mirror of https://github.com/F-Stack/f-stack.git
2084 lines
55 KiB
C
2084 lines
55 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2018-2021 Beijing WangXun Technology Co., Ltd.
|
|
* Copyright(c) 2010-2017 Intel Corporation
|
|
*/
|
|
|
|
#include "ngbe_type.h"
|
|
#include "ngbe_mbx.h"
|
|
#include "ngbe_phy.h"
|
|
#include "ngbe_eeprom.h"
|
|
#include "ngbe_mng.h"
|
|
#include "ngbe_hw.h"
|
|
|
|
/**
|
|
* ngbe_start_hw - Prepare hardware for Tx/Rx
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Starts the hardware.
|
|
**/
|
|
s32 ngbe_start_hw(struct ngbe_hw *hw)
|
|
{
|
|
s32 err;
|
|
|
|
/* Clear the VLAN filter table */
|
|
hw->mac.clear_vfta(hw);
|
|
|
|
/* Clear statistics registers */
|
|
hw->mac.clear_hw_cntrs(hw);
|
|
|
|
/* Setup flow control */
|
|
err = hw->mac.setup_fc(hw);
|
|
if (err != 0 && err != NGBE_NOT_IMPLEMENTED) {
|
|
DEBUGOUT("Flow control setup failed, returning %d", err);
|
|
return err;
|
|
}
|
|
|
|
/* Clear adapter stopped flag */
|
|
hw->adapter_stopped = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_init_hw - Generic hardware initialization
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Initialize the hardware by resetting the hardware, filling the bus info
|
|
* structure and media type, clears all on chip counters, initializes receive
|
|
* address registers, multicast table, VLAN filter table, calls routine to set
|
|
* up link and flow control settings, and leaves transmit and receive units
|
|
* disabled and uninitialized
|
|
**/
|
|
s32 ngbe_init_hw(struct ngbe_hw *hw)
|
|
{
|
|
s32 status;
|
|
|
|
ngbe_read_efuse(hw);
|
|
ngbe_save_eeprom_version(hw);
|
|
|
|
/* Reset the hardware */
|
|
status = hw->mac.reset_hw(hw);
|
|
if (status == 0) {
|
|
/* Start the HW */
|
|
status = hw->mac.start_hw(hw);
|
|
}
|
|
|
|
if (status != 0)
|
|
DEBUGOUT("Failed to initialize HW, STATUS = %d", status);
|
|
|
|
return status;
|
|
}
|
|
|
|
static void
|
|
ngbe_reset_misc_em(struct ngbe_hw *hw)
|
|
{
|
|
int i;
|
|
|
|
wr32(hw, NGBE_ISBADDRL, hw->isb_dma & 0xFFFFFFFF);
|
|
wr32(hw, NGBE_ISBADDRH, hw->isb_dma >> 32);
|
|
|
|
/* receive packets that size > 2048 */
|
|
wr32m(hw, NGBE_MACRXCFG,
|
|
NGBE_MACRXCFG_JUMBO, NGBE_MACRXCFG_JUMBO);
|
|
|
|
wr32m(hw, NGBE_FRMSZ, NGBE_FRMSZ_MAX_MASK,
|
|
NGBE_FRMSZ_MAX(NGBE_FRAME_SIZE_DFT));
|
|
|
|
/* clear counters on read */
|
|
wr32m(hw, NGBE_MACCNTCTL,
|
|
NGBE_MACCNTCTL_RC, NGBE_MACCNTCTL_RC);
|
|
|
|
wr32m(hw, NGBE_RXFCCFG,
|
|
NGBE_RXFCCFG_FC, NGBE_RXFCCFG_FC);
|
|
wr32m(hw, NGBE_TXFCCFG,
|
|
NGBE_TXFCCFG_FC, NGBE_TXFCCFG_FC);
|
|
|
|
wr32m(hw, NGBE_MACRXFLT,
|
|
NGBE_MACRXFLT_PROMISC, NGBE_MACRXFLT_PROMISC);
|
|
|
|
wr32m(hw, NGBE_RSTSTAT,
|
|
NGBE_RSTSTAT_TMRINIT_MASK, NGBE_RSTSTAT_TMRINIT(30));
|
|
|
|
/* errata 4: initialize mng flex tbl and wakeup flex tbl*/
|
|
wr32(hw, NGBE_MNGFLEXSEL, 0);
|
|
for (i = 0; i < 16; i++) {
|
|
wr32(hw, NGBE_MNGFLEXDWL(i), 0);
|
|
wr32(hw, NGBE_MNGFLEXDWH(i), 0);
|
|
wr32(hw, NGBE_MNGFLEXMSK(i), 0);
|
|
}
|
|
wr32(hw, NGBE_LANFLEXSEL, 0);
|
|
for (i = 0; i < 16; i++) {
|
|
wr32(hw, NGBE_LANFLEXDWL(i), 0);
|
|
wr32(hw, NGBE_LANFLEXDWH(i), 0);
|
|
wr32(hw, NGBE_LANFLEXMSK(i), 0);
|
|
}
|
|
|
|
/* set pause frame dst mac addr */
|
|
wr32(hw, NGBE_RXPBPFCDMACL, 0xC2000001);
|
|
wr32(hw, NGBE_RXPBPFCDMACH, 0x0180);
|
|
|
|
wr32(hw, NGBE_MDIOMODE, 0xF);
|
|
|
|
wr32m(hw, NGBE_GPIE, NGBE_GPIE_MSIX, NGBE_GPIE_MSIX);
|
|
|
|
if (hw->gpio_ctl) {
|
|
/* gpio0 is used to power on/off control*/
|
|
wr32(hw, NGBE_GPIODIR, NGBE_GPIODIR_DDR(1));
|
|
wr32(hw, NGBE_GPIODATA, NGBE_GPIOBIT_0);
|
|
}
|
|
|
|
hw->mac.init_thermal_sensor_thresh(hw);
|
|
|
|
/* enable mac transmitter */
|
|
wr32m(hw, NGBE_MACTXCFG, NGBE_MACTXCFG_TE, NGBE_MACTXCFG_TE);
|
|
|
|
/* sellect GMII */
|
|
wr32m(hw, NGBE_MACTXCFG,
|
|
NGBE_MACTXCFG_SPEED_MASK, NGBE_MACTXCFG_SPEED_1G);
|
|
|
|
for (i = 0; i < 4; i++)
|
|
wr32m(hw, NGBE_IVAR(i), 0x80808080, 0);
|
|
}
|
|
|
|
/**
|
|
* ngbe_reset_hw_em - Perform hardware reset
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Resets the hardware by resetting the transmit and receive units, masks
|
|
* and clears all interrupts, perform a PHY reset, and perform a link (MAC)
|
|
* reset.
|
|
**/
|
|
s32 ngbe_reset_hw_em(struct ngbe_hw *hw)
|
|
{
|
|
s32 status;
|
|
|
|
/* Call adapter stop to disable tx/rx and clear interrupts */
|
|
status = hw->mac.stop_hw(hw);
|
|
if (status != 0)
|
|
return status;
|
|
|
|
/* Identify PHY and related function pointers */
|
|
status = ngbe_init_phy(hw);
|
|
if (status)
|
|
return status;
|
|
|
|
/* Reset PHY */
|
|
if (!hw->phy.reset_disable)
|
|
hw->phy.reset_hw(hw);
|
|
|
|
wr32(hw, NGBE_RST, NGBE_RST_LAN(hw->bus.lan_id));
|
|
ngbe_flush(hw);
|
|
msec_delay(50);
|
|
|
|
ngbe_reset_misc_em(hw);
|
|
hw->mac.clear_hw_cntrs(hw);
|
|
|
|
if (!((hw->sub_device_id & NGBE_OEM_MASK) == NGBE_RGMII_FPGA))
|
|
hw->phy.set_phy_power(hw, false);
|
|
|
|
msec_delay(50);
|
|
|
|
/* Store the permanent mac address */
|
|
hw->mac.get_mac_addr(hw, hw->mac.perm_addr);
|
|
|
|
/*
|
|
* Store MAC address from RAR0, clear receive address registers, and
|
|
* clear the multicast table.
|
|
*/
|
|
hw->mac.num_rar_entries = NGBE_EM_RAR_ENTRIES;
|
|
hw->mac.init_rx_addrs(hw);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ngbe_clear_hw_cntrs - Generic clear hardware counters
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Clears all hardware statistics counters by reading them from the hardware
|
|
* Statistics counters are clear on read.
|
|
**/
|
|
s32 ngbe_clear_hw_cntrs(struct ngbe_hw *hw)
|
|
{
|
|
u16 i = 0;
|
|
|
|
/* QP Stats */
|
|
/* don't write clear queue stats */
|
|
for (i = 0; i < NGBE_MAX_QP; i++) {
|
|
hw->qp_last[i].rx_qp_packets = 0;
|
|
hw->qp_last[i].tx_qp_packets = 0;
|
|
hw->qp_last[i].rx_qp_bytes = 0;
|
|
hw->qp_last[i].tx_qp_bytes = 0;
|
|
hw->qp_last[i].rx_qp_mc_packets = 0;
|
|
hw->qp_last[i].tx_qp_mc_packets = 0;
|
|
hw->qp_last[i].rx_qp_bc_packets = 0;
|
|
hw->qp_last[i].tx_qp_bc_packets = 0;
|
|
}
|
|
|
|
/* PB Stats */
|
|
rd32(hw, NGBE_PBRXLNKXON);
|
|
rd32(hw, NGBE_PBRXLNKXOFF);
|
|
rd32(hw, NGBE_PBTXLNKXON);
|
|
rd32(hw, NGBE_PBTXLNKXOFF);
|
|
|
|
/* DMA Stats */
|
|
rd32(hw, NGBE_DMARXPKT);
|
|
rd32(hw, NGBE_DMATXPKT);
|
|
|
|
rd64(hw, NGBE_DMARXOCTL);
|
|
rd64(hw, NGBE_DMATXOCTL);
|
|
|
|
/* MAC Stats */
|
|
rd64(hw, NGBE_MACRXERRCRCL);
|
|
rd64(hw, NGBE_MACRXMPKTL);
|
|
rd64(hw, NGBE_MACTXMPKTL);
|
|
|
|
rd64(hw, NGBE_MACRXPKTL);
|
|
rd64(hw, NGBE_MACTXPKTL);
|
|
rd64(hw, NGBE_MACRXGBOCTL);
|
|
|
|
rd64(hw, NGBE_MACRXOCTL);
|
|
rd32(hw, NGBE_MACTXOCTL);
|
|
|
|
rd64(hw, NGBE_MACRX1TO64L);
|
|
rd64(hw, NGBE_MACRX65TO127L);
|
|
rd64(hw, NGBE_MACRX128TO255L);
|
|
rd64(hw, NGBE_MACRX256TO511L);
|
|
rd64(hw, NGBE_MACRX512TO1023L);
|
|
rd64(hw, NGBE_MACRX1024TOMAXL);
|
|
rd64(hw, NGBE_MACTX1TO64L);
|
|
rd64(hw, NGBE_MACTX65TO127L);
|
|
rd64(hw, NGBE_MACTX128TO255L);
|
|
rd64(hw, NGBE_MACTX256TO511L);
|
|
rd64(hw, NGBE_MACTX512TO1023L);
|
|
rd64(hw, NGBE_MACTX1024TOMAXL);
|
|
|
|
rd64(hw, NGBE_MACRXERRLENL);
|
|
rd32(hw, NGBE_MACRXOVERSIZE);
|
|
rd32(hw, NGBE_MACRXJABBER);
|
|
|
|
/* MACsec Stats */
|
|
rd32(hw, NGBE_LSECTX_UTPKT);
|
|
rd32(hw, NGBE_LSECTX_ENCPKT);
|
|
rd32(hw, NGBE_LSECTX_PROTPKT);
|
|
rd32(hw, NGBE_LSECTX_ENCOCT);
|
|
rd32(hw, NGBE_LSECTX_PROTOCT);
|
|
rd32(hw, NGBE_LSECRX_UTPKT);
|
|
rd32(hw, NGBE_LSECRX_BTPKT);
|
|
rd32(hw, NGBE_LSECRX_NOSCIPKT);
|
|
rd32(hw, NGBE_LSECRX_UNSCIPKT);
|
|
rd32(hw, NGBE_LSECRX_DECOCT);
|
|
rd32(hw, NGBE_LSECRX_VLDOCT);
|
|
rd32(hw, NGBE_LSECRX_UNCHKPKT);
|
|
rd32(hw, NGBE_LSECRX_DLYPKT);
|
|
rd32(hw, NGBE_LSECRX_LATEPKT);
|
|
for (i = 0; i < 2; i++) {
|
|
rd32(hw, NGBE_LSECRX_OKPKT(i));
|
|
rd32(hw, NGBE_LSECRX_INVPKT(i));
|
|
rd32(hw, NGBE_LSECRX_BADPKT(i));
|
|
}
|
|
for (i = 0; i < 4; i++) {
|
|
rd32(hw, NGBE_LSECRX_INVSAPKT(i));
|
|
rd32(hw, NGBE_LSECRX_BADSAPKT(i));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_get_mac_addr - Generic get MAC address
|
|
* @hw: pointer to hardware structure
|
|
* @mac_addr: Adapter MAC address
|
|
*
|
|
* Reads the adapter's MAC address from first Receive Address Register (RAR0)
|
|
* A reset of the adapter must be performed prior to calling this function
|
|
* in order for the MAC address to have been loaded from the EEPROM into RAR0
|
|
**/
|
|
s32 ngbe_get_mac_addr(struct ngbe_hw *hw, u8 *mac_addr)
|
|
{
|
|
u32 rar_high;
|
|
u32 rar_low;
|
|
u16 i;
|
|
|
|
wr32(hw, NGBE_ETHADDRIDX, 0);
|
|
rar_high = rd32(hw, NGBE_ETHADDRH);
|
|
rar_low = rd32(hw, NGBE_ETHADDRL);
|
|
|
|
for (i = 0; i < 2; i++)
|
|
mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
|
|
|
|
for (i = 0; i < 4; i++)
|
|
mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_set_lan_id_multi_port - Set LAN id for PCIe multiple port devices
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Determines the LAN function id by reading memory-mapped registers and swaps
|
|
* the port value if requested, and set MAC instance for devices.
|
|
**/
|
|
void ngbe_set_lan_id_multi_port(struct ngbe_hw *hw)
|
|
{
|
|
struct ngbe_bus_info *bus = &hw->bus;
|
|
u32 reg = 0;
|
|
|
|
reg = rd32(hw, NGBE_PORTSTAT);
|
|
bus->lan_id = NGBE_PORTSTAT_ID(reg);
|
|
bus->func = bus->lan_id;
|
|
}
|
|
|
|
/**
|
|
* ngbe_stop_hw - Generic stop Tx/Rx units
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Sets the adapter_stopped flag within ngbe_hw struct. Clears interrupts,
|
|
* disables transmit and receive units. The adapter_stopped flag is used by
|
|
* the shared code and drivers to determine if the adapter is in a stopped
|
|
* state and should not touch the hardware.
|
|
**/
|
|
s32 ngbe_stop_hw(struct ngbe_hw *hw)
|
|
{
|
|
u16 i;
|
|
s32 status = 0;
|
|
|
|
/*
|
|
* Set the adapter_stopped flag so other driver functions stop touching
|
|
* the hardware
|
|
*/
|
|
hw->adapter_stopped = true;
|
|
|
|
/* Disable the receive unit */
|
|
ngbe_disable_rx(hw);
|
|
|
|
/* Clear interrupt mask to stop interrupts from being generated */
|
|
wr32(hw, NGBE_IENMISC, 0);
|
|
wr32(hw, NGBE_IMS(0), NGBE_IMS_MASK);
|
|
|
|
/* Clear any pending interrupts, flush previous writes */
|
|
wr32(hw, NGBE_ICRMISC, NGBE_ICRMISC_MASK);
|
|
wr32(hw, NGBE_ICR(0), NGBE_ICR_MASK);
|
|
|
|
wr32(hw, NGBE_BMECTL, 0x3);
|
|
|
|
/* Disable the receive unit by stopping each queue */
|
|
for (i = 0; i < hw->mac.max_rx_queues; i++)
|
|
wr32(hw, NGBE_RXCFG(i), 0);
|
|
|
|
/* flush all queues disables */
|
|
ngbe_flush(hw);
|
|
msec_delay(2);
|
|
|
|
/*
|
|
* Prevent the PCI-E bus from hanging by disabling PCI-E master
|
|
* access and verify no pending requests
|
|
*/
|
|
status = ngbe_set_pcie_master(hw, false);
|
|
if (status)
|
|
return status;
|
|
|
|
/* Disable the transmit unit. Each queue must be disabled. */
|
|
for (i = 0; i < hw->mac.max_tx_queues; i++)
|
|
wr32(hw, NGBE_TXCFG(i), 0);
|
|
|
|
/* flush all queues disables */
|
|
ngbe_flush(hw);
|
|
msec_delay(2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_led_on - Turns on the software controllable LEDs.
|
|
* @hw: pointer to hardware structure
|
|
* @index: led number to turn on
|
|
**/
|
|
s32 ngbe_led_on(struct ngbe_hw *hw, u32 index)
|
|
{
|
|
u32 led_reg = rd32(hw, NGBE_LEDCTL);
|
|
|
|
if (index > 3)
|
|
return NGBE_ERR_PARAM;
|
|
|
|
/* To turn on the LED, set mode to ON. */
|
|
led_reg |= NGBE_LEDCTL_100M;
|
|
wr32(hw, NGBE_LEDCTL, led_reg);
|
|
ngbe_flush(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_led_off - Turns off the software controllable LEDs.
|
|
* @hw: pointer to hardware structure
|
|
* @index: led number to turn off
|
|
**/
|
|
s32 ngbe_led_off(struct ngbe_hw *hw, u32 index)
|
|
{
|
|
u32 led_reg = rd32(hw, NGBE_LEDCTL);
|
|
|
|
if (index > 3)
|
|
return NGBE_ERR_PARAM;
|
|
|
|
/* To turn off the LED, set mode to OFF. */
|
|
led_reg &= ~NGBE_LEDCTL_100M;
|
|
wr32(hw, NGBE_LEDCTL, led_reg);
|
|
ngbe_flush(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_validate_mac_addr - Validate MAC address
|
|
* @mac_addr: pointer to MAC address.
|
|
*
|
|
* Tests a MAC address to ensure it is a valid Individual Address.
|
|
**/
|
|
s32 ngbe_validate_mac_addr(u8 *mac_addr)
|
|
{
|
|
s32 status = 0;
|
|
|
|
/* Make sure it is not a multicast address */
|
|
if (NGBE_IS_MULTICAST((struct rte_ether_addr *)mac_addr)) {
|
|
status = NGBE_ERR_INVALID_MAC_ADDR;
|
|
/* Not a broadcast address */
|
|
} else if (NGBE_IS_BROADCAST((struct rte_ether_addr *)mac_addr)) {
|
|
status = NGBE_ERR_INVALID_MAC_ADDR;
|
|
/* Reject the zero address */
|
|
} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
|
|
mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
|
|
status = NGBE_ERR_INVALID_MAC_ADDR;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ngbe_set_rar - Set Rx address register
|
|
* @hw: pointer to hardware structure
|
|
* @index: Receive address register to write
|
|
* @addr: Address to put into receive address register
|
|
* @vmdq: VMDq "set" or "pool" index
|
|
* @enable_addr: set flag that address is active
|
|
*
|
|
* Puts an ethernet address into a receive address register.
|
|
**/
|
|
s32 ngbe_set_rar(struct ngbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
|
|
u32 enable_addr)
|
|
{
|
|
u32 rar_low, rar_high;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
|
|
/* Make sure we are using a valid rar index range */
|
|
if (index >= rar_entries) {
|
|
DEBUGOUT("RAR index %d is out of range.", index);
|
|
return NGBE_ERR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
/* setup VMDq pool selection before this RAR gets enabled */
|
|
hw->mac.set_vmdq(hw, index, vmdq);
|
|
|
|
/*
|
|
* HW expects these in little endian so we reverse the byte
|
|
* order from network order (big endian) to little endian
|
|
*/
|
|
rar_low = NGBE_ETHADDRL_AD0(addr[5]) |
|
|
NGBE_ETHADDRL_AD1(addr[4]) |
|
|
NGBE_ETHADDRL_AD2(addr[3]) |
|
|
NGBE_ETHADDRL_AD3(addr[2]);
|
|
/*
|
|
* Some parts put the VMDq setting in the extra RAH bits,
|
|
* so save everything except the lower 16 bits that hold part
|
|
* of the address and the address valid bit.
|
|
*/
|
|
rar_high = rd32(hw, NGBE_ETHADDRH);
|
|
rar_high &= ~NGBE_ETHADDRH_AD_MASK;
|
|
rar_high |= (NGBE_ETHADDRH_AD4(addr[1]) |
|
|
NGBE_ETHADDRH_AD5(addr[0]));
|
|
|
|
rar_high &= ~NGBE_ETHADDRH_VLD;
|
|
if (enable_addr != 0)
|
|
rar_high |= NGBE_ETHADDRH_VLD;
|
|
|
|
wr32(hw, NGBE_ETHADDRIDX, index);
|
|
wr32(hw, NGBE_ETHADDRL, rar_low);
|
|
wr32(hw, NGBE_ETHADDRH, rar_high);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_clear_rar - Remove Rx address register
|
|
* @hw: pointer to hardware structure
|
|
* @index: Receive address register to write
|
|
*
|
|
* Clears an ethernet address from a receive address register.
|
|
**/
|
|
s32 ngbe_clear_rar(struct ngbe_hw *hw, u32 index)
|
|
{
|
|
u32 rar_high;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
|
|
/* Make sure we are using a valid rar index range */
|
|
if (index >= rar_entries) {
|
|
DEBUGOUT("RAR index %d is out of range.", index);
|
|
return NGBE_ERR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
/*
|
|
* Some parts put the VMDq setting in the extra RAH bits,
|
|
* so save everything except the lower 16 bits that hold part
|
|
* of the address and the address valid bit.
|
|
*/
|
|
wr32(hw, NGBE_ETHADDRIDX, index);
|
|
rar_high = rd32(hw, NGBE_ETHADDRH);
|
|
rar_high &= ~(NGBE_ETHADDRH_AD_MASK | NGBE_ETHADDRH_VLD);
|
|
|
|
wr32(hw, NGBE_ETHADDRL, 0);
|
|
wr32(hw, NGBE_ETHADDRH, rar_high);
|
|
|
|
/* clear VMDq pool/queue selection for this RAR */
|
|
hw->mac.clear_vmdq(hw, index, BIT_MASK32);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_init_rx_addrs - Initializes receive address filters.
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Places the MAC address in receive address register 0 and clears the rest
|
|
* of the receive address registers. Clears the multicast table. Assumes
|
|
* the receiver is in reset when the routine is called.
|
|
**/
|
|
s32 ngbe_init_rx_addrs(struct ngbe_hw *hw)
|
|
{
|
|
u32 i;
|
|
u32 psrctl;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
|
|
/*
|
|
* If the current mac address is valid, assume it is a software override
|
|
* to the permanent address.
|
|
* Otherwise, use the permanent address from the eeprom.
|
|
*/
|
|
if (ngbe_validate_mac_addr(hw->mac.addr) ==
|
|
NGBE_ERR_INVALID_MAC_ADDR) {
|
|
/* Get the MAC address from the RAR0 for later reference */
|
|
hw->mac.get_mac_addr(hw, hw->mac.addr);
|
|
|
|
DEBUGOUT(" Keeping Current RAR0 Addr = "
|
|
RTE_ETHER_ADDR_PRT_FMT,
|
|
hw->mac.addr[0], hw->mac.addr[1],
|
|
hw->mac.addr[2], hw->mac.addr[3],
|
|
hw->mac.addr[4], hw->mac.addr[5]);
|
|
} else {
|
|
/* Setup the receive address. */
|
|
DEBUGOUT("Overriding MAC Address in RAR[0]");
|
|
DEBUGOUT(" New MAC Addr = "
|
|
RTE_ETHER_ADDR_PRT_FMT,
|
|
hw->mac.addr[0], hw->mac.addr[1],
|
|
hw->mac.addr[2], hw->mac.addr[3],
|
|
hw->mac.addr[4], hw->mac.addr[5]);
|
|
|
|
hw->mac.set_rar(hw, 0, hw->mac.addr, 0, true);
|
|
}
|
|
|
|
/* clear VMDq pool/queue selection for RAR 0 */
|
|
hw->mac.clear_vmdq(hw, 0, BIT_MASK32);
|
|
|
|
/* Zero out the other receive addresses. */
|
|
DEBUGOUT("Clearing RAR[1-%d]", rar_entries - 1);
|
|
for (i = 1; i < rar_entries; i++) {
|
|
wr32(hw, NGBE_ETHADDRIDX, i);
|
|
wr32(hw, NGBE_ETHADDRL, 0);
|
|
wr32(hw, NGBE_ETHADDRH, 0);
|
|
}
|
|
|
|
/* Clear the MTA */
|
|
hw->addr_ctrl.mta_in_use = 0;
|
|
psrctl = rd32(hw, NGBE_PSRCTL);
|
|
psrctl &= ~(NGBE_PSRCTL_ADHF12_MASK | NGBE_PSRCTL_MCHFENA);
|
|
psrctl |= NGBE_PSRCTL_ADHF12(hw->mac.mc_filter_type);
|
|
wr32(hw, NGBE_PSRCTL, psrctl);
|
|
|
|
DEBUGOUT(" Clearing MTA");
|
|
for (i = 0; i < hw->mac.mcft_size; i++)
|
|
wr32(hw, NGBE_MCADDRTBL(i), 0);
|
|
|
|
ngbe_init_uta_tables(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_mta_vector - Determines bit-vector in multicast table to set
|
|
* @hw: pointer to hardware structure
|
|
* @mc_addr: the multicast address
|
|
*
|
|
* Extracts the 12 bits, from a multicast address, to determine which
|
|
* bit-vector to set in the multicast table. The hardware uses 12 bits, from
|
|
* incoming rx multicast addresses, to determine the bit-vector to check in
|
|
* the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
|
|
* by the MO field of the PSRCTRL. The MO field is set during initialization
|
|
* to mc_filter_type.
|
|
**/
|
|
static s32 ngbe_mta_vector(struct ngbe_hw *hw, u8 *mc_addr)
|
|
{
|
|
u32 vector = 0;
|
|
|
|
switch (hw->mac.mc_filter_type) {
|
|
case 0: /* use bits [47:36] of the address */
|
|
vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
|
|
break;
|
|
case 1: /* use bits [46:35] of the address */
|
|
vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
|
|
break;
|
|
case 2: /* use bits [45:34] of the address */
|
|
vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
|
|
break;
|
|
case 3: /* use bits [43:32] of the address */
|
|
vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
|
|
break;
|
|
default: /* Invalid mc_filter_type */
|
|
DEBUGOUT("MC filter type param set incorrectly");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
|
|
/* vector can only be 12-bits or boundary will be exceeded */
|
|
vector &= 0xFFF;
|
|
return vector;
|
|
}
|
|
|
|
/**
|
|
* ngbe_set_mta - Set bit-vector in multicast table
|
|
* @hw: pointer to hardware structure
|
|
* @mc_addr: Multicast address
|
|
*
|
|
* Sets the bit-vector in the multicast table.
|
|
**/
|
|
void ngbe_set_mta(struct ngbe_hw *hw, u8 *mc_addr)
|
|
{
|
|
u32 vector;
|
|
u32 vector_bit;
|
|
u32 vector_reg;
|
|
|
|
hw->addr_ctrl.mta_in_use++;
|
|
|
|
vector = ngbe_mta_vector(hw, mc_addr);
|
|
DEBUGOUT(" bit-vector = 0x%03X", vector);
|
|
|
|
/*
|
|
* The MTA is a register array of 128 32-bit registers. It is treated
|
|
* like an array of 4096 bits. We want to set bit
|
|
* BitArray[vector_value]. So we figure out what register the bit is
|
|
* in, read it, OR in the new bit, then write back the new value. The
|
|
* register is determined by the upper 7 bits of the vector value and
|
|
* the bit within that register are determined by the lower 5 bits of
|
|
* the value.
|
|
*/
|
|
vector_reg = (vector >> 5) & 0x7F;
|
|
vector_bit = vector & 0x1F;
|
|
hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
|
|
}
|
|
|
|
/**
|
|
* ngbe_update_mc_addr_list - Updates MAC list of multicast addresses
|
|
* @hw: pointer to hardware structure
|
|
* @mc_addr_list: the list of new multicast addresses
|
|
* @mc_addr_count: number of addresses
|
|
* @next: iterator function to walk the multicast address list
|
|
* @clear: flag, when set clears the table beforehand
|
|
*
|
|
* When the clear flag is set, the given list replaces any existing list.
|
|
* Hashes the given addresses into the multicast table.
|
|
**/
|
|
s32 ngbe_update_mc_addr_list(struct ngbe_hw *hw, u8 *mc_addr_list,
|
|
u32 mc_addr_count, ngbe_mc_addr_itr next,
|
|
bool clear)
|
|
{
|
|
u32 i;
|
|
u32 vmdq;
|
|
|
|
/*
|
|
* Set the new number of MC addresses that we are being requested to
|
|
* use.
|
|
*/
|
|
hw->addr_ctrl.num_mc_addrs = mc_addr_count;
|
|
hw->addr_ctrl.mta_in_use = 0;
|
|
|
|
/* Clear mta_shadow */
|
|
if (clear) {
|
|
DEBUGOUT(" Clearing MTA");
|
|
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
|
|
}
|
|
|
|
/* Update mta_shadow */
|
|
for (i = 0; i < mc_addr_count; i++) {
|
|
DEBUGOUT(" Adding the multicast addresses:");
|
|
ngbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
|
|
}
|
|
|
|
/* Enable mta */
|
|
for (i = 0; i < hw->mac.mcft_size; i++)
|
|
wr32a(hw, NGBE_MCADDRTBL(0), i,
|
|
hw->mac.mta_shadow[i]);
|
|
|
|
if (hw->addr_ctrl.mta_in_use > 0) {
|
|
u32 psrctl = rd32(hw, NGBE_PSRCTL);
|
|
psrctl &= ~(NGBE_PSRCTL_ADHF12_MASK | NGBE_PSRCTL_MCHFENA);
|
|
psrctl |= NGBE_PSRCTL_MCHFENA |
|
|
NGBE_PSRCTL_ADHF12(hw->mac.mc_filter_type);
|
|
wr32(hw, NGBE_PSRCTL, psrctl);
|
|
}
|
|
|
|
DEBUGOUT("ngbe update mc addr list complete");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_setup_fc_em - Set up flow control
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Called at init time to set up flow control.
|
|
**/
|
|
s32 ngbe_setup_fc_em(struct ngbe_hw *hw)
|
|
{
|
|
s32 err = 0;
|
|
u16 reg_cu = 0;
|
|
|
|
/* Validate the requested mode */
|
|
if (hw->fc.strict_ieee && hw->fc.requested_mode == ngbe_fc_rx_pause) {
|
|
DEBUGOUT("ngbe_fc_rx_pause not valid in strict IEEE mode");
|
|
err = NGBE_ERR_INVALID_LINK_SETTINGS;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* 1gig parts do not have a word in the EEPROM to determine the
|
|
* default flow control setting, so we explicitly set it to full.
|
|
*/
|
|
if (hw->fc.requested_mode == ngbe_fc_default)
|
|
hw->fc.requested_mode = ngbe_fc_full;
|
|
|
|
/*
|
|
* The possible values of fc.requested_mode are:
|
|
* 0: Flow control is completely disabled
|
|
* 1: Rx flow control is enabled (we can receive pause frames,
|
|
* but not send pause frames).
|
|
* 2: Tx flow control is enabled (we can send pause frames but
|
|
* we do not support receiving pause frames).
|
|
* 3: Both Rx and Tx flow control (symmetric) are enabled.
|
|
* other: Invalid.
|
|
*/
|
|
switch (hw->fc.requested_mode) {
|
|
case ngbe_fc_none:
|
|
/* Flow control completely disabled by software override. */
|
|
break;
|
|
case ngbe_fc_tx_pause:
|
|
/*
|
|
* Tx Flow control is enabled, and Rx Flow control is
|
|
* disabled by software override.
|
|
*/
|
|
if (hw->phy.type == ngbe_phy_mvl_sfi ||
|
|
hw->phy.type == ngbe_phy_yt8521s_sfi)
|
|
reg_cu |= MVL_FANA_ASM_PAUSE;
|
|
else
|
|
reg_cu |= 0x800; /*need to merge rtl and mvl on page 0*/
|
|
break;
|
|
case ngbe_fc_rx_pause:
|
|
/*
|
|
* Rx Flow control is enabled and Tx Flow control is
|
|
* disabled by software override. Since there really
|
|
* isn't a way to advertise that we are capable of RX
|
|
* Pause ONLY, we will advertise that we support both
|
|
* symmetric and asymmetric Rx PAUSE, as such we fall
|
|
* through to the fc_full statement. Later, we will
|
|
* disable the adapter's ability to send PAUSE frames.
|
|
*/
|
|
case ngbe_fc_full:
|
|
/* Flow control (both Rx and Tx) is enabled by SW override. */
|
|
if (hw->phy.type == ngbe_phy_mvl_sfi ||
|
|
hw->phy.type == ngbe_phy_yt8521s_sfi)
|
|
reg_cu |= MVL_FANA_SYM_PAUSE;
|
|
else
|
|
reg_cu |= 0xC00; /*need to merge rtl and mvl on page 0*/
|
|
break;
|
|
default:
|
|
DEBUGOUT("Flow control param set incorrectly");
|
|
err = NGBE_ERR_CONFIG;
|
|
goto out;
|
|
}
|
|
|
|
err = hw->phy.set_pause_adv(hw, reg_cu);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ngbe_fc_enable - Enable flow control
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Enable flow control according to the current settings.
|
|
**/
|
|
s32 ngbe_fc_enable(struct ngbe_hw *hw)
|
|
{
|
|
s32 err = 0;
|
|
u32 mflcn_reg, fccfg_reg;
|
|
u32 pause_time;
|
|
u32 fcrtl, fcrth;
|
|
|
|
/* Validate the water mark configuration */
|
|
if (!hw->fc.pause_time) {
|
|
err = NGBE_ERR_INVALID_LINK_SETTINGS;
|
|
goto out;
|
|
}
|
|
|
|
/* Low water mark of zero causes XOFF floods */
|
|
if ((hw->fc.current_mode & ngbe_fc_tx_pause) && hw->fc.high_water) {
|
|
if (!hw->fc.low_water ||
|
|
hw->fc.low_water >= hw->fc.high_water) {
|
|
DEBUGOUT("Invalid water mark configuration");
|
|
err = NGBE_ERR_INVALID_LINK_SETTINGS;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Negotiate the fc mode to use */
|
|
hw->mac.fc_autoneg(hw);
|
|
|
|
/* Disable any previous flow control settings */
|
|
mflcn_reg = rd32(hw, NGBE_RXFCCFG);
|
|
mflcn_reg &= ~NGBE_RXFCCFG_FC;
|
|
|
|
fccfg_reg = rd32(hw, NGBE_TXFCCFG);
|
|
fccfg_reg &= ~NGBE_TXFCCFG_FC;
|
|
/*
|
|
* The possible values of fc.current_mode are:
|
|
* 0: Flow control is completely disabled
|
|
* 1: Rx flow control is enabled (we can receive pause frames,
|
|
* but not send pause frames).
|
|
* 2: Tx flow control is enabled (we can send pause frames but
|
|
* we do not support receiving pause frames).
|
|
* 3: Both Rx and Tx flow control (symmetric) are enabled.
|
|
* other: Invalid.
|
|
*/
|
|
switch (hw->fc.current_mode) {
|
|
case ngbe_fc_none:
|
|
/*
|
|
* Flow control is disabled by software override or autoneg.
|
|
* The code below will actually disable it in the HW.
|
|
*/
|
|
break;
|
|
case ngbe_fc_rx_pause:
|
|
/*
|
|
* Rx Flow control is enabled and Tx Flow control is
|
|
* disabled by software override. Since there really
|
|
* isn't a way to advertise that we are capable of RX
|
|
* Pause ONLY, we will advertise that we support both
|
|
* symmetric and asymmetric Rx PAUSE. Later, we will
|
|
* disable the adapter's ability to send PAUSE frames.
|
|
*/
|
|
mflcn_reg |= NGBE_RXFCCFG_FC;
|
|
break;
|
|
case ngbe_fc_tx_pause:
|
|
/*
|
|
* Tx Flow control is enabled, and Rx Flow control is
|
|
* disabled by software override.
|
|
*/
|
|
fccfg_reg |= NGBE_TXFCCFG_FC;
|
|
break;
|
|
case ngbe_fc_full:
|
|
/* Flow control (both Rx and Tx) is enabled by SW override. */
|
|
mflcn_reg |= NGBE_RXFCCFG_FC;
|
|
fccfg_reg |= NGBE_TXFCCFG_FC;
|
|
break;
|
|
default:
|
|
DEBUGOUT("Flow control param set incorrectly");
|
|
err = NGBE_ERR_CONFIG;
|
|
goto out;
|
|
}
|
|
|
|
/* Set 802.3x based flow control settings. */
|
|
wr32(hw, NGBE_RXFCCFG, mflcn_reg);
|
|
wr32(hw, NGBE_TXFCCFG, fccfg_reg);
|
|
|
|
/* Set up and enable Rx high/low water mark thresholds, enable XON. */
|
|
if ((hw->fc.current_mode & ngbe_fc_tx_pause) &&
|
|
hw->fc.high_water) {
|
|
fcrtl = NGBE_FCWTRLO_TH(hw->fc.low_water) |
|
|
NGBE_FCWTRLO_XON;
|
|
fcrth = NGBE_FCWTRHI_TH(hw->fc.high_water) |
|
|
NGBE_FCWTRHI_XOFF;
|
|
} else {
|
|
/*
|
|
* In order to prevent Tx hangs when the internal Tx
|
|
* switch is enabled we must set the high water mark
|
|
* to the Rx packet buffer size - 24KB. This allows
|
|
* the Tx switch to function even under heavy Rx
|
|
* workloads.
|
|
*/
|
|
fcrtl = 0;
|
|
fcrth = rd32(hw, NGBE_PBRXSIZE) - 24576;
|
|
}
|
|
wr32(hw, NGBE_FCWTRLO, fcrtl);
|
|
wr32(hw, NGBE_FCWTRHI, fcrth);
|
|
|
|
/* Configure pause time */
|
|
pause_time = NGBE_RXFCFSH_TIME(hw->fc.pause_time);
|
|
wr32(hw, NGBE_FCXOFFTM, pause_time * 0x00010000);
|
|
|
|
/* Configure flow control refresh threshold value */
|
|
wr32(hw, NGBE_RXFCRFSH, hw->fc.pause_time / 2);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ngbe_negotiate_fc - Negotiate flow control
|
|
* @hw: pointer to hardware structure
|
|
* @adv_reg: flow control advertised settings
|
|
* @lp_reg: link partner's flow control settings
|
|
* @adv_sym: symmetric pause bit in advertisement
|
|
* @adv_asm: asymmetric pause bit in advertisement
|
|
* @lp_sym: symmetric pause bit in link partner advertisement
|
|
* @lp_asm: asymmetric pause bit in link partner advertisement
|
|
*
|
|
* Find the intersection between advertised settings and link partner's
|
|
* advertised settings
|
|
**/
|
|
s32 ngbe_negotiate_fc(struct ngbe_hw *hw, u32 adv_reg, u32 lp_reg,
|
|
u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
|
|
{
|
|
if ((!(adv_reg)) || (!(lp_reg))) {
|
|
DEBUGOUT("Local or link partner's advertised flow control settings are NULL. Local: %x, link partner: %x",
|
|
adv_reg, lp_reg);
|
|
return NGBE_ERR_FC_NOT_NEGOTIATED;
|
|
}
|
|
|
|
if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
|
|
/*
|
|
* Now we need to check if the user selected Rx ONLY
|
|
* of pause frames. In this case, we had to advertise
|
|
* FULL flow control because we could not advertise RX
|
|
* ONLY. Hence, we must now check to see if we need to
|
|
* turn OFF the TRANSMISSION of PAUSE frames.
|
|
*/
|
|
if (hw->fc.requested_mode == ngbe_fc_full) {
|
|
hw->fc.current_mode = ngbe_fc_full;
|
|
DEBUGOUT("Flow Control = FULL.");
|
|
} else {
|
|
hw->fc.current_mode = ngbe_fc_rx_pause;
|
|
DEBUGOUT("Flow Control=RX PAUSE frames only");
|
|
}
|
|
} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
|
|
(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
|
|
hw->fc.current_mode = ngbe_fc_tx_pause;
|
|
DEBUGOUT("Flow Control = TX PAUSE frames only.");
|
|
} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
|
|
!(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
|
|
hw->fc.current_mode = ngbe_fc_rx_pause;
|
|
DEBUGOUT("Flow Control = RX PAUSE frames only.");
|
|
} else {
|
|
hw->fc.current_mode = ngbe_fc_none;
|
|
DEBUGOUT("Flow Control = NONE.");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_fc_autoneg_em - Enable flow control IEEE clause 37
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Enable flow control according to IEEE clause 37.
|
|
**/
|
|
STATIC s32 ngbe_fc_autoneg_em(struct ngbe_hw *hw)
|
|
{
|
|
u8 technology_ability_reg = 0;
|
|
u8 lp_technology_ability_reg = 0;
|
|
|
|
hw->phy.get_adv_pause(hw, &technology_ability_reg);
|
|
hw->phy.get_lp_adv_pause(hw, &lp_technology_ability_reg);
|
|
|
|
return ngbe_negotiate_fc(hw, (u32)technology_ability_reg,
|
|
(u32)lp_technology_ability_reg,
|
|
NGBE_TAF_SYM_PAUSE, NGBE_TAF_ASM_PAUSE,
|
|
NGBE_TAF_SYM_PAUSE, NGBE_TAF_ASM_PAUSE);
|
|
}
|
|
|
|
/**
|
|
* ngbe_fc_autoneg - Configure flow control
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Compares our advertised flow control capabilities to those advertised by
|
|
* our link partner, and determines the proper flow control mode to use.
|
|
**/
|
|
void ngbe_fc_autoneg(struct ngbe_hw *hw)
|
|
{
|
|
s32 err = NGBE_ERR_FC_NOT_NEGOTIATED;
|
|
u32 speed;
|
|
bool link_up;
|
|
|
|
/*
|
|
* AN should have completed when the cable was plugged in.
|
|
* Look for reasons to bail out. Bail out if:
|
|
* - FC autoneg is disabled, or if
|
|
* - link is not up.
|
|
*/
|
|
if (hw->fc.disable_fc_autoneg) {
|
|
DEBUGOUT("Flow control autoneg is disabled");
|
|
goto out;
|
|
}
|
|
|
|
hw->mac.check_link(hw, &speed, &link_up, false);
|
|
if (!link_up) {
|
|
DEBUGOUT("The link is down");
|
|
goto out;
|
|
}
|
|
|
|
err = ngbe_fc_autoneg_em(hw);
|
|
|
|
out:
|
|
if (err == 0) {
|
|
hw->fc.fc_was_autonegged = true;
|
|
} else {
|
|
hw->fc.fc_was_autonegged = false;
|
|
hw->fc.current_mode = hw->fc.requested_mode;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ngbe_set_pcie_master - Disable or Enable PCI-express master access
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Disables PCI-Express master access and verifies there are no pending
|
|
* requests. NGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
|
|
* bit hasn't caused the master requests to be disabled, else 0
|
|
* is returned signifying master requests disabled.
|
|
**/
|
|
s32 ngbe_set_pcie_master(struct ngbe_hw *hw, bool enable)
|
|
{
|
|
struct rte_pci_device *pci_dev = (struct rte_pci_device *)hw->back;
|
|
s32 status = 0;
|
|
s32 ret = 0;
|
|
u32 i;
|
|
u16 reg;
|
|
|
|
ret = rte_pci_read_config(pci_dev, ®,
|
|
sizeof(reg), PCI_COMMAND);
|
|
if (ret != sizeof(reg)) {
|
|
DEBUGOUT("Cannot read command from PCI config space!\n");
|
|
return -1;
|
|
}
|
|
|
|
if (enable)
|
|
reg |= PCI_COMMAND_MASTER;
|
|
else
|
|
reg &= ~PCI_COMMAND_MASTER;
|
|
|
|
ret = rte_pci_write_config(pci_dev, ®,
|
|
sizeof(reg), PCI_COMMAND);
|
|
if (ret != sizeof(reg)) {
|
|
DEBUGOUT("Cannot write command to PCI config space!\n");
|
|
return -1;
|
|
}
|
|
|
|
if (enable)
|
|
goto out;
|
|
|
|
/* Exit if master requests are blocked */
|
|
if (!(rd32(hw, NGBE_BMEPEND)) ||
|
|
NGBE_REMOVED(hw->hw_addr))
|
|
goto out;
|
|
|
|
/* Poll for master request bit to clear */
|
|
for (i = 0; i < NGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
|
|
usec_delay(100);
|
|
if (!(rd32(hw, NGBE_BMEPEND)))
|
|
goto out;
|
|
}
|
|
|
|
DEBUGOUT("PCIe transaction pending bit also did not clear.");
|
|
status = NGBE_ERR_MASTER_REQUESTS_PENDING;
|
|
|
|
out:
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ngbe_acquire_swfw_sync - Acquire SWFW semaphore
|
|
* @hw: pointer to hardware structure
|
|
* @mask: Mask to specify which semaphore to acquire
|
|
*
|
|
* Acquires the SWFW semaphore through the MNGSEM register for the specified
|
|
* function (CSR, PHY0, PHY1, EEPROM, Flash)
|
|
**/
|
|
s32 ngbe_acquire_swfw_sync(struct ngbe_hw *hw, u32 mask)
|
|
{
|
|
u32 mngsem = 0;
|
|
u32 fwsm = 0;
|
|
u32 swmask = NGBE_MNGSEM_SW(mask);
|
|
u32 fwmask = NGBE_MNGSEM_FW(mask);
|
|
u32 timeout = 200;
|
|
u32 i;
|
|
|
|
for (i = 0; i < timeout; i++) {
|
|
/*
|
|
* SW NVM semaphore bit is used for access to all
|
|
* SW_FW_SYNC bits (not just NVM)
|
|
*/
|
|
if (ngbe_get_eeprom_semaphore(hw))
|
|
return NGBE_ERR_SWFW_SYNC;
|
|
|
|
mngsem = rd32(hw, NGBE_MNGSEM);
|
|
if (mngsem & (fwmask | swmask)) {
|
|
/* Resource is currently in use by FW or SW */
|
|
ngbe_release_eeprom_semaphore(hw);
|
|
msec_delay(5);
|
|
} else {
|
|
mngsem |= swmask;
|
|
wr32(hw, NGBE_MNGSEM, mngsem);
|
|
ngbe_release_eeprom_semaphore(hw);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
fwsm = rd32(hw, NGBE_MNGFWSYNC);
|
|
DEBUGOUT("SWFW semaphore not granted: MNG_SWFW_SYNC = 0x%x, MNG_FW_SM = 0x%x",
|
|
mngsem, fwsm);
|
|
|
|
msec_delay(5);
|
|
return NGBE_ERR_SWFW_SYNC;
|
|
}
|
|
|
|
/**
|
|
* ngbe_release_swfw_sync - Release SWFW semaphore
|
|
* @hw: pointer to hardware structure
|
|
* @mask: Mask to specify which semaphore to release
|
|
*
|
|
* Releases the SWFW semaphore through the MNGSEM register for the specified
|
|
* function (CSR, PHY0, PHY1, EEPROM, Flash)
|
|
**/
|
|
void ngbe_release_swfw_sync(struct ngbe_hw *hw, u32 mask)
|
|
{
|
|
u32 mngsem;
|
|
u32 swmask = mask;
|
|
|
|
ngbe_get_eeprom_semaphore(hw);
|
|
|
|
mngsem = rd32(hw, NGBE_MNGSEM);
|
|
mngsem &= ~swmask;
|
|
wr32(hw, NGBE_MNGSEM, mngsem);
|
|
|
|
ngbe_release_eeprom_semaphore(hw);
|
|
}
|
|
|
|
/**
|
|
* ngbe_disable_sec_rx_path - Stops the receive data path
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Stops the receive data path and waits for the HW to internally empty
|
|
* the Rx security block
|
|
**/
|
|
s32 ngbe_disable_sec_rx_path(struct ngbe_hw *hw)
|
|
{
|
|
#define NGBE_MAX_SECRX_POLL 4000
|
|
|
|
int i;
|
|
u32 secrxreg;
|
|
|
|
secrxreg = rd32(hw, NGBE_SECRXCTL);
|
|
secrxreg |= NGBE_SECRXCTL_XDSA;
|
|
wr32(hw, NGBE_SECRXCTL, secrxreg);
|
|
for (i = 0; i < NGBE_MAX_SECRX_POLL; i++) {
|
|
secrxreg = rd32(hw, NGBE_SECRXSTAT);
|
|
if (!(secrxreg & NGBE_SECRXSTAT_RDY))
|
|
/* Use interrupt-safe sleep just in case */
|
|
usec_delay(10);
|
|
else
|
|
break;
|
|
}
|
|
|
|
/* For informational purposes only */
|
|
if (i >= NGBE_MAX_SECRX_POLL)
|
|
DEBUGOUT("Rx unit being enabled before security path fully disabled. Continuing with init.");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_enable_sec_rx_path - Enables the receive data path
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Enables the receive data path.
|
|
**/
|
|
s32 ngbe_enable_sec_rx_path(struct ngbe_hw *hw)
|
|
{
|
|
u32 secrxreg;
|
|
|
|
secrxreg = rd32(hw, NGBE_SECRXCTL);
|
|
secrxreg &= ~NGBE_SECRXCTL_XDSA;
|
|
wr32(hw, NGBE_SECRXCTL, secrxreg);
|
|
ngbe_flush(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_clear_vmdq - Disassociate a VMDq pool index from a rx address
|
|
* @hw: pointer to hardware struct
|
|
* @rar: receive address register index to disassociate
|
|
* @vmdq: VMDq pool index to remove from the rar
|
|
**/
|
|
s32 ngbe_clear_vmdq(struct ngbe_hw *hw, u32 rar, u32 vmdq)
|
|
{
|
|
u32 mpsar;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
|
|
/* Make sure we are using a valid rar index range */
|
|
if (rar >= rar_entries) {
|
|
DEBUGOUT("RAR index %d is out of range.", rar);
|
|
return NGBE_ERR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
wr32(hw, NGBE_ETHADDRIDX, rar);
|
|
mpsar = rd32(hw, NGBE_ETHADDRASS);
|
|
|
|
if (NGBE_REMOVED(hw->hw_addr))
|
|
goto done;
|
|
|
|
if (!mpsar)
|
|
goto done;
|
|
|
|
mpsar &= ~(1 << vmdq);
|
|
wr32(hw, NGBE_ETHADDRASS, mpsar);
|
|
|
|
/* was that the last pool using this rar? */
|
|
if (mpsar == 0 && rar != 0)
|
|
hw->mac.clear_rar(hw, rar);
|
|
done:
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_set_vmdq - Associate a VMDq pool index with a rx address
|
|
* @hw: pointer to hardware struct
|
|
* @rar: receive address register index to associate with a VMDq index
|
|
* @vmdq: VMDq pool index
|
|
**/
|
|
s32 ngbe_set_vmdq(struct ngbe_hw *hw, u32 rar, u32 vmdq)
|
|
{
|
|
u32 mpsar;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
|
|
/* Make sure we are using a valid rar index range */
|
|
if (rar >= rar_entries) {
|
|
DEBUGOUT("RAR index %d is out of range.", rar);
|
|
return NGBE_ERR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
wr32(hw, NGBE_ETHADDRIDX, rar);
|
|
|
|
mpsar = rd32(hw, NGBE_ETHADDRASS);
|
|
mpsar |= 1 << vmdq;
|
|
wr32(hw, NGBE_ETHADDRASS, mpsar);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_init_uta_tables - Initialize the Unicast Table Array
|
|
* @hw: pointer to hardware structure
|
|
**/
|
|
s32 ngbe_init_uta_tables(struct ngbe_hw *hw)
|
|
{
|
|
int i;
|
|
|
|
DEBUGOUT(" Clearing UTA");
|
|
|
|
for (i = 0; i < 128; i++)
|
|
wr32(hw, NGBE_UCADDRTBL(i), 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_find_vlvf_slot - find the vlanid or the first empty slot
|
|
* @hw: pointer to hardware structure
|
|
* @vlan: VLAN id to write to VLAN filter
|
|
* @vlvf_bypass: true to find vlanid only, false returns first empty slot if
|
|
* vlanid not found
|
|
*
|
|
*
|
|
* return the VLVF index where this VLAN id should be placed
|
|
*
|
|
**/
|
|
s32 ngbe_find_vlvf_slot(struct ngbe_hw *hw, u32 vlan, bool vlvf_bypass)
|
|
{
|
|
s32 regindex, first_empty_slot;
|
|
u32 bits;
|
|
|
|
/* short cut the special case */
|
|
if (vlan == 0)
|
|
return 0;
|
|
|
|
/* if vlvf_bypass is set we don't want to use an empty slot, we
|
|
* will simply bypass the VLVF if there are no entries present in the
|
|
* VLVF that contain our VLAN
|
|
*/
|
|
first_empty_slot = vlvf_bypass ? NGBE_ERR_NO_SPACE : 0;
|
|
|
|
/* add VLAN enable bit for comparison */
|
|
vlan |= NGBE_PSRVLAN_EA;
|
|
|
|
/* Search for the vlan id in the VLVF entries. Save off the first empty
|
|
* slot found along the way.
|
|
*
|
|
* pre-decrement loop covering (NGBE_NUM_POOL - 1) .. 1
|
|
*/
|
|
for (regindex = NGBE_NUM_POOL; --regindex;) {
|
|
wr32(hw, NGBE_PSRVLANIDX, regindex);
|
|
bits = rd32(hw, NGBE_PSRVLAN);
|
|
if (bits == vlan)
|
|
return regindex;
|
|
if (!first_empty_slot && !bits)
|
|
first_empty_slot = regindex;
|
|
}
|
|
|
|
/* If we are here then we didn't find the VLAN. Return first empty
|
|
* slot we found during our search, else error.
|
|
*/
|
|
if (!first_empty_slot)
|
|
DEBUGOUT("No space in VLVF.");
|
|
|
|
return first_empty_slot ? first_empty_slot : NGBE_ERR_NO_SPACE;
|
|
}
|
|
|
|
/**
|
|
* ngbe_set_vfta - Set VLAN filter table
|
|
* @hw: pointer to hardware structure
|
|
* @vlan: VLAN id to write to VLAN filter
|
|
* @vind: VMDq output index that maps queue to VLAN id in VLVFB
|
|
* @vlan_on: boolean flag to turn on/off VLAN
|
|
* @vlvf_bypass: boolean flag indicating updating default pool is okay
|
|
*
|
|
* Turn on/off specified VLAN in the VLAN filter table.
|
|
**/
|
|
s32 ngbe_set_vfta(struct ngbe_hw *hw, u32 vlan, u32 vind,
|
|
bool vlan_on, bool vlvf_bypass)
|
|
{
|
|
u32 regidx, vfta_delta, vfta;
|
|
s32 err;
|
|
|
|
if (vlan > 4095 || vind > 63)
|
|
return NGBE_ERR_PARAM;
|
|
|
|
/*
|
|
* this is a 2 part operation - first the VFTA, then the
|
|
* VLVF and VLVFB if VT Mode is set
|
|
* We don't write the VFTA until we know the VLVF part succeeded.
|
|
*/
|
|
|
|
/* Part 1
|
|
* The VFTA is a bitstring made up of 128 32-bit registers
|
|
* that enable the particular VLAN id, much like the MTA:
|
|
* bits[11-5]: which register
|
|
* bits[4-0]: which bit in the register
|
|
*/
|
|
regidx = vlan / 32;
|
|
vfta_delta = 1 << (vlan % 32);
|
|
vfta = rd32(hw, NGBE_VLANTBL(regidx));
|
|
|
|
/*
|
|
* vfta_delta represents the difference between the current value
|
|
* of vfta and the value we want in the register. Since the diff
|
|
* is an XOR mask we can just update the vfta using an XOR
|
|
*/
|
|
vfta_delta &= vlan_on ? ~vfta : vfta;
|
|
vfta ^= vfta_delta;
|
|
|
|
/* Part 2
|
|
* Call ngbe_set_vlvf to set VLVFB and VLVF
|
|
*/
|
|
err = ngbe_set_vlvf(hw, vlan, vind, vlan_on, &vfta_delta,
|
|
vfta, vlvf_bypass);
|
|
if (err != 0) {
|
|
if (vlvf_bypass)
|
|
goto vfta_update;
|
|
return err;
|
|
}
|
|
|
|
vfta_update:
|
|
/* Update VFTA now that we are ready for traffic */
|
|
if (vfta_delta)
|
|
wr32(hw, NGBE_VLANTBL(regidx), vfta);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_set_vlvf - Set VLAN Pool Filter
|
|
* @hw: pointer to hardware structure
|
|
* @vlan: VLAN id to write to VLAN filter
|
|
* @vind: VMDq output index that maps queue to VLAN id in PSRVLANPLM
|
|
* @vlan_on: boolean flag to turn on/off VLAN in PSRVLAN
|
|
* @vfta_delta: pointer to the difference between the current value
|
|
* of PSRVLANPLM and the desired value
|
|
* @vfta: the desired value of the VFTA
|
|
* @vlvf_bypass: boolean flag indicating updating default pool is okay
|
|
*
|
|
* Turn on/off specified bit in VLVF table.
|
|
**/
|
|
s32 ngbe_set_vlvf(struct ngbe_hw *hw, u32 vlan, u32 vind,
|
|
bool vlan_on, u32 *vfta_delta, u32 vfta,
|
|
bool vlvf_bypass)
|
|
{
|
|
u32 bits;
|
|
u32 portctl;
|
|
s32 vlvf_index;
|
|
|
|
if (vlan > 4095 || vind > 63)
|
|
return NGBE_ERR_PARAM;
|
|
|
|
/* If VT Mode is set
|
|
* Either vlan_on
|
|
* make sure the vlan is in PSRVLAN
|
|
* set the vind bit in the matching PSRVLANPLM
|
|
* Or !vlan_on
|
|
* clear the pool bit and possibly the vind
|
|
*/
|
|
portctl = rd32(hw, NGBE_PORTCTL);
|
|
if (!(portctl & NGBE_PORTCTL_NUMVT_MASK))
|
|
return 0;
|
|
|
|
vlvf_index = ngbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
|
|
if (vlvf_index < 0)
|
|
return vlvf_index;
|
|
|
|
wr32(hw, NGBE_PSRVLANIDX, vlvf_index);
|
|
bits = rd32(hw, NGBE_PSRVLANPLM(vind / 32));
|
|
|
|
/* set the pool bit */
|
|
bits |= 1 << (vind % 32);
|
|
if (vlan_on)
|
|
goto vlvf_update;
|
|
|
|
/* clear the pool bit */
|
|
bits ^= 1 << (vind % 32);
|
|
|
|
if (!bits &&
|
|
!rd32(hw, NGBE_PSRVLANPLM(vind / 32))) {
|
|
/* Clear PSRVLANPLM first, then disable PSRVLAN. Otherwise
|
|
* we run the risk of stray packets leaking into
|
|
* the PF via the default pool
|
|
*/
|
|
if (*vfta_delta)
|
|
wr32(hw, NGBE_PSRVLANPLM(vlan / 32), vfta);
|
|
|
|
/* disable VLVF and clear remaining bit from pool */
|
|
wr32(hw, NGBE_PSRVLAN, 0);
|
|
wr32(hw, NGBE_PSRVLANPLM(vind / 32), 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* If there are still bits set in the PSRVLANPLM registers
|
|
* for the VLAN ID indicated we need to see if the
|
|
* caller is requesting that we clear the PSRVLANPLM entry bit.
|
|
* If the caller has requested that we clear the PSRVLANPLM
|
|
* entry bit but there are still pools/VFs using this VLAN
|
|
* ID entry then ignore the request. We're not worried
|
|
* about the case where we're turning the PSRVLANPLM VLAN ID
|
|
* entry bit on, only when requested to turn it off as
|
|
* there may be multiple pools and/or VFs using the
|
|
* VLAN ID entry. In that case we cannot clear the
|
|
* PSRVLANPLM bit until all pools/VFs using that VLAN ID have also
|
|
* been cleared. This will be indicated by "bits" being
|
|
* zero.
|
|
*/
|
|
*vfta_delta = 0;
|
|
|
|
vlvf_update:
|
|
/* record pool change and enable VLAN ID if not already enabled */
|
|
wr32(hw, NGBE_PSRVLANPLM(vind / 32), bits);
|
|
wr32(hw, NGBE_PSRVLAN, NGBE_PSRVLAN_EA | vlan);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_clear_vfta - Clear VLAN filter table
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Clears the VLAN filer table, and the VMDq index associated with the filter
|
|
**/
|
|
s32 ngbe_clear_vfta(struct ngbe_hw *hw)
|
|
{
|
|
u32 offset;
|
|
|
|
for (offset = 0; offset < hw->mac.vft_size; offset++)
|
|
wr32(hw, NGBE_VLANTBL(offset), 0);
|
|
|
|
for (offset = 0; offset < NGBE_NUM_POOL; offset++) {
|
|
wr32(hw, NGBE_PSRVLANIDX, offset);
|
|
wr32(hw, NGBE_PSRVLAN, 0);
|
|
wr32(hw, NGBE_PSRVLANPLM(0), 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_check_mac_link_em - Determine link and speed status
|
|
* @hw: pointer to hardware structure
|
|
* @speed: pointer to link speed
|
|
* @link_up: true when link is up
|
|
* @link_up_wait_to_complete: bool used to wait for link up or not
|
|
*
|
|
* Reads the links register to determine if link is up and the current speed
|
|
**/
|
|
s32 ngbe_check_mac_link_em(struct ngbe_hw *hw, u32 *speed,
|
|
bool *link_up, bool link_up_wait_to_complete)
|
|
{
|
|
u32 i;
|
|
s32 status = 0;
|
|
|
|
if (hw->lsc) {
|
|
u32 reg;
|
|
|
|
reg = rd32(hw, NGBE_GPIOINTSTAT);
|
|
wr32(hw, NGBE_GPIOEOI, reg);
|
|
}
|
|
|
|
if (link_up_wait_to_complete) {
|
|
for (i = 0; i < hw->mac.max_link_up_time; i++) {
|
|
status = hw->phy.check_link(hw, speed, link_up);
|
|
if (*link_up)
|
|
break;
|
|
msec_delay(100);
|
|
}
|
|
} else {
|
|
status = hw->phy.check_link(hw, speed, link_up);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
s32 ngbe_get_link_capabilities_em(struct ngbe_hw *hw,
|
|
u32 *speed,
|
|
bool *autoneg)
|
|
{
|
|
s32 status = 0;
|
|
u16 value = 0;
|
|
|
|
hw->mac.autoneg = *autoneg;
|
|
|
|
if (hw->phy.type == ngbe_phy_rtl) {
|
|
*speed = NGBE_LINK_SPEED_1GB_FULL |
|
|
NGBE_LINK_SPEED_100M_FULL |
|
|
NGBE_LINK_SPEED_10M_FULL;
|
|
}
|
|
|
|
if (hw->phy.type == ngbe_phy_yt8521s_sfi) {
|
|
ngbe_read_phy_reg_ext_yt(hw, YT_CHIP, 0, &value);
|
|
if ((value & YT_CHIP_MODE_MASK) == YT_CHIP_MODE_SEL(1))
|
|
*speed = NGBE_LINK_SPEED_1GB_FULL;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
s32 ngbe_setup_mac_link_em(struct ngbe_hw *hw,
|
|
u32 speed,
|
|
bool autoneg_wait_to_complete)
|
|
{
|
|
s32 status;
|
|
|
|
/* Setup the PHY according to input speed */
|
|
status = hw->phy.setup_link(hw, speed, autoneg_wait_to_complete);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ngbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
|
|
* @hw: pointer to hardware structure
|
|
* @enable: enable or disable switch for MAC anti-spoofing
|
|
* @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
|
|
*
|
|
**/
|
|
void ngbe_set_mac_anti_spoofing(struct ngbe_hw *hw, bool enable, int vf)
|
|
{
|
|
u32 pfvfspoof;
|
|
|
|
pfvfspoof = rd32(hw, NGBE_POOLTXASMAC);
|
|
if (enable)
|
|
pfvfspoof |= (1 << vf);
|
|
else
|
|
pfvfspoof &= ~(1 << vf);
|
|
wr32(hw, NGBE_POOLTXASMAC, pfvfspoof);
|
|
}
|
|
|
|
/**
|
|
* ngbe_set_pba - Initialize Rx packet buffer
|
|
* @hw: pointer to hardware structure
|
|
* @headroom: reserve n KB of headroom
|
|
**/
|
|
void ngbe_set_pba(struct ngbe_hw *hw)
|
|
{
|
|
u32 rxpktsize = hw->mac.rx_pb_size;
|
|
u32 txpktsize, txpbthresh;
|
|
|
|
/* Reserve 256 KB of headroom */
|
|
rxpktsize -= 256;
|
|
|
|
rxpktsize <<= 10;
|
|
wr32(hw, NGBE_PBRXSIZE, rxpktsize);
|
|
|
|
/* Only support an equally distributed Tx packet buffer strategy. */
|
|
txpktsize = NGBE_PBTXSIZE_MAX;
|
|
txpbthresh = (txpktsize / 1024) - NGBE_TXPKT_SIZE_MAX;
|
|
|
|
wr32(hw, NGBE_PBTXSIZE, txpktsize);
|
|
wr32(hw, NGBE_PBTXDMATH, txpbthresh);
|
|
}
|
|
|
|
/**
|
|
* ngbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
|
|
* @hw: pointer to hardware structure
|
|
* @enable: enable or disable switch for VLAN anti-spoofing
|
|
* @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
|
|
*
|
|
**/
|
|
void ngbe_set_vlan_anti_spoofing(struct ngbe_hw *hw, bool enable, int vf)
|
|
{
|
|
u32 pfvfspoof;
|
|
|
|
pfvfspoof = rd32(hw, NGBE_POOLTXASVLAN);
|
|
if (enable)
|
|
pfvfspoof |= (1 << vf);
|
|
else
|
|
pfvfspoof &= ~(1 << vf);
|
|
wr32(hw, NGBE_POOLTXASVLAN, pfvfspoof);
|
|
}
|
|
|
|
/**
|
|
* ngbe_init_thermal_sensor_thresh - Inits thermal sensor thresholds
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Inits the thermal sensor thresholds according to the NVM map
|
|
* and save off the threshold and location values into mac.thermal_sensor_data
|
|
**/
|
|
s32 ngbe_init_thermal_sensor_thresh(struct ngbe_hw *hw)
|
|
{
|
|
struct ngbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
|
|
|
|
memset(data, 0, sizeof(struct ngbe_thermal_sensor_data));
|
|
|
|
if (hw->bus.lan_id != 0)
|
|
return NGBE_NOT_IMPLEMENTED;
|
|
|
|
wr32(hw, NGBE_TSINTR,
|
|
NGBE_TSINTR_AEN | NGBE_TSINTR_DEN);
|
|
wr32(hw, NGBE_TSEN, NGBE_TSEN_ENA);
|
|
|
|
|
|
data->sensor[0].alarm_thresh = 115;
|
|
wr32(hw, NGBE_TSATHRE, 0x344);
|
|
data->sensor[0].dalarm_thresh = 110;
|
|
wr32(hw, NGBE_TSDTHRE, 0x330);
|
|
|
|
return 0;
|
|
}
|
|
|
|
s32 ngbe_mac_check_overtemp(struct ngbe_hw *hw)
|
|
{
|
|
s32 status = 0;
|
|
u32 ts_state;
|
|
|
|
/* Check that the LASI temp alarm status was triggered */
|
|
ts_state = rd32(hw, NGBE_TSALM);
|
|
|
|
if (ts_state & NGBE_TSALM_HI)
|
|
status = NGBE_ERR_UNDERTEMP;
|
|
else if (ts_state & NGBE_TSALM_LO)
|
|
status = NGBE_ERR_OVERTEMP;
|
|
|
|
return status;
|
|
}
|
|
|
|
void ngbe_disable_rx(struct ngbe_hw *hw)
|
|
{
|
|
u32 pfdtxgswc;
|
|
|
|
pfdtxgswc = rd32(hw, NGBE_PSRCTL);
|
|
if (pfdtxgswc & NGBE_PSRCTL_LBENA) {
|
|
pfdtxgswc &= ~NGBE_PSRCTL_LBENA;
|
|
wr32(hw, NGBE_PSRCTL, pfdtxgswc);
|
|
hw->mac.set_lben = true;
|
|
} else {
|
|
hw->mac.set_lben = false;
|
|
}
|
|
|
|
wr32m(hw, NGBE_PBRXCTL, NGBE_PBRXCTL_ENA, 0);
|
|
wr32m(hw, NGBE_MACRXCFG, NGBE_MACRXCFG_ENA, 0);
|
|
}
|
|
|
|
void ngbe_enable_rx(struct ngbe_hw *hw)
|
|
{
|
|
u32 pfdtxgswc;
|
|
|
|
wr32m(hw, NGBE_MACRXCFG, NGBE_MACRXCFG_ENA, NGBE_MACRXCFG_ENA);
|
|
wr32m(hw, NGBE_PBRXCTL, NGBE_PBRXCTL_ENA, NGBE_PBRXCTL_ENA);
|
|
|
|
if (hw->mac.set_lben) {
|
|
pfdtxgswc = rd32(hw, NGBE_PSRCTL);
|
|
pfdtxgswc |= NGBE_PSRCTL_LBENA;
|
|
wr32(hw, NGBE_PSRCTL, pfdtxgswc);
|
|
hw->mac.set_lben = false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ngbe_set_mac_type - Sets MAC type
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This function sets the mac type of the adapter based on the
|
|
* vendor ID and device ID stored in the hw structure.
|
|
**/
|
|
s32 ngbe_set_mac_type(struct ngbe_hw *hw)
|
|
{
|
|
s32 err = 0;
|
|
|
|
if (hw->vendor_id != PCI_VENDOR_ID_WANGXUN) {
|
|
DEBUGOUT("Unsupported vendor id: %x", hw->vendor_id);
|
|
return NGBE_ERR_DEVICE_NOT_SUPPORTED;
|
|
}
|
|
|
|
switch (hw->sub_device_id) {
|
|
case NGBE_SUB_DEV_ID_EM_RTL_SGMII:
|
|
case NGBE_SUB_DEV_ID_EM_MVL_RGMII:
|
|
hw->phy.media_type = ngbe_media_type_copper;
|
|
hw->mac.type = ngbe_mac_em;
|
|
hw->mac.link_type = ngbe_link_copper;
|
|
break;
|
|
case NGBE_SUB_DEV_ID_EM_RTL_YT8521S_SFP:
|
|
hw->phy.media_type = ngbe_media_type_copper;
|
|
hw->mac.type = ngbe_mac_em;
|
|
hw->mac.link_type = ngbe_link_fiber;
|
|
break;
|
|
case NGBE_SUB_DEV_ID_EM_MVL_SFP:
|
|
case NGBE_SUB_DEV_ID_EM_YT8521S_SFP:
|
|
hw->phy.media_type = ngbe_media_type_fiber;
|
|
hw->mac.type = ngbe_mac_em;
|
|
hw->mac.link_type = ngbe_link_fiber;
|
|
break;
|
|
case NGBE_SUB_DEV_ID_EM_MVL_MIX:
|
|
hw->phy.media_type = ngbe_media_type_unknown;
|
|
hw->mac.type = ngbe_mac_em;
|
|
hw->mac.link_type = ngbe_link_type_unknown;
|
|
break;
|
|
case NGBE_SUB_DEV_ID_EM_VF:
|
|
hw->phy.media_type = ngbe_media_type_virtual;
|
|
hw->mac.type = ngbe_mac_em_vf;
|
|
break;
|
|
default:
|
|
err = NGBE_ERR_DEVICE_NOT_SUPPORTED;
|
|
hw->phy.media_type = ngbe_media_type_unknown;
|
|
hw->mac.type = ngbe_mac_unknown;
|
|
DEBUGOUT("Unsupported device id: %x", hw->device_id);
|
|
break;
|
|
}
|
|
|
|
DEBUGOUT("found mac: %d media: %d, returns: %d",
|
|
hw->mac.type, hw->phy.media_type, err);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ngbe_enable_rx_dma - Enable the Rx DMA unit
|
|
* @hw: pointer to hardware structure
|
|
* @regval: register value to write to RXCTRL
|
|
*
|
|
* Enables the Rx DMA unit
|
|
**/
|
|
s32 ngbe_enable_rx_dma(struct ngbe_hw *hw, u32 regval)
|
|
{
|
|
/*
|
|
* Workaround silicon errata when enabling the Rx datapath.
|
|
* If traffic is incoming before we enable the Rx unit, it could hang
|
|
* the Rx DMA unit. Therefore, make sure the security engine is
|
|
* completely disabled prior to enabling the Rx unit.
|
|
*/
|
|
hw->mac.disable_sec_rx_path(hw);
|
|
|
|
if (regval & NGBE_PBRXCTL_ENA)
|
|
ngbe_enable_rx(hw);
|
|
else
|
|
ngbe_disable_rx(hw);
|
|
|
|
hw->mac.enable_sec_rx_path(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* cmd_addr is used for some special command:
|
|
* 1. to be sector address, when implemented erase sector command
|
|
* 2. to be flash address when implemented read, write flash address
|
|
*
|
|
* Return 0 on success, return 1 on failure.
|
|
*/
|
|
u32 ngbe_fmgr_cmd_op(struct ngbe_hw *hw, u32 cmd, u32 cmd_addr)
|
|
{
|
|
u32 cmd_val, i;
|
|
|
|
cmd_val = NGBE_SPICMD_CMD(cmd) | NGBE_SPICMD_CLK(3) | cmd_addr;
|
|
wr32(hw, NGBE_SPICMD, cmd_val);
|
|
|
|
for (i = 0; i < NGBE_SPI_TIMEOUT; i++) {
|
|
if (rd32(hw, NGBE_SPISTAT) & NGBE_SPISTAT_OPDONE)
|
|
break;
|
|
|
|
usec_delay(10);
|
|
}
|
|
if (i == NGBE_SPI_TIMEOUT)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
u32 ngbe_flash_read_dword(struct ngbe_hw *hw, u32 addr)
|
|
{
|
|
u32 status;
|
|
|
|
status = ngbe_fmgr_cmd_op(hw, 1, addr);
|
|
if (status == 0x1) {
|
|
DEBUGOUT("Read flash timeout.");
|
|
return status;
|
|
}
|
|
|
|
return rd32(hw, NGBE_SPIDAT);
|
|
}
|
|
|
|
void ngbe_read_efuse(struct ngbe_hw *hw)
|
|
{
|
|
u32 efuse[2];
|
|
u8 lan_id = hw->bus.lan_id;
|
|
|
|
efuse[0] = ngbe_flash_read_dword(hw, 0xfe010 + lan_id * 8);
|
|
efuse[1] = ngbe_flash_read_dword(hw, 0xfe010 + lan_id * 8 + 4);
|
|
|
|
DEBUGOUT("port %d efuse[0] = %08x, efuse[1] = %08x\n",
|
|
lan_id, efuse[0], efuse[1]);
|
|
|
|
hw->gphy_efuse[0] = efuse[0];
|
|
hw->gphy_efuse[1] = efuse[1];
|
|
}
|
|
|
|
void ngbe_map_device_id(struct ngbe_hw *hw)
|
|
{
|
|
u16 oem = hw->sub_system_id & NGBE_OEM_MASK;
|
|
|
|
hw->is_pf = true;
|
|
|
|
/* move subsystem_device_id to device_id */
|
|
switch (hw->device_id) {
|
|
case NGBE_DEV_ID_EM_WX1860AL_W_VF:
|
|
case NGBE_DEV_ID_EM_WX1860A2_VF:
|
|
case NGBE_DEV_ID_EM_WX1860A2S_VF:
|
|
case NGBE_DEV_ID_EM_WX1860A4_VF:
|
|
case NGBE_DEV_ID_EM_WX1860A4S_VF:
|
|
case NGBE_DEV_ID_EM_WX1860AL2_VF:
|
|
case NGBE_DEV_ID_EM_WX1860AL2S_VF:
|
|
case NGBE_DEV_ID_EM_WX1860AL4_VF:
|
|
case NGBE_DEV_ID_EM_WX1860AL4S_VF:
|
|
case NGBE_DEV_ID_EM_WX1860NCSI_VF:
|
|
case NGBE_DEV_ID_EM_WX1860A1_VF:
|
|
case NGBE_DEV_ID_EM_WX1860A1L_VF:
|
|
hw->device_id = NGBE_DEV_ID_EM_VF;
|
|
hw->sub_device_id = NGBE_SUB_DEV_ID_EM_VF;
|
|
hw->is_pf = false;
|
|
break;
|
|
case NGBE_DEV_ID_EM_WX1860AL_W:
|
|
case NGBE_DEV_ID_EM_WX1860A2:
|
|
case NGBE_DEV_ID_EM_WX1860A2S:
|
|
case NGBE_DEV_ID_EM_WX1860A4:
|
|
case NGBE_DEV_ID_EM_WX1860A4S:
|
|
case NGBE_DEV_ID_EM_WX1860AL2:
|
|
case NGBE_DEV_ID_EM_WX1860AL2S:
|
|
case NGBE_DEV_ID_EM_WX1860AL4:
|
|
case NGBE_DEV_ID_EM_WX1860AL4S:
|
|
case NGBE_DEV_ID_EM_WX1860NCSI:
|
|
case NGBE_DEV_ID_EM_WX1860A1:
|
|
case NGBE_DEV_ID_EM_WX1860A1L:
|
|
hw->device_id = NGBE_DEV_ID_EM;
|
|
if (oem == NGBE_M88E1512_SFP || oem == NGBE_LY_M88E1512_SFP)
|
|
hw->sub_device_id = NGBE_SUB_DEV_ID_EM_MVL_SFP;
|
|
else if (oem == NGBE_M88E1512_RJ45 ||
|
|
(hw->sub_system_id == NGBE_SUB_DEV_ID_EM_M88E1512_RJ45))
|
|
hw->sub_device_id = NGBE_SUB_DEV_ID_EM_MVL_RGMII;
|
|
else if (oem == NGBE_M88E1512_MIX)
|
|
hw->sub_device_id = NGBE_SUB_DEV_ID_EM_MVL_MIX;
|
|
else if (oem == NGBE_YT8521S_SFP ||
|
|
oem == NGBE_YT8521S_SFP_GPIO ||
|
|
oem == NGBE_LY_YT8521S_SFP)
|
|
hw->sub_device_id = NGBE_SUB_DEV_ID_EM_YT8521S_SFP;
|
|
else if (oem == NGBE_INTERNAL_YT8521S_SFP ||
|
|
oem == NGBE_INTERNAL_YT8521S_SFP_GPIO)
|
|
hw->sub_device_id = NGBE_SUB_DEV_ID_EM_RTL_YT8521S_SFP;
|
|
else
|
|
hw->sub_device_id = NGBE_SUB_DEV_ID_EM_RTL_SGMII;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (oem == NGBE_LY_M88E1512_SFP || oem == NGBE_YT8521S_SFP_GPIO ||
|
|
oem == NGBE_INTERNAL_YT8521S_SFP_GPIO ||
|
|
oem == NGBE_LY_YT8521S_SFP)
|
|
hw->gpio_ctl = true;
|
|
}
|
|
|
|
/**
|
|
* ngbe_init_ops_pf - Inits func ptrs and MAC type
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Initialize the function pointers and assign the MAC type.
|
|
* Does not touch the hardware.
|
|
**/
|
|
s32 ngbe_init_ops_pf(struct ngbe_hw *hw)
|
|
{
|
|
struct ngbe_bus_info *bus = &hw->bus;
|
|
struct ngbe_mac_info *mac = &hw->mac;
|
|
struct ngbe_phy_info *phy = &hw->phy;
|
|
struct ngbe_rom_info *rom = &hw->rom;
|
|
struct ngbe_mbx_info *mbx = &hw->mbx;
|
|
|
|
/* BUS */
|
|
bus->set_lan_id = ngbe_set_lan_id_multi_port;
|
|
|
|
/* PHY */
|
|
phy->identify = ngbe_identify_phy;
|
|
phy->read_reg = ngbe_read_phy_reg;
|
|
phy->write_reg = ngbe_write_phy_reg;
|
|
phy->read_reg_unlocked = ngbe_read_phy_reg_mdi;
|
|
phy->write_reg_unlocked = ngbe_write_phy_reg_mdi;
|
|
phy->reset_hw = ngbe_reset_phy;
|
|
phy->led_oem_chk = ngbe_phy_led_oem_chk;
|
|
|
|
/* MAC */
|
|
mac->init_hw = ngbe_init_hw;
|
|
mac->reset_hw = ngbe_reset_hw_em;
|
|
mac->start_hw = ngbe_start_hw;
|
|
mac->clear_hw_cntrs = ngbe_clear_hw_cntrs;
|
|
mac->enable_rx_dma = ngbe_enable_rx_dma;
|
|
mac->get_mac_addr = ngbe_get_mac_addr;
|
|
mac->stop_hw = ngbe_stop_hw;
|
|
mac->acquire_swfw_sync = ngbe_acquire_swfw_sync;
|
|
mac->release_swfw_sync = ngbe_release_swfw_sync;
|
|
|
|
mac->disable_sec_rx_path = ngbe_disable_sec_rx_path;
|
|
mac->enable_sec_rx_path = ngbe_enable_sec_rx_path;
|
|
|
|
/* LEDs */
|
|
mac->led_on = ngbe_led_on;
|
|
mac->led_off = ngbe_led_off;
|
|
|
|
/* RAR, VLAN, Multicast */
|
|
mac->set_rar = ngbe_set_rar;
|
|
mac->clear_rar = ngbe_clear_rar;
|
|
mac->init_rx_addrs = ngbe_init_rx_addrs;
|
|
mac->update_mc_addr_list = ngbe_update_mc_addr_list;
|
|
mac->set_vmdq = ngbe_set_vmdq;
|
|
mac->clear_vmdq = ngbe_clear_vmdq;
|
|
mac->set_vfta = ngbe_set_vfta;
|
|
mac->set_vlvf = ngbe_set_vlvf;
|
|
mac->clear_vfta = ngbe_clear_vfta;
|
|
mac->set_mac_anti_spoofing = ngbe_set_mac_anti_spoofing;
|
|
mac->set_vlan_anti_spoofing = ngbe_set_vlan_anti_spoofing;
|
|
|
|
/* Flow Control */
|
|
mac->fc_enable = ngbe_fc_enable;
|
|
mac->fc_autoneg = ngbe_fc_autoneg;
|
|
mac->setup_fc = ngbe_setup_fc_em;
|
|
|
|
/* Link */
|
|
mac->get_link_capabilities = ngbe_get_link_capabilities_em;
|
|
mac->check_link = ngbe_check_mac_link_em;
|
|
mac->setup_link = ngbe_setup_mac_link_em;
|
|
|
|
mac->setup_pba = ngbe_set_pba;
|
|
|
|
/* Manageability interface */
|
|
mac->init_thermal_sensor_thresh = ngbe_init_thermal_sensor_thresh;
|
|
mac->check_overtemp = ngbe_mac_check_overtemp;
|
|
|
|
mbx->init_params = ngbe_init_mbx_params_pf;
|
|
mbx->read = ngbe_read_mbx_pf;
|
|
mbx->write = ngbe_write_mbx_pf;
|
|
mbx->check_for_msg = ngbe_check_for_msg_pf;
|
|
mbx->check_for_ack = ngbe_check_for_ack_pf;
|
|
mbx->check_for_rst = ngbe_check_for_rst_pf;
|
|
|
|
/* EEPROM */
|
|
rom->init_params = ngbe_init_eeprom_params;
|
|
rom->readw_buffer = ngbe_ee_readw_buffer;
|
|
rom->read32 = ngbe_ee_read32;
|
|
rom->writew_buffer = ngbe_ee_writew_buffer;
|
|
rom->validate_checksum = ngbe_validate_eeprom_checksum_em;
|
|
|
|
mac->mcft_size = NGBE_EM_MC_TBL_SIZE;
|
|
mac->vft_size = NGBE_EM_VFT_TBL_SIZE;
|
|
mac->num_rar_entries = NGBE_EM_RAR_ENTRIES;
|
|
mac->rx_pb_size = NGBE_EM_RX_PB_SIZE;
|
|
mac->max_rx_queues = NGBE_EM_MAX_RX_QUEUES;
|
|
mac->max_tx_queues = NGBE_EM_MAX_TX_QUEUES;
|
|
|
|
mac->default_speeds = NGBE_LINK_SPEED_10M_FULL |
|
|
NGBE_LINK_SPEED_100M_FULL |
|
|
NGBE_LINK_SPEED_1GB_FULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ngbe_init_shared_code - Initialize the shared code
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* This will assign function pointers and assign the MAC type and PHY code.
|
|
* Does not touch the hardware. This function must be called prior to any
|
|
* other function in the shared code. The ngbe_hw structure should be
|
|
* memset to 0 prior to calling this function. The following fields in
|
|
* hw structure should be filled in prior to calling this function:
|
|
* hw_addr, back, device_id, vendor_id, subsystem_device_id
|
|
**/
|
|
s32 ngbe_init_shared_code(struct ngbe_hw *hw)
|
|
{
|
|
s32 status = 0;
|
|
|
|
/*
|
|
* Set the mac type
|
|
*/
|
|
ngbe_set_mac_type(hw);
|
|
|
|
ngbe_init_ops_dummy(hw);
|
|
switch (hw->mac.type) {
|
|
case ngbe_mac_em:
|
|
ngbe_init_ops_pf(hw);
|
|
break;
|
|
default:
|
|
status = NGBE_ERR_DEVICE_NOT_SUPPORTED;
|
|
break;
|
|
}
|
|
hw->mac.max_link_up_time = NGBE_LINK_UP_TIME;
|
|
|
|
hw->bus.set_lan_id(hw);
|
|
|
|
return status;
|
|
}
|
|
|