,
* - IP checksum flag,
* - VLAN TCI, if any,
* - error flags.
*/
pkt_len = (uint16_t)(rte_le_to_cpu_16(rxd.qw1.hi.len) -
rxq->crc_len);
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
rxm->nb_segs = 1;
rxm->next = NULL;
rxm->pkt_len = pkt_len;
rxm->data_len = pkt_len;
rxm->port = rxq->port_id;
pkt_info = rte_le_to_cpu_32(rxd.qw0.dw0);
/* Only valid if RTE_MBUF_F_RX_VLAN set in pkt_flags */
rxm->vlan_tci = rte_le_to_cpu_16(rxd.qw1.hi.tag);
pkt_flags = rx_desc_status_to_pkt_flags(staterr,
rxq->vlan_flags);
pkt_flags |= rx_desc_error_to_pkt_flags(staterr);
pkt_flags |= ngbe_rxd_pkt_info_to_pkt_flags(pkt_info);
rxm->ol_flags = pkt_flags;
rxm->packet_type = ngbe_rxd_pkt_info_to_pkt_type(pkt_info,
NGBE_PTID_MASK);
if (likely(pkt_flags & RTE_MBUF_F_RX_RSS_HASH))
rxm->hash.rss = rte_le_to_cpu_32(rxd.qw0.dw1);
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = rxm;
}
rxq->rx_tail = rx_id;
/*
* If the number of free Rx descriptors is greater than the Rx free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed Rx descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situation from the
* hardware point of view...
*/
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG,
"port_id=%u queue_id=%u rx_tail=%u nb_hold=%u nb_rx=%u",
(uint16_t)rxq->port_id, (uint16_t)rxq->queue_id,
(uint16_t)rx_id, (uint16_t)nb_hold,
(uint16_t)nb_rx);
rx_id = (uint16_t)((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
ngbe_set32(rxq->rdt_reg_addr, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return nb_rx;
}
/**
* ngbe_fill_cluster_head_buf - fill the first mbuf of the returned packet
*
* Fill the following info in the HEAD buffer of the Rx cluster:
* - RX port identifier
* - hardware offload data, if any:
* - RSS flag & hash
* - IP checksum flag
* - VLAN TCI, if any
* - error flags
* @head HEAD of the packet cluster
* @desc HW descriptor to get data from
* @rxq Pointer to the Rx queue
*/
static inline void
ngbe_fill_cluster_head_buf(struct rte_mbuf *head, struct ngbe_rx_desc *desc,
struct ngbe_rx_queue *rxq, uint32_t staterr)
{
uint32_t pkt_info;
uint64_t pkt_flags;
head->port = rxq->port_id;
/* The vlan_tci field is only valid when RTE_MBUF_F_RX_VLAN is
* set in the pkt_flags field.
*/
head->vlan_tci = rte_le_to_cpu_16(desc->qw1.hi.tag);
pkt_info = rte_le_to_cpu_32(desc->qw0.dw0);
pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags);
pkt_flags |= rx_desc_error_to_pkt_flags(staterr);
pkt_flags |= ngbe_rxd_pkt_info_to_pkt_flags(pkt_info);
head->ol_flags = pkt_flags;
head->packet_type = ngbe_rxd_pkt_info_to_pkt_type(pkt_info,
NGBE_PTID_MASK);
if (likely(pkt_flags & RTE_MBUF_F_RX_RSS_HASH))
head->hash.rss = rte_le_to_cpu_32(desc->qw0.dw1);
}
/**
* ngbe_recv_pkts_sc - receive handler for scatter case.
*
* @rx_queue Rx queue handle
* @rx_pkts table of received packets
* @nb_pkts size of rx_pkts table
* @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling
*
* Returns the number of received packets/clusters (according to the "bulk
* receive" interface).
*/
static inline uint16_t
ngbe_recv_pkts_sc(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts,
bool bulk_alloc)
{
struct ngbe_rx_queue *rxq = rx_queue;
struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id];
volatile struct ngbe_rx_desc *rx_ring = rxq->rx_ring;
struct ngbe_rx_entry *sw_ring = rxq->sw_ring;
struct ngbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring;
uint16_t rx_id = rxq->rx_tail;
uint16_t nb_rx = 0;
uint16_t nb_hold = rxq->nb_rx_hold;
uint16_t prev_id = rxq->rx_tail;
while (nb_rx < nb_pkts) {
bool eop;
struct ngbe_rx_entry *rxe;
struct ngbe_scattered_rx_entry *sc_entry;
struct ngbe_scattered_rx_entry *next_sc_entry = NULL;
struct ngbe_rx_entry *next_rxe = NULL;
struct rte_mbuf *first_seg;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb = NULL;
struct ngbe_rx_desc rxd;
uint16_t data_len;
uint16_t next_id;
volatile struct ngbe_rx_desc *rxdp;
uint32_t staterr;
next_desc:
rxdp = &rx_ring[rx_id];
staterr = rte_le_to_cpu_32(rxdp->qw1.lo.status);
if (!(staterr & NGBE_RXD_STAT_DD))
break;
/*
* Use acquire fence to ensure that status_error which includes
* DD bit is loaded before loading of other descriptor words.
*/
rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
rxd = *rxdp;
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
"staterr=0x%x data_len=%u",
rxq->port_id, rxq->queue_id, rx_id, staterr,
rte_le_to_cpu_16(rxd.qw1.hi.len));
if (!bulk_alloc) {
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
if (nmb == NULL) {
PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed "
"port_id=%u queue_id=%u",
rxq->port_id, rxq->queue_id);
dev->data->rx_mbuf_alloc_failed++;
break;
}
} else if (nb_hold > rxq->rx_free_thresh) {
uint16_t next_rdt = rxq->rx_free_trigger;
if (!ngbe_rx_alloc_bufs(rxq, false)) {
rte_wmb();
ngbe_set32_relaxed(rxq->rdt_reg_addr,
next_rdt);
nb_hold -= rxq->rx_free_thresh;
} else {
PMD_RX_LOG(DEBUG, "Rx bulk alloc failed "
"port_id=%u queue_id=%u",
rxq->port_id, rxq->queue_id);
dev->data->rx_mbuf_alloc_failed++;
break;
}
}
nb_hold++;
rxe = &sw_ring[rx_id];
eop = staterr & NGBE_RXD_STAT_EOP;
next_id = rx_id + 1;
if (next_id == rxq->nb_rx_desc)
next_id = 0;
/* Prefetch next mbuf while processing current one. */
rte_ngbe_prefetch(sw_ring[next_id].mbuf);
/*
* When next Rx descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 4 pointers
* to mbufs.
*/
if ((next_id & 0x3) == 0) {
rte_ngbe_prefetch(&rx_ring[next_id]);
rte_ngbe_prefetch(&sw_ring[next_id]);
}
rxm = rxe->mbuf;
if (!bulk_alloc) {
__le64 dma =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
/*
* Update Rx descriptor with the physical address of the
* new data buffer of the new allocated mbuf.
*/
rxe->mbuf = nmb;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
NGBE_RXD_HDRADDR(rxdp, 0);
NGBE_RXD_PKTADDR(rxdp, dma);
} else {
rxe->mbuf = NULL;
}
/*
* Set data length & data buffer address of mbuf.
*/
data_len = rte_le_to_cpu_16(rxd.qw1.hi.len);
rxm->data_len = data_len;
if (!eop) {
uint16_t nextp_id;
nextp_id = next_id;
next_sc_entry = &sw_sc_ring[nextp_id];
next_rxe = &sw_ring[nextp_id];
rte_ngbe_prefetch(next_rxe);
}
sc_entry = &sw_sc_ring[rx_id];
first_seg = sc_entry->fbuf;
sc_entry->fbuf = NULL;
/*
* If this is the first buffer of the received packet,
* set the pointer to the first mbuf of the packet and
* initialize its context.
* Otherwise, update the total length and the number of segments
* of the current scattered packet, and update the pointer to
* the last mbuf of the current packet.
*/
if (first_seg == NULL) {
first_seg = rxm;
first_seg->pkt_len = data_len;
first_seg->nb_segs = 1;
} else {
first_seg->pkt_len += data_len;
first_seg->nb_segs++;
}
prev_id = rx_id;
rx_id = next_id;
/*
* If this is not the last buffer of the received packet, update
* the pointer to the first mbuf at the NEXTP entry in the
* sw_sc_ring and continue to parse the Rx ring.
*/
if (!eop && next_rxe) {
rxm->next = next_rxe->mbuf;
next_sc_entry->fbuf = first_seg;
goto next_desc;
}
/* Initialize the first mbuf of the returned packet */
ngbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr);
/* Deal with the case, when HW CRC srip is disabled. */
first_seg->pkt_len -= rxq->crc_len;
if (unlikely(rxm->data_len <= rxq->crc_len)) {
struct rte_mbuf *lp;
for (lp = first_seg; lp->next != rxm; lp = lp->next)
;
first_seg->nb_segs--;
lp->data_len -= rxq->crc_len - rxm->data_len;
lp->next = NULL;
rte_pktmbuf_free_seg(rxm);
} else {
rxm->data_len -= rxq->crc_len;
}
/* Prefetch data of first segment, if configured to do so. */
rte_packet_prefetch((char *)first_seg->buf_addr +
first_seg->data_off);
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = first_seg;
}
/*
* Record index of the next Rx descriptor to probe.
*/
rxq->rx_tail = rx_id;
/*
* If the number of free Rx descriptors is greater than the Rx free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed Rx descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situation from the
* hardware point of view...
*/
if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
"nb_hold=%u nb_rx=%u",
rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
rte_wmb();
ngbe_set32_relaxed(rxq->rdt_reg_addr, prev_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return nb_rx;
}
uint16_t
ngbe_recv_pkts_sc_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return ngbe_recv_pkts_sc(rx_queue, rx_pkts, nb_pkts, false);
}
uint16_t
ngbe_recv_pkts_sc_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return ngbe_recv_pkts_sc(rx_queue, rx_pkts, nb_pkts, true);
}
/*********************************************************************
*
* Queue management functions
*
**********************************************************************/
static void
ngbe_tx_queue_release_mbufs(struct ngbe_tx_queue *txq)
{
unsigned int i;
if (txq->sw_ring != NULL) {
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
}
static int
ngbe_tx_done_cleanup_full(struct ngbe_tx_queue *txq, uint32_t free_cnt)
{
struct ngbe_tx_entry *swr_ring = txq->sw_ring;
uint16_t i, tx_last, tx_id;
uint16_t nb_tx_free_last;
uint16_t nb_tx_to_clean;
uint32_t pkt_cnt;
/* Start free mbuf from the next of tx_tail */
tx_last = txq->tx_tail;
tx_id = swr_ring[tx_last].next_id;
if (txq->nb_tx_free == 0 && ngbe_xmit_cleanup(txq))
return 0;
nb_tx_to_clean = txq->nb_tx_free;
nb_tx_free_last = txq->nb_tx_free;
if (!free_cnt)
free_cnt = txq->nb_tx_desc;
/* Loop through swr_ring to count the amount of
* freeable mubfs and packets.
*/
for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
for (i = 0; i < nb_tx_to_clean &&
pkt_cnt < free_cnt &&
tx_id != tx_last; i++) {
if (swr_ring[tx_id].mbuf != NULL) {
rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
swr_ring[tx_id].mbuf = NULL;
/*
* last segment in the packet,
* increment packet count
*/
pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
}
tx_id = swr_ring[tx_id].next_id;
}
if (pkt_cnt < free_cnt) {
if (ngbe_xmit_cleanup(txq))
break;
nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
nb_tx_free_last = txq->nb_tx_free;
}
}
return (int)pkt_cnt;
}
static int
ngbe_tx_done_cleanup_simple(struct ngbe_tx_queue *txq,
uint32_t free_cnt)
{
int i, n, cnt;
if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
free_cnt = txq->nb_tx_desc;
cnt = free_cnt - free_cnt % txq->tx_free_thresh;
for (i = 0; i < cnt; i += n) {
if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_free_thresh)
break;
n = ngbe_tx_free_bufs(txq);
if (n == 0)
break;
}
return i;
}
int
ngbe_dev_tx_done_cleanup(void *tx_queue, uint32_t free_cnt)
{
struct ngbe_tx_queue *txq = (struct ngbe_tx_queue *)tx_queue;
if (txq->offloads == 0 &&
txq->tx_free_thresh >= RTE_PMD_NGBE_TX_MAX_BURST)
return ngbe_tx_done_cleanup_simple(txq, free_cnt);
return ngbe_tx_done_cleanup_full(txq, free_cnt);
}
static void
ngbe_tx_free_swring(struct ngbe_tx_queue *txq)
{
if (txq != NULL)
rte_free(txq->sw_ring);
}
static void
ngbe_tx_queue_release(struct ngbe_tx_queue *txq)
{
if (txq != NULL) {
if (txq->ops != NULL) {
txq->ops->release_mbufs(txq);
txq->ops->free_swring(txq);
rte_memzone_free(txq->mz);
}
rte_free(txq);
}
}
void
ngbe_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
ngbe_tx_queue_release(dev->data->tx_queues[qid]);
}
/* (Re)set dynamic ngbe_tx_queue fields to defaults */
static void
ngbe_reset_tx_queue(struct ngbe_tx_queue *txq)
{
static const struct ngbe_tx_desc zeroed_desc = {0};
struct ngbe_tx_entry *txe = txq->sw_ring;
uint16_t prev, i;
/* Zero out HW ring memory */
for (i = 0; i < txq->nb_tx_desc; i++)
txq->tx_ring[i] = zeroed_desc;
/* Initialize SW ring entries */
prev = (uint16_t)(txq->nb_tx_desc - 1);
for (i = 0; i < txq->nb_tx_desc; i++) {
/* the ring can also be modified by hardware */
volatile struct ngbe_tx_desc *txd = &txq->tx_ring[i];
txd->dw3 = rte_cpu_to_le_32(NGBE_TXD_DD);
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->tx_next_dd = (uint16_t)(txq->tx_free_thresh - 1);
txq->tx_tail = 0;
/*
* Always allow 1 descriptor to be un-allocated to avoid
* a H/W race condition
*/
txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
txq->ctx_curr = 0;
memset((void *)&txq->ctx_cache, 0,
NGBE_CTX_NUM * sizeof(struct ngbe_ctx_info));
}
static const struct ngbe_txq_ops def_txq_ops = {
.release_mbufs = ngbe_tx_queue_release_mbufs,
.free_swring = ngbe_tx_free_swring,
.reset = ngbe_reset_tx_queue,
};
/* Takes an ethdev and a queue and sets up the tx function to be used based on
* the queue parameters. Used in tx_queue_setup by primary process and then
* in dev_init by secondary process when attaching to an existing ethdev.
*/
void
ngbe_set_tx_function(struct rte_eth_dev *dev, struct ngbe_tx_queue *txq)
{
/* Use a simple Tx queue (no offloads, no multi segs) if possible */
if (txq->offloads == 0 &&
txq->tx_free_thresh >= RTE_PMD_NGBE_TX_MAX_BURST) {
PMD_INIT_LOG(DEBUG, "Using simple tx code path");
dev->tx_pkt_burst = ngbe_xmit_pkts_simple;
dev->tx_pkt_prepare = NULL;
} else {
PMD_INIT_LOG(DEBUG, "Using full-featured tx code path");
PMD_INIT_LOG(DEBUG,
" - offloads = 0x%" PRIx64,
txq->offloads);
PMD_INIT_LOG(DEBUG,
" - tx_free_thresh = %lu [RTE_PMD_NGBE_TX_MAX_BURST=%lu]",
(unsigned long)txq->tx_free_thresh,
(unsigned long)RTE_PMD_NGBE_TX_MAX_BURST);
dev->tx_pkt_burst = ngbe_xmit_pkts;
dev->tx_pkt_prepare = ngbe_prep_pkts;
}
}
static const struct {
eth_tx_burst_t pkt_burst;
const char *info;
} ngbe_tx_burst_infos[] = {
{ ngbe_xmit_pkts_simple, "Scalar Simple"},
{ ngbe_xmit_pkts, "Scalar"},
};
int
ngbe_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
struct rte_eth_burst_mode *mode)
{
eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
int ret = -EINVAL;
unsigned int i;
for (i = 0; i < RTE_DIM(ngbe_tx_burst_infos); ++i) {
if (pkt_burst == ngbe_tx_burst_infos[i].pkt_burst) {
snprintf(mode->info, sizeof(mode->info), "%s",
ngbe_tx_burst_infos[i].info);
ret = 0;
break;
}
}
return ret;
}
uint64_t
ngbe_get_tx_port_offloads(struct rte_eth_dev *dev)
{
uint64_t tx_offload_capa;
struct ngbe_hw *hw = ngbe_dev_hw(dev);
tx_offload_capa =
RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
RTE_ETH_TX_OFFLOAD_SCTP_CKSUM |
RTE_ETH_TX_OFFLOAD_TCP_TSO |
RTE_ETH_TX_OFFLOAD_UDP_TSO |
RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
if (hw->is_pf)
tx_offload_capa |= RTE_ETH_TX_OFFLOAD_QINQ_INSERT;
return tx_offload_capa;
}
int
ngbe_dev_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
const struct rte_memzone *tz;
struct ngbe_tx_queue *txq;
struct ngbe_hw *hw;
uint16_t tx_free_thresh;
uint64_t offloads;
PMD_INIT_FUNC_TRACE();
hw = ngbe_dev_hw(dev);
offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
/*
* The Tx descriptor ring will be cleaned after txq->tx_free_thresh
* descriptors are used or if the number of descriptors required
* to transmit a packet is greater than the number of free Tx
* descriptors.
* One descriptor in the Tx ring is used as a sentinel to avoid a
* H/W race condition, hence the maximum threshold constraints.
* When set to zero use default values.
*/
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
if (tx_free_thresh >= (nb_desc - 3)) {
PMD_INIT_LOG(ERR,
"tx_free_thresh must be less than the number of TX descriptors minus 3. (tx_free_thresh=%u port=%d queue=%d)",
(unsigned int)tx_free_thresh,
(int)dev->data->port_id, (int)queue_idx);
return -(EINVAL);
}
if (nb_desc % tx_free_thresh != 0) {
PMD_INIT_LOG(ERR,
"tx_free_thresh must be a divisor of the number of Tx descriptors. (tx_free_thresh=%u port=%d queue=%d)",
(unsigned int)tx_free_thresh,
(int)dev->data->port_id, (int)queue_idx);
return -(EINVAL);
}
/* Free memory prior to re-allocation if needed... */
if (dev->data->tx_queues[queue_idx] != NULL) {
ngbe_tx_queue_release(dev->data->tx_queues[queue_idx]);
dev->data->tx_queues[queue_idx] = NULL;
}
/* First allocate the Tx queue data structure */
txq = rte_zmalloc_socket("ethdev Tx queue",
sizeof(struct ngbe_tx_queue),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq == NULL)
return -ENOMEM;
/*
* Allocate Tx ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
sizeof(struct ngbe_tx_desc) * NGBE_RING_DESC_MAX,
NGBE_ALIGN, socket_id);
if (tz == NULL) {
ngbe_tx_queue_release(txq);
return -ENOMEM;
}
txq->mz = tz;
txq->nb_tx_desc = nb_desc;
txq->tx_free_thresh = tx_free_thresh;
txq->pthresh = tx_conf->tx_thresh.pthresh;
txq->hthresh = tx_conf->tx_thresh.hthresh;
txq->wthresh = tx_conf->tx_thresh.wthresh;
txq->queue_id = queue_idx;
txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
txq->port_id = dev->data->port_id;
txq->offloads = offloads;
txq->ops = &def_txq_ops;
txq->tx_deferred_start = tx_conf->tx_deferred_start;
txq->tdt_reg_addr = NGBE_REG_ADDR(hw, NGBE_TXWP(txq->reg_idx));
txq->tdc_reg_addr = NGBE_REG_ADDR(hw, NGBE_TXCFG(txq->reg_idx));
txq->tx_ring_phys_addr = TMZ_PADDR(tz);
txq->tx_ring = (struct ngbe_tx_desc *)TMZ_VADDR(tz);
/* Allocate software ring */
txq->sw_ring = rte_zmalloc_socket("txq->sw_ring",
sizeof(struct ngbe_tx_entry) * nb_desc,
RTE_CACHE_LINE_SIZE, socket_id);
if (txq->sw_ring == NULL) {
ngbe_tx_queue_release(txq);
return -ENOMEM;
}
PMD_INIT_LOG(DEBUG,
"sw_ring=%p hw_ring=%p dma_addr=0x%" PRIx64,
txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
/* set up scalar Tx function as appropriate */
ngbe_set_tx_function(dev, txq);
txq->ops->reset(txq);
dev->data->tx_queues[queue_idx] = txq;
return 0;
}
/**
* ngbe_free_sc_cluster - free the not-yet-completed scattered cluster
*
* The "next" pointer of the last segment of (not-yet-completed) RSC clusters
* in the sw_sc_ring is not set to NULL but rather points to the next
* mbuf of this RSC aggregation (that has not been completed yet and still
* resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we
* will just free first "nb_segs" segments of the cluster explicitly by calling
* an rte_pktmbuf_free_seg().
*
* @m scattered cluster head
*/
static void
ngbe_free_sc_cluster(struct rte_mbuf *m)
{
uint16_t i, nb_segs = m->nb_segs;
struct rte_mbuf *next_seg;
for (i = 0; i < nb_segs; i++) {
next_seg = m->next;
rte_pktmbuf_free_seg(m);
m = next_seg;
}
}
static void
ngbe_rx_queue_release_mbufs(struct ngbe_rx_queue *rxq)
{
unsigned int i;
if (rxq->sw_ring != NULL) {
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
rxq->sw_ring[i].mbuf = NULL;
}
}
for (i = 0; i < rxq->rx_nb_avail; ++i) {
struct rte_mbuf *mb;
mb = rxq->rx_stage[rxq->rx_next_avail + i];
rte_pktmbuf_free_seg(mb);
}
rxq->rx_nb_avail = 0;
}
if (rxq->sw_sc_ring != NULL)
for (i = 0; i < rxq->nb_rx_desc; i++)
if (rxq->sw_sc_ring[i].fbuf != NULL) {
ngbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf);
rxq->sw_sc_ring[i].fbuf = NULL;
}
}
static void
ngbe_rx_queue_release(struct ngbe_rx_queue *rxq)
{
if (rxq != NULL) {
ngbe_rx_queue_release_mbufs(rxq);
rte_free(rxq->sw_ring);
rte_free(rxq->sw_sc_ring);
rte_memzone_free(rxq->mz);
rte_free(rxq);
}
}
void
ngbe_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
ngbe_rx_queue_release(dev->data->rx_queues[qid]);
}
/*
* Check if Rx Burst Bulk Alloc function can be used.
* Return
* 0: the preconditions are satisfied and the bulk allocation function
* can be used.
* -EINVAL: the preconditions are NOT satisfied and the default Rx burst
* function must be used.
*/
static inline int
check_rx_burst_bulk_alloc_preconditions(struct ngbe_rx_queue *rxq)
{
int ret = 0;
/*
* Make sure the following pre-conditions are satisfied:
* rxq->rx_free_thresh >= RTE_PMD_NGBE_RX_MAX_BURST
* rxq->rx_free_thresh < rxq->nb_rx_desc
* (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0
* Scattered packets are not supported. This should be checked
* outside of this function.
*/
if (rxq->rx_free_thresh < RTE_PMD_NGBE_RX_MAX_BURST) {
PMD_INIT_LOG(DEBUG,
"Rx Burst Bulk Alloc Preconditions: rxq->rx_free_thresh=%d, RTE_PMD_NGBE_RX_MAX_BURST=%d",
rxq->rx_free_thresh, RTE_PMD_NGBE_RX_MAX_BURST);
ret = -EINVAL;
} else if (rxq->rx_free_thresh >= rxq->nb_rx_desc) {
PMD_INIT_LOG(DEBUG,
"Rx Burst Bulk Alloc Preconditions: rxq->rx_free_thresh=%d, rxq->nb_rx_desc=%d",
rxq->rx_free_thresh, rxq->nb_rx_desc);
ret = -EINVAL;
} else if ((rxq->nb_rx_desc % rxq->rx_free_thresh) != 0) {
PMD_INIT_LOG(DEBUG,
"Rx Burst Bulk Alloc Preconditions: rxq->nb_rx_desc=%d, rxq->rx_free_thresh=%d",
rxq->nb_rx_desc, rxq->rx_free_thresh);
ret = -EINVAL;
}
return ret;
}
/* Reset dynamic ngbe_rx_queue fields back to defaults */
static void
ngbe_reset_rx_queue(struct ngbe_adapter *adapter, struct ngbe_rx_queue *rxq)
{
static const struct ngbe_rx_desc zeroed_desc = {
{{0}, {0} }, {{0}, {0} } };
unsigned int i;
uint16_t len = rxq->nb_rx_desc;
/*
* By default, the Rx queue setup function allocates enough memory for
* NGBE_RING_DESC_MAX. The Rx Burst bulk allocation function requires
* extra memory at the end of the descriptor ring to be zero'd out.
*/
if (adapter->rx_bulk_alloc_allowed)
/* zero out extra memory */
len += RTE_PMD_NGBE_RX_MAX_BURST;
/*
* Zero out HW ring memory. Zero out extra memory at the end of
* the H/W ring so look-ahead logic in Rx Burst bulk alloc function
* reads extra memory as zeros.
*/
for (i = 0; i < len; i++)
rxq->rx_ring[i] = zeroed_desc;
/*
* initialize extra software ring entries. Space for these extra
* entries is always allocated
*/
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
for (i = rxq->nb_rx_desc; i < len; ++i)
rxq->sw_ring[i].mbuf = &rxq->fake_mbuf;
rxq->rx_nb_avail = 0;
rxq->rx_next_avail = 0;
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
rxq->rx_tail = 0;
rxq->nb_rx_hold = 0;
rte_pktmbuf_free(rxq->pkt_first_seg);
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
}
uint64_t
ngbe_get_rx_queue_offloads(struct rte_eth_dev *dev __rte_unused)
{
return RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
}
uint64_t
ngbe_get_rx_port_offloads(struct rte_eth_dev *dev)
{
uint64_t offloads;
struct ngbe_hw *hw = ngbe_dev_hw(dev);
offloads = RTE_ETH_RX_OFFLOAD_IPV4_CKSUM |
RTE_ETH_RX_OFFLOAD_UDP_CKSUM |
RTE_ETH_RX_OFFLOAD_TCP_CKSUM |
RTE_ETH_RX_OFFLOAD_KEEP_CRC |
RTE_ETH_RX_OFFLOAD_VLAN_FILTER |
RTE_ETH_RX_OFFLOAD_RSS_HASH |
RTE_ETH_RX_OFFLOAD_SCATTER;
if (hw->is_pf)
offloads |= (RTE_ETH_RX_OFFLOAD_QINQ_STRIP |
RTE_ETH_RX_OFFLOAD_VLAN_EXTEND);
return offloads;
}
int
ngbe_dev_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
const struct rte_memzone *rz;
struct ngbe_rx_queue *rxq;
struct ngbe_hw *hw;
uint16_t len;
struct ngbe_adapter *adapter = ngbe_dev_adapter(dev);
uint64_t offloads;
PMD_INIT_FUNC_TRACE();
hw = ngbe_dev_hw(dev);
offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
/* Free memory prior to re-allocation if needed... */
if (dev->data->rx_queues[queue_idx] != NULL) {
ngbe_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* First allocate the Rx queue data structure */
rxq = rte_zmalloc_socket("ethdev RX queue",
sizeof(struct ngbe_rx_queue),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq == NULL)
return -ENOMEM;
rxq->mb_pool = mp;
rxq->nb_rx_desc = nb_desc;
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
rxq->queue_id = queue_idx;
rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
rxq->port_id = dev->data->port_id;
if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
rxq->crc_len = RTE_ETHER_CRC_LEN;
else
rxq->crc_len = 0;
rxq->drop_en = rx_conf->rx_drop_en;
rxq->rx_deferred_start = rx_conf->rx_deferred_start;
rxq->offloads = offloads;
/*
* Allocate Rx ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
RX_RING_SZ, NGBE_ALIGN, socket_id);
if (rz == NULL) {
ngbe_rx_queue_release(rxq);
return -ENOMEM;
}
rxq->mz = rz;
/*
* Zero init all the descriptors in the ring.
*/
memset(rz->addr, 0, RX_RING_SZ);
rxq->rdt_reg_addr = NGBE_REG_ADDR(hw, NGBE_RXWP(rxq->reg_idx));
rxq->rdh_reg_addr = NGBE_REG_ADDR(hw, NGBE_RXRP(rxq->reg_idx));
rxq->rx_ring_phys_addr = TMZ_PADDR(rz);
rxq->rx_ring = (struct ngbe_rx_desc *)TMZ_VADDR(rz);
/*
* Certain constraints must be met in order to use the bulk buffer
* allocation Rx burst function. If any of Rx queues doesn't meet them
* the feature should be disabled for the whole port.
*/
if (check_rx_burst_bulk_alloc_preconditions(rxq)) {
PMD_INIT_LOG(DEBUG,
"queue[%d] doesn't meet Rx Bulk Alloc preconditions - canceling the feature for the whole port[%d]",
rxq->queue_id, rxq->port_id);
adapter->rx_bulk_alloc_allowed = false;
}
/*
* Allocate software ring. Allow for space at the end of the
* S/W ring to make sure look-ahead logic in bulk alloc Rx burst
* function does not access an invalid memory region.
*/
len = nb_desc;
if (adapter->rx_bulk_alloc_allowed)
len += RTE_PMD_NGBE_RX_MAX_BURST;
rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring",
sizeof(struct ngbe_rx_entry) * len,
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq->sw_ring == NULL) {
ngbe_rx_queue_release(rxq);
return -ENOMEM;
}
/*
* Always allocate even if it's not going to be needed in order to
* simplify the code.
*
* This ring is used in Scattered Rx cases and Scattered Rx may
* be requested in ngbe_dev_rx_init(), which is called later from
* dev_start() flow.
*/
rxq->sw_sc_ring =
rte_zmalloc_socket("rxq->sw_sc_ring",
sizeof(struct ngbe_scattered_rx_entry) * len,
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq->sw_sc_ring == NULL) {
ngbe_rx_queue_release(rxq);
return -ENOMEM;
}
PMD_INIT_LOG(DEBUG,
"sw_ring=%p sw_sc_ring=%p hw_ring=%p dma_addr=0x%" PRIx64,
rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring,
rxq->rx_ring_phys_addr);
dev->data->rx_queues[queue_idx] = rxq;
ngbe_reset_rx_queue(adapter, rxq);
return 0;
}
uint32_t
ngbe_dev_rx_queue_count(void *rx_queue)
{
#define NGBE_RXQ_SCAN_INTERVAL 4
volatile struct ngbe_rx_desc *rxdp;
struct ngbe_rx_queue *rxq = rx_queue;
uint32_t desc = 0;
rxdp = &rxq->rx_ring[rxq->rx_tail];
while ((desc < rxq->nb_rx_desc) &&
(rxdp->qw1.lo.status &
rte_cpu_to_le_32(NGBE_RXD_STAT_DD))) {
desc += NGBE_RXQ_SCAN_INTERVAL;
rxdp += NGBE_RXQ_SCAN_INTERVAL;
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
rxdp = &(rxq->rx_ring[rxq->rx_tail +
desc - rxq->nb_rx_desc]);
}
return desc;
}
int
ngbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
{
struct ngbe_rx_queue *rxq = rx_queue;
volatile uint32_t *status;
uint32_t nb_hold, desc;
if (unlikely(offset >= rxq->nb_rx_desc))
return -EINVAL;
nb_hold = rxq->nb_rx_hold;
if (offset >= rxq->nb_rx_desc - nb_hold)
return RTE_ETH_RX_DESC_UNAVAIL;
desc = rxq->rx_tail + offset;
if (desc >= rxq->nb_rx_desc)
desc -= rxq->nb_rx_desc;
status = &rxq->rx_ring[desc].qw1.lo.status;
if (*status & rte_cpu_to_le_32(NGBE_RXD_STAT_DD))
return RTE_ETH_RX_DESC_DONE;
return RTE_ETH_RX_DESC_AVAIL;
}
int
ngbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
{
struct ngbe_tx_queue *txq = tx_queue;
volatile uint32_t *status;
uint32_t desc;
if (unlikely(offset >= txq->nb_tx_desc))
return -EINVAL;
desc = txq->tx_tail + offset;
if (desc >= txq->nb_tx_desc) {
desc -= txq->nb_tx_desc;
if (desc >= txq->nb_tx_desc)
desc -= txq->nb_tx_desc;
}
status = &txq->tx_ring[desc].dw3;
if (*status & rte_cpu_to_le_32(NGBE_TXD_DD))
return RTE_ETH_TX_DESC_DONE;
return RTE_ETH_TX_DESC_FULL;
}
void
ngbe_dev_clear_queues(struct rte_eth_dev *dev)
{
unsigned int i;
struct ngbe_adapter *adapter = ngbe_dev_adapter(dev);
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct ngbe_tx_queue *txq = dev->data->tx_queues[i];
if (txq != NULL) {
txq->ops->release_mbufs(txq);
txq->ops->reset(txq);
dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct ngbe_rx_queue *rxq = dev->data->rx_queues[i];
if (rxq != NULL) {
ngbe_rx_queue_release_mbufs(rxq);
ngbe_reset_rx_queue(adapter, rxq);
dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
}
}
}
void
ngbe_dev_free_queues(struct rte_eth_dev *dev)
{
unsigned int i;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_rx_queues; i++) {
ngbe_dev_rx_queue_release(dev, i);
dev->data->rx_queues[i] = NULL;
}
dev->data->nb_rx_queues = 0;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
ngbe_dev_tx_queue_release(dev, i);
dev->data->tx_queues[i] = NULL;
}
dev->data->nb_tx_queues = 0;
}
/**
* Receive Side Scaling (RSS)
*
* Principles:
* The source and destination IP addresses of the IP header and the source
* and destination ports of TCP/UDP headers, if any, of received packets are
* hashed against a configurable random key to compute a 32-bit RSS hash result.
* The seven (7) LSBs of the 32-bit hash result are used as an index into a
* 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit
* RSS output index which is used as the Rx queue index where to store the
* received packets.
* The following output is supplied in the Rx write-back descriptor:
* - 32-bit result of the Microsoft RSS hash function,
* - 4-bit RSS type field.
*/
/*
* Used as the default key.
*/
static uint8_t rss_intel_key[40] = {
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
};
static void
ngbe_rss_disable(struct rte_eth_dev *dev)
{
struct ngbe_hw *hw = ngbe_dev_hw(dev);
wr32m(hw, NGBE_RACTL, NGBE_RACTL_RSSENA, 0);
}
int
ngbe_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct ngbe_hw *hw = ngbe_dev_hw(dev);
uint8_t *hash_key;
uint32_t mrqc;
uint32_t rss_key;
uint64_t rss_hf;
uint16_t i;
if (!hw->is_pf) {
PMD_DRV_LOG(ERR, "RSS hash update is not supported on this "
"NIC.");
return -ENOTSUP;
}
hash_key = rss_conf->rss_key;
if (hash_key) {
/* Fill in RSS hash key */
for (i = 0; i < 10; i++) {
rss_key = LS32(hash_key[(i * 4) + 0], 0, 0xFF);
rss_key |= LS32(hash_key[(i * 4) + 1], 8, 0xFF);
rss_key |= LS32(hash_key[(i * 4) + 2], 16, 0xFF);
rss_key |= LS32(hash_key[(i * 4) + 3], 24, 0xFF);
wr32a(hw, NGBE_REG_RSSKEY, i, rss_key);
}
}
/* Set configured hashing protocols */
rss_hf = rss_conf->rss_hf & NGBE_RSS_OFFLOAD_ALL;
mrqc = rd32(hw, NGBE_RACTL);
mrqc &= ~NGBE_RACTL_RSSMASK;
if (rss_hf & RTE_ETH_RSS_IPV4)
mrqc |= NGBE_RACTL_RSSIPV4;
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP)
mrqc |= NGBE_RACTL_RSSIPV4TCP;
if (rss_hf & RTE_ETH_RSS_IPV6 ||
rss_hf & RTE_ETH_RSS_IPV6_EX)
mrqc |= NGBE_RACTL_RSSIPV6;
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_TCP ||
rss_hf & RTE_ETH_RSS_IPV6_TCP_EX)
mrqc |= NGBE_RACTL_RSSIPV6TCP;
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP)
mrqc |= NGBE_RACTL_RSSIPV4UDP;
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_UDP ||
rss_hf & RTE_ETH_RSS_IPV6_UDP_EX)
mrqc |= NGBE_RACTL_RSSIPV6UDP;
if (rss_hf)
mrqc |= NGBE_RACTL_RSSENA;
else
mrqc &= ~NGBE_RACTL_RSSENA;
wr32(hw, NGBE_RACTL, mrqc);
return 0;
}
int
ngbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct ngbe_hw *hw = ngbe_dev_hw(dev);
uint8_t *hash_key;
uint32_t mrqc;
uint32_t rss_key;
uint64_t rss_hf;
uint16_t i;
hash_key = rss_conf->rss_key;
if (hash_key) {
/* Return RSS hash key */
for (i = 0; i < 10; i++) {
rss_key = rd32a(hw, NGBE_REG_RSSKEY, i);
hash_key[(i * 4) + 0] = RS32(rss_key, 0, 0xFF);
hash_key[(i * 4) + 1] = RS32(rss_key, 8, 0xFF);
hash_key[(i * 4) + 2] = RS32(rss_key, 16, 0xFF);
hash_key[(i * 4) + 3] = RS32(rss_key, 24, 0xFF);
}
}
rss_hf = 0;
mrqc = rd32(hw, NGBE_RACTL);
if (mrqc & NGBE_RACTL_RSSIPV4)
rss_hf |= RTE_ETH_RSS_IPV4;
if (mrqc & NGBE_RACTL_RSSIPV4TCP)
rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_TCP;
if (mrqc & NGBE_RACTL_RSSIPV6)
rss_hf |= RTE_ETH_RSS_IPV6 |
RTE_ETH_RSS_IPV6_EX;
if (mrqc & NGBE_RACTL_RSSIPV6TCP)
rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_TCP |
RTE_ETH_RSS_IPV6_TCP_EX;
if (mrqc & NGBE_RACTL_RSSIPV4UDP)
rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_UDP;
if (mrqc & NGBE_RACTL_RSSIPV6UDP)
rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_UDP |
RTE_ETH_RSS_IPV6_UDP_EX;
if (!(mrqc & NGBE_RACTL_RSSENA))
rss_hf = 0;
rss_hf &= NGBE_RSS_OFFLOAD_ALL;
rss_conf->rss_hf = rss_hf;
return 0;
}
static void
ngbe_rss_configure(struct rte_eth_dev *dev)
{
struct rte_eth_rss_conf rss_conf;
struct ngbe_adapter *adapter = ngbe_dev_adapter(dev);
struct ngbe_hw *hw = ngbe_dev_hw(dev);
uint32_t reta;
uint16_t i;
uint16_t j;
PMD_INIT_FUNC_TRACE();
/*
* Fill in redirection table
* The byte-swap is needed because NIC registers are in
* little-endian order.
*/
if (adapter->rss_reta_updated == 0) {
reta = 0;
for (i = 0, j = 0; i < RTE_ETH_RSS_RETA_SIZE_128; i++, j++) {
if (j == dev->data->nb_rx_queues)
j = 0;
reta = (reta >> 8) | LS32(j, 24, 0xFF);
if ((i & 3) == 3)
wr32a(hw, NGBE_REG_RSSTBL, i >> 2, reta);
}
}
/*
* Configure the RSS key and the RSS protocols used to compute
* the RSS hash of input packets.
*/
rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
if (rss_conf.rss_key == NULL)
rss_conf.rss_key = rss_intel_key; /* Default hash key */
ngbe_dev_rss_hash_update(dev, &rss_conf);
}
void ngbe_configure_port(struct rte_eth_dev *dev)
{
struct ngbe_hw *hw = ngbe_dev_hw(dev);
int i = 0;
uint16_t tpids[8] = {RTE_ETHER_TYPE_VLAN, RTE_ETHER_TYPE_QINQ,
0x9100, 0x9200,
0x0000, 0x0000,
0x0000, 0x0000};
PMD_INIT_FUNC_TRACE();
/* default outer vlan tpid */
wr32(hw, NGBE_EXTAG,
NGBE_EXTAG_ETAG(RTE_ETHER_TYPE_ETAG) |
NGBE_EXTAG_VLAN(RTE_ETHER_TYPE_QINQ));
/* default inner vlan tpid */
wr32m(hw, NGBE_VLANCTL,
NGBE_VLANCTL_TPID_MASK,
NGBE_VLANCTL_TPID(RTE_ETHER_TYPE_VLAN));
wr32m(hw, NGBE_DMATXCTRL,
NGBE_DMATXCTRL_TPID_MASK,
NGBE_DMATXCTRL_TPID(RTE_ETHER_TYPE_VLAN));
/* default vlan tpid filters */
for (i = 0; i < 8; i++) {
wr32m(hw, NGBE_TAGTPID(i / 2),
(i % 2 ? NGBE_TAGTPID_MSB_MASK
: NGBE_TAGTPID_LSB_MASK),
(i % 2 ? NGBE_TAGTPID_MSB(tpids[i])
: NGBE_TAGTPID_LSB(tpids[i])));
}
}
static int
ngbe_alloc_rx_queue_mbufs(struct ngbe_rx_queue *rxq)
{
struct ngbe_rx_entry *rxe = rxq->sw_ring;
uint64_t dma_addr;
unsigned int i;
/* Initialize software ring entries */
for (i = 0; i < rxq->nb_rx_desc; i++) {
/* the ring can also be modified by hardware */
volatile struct ngbe_rx_desc *rxd;
struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
if (mbuf == NULL) {
PMD_INIT_LOG(ERR, "Rx mbuf alloc failed queue_id=%u port_id=%u",
(unsigned int)rxq->queue_id,
(unsigned int)rxq->port_id);
return -ENOMEM;
}
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->port = rxq->port_id;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxd = &rxq->rx_ring[i];
NGBE_RXD_HDRADDR(rxd, 0);
NGBE_RXD_PKTADDR(rxd, dma_addr);
rxe[i].mbuf = mbuf;
}
return 0;
}
static int
ngbe_dev_mq_rx_configure(struct rte_eth_dev *dev)
{
if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
switch (dev->data->dev_conf.rxmode.mq_mode) {
case RTE_ETH_MQ_RX_RSS:
ngbe_rss_configure(dev);
break;
case RTE_ETH_MQ_RX_NONE:
default:
/* if mq_mode is none, disable rss mode.*/
ngbe_rss_disable(dev);
break;
}
}
return 0;
}
void
ngbe_set_rx_function(struct rte_eth_dev *dev)
{
struct ngbe_adapter *adapter = ngbe_dev_adapter(dev);
if (dev->data->scattered_rx) {
/*
* Set the scattered callback: there are bulk and
* single allocation versions.
*/
if (adapter->rx_bulk_alloc_allowed) {
PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
"allocation callback (port=%d).",
dev->data->port_id);
dev->rx_pkt_burst = ngbe_recv_pkts_sc_bulk_alloc;
} else {
PMD_INIT_LOG(DEBUG, "Using Regular (non-vector, "
"single allocation) "
"Scattered Rx callback "
"(port=%d).",
dev->data->port_id);
dev->rx_pkt_burst = ngbe_recv_pkts_sc_single_alloc;
}
/*
* Below we set "simple" callbacks according to port/queues parameters.
* If parameters allow we are going to choose between the following
* callbacks:
* - Bulk Allocation
* - Single buffer allocation (the simplest one)
*/
} else if (adapter->rx_bulk_alloc_allowed) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
"satisfied. Rx Burst Bulk Alloc function "
"will be used on port=%d.",
dev->data->port_id);
dev->rx_pkt_burst = ngbe_recv_pkts_bulk_alloc;
} else {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
"satisfied, or Scattered Rx is requested "
"(port=%d).",
dev->data->port_id);
dev->rx_pkt_burst = ngbe_recv_pkts;
}
}
static const struct {
eth_rx_burst_t pkt_burst;
const char *info;
} ngbe_rx_burst_infos[] = {
{ ngbe_recv_pkts_sc_single_alloc, "Scalar Scattered"},
{ ngbe_recv_pkts_sc_bulk_alloc, "Scalar Scattered Bulk Alloc"},
{ ngbe_recv_pkts_bulk_alloc, "Scalar Bulk Alloc"},
{ ngbe_recv_pkts, "Scalar"},
};
int
ngbe_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
struct rte_eth_burst_mode *mode)
{
eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
int ret = -EINVAL;
unsigned int i;
for (i = 0; i < RTE_DIM(ngbe_rx_burst_infos); ++i) {
if (pkt_burst == ngbe_rx_burst_infos[i].pkt_burst) {
snprintf(mode->info, sizeof(mode->info), "%s",
ngbe_rx_burst_infos[i].info);
ret = 0;
break;
}
}
return ret;
}
/*
* Initializes Receive Unit.
*/
int
ngbe_dev_rx_init(struct rte_eth_dev *dev)
{
struct ngbe_hw *hw;
struct ngbe_rx_queue *rxq;
uint64_t bus_addr;
uint32_t fctrl;
uint32_t hlreg0;
uint32_t srrctl;
uint32_t rdrxctl;
uint32_t rxcsum;
uint16_t buf_size;
uint16_t i;
struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
PMD_INIT_FUNC_TRACE();
hw = ngbe_dev_hw(dev);
/*
* Make sure receives are disabled while setting
* up the Rx context (registers, descriptor rings, etc.).
*/
wr32m(hw, NGBE_MACRXCFG, NGBE_MACRXCFG_ENA, 0);
wr32m(hw, NGBE_PBRXCTL, NGBE_PBRXCTL_ENA, 0);
/* Enable receipt of broadcasted frames */
fctrl = rd32(hw, NGBE_PSRCTL);
fctrl |= NGBE_PSRCTL_BCA;
wr32(hw, NGBE_PSRCTL, fctrl);
/*
* Configure CRC stripping, if any.
*/
hlreg0 = rd32(hw, NGBE_SECRXCTL);
if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
hlreg0 &= ~NGBE_SECRXCTL_CRCSTRIP;
else
hlreg0 |= NGBE_SECRXCTL_CRCSTRIP;
hlreg0 &= ~NGBE_SECRXCTL_XDSA;
wr32(hw, NGBE_SECRXCTL, hlreg0);
/*
* Configure jumbo frame support, if any.
*/
wr32m(hw, NGBE_FRMSZ, NGBE_FRMSZ_MAX_MASK,
NGBE_FRMSZ_MAX(dev->data->mtu + NGBE_ETH_OVERHEAD));
/*
* If loopback mode is configured, set LPBK bit.
*/
hlreg0 = rd32(hw, NGBE_PSRCTL);
if (hw->is_pf && dev->data->dev_conf.lpbk_mode)
hlreg0 |= NGBE_PSRCTL_LBENA;
else
hlreg0 &= ~NGBE_PSRCTL_LBENA;
wr32(hw, NGBE_PSRCTL, hlreg0);
/*
* Assume no header split and no VLAN strip support
* on any Rx queue first .
*/
rx_conf->offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
/* Setup Rx queues */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
/*
* Reset crc_len in case it was changed after queue setup by a
* call to configure.
*/
if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
rxq->crc_len = RTE_ETHER_CRC_LEN;
else
rxq->crc_len = 0;
/* Setup the Base and Length of the Rx Descriptor Rings */
bus_addr = rxq->rx_ring_phys_addr;
wr32(hw, NGBE_RXBAL(rxq->reg_idx),
(uint32_t)(bus_addr & BIT_MASK32));
wr32(hw, NGBE_RXBAH(rxq->reg_idx),
(uint32_t)(bus_addr >> 32));
wr32(hw, NGBE_RXRP(rxq->reg_idx), 0);
wr32(hw, NGBE_RXWP(rxq->reg_idx), 0);
srrctl = NGBE_RXCFG_RNGLEN(rxq->nb_rx_desc);
/* Set if packets are dropped when no descriptors available */
if (rxq->drop_en)
srrctl |= NGBE_RXCFG_DROP;
/*
* Configure the Rx buffer size in the PKTLEN field of
* the RXCFG register of the queue.
* The value is in 1 KB resolution. Valid values can be from
* 1 KB to 16 KB.
*/
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
RTE_PKTMBUF_HEADROOM);
buf_size = ROUND_DOWN(buf_size, 0x1 << 10);
srrctl |= NGBE_RXCFG_PKTLEN(buf_size);
wr32(hw, NGBE_RXCFG(rxq->reg_idx), srrctl);
/* It adds dual VLAN length for supporting dual VLAN */
if (dev->data->mtu + NGBE_ETH_OVERHEAD +
2 * RTE_VLAN_HLEN > buf_size)
dev->data->scattered_rx = 1;
if (rxq->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
rx_conf->offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
}
if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_SCATTER)
dev->data->scattered_rx = 1;
/*
* Device configured with multiple RX queues.
*/
ngbe_dev_mq_rx_configure(dev);
/*
* Setup the Checksum Register.
* Disable Full-Packet Checksum which is mutually exclusive with RSS.
* Enable IP/L4 checksum computation by hardware if requested to do so.
*/
rxcsum = rd32(hw, NGBE_PSRCTL);
rxcsum |= NGBE_PSRCTL_PCSD;
if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM)
rxcsum |= NGBE_PSRCTL_L4CSUM;
else
rxcsum &= ~NGBE_PSRCTL_L4CSUM;
wr32(hw, NGBE_PSRCTL, rxcsum);
if (hw->is_pf) {
rdrxctl = rd32(hw, NGBE_SECRXCTL);
if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
rdrxctl &= ~NGBE_SECRXCTL_CRCSTRIP;
else
rdrxctl |= NGBE_SECRXCTL_CRCSTRIP;
wr32(hw, NGBE_SECRXCTL, rdrxctl);
}
ngbe_set_rx_function(dev);
return 0;
}
/*
* Initializes Transmit Unit.
*/
void
ngbe_dev_tx_init(struct rte_eth_dev *dev)
{
struct ngbe_hw *hw;
struct ngbe_tx_queue *txq;
uint64_t bus_addr;
uint16_t i;
PMD_INIT_FUNC_TRACE();
hw = ngbe_dev_hw(dev);
wr32m(hw, NGBE_SECTXCTL, NGBE_SECTXCTL_ODSA, NGBE_SECTXCTL_ODSA);
wr32m(hw, NGBE_SECTXCTL, NGBE_SECTXCTL_XDSA, 0);
/* Setup the Base and Length of the Tx Descriptor Rings */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
bus_addr = txq->tx_ring_phys_addr;
wr32(hw, NGBE_TXBAL(txq->reg_idx),
(uint32_t)(bus_addr & BIT_MASK32));
wr32(hw, NGBE_TXBAH(txq->reg_idx),
(uint32_t)(bus_addr >> 32));
wr32m(hw, NGBE_TXCFG(txq->reg_idx), NGBE_TXCFG_BUFLEN_MASK,
NGBE_TXCFG_BUFLEN(txq->nb_tx_desc));
/* Setup the HW Tx Head and TX Tail descriptor pointers */
wr32(hw, NGBE_TXRP(txq->reg_idx), 0);
wr32(hw, NGBE_TXWP(txq->reg_idx), 0);
}
}
/*
* Set up link loopback mode Tx->Rx.
*/
static inline void
ngbe_setup_loopback_link(struct ngbe_hw *hw)
{
PMD_INIT_FUNC_TRACE();
wr32m(hw, NGBE_MACRXCFG, NGBE_MACRXCFG_LB, NGBE_MACRXCFG_LB);
msec_delay(50);
}
/*
* Start Transmit and Receive Units.
*/
int
ngbe_dev_rxtx_start(struct rte_eth_dev *dev)
{
struct ngbe_hw *hw;
struct ngbe_tx_queue *txq;
struct ngbe_rx_queue *rxq;
uint32_t dmatxctl;
uint32_t rxctrl;
uint16_t i;
int ret = 0;
PMD_INIT_FUNC_TRACE();
hw = ngbe_dev_hw(dev);
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
/* Setup Transmit Threshold Registers */
wr32m(hw, NGBE_TXCFG(txq->reg_idx),
NGBE_TXCFG_HTHRESH_MASK |
NGBE_TXCFG_WTHRESH_MASK,
NGBE_TXCFG_HTHRESH(txq->hthresh) |
NGBE_TXCFG_WTHRESH(txq->wthresh));
}
dmatxctl = rd32(hw, NGBE_DMATXCTRL);
dmatxctl |= NGBE_DMATXCTRL_ENA;
wr32(hw, NGBE_DMATXCTRL, dmatxctl);
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (txq->tx_deferred_start == 0) {
ret = ngbe_dev_tx_queue_start(dev, i);
if (ret < 0)
return ret;
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (rxq->rx_deferred_start == 0) {
ret = ngbe_dev_rx_queue_start(dev, i);
if (ret < 0)
return ret;
}
}
/* Enable Receive engine */
rxctrl = rd32(hw, NGBE_PBRXCTL);
rxctrl |= NGBE_PBRXCTL_ENA;
hw->mac.enable_rx_dma(hw, rxctrl);
/* If loopback mode is enabled, set up the link accordingly */
if (hw->is_pf && dev->data->dev_conf.lpbk_mode)
ngbe_setup_loopback_link(hw);
return 0;
}
void
ngbe_dev_save_rx_queue(struct ngbe_hw *hw, uint16_t rx_queue_id)
{
u32 *reg = &hw->q_rx_regs[rx_queue_id * 8];
*(reg++) = rd32(hw, NGBE_RXBAL(rx_queue_id));
*(reg++) = rd32(hw, NGBE_RXBAH(rx_queue_id));
*(reg++) = rd32(hw, NGBE_RXCFG(rx_queue_id));
}
void
ngbe_dev_store_rx_queue(struct ngbe_hw *hw, uint16_t rx_queue_id)
{
u32 *reg = &hw->q_rx_regs[rx_queue_id * 8];
wr32(hw, NGBE_RXBAL(rx_queue_id), *(reg++));
wr32(hw, NGBE_RXBAH(rx_queue_id), *(reg++));
wr32(hw, NGBE_RXCFG(rx_queue_id), *(reg++) & ~NGBE_RXCFG_ENA);
}
void
ngbe_dev_save_tx_queue(struct ngbe_hw *hw, uint16_t tx_queue_id)
{
u32 *reg = &hw->q_tx_regs[tx_queue_id * 8];
*(reg++) = rd32(hw, NGBE_TXBAL(tx_queue_id));
*(reg++) = rd32(hw, NGBE_TXBAH(tx_queue_id));
*(reg++) = rd32(hw, NGBE_TXCFG(tx_queue_id));
}
void
ngbe_dev_store_tx_queue(struct ngbe_hw *hw, uint16_t tx_queue_id)
{
u32 *reg = &hw->q_tx_regs[tx_queue_id * 8];
wr32(hw, NGBE_TXBAL(tx_queue_id), *(reg++));
wr32(hw, NGBE_TXBAH(tx_queue_id), *(reg++));
wr32(hw, NGBE_TXCFG(tx_queue_id), *(reg++) & ~NGBE_TXCFG_ENA);
}
/*
* Start Receive Units for specified queue.
*/
int
ngbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct ngbe_hw *hw = ngbe_dev_hw(dev);
struct ngbe_rx_queue *rxq;
uint32_t rxdctl;
int poll_ms;
PMD_INIT_FUNC_TRACE();
rxq = dev->data->rx_queues[rx_queue_id];
/* Allocate buffers for descriptor rings */
if (ngbe_alloc_rx_queue_mbufs(rxq) != 0) {
PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d",
rx_queue_id);
return -1;
}
rxdctl = rd32(hw, NGBE_RXCFG(rxq->reg_idx));
rxdctl |= NGBE_RXCFG_ENA;
wr32(hw, NGBE_RXCFG(rxq->reg_idx), rxdctl);
/* Wait until Rx Enable ready */
poll_ms = RTE_NGBE_REGISTER_POLL_WAIT_10_MS;
do {
rte_delay_ms(1);
rxdctl = rd32(hw, NGBE_RXCFG(rxq->reg_idx));
} while (--poll_ms && !(rxdctl & NGBE_RXCFG_ENA));
if (poll_ms == 0)
PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", rx_queue_id);
rte_wmb();
wr32(hw, NGBE_RXRP(rxq->reg_idx), 0);
wr32(hw, NGBE_RXWP(rxq->reg_idx), rxq->nb_rx_desc - 1);
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
/*
* Stop Receive Units for specified queue.
*/
int
ngbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct ngbe_hw *hw = ngbe_dev_hw(dev);
struct ngbe_adapter *adapter = ngbe_dev_adapter(dev);
struct ngbe_rx_queue *rxq;
uint32_t rxdctl;
int poll_ms;
PMD_INIT_FUNC_TRACE();
rxq = dev->data->rx_queues[rx_queue_id];
ngbe_dev_save_rx_queue(hw, rxq->reg_idx);
wr32m(hw, NGBE_RXCFG(rxq->reg_idx), NGBE_RXCFG_ENA, 0);
/* Wait until Rx Enable bit clear */
poll_ms = RTE_NGBE_REGISTER_POLL_WAIT_10_MS;
do {
rte_delay_ms(1);
rxdctl = rd32(hw, NGBE_RXCFG(rxq->reg_idx));
} while (--poll_ms && (rxdctl & NGBE_RXCFG_ENA));
if (poll_ms == 0)
PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d", rx_queue_id);
rte_delay_us(RTE_NGBE_WAIT_100_US);
ngbe_dev_store_rx_queue(hw, rxq->reg_idx);
ngbe_rx_queue_release_mbufs(rxq);
ngbe_reset_rx_queue(adapter, rxq);
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
/*
* Start Transmit Units for specified queue.
*/
int
ngbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct ngbe_hw *hw = ngbe_dev_hw(dev);
struct ngbe_tx_queue *txq;
uint32_t txdctl;
int poll_ms;
PMD_INIT_FUNC_TRACE();
txq = dev->data->tx_queues[tx_queue_id];
wr32m(hw, NGBE_TXCFG(txq->reg_idx), NGBE_TXCFG_ENA, NGBE_TXCFG_ENA);
/* Wait until Tx Enable ready */
poll_ms = RTE_NGBE_REGISTER_POLL_WAIT_10_MS;
do {
rte_delay_ms(1);
txdctl = rd32(hw, NGBE_TXCFG(txq->reg_idx));
} while (--poll_ms && !(txdctl & NGBE_TXCFG_ENA));
if (poll_ms == 0)
PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d",
tx_queue_id);
rte_wmb();
wr32(hw, NGBE_TXWP(txq->reg_idx), txq->tx_tail);
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
/*
* Stop Transmit Units for specified queue.
*/
int
ngbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct ngbe_hw *hw = ngbe_dev_hw(dev);
struct ngbe_tx_queue *txq;
uint32_t txdctl;
uint32_t txtdh, txtdt;
int poll_ms;
PMD_INIT_FUNC_TRACE();
txq = dev->data->tx_queues[tx_queue_id];
/* Wait until Tx queue is empty */
poll_ms = RTE_NGBE_REGISTER_POLL_WAIT_10_MS;
do {
rte_delay_us(RTE_NGBE_WAIT_100_US);
txtdh = rd32(hw, NGBE_TXRP(txq->reg_idx));
txtdt = rd32(hw, NGBE_TXWP(txq->reg_idx));
} while (--poll_ms && (txtdh != txtdt));
if (poll_ms == 0)
PMD_INIT_LOG(ERR, "Tx Queue %d is not empty when stopping.",
tx_queue_id);
ngbe_dev_save_tx_queue(hw, txq->reg_idx);
wr32m(hw, NGBE_TXCFG(txq->reg_idx), NGBE_TXCFG_ENA, 0);
/* Wait until Tx Enable bit clear */
poll_ms = RTE_NGBE_REGISTER_POLL_WAIT_10_MS;
do {
rte_delay_ms(1);
txdctl = rd32(hw, NGBE_TXCFG(txq->reg_idx));
} while (--poll_ms && (txdctl & NGBE_TXCFG_ENA));
if (poll_ms == 0)
PMD_INIT_LOG(ERR, "Could not disable Tx Queue %d",
tx_queue_id);
rte_delay_us(RTE_NGBE_WAIT_100_US);
ngbe_dev_store_tx_queue(hw, txq->reg_idx);
if (txq->ops != NULL) {
txq->ops->release_mbufs(txq);
txq->ops->reset(txq);
}
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
void
ngbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct ngbe_rx_queue *rxq;
rxq = dev->data->rx_queues[queue_id];
qinfo->mp = rxq->mb_pool;
qinfo->scattered_rx = dev->data->scattered_rx;
qinfo->nb_desc = rxq->nb_rx_desc;
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
qinfo->conf.rx_drop_en = rxq->drop_en;
qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
qinfo->conf.offloads = rxq->offloads;
}
void
ngbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_txq_info *qinfo)
{
struct ngbe_tx_queue *txq;
txq = dev->data->tx_queues[queue_id];
qinfo->nb_desc = txq->nb_tx_desc;
qinfo->conf.tx_thresh.pthresh = txq->pthresh;
qinfo->conf.tx_thresh.hthresh = txq->hthresh;
qinfo->conf.tx_thresh.wthresh = txq->wthresh;
qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
qinfo->conf.offloads = txq->offloads;
qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
}