f-stack/dpdk/drivers/net/ngbe/base/ngbe_hw.c

2084 lines
55 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2021 Beijing WangXun Technology Co., Ltd.
* Copyright(c) 2010-2017 Intel Corporation
*/
#include "ngbe_type.h"
#include "ngbe_mbx.h"
#include "ngbe_phy.h"
#include "ngbe_eeprom.h"
#include "ngbe_mng.h"
#include "ngbe_hw.h"
/**
* ngbe_start_hw - Prepare hardware for Tx/Rx
* @hw: pointer to hardware structure
*
* Starts the hardware.
**/
s32 ngbe_start_hw(struct ngbe_hw *hw)
{
s32 err;
/* Clear the VLAN filter table */
hw->mac.clear_vfta(hw);
/* Clear statistics registers */
hw->mac.clear_hw_cntrs(hw);
/* Setup flow control */
err = hw->mac.setup_fc(hw);
if (err != 0 && err != NGBE_NOT_IMPLEMENTED) {
DEBUGOUT("Flow control setup failed, returning %d", err);
return err;
}
/* Clear adapter stopped flag */
hw->adapter_stopped = false;
return 0;
}
/**
* ngbe_init_hw - Generic hardware initialization
* @hw: pointer to hardware structure
*
* Initialize the hardware by resetting the hardware, filling the bus info
* structure and media type, clears all on chip counters, initializes receive
* address registers, multicast table, VLAN filter table, calls routine to set
* up link and flow control settings, and leaves transmit and receive units
* disabled and uninitialized
**/
s32 ngbe_init_hw(struct ngbe_hw *hw)
{
s32 status;
ngbe_read_efuse(hw);
ngbe_save_eeprom_version(hw);
/* Reset the hardware */
status = hw->mac.reset_hw(hw);
if (status == 0) {
/* Start the HW */
status = hw->mac.start_hw(hw);
}
if (status != 0)
DEBUGOUT("Failed to initialize HW, STATUS = %d", status);
return status;
}
static void
ngbe_reset_misc_em(struct ngbe_hw *hw)
{
int i;
wr32(hw, NGBE_ISBADDRL, hw->isb_dma & 0xFFFFFFFF);
wr32(hw, NGBE_ISBADDRH, hw->isb_dma >> 32);
/* receive packets that size > 2048 */
wr32m(hw, NGBE_MACRXCFG,
NGBE_MACRXCFG_JUMBO, NGBE_MACRXCFG_JUMBO);
wr32m(hw, NGBE_FRMSZ, NGBE_FRMSZ_MAX_MASK,
NGBE_FRMSZ_MAX(NGBE_FRAME_SIZE_DFT));
/* clear counters on read */
wr32m(hw, NGBE_MACCNTCTL,
NGBE_MACCNTCTL_RC, NGBE_MACCNTCTL_RC);
wr32m(hw, NGBE_RXFCCFG,
NGBE_RXFCCFG_FC, NGBE_RXFCCFG_FC);
wr32m(hw, NGBE_TXFCCFG,
NGBE_TXFCCFG_FC, NGBE_TXFCCFG_FC);
wr32m(hw, NGBE_MACRXFLT,
NGBE_MACRXFLT_PROMISC, NGBE_MACRXFLT_PROMISC);
wr32m(hw, NGBE_RSTSTAT,
NGBE_RSTSTAT_TMRINIT_MASK, NGBE_RSTSTAT_TMRINIT(30));
/* errata 4: initialize mng flex tbl and wakeup flex tbl*/
wr32(hw, NGBE_MNGFLEXSEL, 0);
for (i = 0; i < 16; i++) {
wr32(hw, NGBE_MNGFLEXDWL(i), 0);
wr32(hw, NGBE_MNGFLEXDWH(i), 0);
wr32(hw, NGBE_MNGFLEXMSK(i), 0);
}
wr32(hw, NGBE_LANFLEXSEL, 0);
for (i = 0; i < 16; i++) {
wr32(hw, NGBE_LANFLEXDWL(i), 0);
wr32(hw, NGBE_LANFLEXDWH(i), 0);
wr32(hw, NGBE_LANFLEXMSK(i), 0);
}
/* set pause frame dst mac addr */
wr32(hw, NGBE_RXPBPFCDMACL, 0xC2000001);
wr32(hw, NGBE_RXPBPFCDMACH, 0x0180);
wr32(hw, NGBE_MDIOMODE, 0xF);
wr32m(hw, NGBE_GPIE, NGBE_GPIE_MSIX, NGBE_GPIE_MSIX);
if (hw->gpio_ctl) {
/* gpio0 is used to power on/off control*/
wr32(hw, NGBE_GPIODIR, NGBE_GPIODIR_DDR(1));
wr32(hw, NGBE_GPIODATA, NGBE_GPIOBIT_0);
}
hw->mac.init_thermal_sensor_thresh(hw);
/* enable mac transmitter */
wr32m(hw, NGBE_MACTXCFG, NGBE_MACTXCFG_TE, NGBE_MACTXCFG_TE);
/* sellect GMII */
wr32m(hw, NGBE_MACTXCFG,
NGBE_MACTXCFG_SPEED_MASK, NGBE_MACTXCFG_SPEED_1G);
for (i = 0; i < 4; i++)
wr32m(hw, NGBE_IVAR(i), 0x80808080, 0);
}
/**
* ngbe_reset_hw_em - Perform hardware reset
* @hw: pointer to hardware structure
*
* Resets the hardware by resetting the transmit and receive units, masks
* and clears all interrupts, perform a PHY reset, and perform a link (MAC)
* reset.
**/
s32 ngbe_reset_hw_em(struct ngbe_hw *hw)
{
s32 status;
/* Call adapter stop to disable tx/rx and clear interrupts */
status = hw->mac.stop_hw(hw);
if (status != 0)
return status;
/* Identify PHY and related function pointers */
status = ngbe_init_phy(hw);
if (status)
return status;
/* Reset PHY */
if (!hw->phy.reset_disable)
hw->phy.reset_hw(hw);
wr32(hw, NGBE_RST, NGBE_RST_LAN(hw->bus.lan_id));
ngbe_flush(hw);
msec_delay(50);
ngbe_reset_misc_em(hw);
hw->mac.clear_hw_cntrs(hw);
if (!((hw->sub_device_id & NGBE_OEM_MASK) == NGBE_RGMII_FPGA))
hw->phy.set_phy_power(hw, false);
msec_delay(50);
/* Store the permanent mac address */
hw->mac.get_mac_addr(hw, hw->mac.perm_addr);
/*
* Store MAC address from RAR0, clear receive address registers, and
* clear the multicast table.
*/
hw->mac.num_rar_entries = NGBE_EM_RAR_ENTRIES;
hw->mac.init_rx_addrs(hw);
return status;
}
/**
* ngbe_clear_hw_cntrs - Generic clear hardware counters
* @hw: pointer to hardware structure
*
* Clears all hardware statistics counters by reading them from the hardware
* Statistics counters are clear on read.
**/
s32 ngbe_clear_hw_cntrs(struct ngbe_hw *hw)
{
u16 i = 0;
/* QP Stats */
/* don't write clear queue stats */
for (i = 0; i < NGBE_MAX_QP; i++) {
hw->qp_last[i].rx_qp_packets = 0;
hw->qp_last[i].tx_qp_packets = 0;
hw->qp_last[i].rx_qp_bytes = 0;
hw->qp_last[i].tx_qp_bytes = 0;
hw->qp_last[i].rx_qp_mc_packets = 0;
hw->qp_last[i].tx_qp_mc_packets = 0;
hw->qp_last[i].rx_qp_bc_packets = 0;
hw->qp_last[i].tx_qp_bc_packets = 0;
}
/* PB Stats */
rd32(hw, NGBE_PBRXLNKXON);
rd32(hw, NGBE_PBRXLNKXOFF);
rd32(hw, NGBE_PBTXLNKXON);
rd32(hw, NGBE_PBTXLNKXOFF);
/* DMA Stats */
rd32(hw, NGBE_DMARXPKT);
rd32(hw, NGBE_DMATXPKT);
rd64(hw, NGBE_DMARXOCTL);
rd64(hw, NGBE_DMATXOCTL);
/* MAC Stats */
rd64(hw, NGBE_MACRXERRCRCL);
rd64(hw, NGBE_MACRXMPKTL);
rd64(hw, NGBE_MACTXMPKTL);
rd64(hw, NGBE_MACRXPKTL);
rd64(hw, NGBE_MACTXPKTL);
rd64(hw, NGBE_MACRXGBOCTL);
rd64(hw, NGBE_MACRXOCTL);
rd32(hw, NGBE_MACTXOCTL);
rd64(hw, NGBE_MACRX1TO64L);
rd64(hw, NGBE_MACRX65TO127L);
rd64(hw, NGBE_MACRX128TO255L);
rd64(hw, NGBE_MACRX256TO511L);
rd64(hw, NGBE_MACRX512TO1023L);
rd64(hw, NGBE_MACRX1024TOMAXL);
rd64(hw, NGBE_MACTX1TO64L);
rd64(hw, NGBE_MACTX65TO127L);
rd64(hw, NGBE_MACTX128TO255L);
rd64(hw, NGBE_MACTX256TO511L);
rd64(hw, NGBE_MACTX512TO1023L);
rd64(hw, NGBE_MACTX1024TOMAXL);
rd64(hw, NGBE_MACRXERRLENL);
rd32(hw, NGBE_MACRXOVERSIZE);
rd32(hw, NGBE_MACRXJABBER);
/* MACsec Stats */
rd32(hw, NGBE_LSECTX_UTPKT);
rd32(hw, NGBE_LSECTX_ENCPKT);
rd32(hw, NGBE_LSECTX_PROTPKT);
rd32(hw, NGBE_LSECTX_ENCOCT);
rd32(hw, NGBE_LSECTX_PROTOCT);
rd32(hw, NGBE_LSECRX_UTPKT);
rd32(hw, NGBE_LSECRX_BTPKT);
rd32(hw, NGBE_LSECRX_NOSCIPKT);
rd32(hw, NGBE_LSECRX_UNSCIPKT);
rd32(hw, NGBE_LSECRX_DECOCT);
rd32(hw, NGBE_LSECRX_VLDOCT);
rd32(hw, NGBE_LSECRX_UNCHKPKT);
rd32(hw, NGBE_LSECRX_DLYPKT);
rd32(hw, NGBE_LSECRX_LATEPKT);
for (i = 0; i < 2; i++) {
rd32(hw, NGBE_LSECRX_OKPKT(i));
rd32(hw, NGBE_LSECRX_INVPKT(i));
rd32(hw, NGBE_LSECRX_BADPKT(i));
}
for (i = 0; i < 4; i++) {
rd32(hw, NGBE_LSECRX_INVSAPKT(i));
rd32(hw, NGBE_LSECRX_BADSAPKT(i));
}
return 0;
}
/**
* ngbe_get_mac_addr - Generic get MAC address
* @hw: pointer to hardware structure
* @mac_addr: Adapter MAC address
*
* Reads the adapter's MAC address from first Receive Address Register (RAR0)
* A reset of the adapter must be performed prior to calling this function
* in order for the MAC address to have been loaded from the EEPROM into RAR0
**/
s32 ngbe_get_mac_addr(struct ngbe_hw *hw, u8 *mac_addr)
{
u32 rar_high;
u32 rar_low;
u16 i;
wr32(hw, NGBE_ETHADDRIDX, 0);
rar_high = rd32(hw, NGBE_ETHADDRH);
rar_low = rd32(hw, NGBE_ETHADDRL);
for (i = 0; i < 2; i++)
mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
for (i = 0; i < 4; i++)
mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
return 0;
}
/**
* ngbe_set_lan_id_multi_port - Set LAN id for PCIe multiple port devices
* @hw: pointer to the HW structure
*
* Determines the LAN function id by reading memory-mapped registers and swaps
* the port value if requested, and set MAC instance for devices.
**/
void ngbe_set_lan_id_multi_port(struct ngbe_hw *hw)
{
struct ngbe_bus_info *bus = &hw->bus;
u32 reg = 0;
reg = rd32(hw, NGBE_PORTSTAT);
bus->lan_id = NGBE_PORTSTAT_ID(reg);
bus->func = bus->lan_id;
}
/**
* ngbe_stop_hw - Generic stop Tx/Rx units
* @hw: pointer to hardware structure
*
* Sets the adapter_stopped flag within ngbe_hw struct. Clears interrupts,
* disables transmit and receive units. The adapter_stopped flag is used by
* the shared code and drivers to determine if the adapter is in a stopped
* state and should not touch the hardware.
**/
s32 ngbe_stop_hw(struct ngbe_hw *hw)
{
u16 i;
s32 status = 0;
/*
* Set the adapter_stopped flag so other driver functions stop touching
* the hardware
*/
hw->adapter_stopped = true;
/* Disable the receive unit */
ngbe_disable_rx(hw);
/* Clear interrupt mask to stop interrupts from being generated */
wr32(hw, NGBE_IENMISC, 0);
wr32(hw, NGBE_IMS(0), NGBE_IMS_MASK);
/* Clear any pending interrupts, flush previous writes */
wr32(hw, NGBE_ICRMISC, NGBE_ICRMISC_MASK);
wr32(hw, NGBE_ICR(0), NGBE_ICR_MASK);
wr32(hw, NGBE_BMECTL, 0x3);
/* Disable the receive unit by stopping each queue */
for (i = 0; i < hw->mac.max_rx_queues; i++)
wr32(hw, NGBE_RXCFG(i), 0);
/* flush all queues disables */
ngbe_flush(hw);
msec_delay(2);
/*
* Prevent the PCI-E bus from hanging by disabling PCI-E master
* access and verify no pending requests
*/
status = ngbe_set_pcie_master(hw, false);
if (status)
return status;
/* Disable the transmit unit. Each queue must be disabled. */
for (i = 0; i < hw->mac.max_tx_queues; i++)
wr32(hw, NGBE_TXCFG(i), 0);
/* flush all queues disables */
ngbe_flush(hw);
msec_delay(2);
return 0;
}
/**
* ngbe_led_on - Turns on the software controllable LEDs.
* @hw: pointer to hardware structure
* @index: led number to turn on
**/
s32 ngbe_led_on(struct ngbe_hw *hw, u32 index)
{
u32 led_reg = rd32(hw, NGBE_LEDCTL);
if (index > 3)
return NGBE_ERR_PARAM;
/* To turn on the LED, set mode to ON. */
led_reg |= NGBE_LEDCTL_100M;
wr32(hw, NGBE_LEDCTL, led_reg);
ngbe_flush(hw);
return 0;
}
/**
* ngbe_led_off - Turns off the software controllable LEDs.
* @hw: pointer to hardware structure
* @index: led number to turn off
**/
s32 ngbe_led_off(struct ngbe_hw *hw, u32 index)
{
u32 led_reg = rd32(hw, NGBE_LEDCTL);
if (index > 3)
return NGBE_ERR_PARAM;
/* To turn off the LED, set mode to OFF. */
led_reg &= ~NGBE_LEDCTL_100M;
wr32(hw, NGBE_LEDCTL, led_reg);
ngbe_flush(hw);
return 0;
}
/**
* ngbe_validate_mac_addr - Validate MAC address
* @mac_addr: pointer to MAC address.
*
* Tests a MAC address to ensure it is a valid Individual Address.
**/
s32 ngbe_validate_mac_addr(u8 *mac_addr)
{
s32 status = 0;
/* Make sure it is not a multicast address */
if (NGBE_IS_MULTICAST((struct rte_ether_addr *)mac_addr)) {
status = NGBE_ERR_INVALID_MAC_ADDR;
/* Not a broadcast address */
} else if (NGBE_IS_BROADCAST((struct rte_ether_addr *)mac_addr)) {
status = NGBE_ERR_INVALID_MAC_ADDR;
/* Reject the zero address */
} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
status = NGBE_ERR_INVALID_MAC_ADDR;
}
return status;
}
/**
* ngbe_set_rar - Set Rx address register
* @hw: pointer to hardware structure
* @index: Receive address register to write
* @addr: Address to put into receive address register
* @vmdq: VMDq "set" or "pool" index
* @enable_addr: set flag that address is active
*
* Puts an ethernet address into a receive address register.
**/
s32 ngbe_set_rar(struct ngbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
u32 enable_addr)
{
u32 rar_low, rar_high;
u32 rar_entries = hw->mac.num_rar_entries;
/* Make sure we are using a valid rar index range */
if (index >= rar_entries) {
DEBUGOUT("RAR index %d is out of range.", index);
return NGBE_ERR_INVALID_ARGUMENT;
}
/* setup VMDq pool selection before this RAR gets enabled */
hw->mac.set_vmdq(hw, index, vmdq);
/*
* HW expects these in little endian so we reverse the byte
* order from network order (big endian) to little endian
*/
rar_low = NGBE_ETHADDRL_AD0(addr[5]) |
NGBE_ETHADDRL_AD1(addr[4]) |
NGBE_ETHADDRL_AD2(addr[3]) |
NGBE_ETHADDRL_AD3(addr[2]);
/*
* Some parts put the VMDq setting in the extra RAH bits,
* so save everything except the lower 16 bits that hold part
* of the address and the address valid bit.
*/
rar_high = rd32(hw, NGBE_ETHADDRH);
rar_high &= ~NGBE_ETHADDRH_AD_MASK;
rar_high |= (NGBE_ETHADDRH_AD4(addr[1]) |
NGBE_ETHADDRH_AD5(addr[0]));
rar_high &= ~NGBE_ETHADDRH_VLD;
if (enable_addr != 0)
rar_high |= NGBE_ETHADDRH_VLD;
wr32(hw, NGBE_ETHADDRIDX, index);
wr32(hw, NGBE_ETHADDRL, rar_low);
wr32(hw, NGBE_ETHADDRH, rar_high);
return 0;
}
/**
* ngbe_clear_rar - Remove Rx address register
* @hw: pointer to hardware structure
* @index: Receive address register to write
*
* Clears an ethernet address from a receive address register.
**/
s32 ngbe_clear_rar(struct ngbe_hw *hw, u32 index)
{
u32 rar_high;
u32 rar_entries = hw->mac.num_rar_entries;
/* Make sure we are using a valid rar index range */
if (index >= rar_entries) {
DEBUGOUT("RAR index %d is out of range.", index);
return NGBE_ERR_INVALID_ARGUMENT;
}
/*
* Some parts put the VMDq setting in the extra RAH bits,
* so save everything except the lower 16 bits that hold part
* of the address and the address valid bit.
*/
wr32(hw, NGBE_ETHADDRIDX, index);
rar_high = rd32(hw, NGBE_ETHADDRH);
rar_high &= ~(NGBE_ETHADDRH_AD_MASK | NGBE_ETHADDRH_VLD);
wr32(hw, NGBE_ETHADDRL, 0);
wr32(hw, NGBE_ETHADDRH, rar_high);
/* clear VMDq pool/queue selection for this RAR */
hw->mac.clear_vmdq(hw, index, BIT_MASK32);
return 0;
}
/**
* ngbe_init_rx_addrs - Initializes receive address filters.
* @hw: pointer to hardware structure
*
* Places the MAC address in receive address register 0 and clears the rest
* of the receive address registers. Clears the multicast table. Assumes
* the receiver is in reset when the routine is called.
**/
s32 ngbe_init_rx_addrs(struct ngbe_hw *hw)
{
u32 i;
u32 psrctl;
u32 rar_entries = hw->mac.num_rar_entries;
/*
* If the current mac address is valid, assume it is a software override
* to the permanent address.
* Otherwise, use the permanent address from the eeprom.
*/
if (ngbe_validate_mac_addr(hw->mac.addr) ==
NGBE_ERR_INVALID_MAC_ADDR) {
/* Get the MAC address from the RAR0 for later reference */
hw->mac.get_mac_addr(hw, hw->mac.addr);
DEBUGOUT(" Keeping Current RAR0 Addr = "
RTE_ETHER_ADDR_PRT_FMT,
hw->mac.addr[0], hw->mac.addr[1],
hw->mac.addr[2], hw->mac.addr[3],
hw->mac.addr[4], hw->mac.addr[5]);
} else {
/* Setup the receive address. */
DEBUGOUT("Overriding MAC Address in RAR[0]");
DEBUGOUT(" New MAC Addr = "
RTE_ETHER_ADDR_PRT_FMT,
hw->mac.addr[0], hw->mac.addr[1],
hw->mac.addr[2], hw->mac.addr[3],
hw->mac.addr[4], hw->mac.addr[5]);
hw->mac.set_rar(hw, 0, hw->mac.addr, 0, true);
}
/* clear VMDq pool/queue selection for RAR 0 */
hw->mac.clear_vmdq(hw, 0, BIT_MASK32);
/* Zero out the other receive addresses. */
DEBUGOUT("Clearing RAR[1-%d]", rar_entries - 1);
for (i = 1; i < rar_entries; i++) {
wr32(hw, NGBE_ETHADDRIDX, i);
wr32(hw, NGBE_ETHADDRL, 0);
wr32(hw, NGBE_ETHADDRH, 0);
}
/* Clear the MTA */
hw->addr_ctrl.mta_in_use = 0;
psrctl = rd32(hw, NGBE_PSRCTL);
psrctl &= ~(NGBE_PSRCTL_ADHF12_MASK | NGBE_PSRCTL_MCHFENA);
psrctl |= NGBE_PSRCTL_ADHF12(hw->mac.mc_filter_type);
wr32(hw, NGBE_PSRCTL, psrctl);
DEBUGOUT(" Clearing MTA");
for (i = 0; i < hw->mac.mcft_size; i++)
wr32(hw, NGBE_MCADDRTBL(i), 0);
ngbe_init_uta_tables(hw);
return 0;
}
/**
* ngbe_mta_vector - Determines bit-vector in multicast table to set
* @hw: pointer to hardware structure
* @mc_addr: the multicast address
*
* Extracts the 12 bits, from a multicast address, to determine which
* bit-vector to set in the multicast table. The hardware uses 12 bits, from
* incoming rx multicast addresses, to determine the bit-vector to check in
* the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
* by the MO field of the PSRCTRL. The MO field is set during initialization
* to mc_filter_type.
**/
static s32 ngbe_mta_vector(struct ngbe_hw *hw, u8 *mc_addr)
{
u32 vector = 0;
switch (hw->mac.mc_filter_type) {
case 0: /* use bits [47:36] of the address */
vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
break;
case 1: /* use bits [46:35] of the address */
vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
break;
case 2: /* use bits [45:34] of the address */
vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
break;
case 3: /* use bits [43:32] of the address */
vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
break;
default: /* Invalid mc_filter_type */
DEBUGOUT("MC filter type param set incorrectly");
ASSERT(0);
break;
}
/* vector can only be 12-bits or boundary will be exceeded */
vector &= 0xFFF;
return vector;
}
/**
* ngbe_set_mta - Set bit-vector in multicast table
* @hw: pointer to hardware structure
* @mc_addr: Multicast address
*
* Sets the bit-vector in the multicast table.
**/
void ngbe_set_mta(struct ngbe_hw *hw, u8 *mc_addr)
{
u32 vector;
u32 vector_bit;
u32 vector_reg;
hw->addr_ctrl.mta_in_use++;
vector = ngbe_mta_vector(hw, mc_addr);
DEBUGOUT(" bit-vector = 0x%03X", vector);
/*
* The MTA is a register array of 128 32-bit registers. It is treated
* like an array of 4096 bits. We want to set bit
* BitArray[vector_value]. So we figure out what register the bit is
* in, read it, OR in the new bit, then write back the new value. The
* register is determined by the upper 7 bits of the vector value and
* the bit within that register are determined by the lower 5 bits of
* the value.
*/
vector_reg = (vector >> 5) & 0x7F;
vector_bit = vector & 0x1F;
hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
}
/**
* ngbe_update_mc_addr_list - Updates MAC list of multicast addresses
* @hw: pointer to hardware structure
* @mc_addr_list: the list of new multicast addresses
* @mc_addr_count: number of addresses
* @next: iterator function to walk the multicast address list
* @clear: flag, when set clears the table beforehand
*
* When the clear flag is set, the given list replaces any existing list.
* Hashes the given addresses into the multicast table.
**/
s32 ngbe_update_mc_addr_list(struct ngbe_hw *hw, u8 *mc_addr_list,
u32 mc_addr_count, ngbe_mc_addr_itr next,
bool clear)
{
u32 i;
u32 vmdq;
/*
* Set the new number of MC addresses that we are being requested to
* use.
*/
hw->addr_ctrl.num_mc_addrs = mc_addr_count;
hw->addr_ctrl.mta_in_use = 0;
/* Clear mta_shadow */
if (clear) {
DEBUGOUT(" Clearing MTA");
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
}
/* Update mta_shadow */
for (i = 0; i < mc_addr_count; i++) {
DEBUGOUT(" Adding the multicast addresses:");
ngbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
}
/* Enable mta */
for (i = 0; i < hw->mac.mcft_size; i++)
wr32a(hw, NGBE_MCADDRTBL(0), i,
hw->mac.mta_shadow[i]);
if (hw->addr_ctrl.mta_in_use > 0) {
u32 psrctl = rd32(hw, NGBE_PSRCTL);
psrctl &= ~(NGBE_PSRCTL_ADHF12_MASK | NGBE_PSRCTL_MCHFENA);
psrctl |= NGBE_PSRCTL_MCHFENA |
NGBE_PSRCTL_ADHF12(hw->mac.mc_filter_type);
wr32(hw, NGBE_PSRCTL, psrctl);
}
DEBUGOUT("ngbe update mc addr list complete");
return 0;
}
/**
* ngbe_setup_fc_em - Set up flow control
* @hw: pointer to hardware structure
*
* Called at init time to set up flow control.
**/
s32 ngbe_setup_fc_em(struct ngbe_hw *hw)
{
s32 err = 0;
u16 reg_cu = 0;
/* Validate the requested mode */
if (hw->fc.strict_ieee && hw->fc.requested_mode == ngbe_fc_rx_pause) {
DEBUGOUT("ngbe_fc_rx_pause not valid in strict IEEE mode");
err = NGBE_ERR_INVALID_LINK_SETTINGS;
goto out;
}
/*
* 1gig parts do not have a word in the EEPROM to determine the
* default flow control setting, so we explicitly set it to full.
*/
if (hw->fc.requested_mode == ngbe_fc_default)
hw->fc.requested_mode = ngbe_fc_full;
/*
* The possible values of fc.requested_mode are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames,
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but
* we do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
* other: Invalid.
*/
switch (hw->fc.requested_mode) {
case ngbe_fc_none:
/* Flow control completely disabled by software override. */
break;
case ngbe_fc_tx_pause:
/*
* Tx Flow control is enabled, and Rx Flow control is
* disabled by software override.
*/
if (hw->phy.type == ngbe_phy_mvl_sfi ||
hw->phy.type == ngbe_phy_yt8521s_sfi)
reg_cu |= MVL_FANA_ASM_PAUSE;
else
reg_cu |= 0x800; /*need to merge rtl and mvl on page 0*/
break;
case ngbe_fc_rx_pause:
/*
* Rx Flow control is enabled and Tx Flow control is
* disabled by software override. Since there really
* isn't a way to advertise that we are capable of RX
* Pause ONLY, we will advertise that we support both
* symmetric and asymmetric Rx PAUSE, as such we fall
* through to the fc_full statement. Later, we will
* disable the adapter's ability to send PAUSE frames.
*/
case ngbe_fc_full:
/* Flow control (both Rx and Tx) is enabled by SW override. */
if (hw->phy.type == ngbe_phy_mvl_sfi ||
hw->phy.type == ngbe_phy_yt8521s_sfi)
reg_cu |= MVL_FANA_SYM_PAUSE;
else
reg_cu |= 0xC00; /*need to merge rtl and mvl on page 0*/
break;
default:
DEBUGOUT("Flow control param set incorrectly");
err = NGBE_ERR_CONFIG;
goto out;
}
err = hw->phy.set_pause_adv(hw, reg_cu);
out:
return err;
}
/**
* ngbe_fc_enable - Enable flow control
* @hw: pointer to hardware structure
*
* Enable flow control according to the current settings.
**/
s32 ngbe_fc_enable(struct ngbe_hw *hw)
{
s32 err = 0;
u32 mflcn_reg, fccfg_reg;
u32 pause_time;
u32 fcrtl, fcrth;
/* Validate the water mark configuration */
if (!hw->fc.pause_time) {
err = NGBE_ERR_INVALID_LINK_SETTINGS;
goto out;
}
/* Low water mark of zero causes XOFF floods */
if ((hw->fc.current_mode & ngbe_fc_tx_pause) && hw->fc.high_water) {
if (!hw->fc.low_water ||
hw->fc.low_water >= hw->fc.high_water) {
DEBUGOUT("Invalid water mark configuration");
err = NGBE_ERR_INVALID_LINK_SETTINGS;
goto out;
}
}
/* Negotiate the fc mode to use */
hw->mac.fc_autoneg(hw);
/* Disable any previous flow control settings */
mflcn_reg = rd32(hw, NGBE_RXFCCFG);
mflcn_reg &= ~NGBE_RXFCCFG_FC;
fccfg_reg = rd32(hw, NGBE_TXFCCFG);
fccfg_reg &= ~NGBE_TXFCCFG_FC;
/*
* The possible values of fc.current_mode are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames,
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but
* we do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
* other: Invalid.
*/
switch (hw->fc.current_mode) {
case ngbe_fc_none:
/*
* Flow control is disabled by software override or autoneg.
* The code below will actually disable it in the HW.
*/
break;
case ngbe_fc_rx_pause:
/*
* Rx Flow control is enabled and Tx Flow control is
* disabled by software override. Since there really
* isn't a way to advertise that we are capable of RX
* Pause ONLY, we will advertise that we support both
* symmetric and asymmetric Rx PAUSE. Later, we will
* disable the adapter's ability to send PAUSE frames.
*/
mflcn_reg |= NGBE_RXFCCFG_FC;
break;
case ngbe_fc_tx_pause:
/*
* Tx Flow control is enabled, and Rx Flow control is
* disabled by software override.
*/
fccfg_reg |= NGBE_TXFCCFG_FC;
break;
case ngbe_fc_full:
/* Flow control (both Rx and Tx) is enabled by SW override. */
mflcn_reg |= NGBE_RXFCCFG_FC;
fccfg_reg |= NGBE_TXFCCFG_FC;
break;
default:
DEBUGOUT("Flow control param set incorrectly");
err = NGBE_ERR_CONFIG;
goto out;
}
/* Set 802.3x based flow control settings. */
wr32(hw, NGBE_RXFCCFG, mflcn_reg);
wr32(hw, NGBE_TXFCCFG, fccfg_reg);
/* Set up and enable Rx high/low water mark thresholds, enable XON. */
if ((hw->fc.current_mode & ngbe_fc_tx_pause) &&
hw->fc.high_water) {
fcrtl = NGBE_FCWTRLO_TH(hw->fc.low_water) |
NGBE_FCWTRLO_XON;
fcrth = NGBE_FCWTRHI_TH(hw->fc.high_water) |
NGBE_FCWTRHI_XOFF;
} else {
/*
* In order to prevent Tx hangs when the internal Tx
* switch is enabled we must set the high water mark
* to the Rx packet buffer size - 24KB. This allows
* the Tx switch to function even under heavy Rx
* workloads.
*/
fcrtl = 0;
fcrth = rd32(hw, NGBE_PBRXSIZE) - 24576;
}
wr32(hw, NGBE_FCWTRLO, fcrtl);
wr32(hw, NGBE_FCWTRHI, fcrth);
/* Configure pause time */
pause_time = NGBE_RXFCFSH_TIME(hw->fc.pause_time);
wr32(hw, NGBE_FCXOFFTM, pause_time * 0x00010000);
/* Configure flow control refresh threshold value */
wr32(hw, NGBE_RXFCRFSH, hw->fc.pause_time / 2);
out:
return err;
}
/**
* ngbe_negotiate_fc - Negotiate flow control
* @hw: pointer to hardware structure
* @adv_reg: flow control advertised settings
* @lp_reg: link partner's flow control settings
* @adv_sym: symmetric pause bit in advertisement
* @adv_asm: asymmetric pause bit in advertisement
* @lp_sym: symmetric pause bit in link partner advertisement
* @lp_asm: asymmetric pause bit in link partner advertisement
*
* Find the intersection between advertised settings and link partner's
* advertised settings
**/
s32 ngbe_negotiate_fc(struct ngbe_hw *hw, u32 adv_reg, u32 lp_reg,
u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
{
if ((!(adv_reg)) || (!(lp_reg))) {
DEBUGOUT("Local or link partner's advertised flow control settings are NULL. Local: %x, link partner: %x",
adv_reg, lp_reg);
return NGBE_ERR_FC_NOT_NEGOTIATED;
}
if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
/*
* Now we need to check if the user selected Rx ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise RX
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->fc.requested_mode == ngbe_fc_full) {
hw->fc.current_mode = ngbe_fc_full;
DEBUGOUT("Flow Control = FULL.");
} else {
hw->fc.current_mode = ngbe_fc_rx_pause;
DEBUGOUT("Flow Control=RX PAUSE frames only");
}
} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
hw->fc.current_mode = ngbe_fc_tx_pause;
DEBUGOUT("Flow Control = TX PAUSE frames only.");
} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
!(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
hw->fc.current_mode = ngbe_fc_rx_pause;
DEBUGOUT("Flow Control = RX PAUSE frames only.");
} else {
hw->fc.current_mode = ngbe_fc_none;
DEBUGOUT("Flow Control = NONE.");
}
return 0;
}
/**
* ngbe_fc_autoneg_em - Enable flow control IEEE clause 37
* @hw: pointer to hardware structure
*
* Enable flow control according to IEEE clause 37.
**/
STATIC s32 ngbe_fc_autoneg_em(struct ngbe_hw *hw)
{
u8 technology_ability_reg = 0;
u8 lp_technology_ability_reg = 0;
hw->phy.get_adv_pause(hw, &technology_ability_reg);
hw->phy.get_lp_adv_pause(hw, &lp_technology_ability_reg);
return ngbe_negotiate_fc(hw, (u32)technology_ability_reg,
(u32)lp_technology_ability_reg,
NGBE_TAF_SYM_PAUSE, NGBE_TAF_ASM_PAUSE,
NGBE_TAF_SYM_PAUSE, NGBE_TAF_ASM_PAUSE);
}
/**
* ngbe_fc_autoneg - Configure flow control
* @hw: pointer to hardware structure
*
* Compares our advertised flow control capabilities to those advertised by
* our link partner, and determines the proper flow control mode to use.
**/
void ngbe_fc_autoneg(struct ngbe_hw *hw)
{
s32 err = NGBE_ERR_FC_NOT_NEGOTIATED;
u32 speed;
bool link_up;
/*
* AN should have completed when the cable was plugged in.
* Look for reasons to bail out. Bail out if:
* - FC autoneg is disabled, or if
* - link is not up.
*/
if (hw->fc.disable_fc_autoneg) {
DEBUGOUT("Flow control autoneg is disabled");
goto out;
}
hw->mac.check_link(hw, &speed, &link_up, false);
if (!link_up) {
DEBUGOUT("The link is down");
goto out;
}
err = ngbe_fc_autoneg_em(hw);
out:
if (err == 0) {
hw->fc.fc_was_autonegged = true;
} else {
hw->fc.fc_was_autonegged = false;
hw->fc.current_mode = hw->fc.requested_mode;
}
}
/**
* ngbe_set_pcie_master - Disable or Enable PCI-express master access
* @hw: pointer to hardware structure
*
* Disables PCI-Express master access and verifies there are no pending
* requests. NGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
* bit hasn't caused the master requests to be disabled, else 0
* is returned signifying master requests disabled.
**/
s32 ngbe_set_pcie_master(struct ngbe_hw *hw, bool enable)
{
struct rte_pci_device *pci_dev = (struct rte_pci_device *)hw->back;
s32 status = 0;
s32 ret = 0;
u32 i;
u16 reg;
ret = rte_pci_read_config(pci_dev, &reg,
sizeof(reg), PCI_COMMAND);
if (ret != sizeof(reg)) {
DEBUGOUT("Cannot read command from PCI config space!\n");
return -1;
}
if (enable)
reg |= PCI_COMMAND_MASTER;
else
reg &= ~PCI_COMMAND_MASTER;
ret = rte_pci_write_config(pci_dev, &reg,
sizeof(reg), PCI_COMMAND);
if (ret != sizeof(reg)) {
DEBUGOUT("Cannot write command to PCI config space!\n");
return -1;
}
if (enable)
goto out;
/* Exit if master requests are blocked */
if (!(rd32(hw, NGBE_BMEPEND)) ||
NGBE_REMOVED(hw->hw_addr))
goto out;
/* Poll for master request bit to clear */
for (i = 0; i < NGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
usec_delay(100);
if (!(rd32(hw, NGBE_BMEPEND)))
goto out;
}
DEBUGOUT("PCIe transaction pending bit also did not clear.");
status = NGBE_ERR_MASTER_REQUESTS_PENDING;
out:
return status;
}
/**
* ngbe_acquire_swfw_sync - Acquire SWFW semaphore
* @hw: pointer to hardware structure
* @mask: Mask to specify which semaphore to acquire
*
* Acquires the SWFW semaphore through the MNGSEM register for the specified
* function (CSR, PHY0, PHY1, EEPROM, Flash)
**/
s32 ngbe_acquire_swfw_sync(struct ngbe_hw *hw, u32 mask)
{
u32 mngsem = 0;
u32 fwsm = 0;
u32 swmask = NGBE_MNGSEM_SW(mask);
u32 fwmask = NGBE_MNGSEM_FW(mask);
u32 timeout = 200;
u32 i;
for (i = 0; i < timeout; i++) {
/*
* SW NVM semaphore bit is used for access to all
* SW_FW_SYNC bits (not just NVM)
*/
if (ngbe_get_eeprom_semaphore(hw))
return NGBE_ERR_SWFW_SYNC;
mngsem = rd32(hw, NGBE_MNGSEM);
if (mngsem & (fwmask | swmask)) {
/* Resource is currently in use by FW or SW */
ngbe_release_eeprom_semaphore(hw);
msec_delay(5);
} else {
mngsem |= swmask;
wr32(hw, NGBE_MNGSEM, mngsem);
ngbe_release_eeprom_semaphore(hw);
return 0;
}
}
fwsm = rd32(hw, NGBE_MNGFWSYNC);
DEBUGOUT("SWFW semaphore not granted: MNG_SWFW_SYNC = 0x%x, MNG_FW_SM = 0x%x",
mngsem, fwsm);
msec_delay(5);
return NGBE_ERR_SWFW_SYNC;
}
/**
* ngbe_release_swfw_sync - Release SWFW semaphore
* @hw: pointer to hardware structure
* @mask: Mask to specify which semaphore to release
*
* Releases the SWFW semaphore through the MNGSEM register for the specified
* function (CSR, PHY0, PHY1, EEPROM, Flash)
**/
void ngbe_release_swfw_sync(struct ngbe_hw *hw, u32 mask)
{
u32 mngsem;
u32 swmask = mask;
ngbe_get_eeprom_semaphore(hw);
mngsem = rd32(hw, NGBE_MNGSEM);
mngsem &= ~swmask;
wr32(hw, NGBE_MNGSEM, mngsem);
ngbe_release_eeprom_semaphore(hw);
}
/**
* ngbe_disable_sec_rx_path - Stops the receive data path
* @hw: pointer to hardware structure
*
* Stops the receive data path and waits for the HW to internally empty
* the Rx security block
**/
s32 ngbe_disable_sec_rx_path(struct ngbe_hw *hw)
{
#define NGBE_MAX_SECRX_POLL 4000
int i;
u32 secrxreg;
secrxreg = rd32(hw, NGBE_SECRXCTL);
secrxreg |= NGBE_SECRXCTL_XDSA;
wr32(hw, NGBE_SECRXCTL, secrxreg);
for (i = 0; i < NGBE_MAX_SECRX_POLL; i++) {
secrxreg = rd32(hw, NGBE_SECRXSTAT);
if (!(secrxreg & NGBE_SECRXSTAT_RDY))
/* Use interrupt-safe sleep just in case */
usec_delay(10);
else
break;
}
/* For informational purposes only */
if (i >= NGBE_MAX_SECRX_POLL)
DEBUGOUT("Rx unit being enabled before security path fully disabled. Continuing with init.");
return 0;
}
/**
* ngbe_enable_sec_rx_path - Enables the receive data path
* @hw: pointer to hardware structure
*
* Enables the receive data path.
**/
s32 ngbe_enable_sec_rx_path(struct ngbe_hw *hw)
{
u32 secrxreg;
secrxreg = rd32(hw, NGBE_SECRXCTL);
secrxreg &= ~NGBE_SECRXCTL_XDSA;
wr32(hw, NGBE_SECRXCTL, secrxreg);
ngbe_flush(hw);
return 0;
}
/**
* ngbe_clear_vmdq - Disassociate a VMDq pool index from a rx address
* @hw: pointer to hardware struct
* @rar: receive address register index to disassociate
* @vmdq: VMDq pool index to remove from the rar
**/
s32 ngbe_clear_vmdq(struct ngbe_hw *hw, u32 rar, u32 vmdq)
{
u32 mpsar;
u32 rar_entries = hw->mac.num_rar_entries;
/* Make sure we are using a valid rar index range */
if (rar >= rar_entries) {
DEBUGOUT("RAR index %d is out of range.", rar);
return NGBE_ERR_INVALID_ARGUMENT;
}
wr32(hw, NGBE_ETHADDRIDX, rar);
mpsar = rd32(hw, NGBE_ETHADDRASS);
if (NGBE_REMOVED(hw->hw_addr))
goto done;
if (!mpsar)
goto done;
mpsar &= ~(1 << vmdq);
wr32(hw, NGBE_ETHADDRASS, mpsar);
/* was that the last pool using this rar? */
if (mpsar == 0 && rar != 0)
hw->mac.clear_rar(hw, rar);
done:
return 0;
}
/**
* ngbe_set_vmdq - Associate a VMDq pool index with a rx address
* @hw: pointer to hardware struct
* @rar: receive address register index to associate with a VMDq index
* @vmdq: VMDq pool index
**/
s32 ngbe_set_vmdq(struct ngbe_hw *hw, u32 rar, u32 vmdq)
{
u32 mpsar;
u32 rar_entries = hw->mac.num_rar_entries;
/* Make sure we are using a valid rar index range */
if (rar >= rar_entries) {
DEBUGOUT("RAR index %d is out of range.", rar);
return NGBE_ERR_INVALID_ARGUMENT;
}
wr32(hw, NGBE_ETHADDRIDX, rar);
mpsar = rd32(hw, NGBE_ETHADDRASS);
mpsar |= 1 << vmdq;
wr32(hw, NGBE_ETHADDRASS, mpsar);
return 0;
}
/**
* ngbe_init_uta_tables - Initialize the Unicast Table Array
* @hw: pointer to hardware structure
**/
s32 ngbe_init_uta_tables(struct ngbe_hw *hw)
{
int i;
DEBUGOUT(" Clearing UTA");
for (i = 0; i < 128; i++)
wr32(hw, NGBE_UCADDRTBL(i), 0);
return 0;
}
/**
* ngbe_find_vlvf_slot - find the vlanid or the first empty slot
* @hw: pointer to hardware structure
* @vlan: VLAN id to write to VLAN filter
* @vlvf_bypass: true to find vlanid only, false returns first empty slot if
* vlanid not found
*
*
* return the VLVF index where this VLAN id should be placed
*
**/
s32 ngbe_find_vlvf_slot(struct ngbe_hw *hw, u32 vlan, bool vlvf_bypass)
{
s32 regindex, first_empty_slot;
u32 bits;
/* short cut the special case */
if (vlan == 0)
return 0;
/* if vlvf_bypass is set we don't want to use an empty slot, we
* will simply bypass the VLVF if there are no entries present in the
* VLVF that contain our VLAN
*/
first_empty_slot = vlvf_bypass ? NGBE_ERR_NO_SPACE : 0;
/* add VLAN enable bit for comparison */
vlan |= NGBE_PSRVLAN_EA;
/* Search for the vlan id in the VLVF entries. Save off the first empty
* slot found along the way.
*
* pre-decrement loop covering (NGBE_NUM_POOL - 1) .. 1
*/
for (regindex = NGBE_NUM_POOL; --regindex;) {
wr32(hw, NGBE_PSRVLANIDX, regindex);
bits = rd32(hw, NGBE_PSRVLAN);
if (bits == vlan)
return regindex;
if (!first_empty_slot && !bits)
first_empty_slot = regindex;
}
/* If we are here then we didn't find the VLAN. Return first empty
* slot we found during our search, else error.
*/
if (!first_empty_slot)
DEBUGOUT("No space in VLVF.");
return first_empty_slot ? first_empty_slot : NGBE_ERR_NO_SPACE;
}
/**
* ngbe_set_vfta - Set VLAN filter table
* @hw: pointer to hardware structure
* @vlan: VLAN id to write to VLAN filter
* @vind: VMDq output index that maps queue to VLAN id in VLVFB
* @vlan_on: boolean flag to turn on/off VLAN
* @vlvf_bypass: boolean flag indicating updating default pool is okay
*
* Turn on/off specified VLAN in the VLAN filter table.
**/
s32 ngbe_set_vfta(struct ngbe_hw *hw, u32 vlan, u32 vind,
bool vlan_on, bool vlvf_bypass)
{
u32 regidx, vfta_delta, vfta;
s32 err;
if (vlan > 4095 || vind > 63)
return NGBE_ERR_PARAM;
/*
* this is a 2 part operation - first the VFTA, then the
* VLVF and VLVFB if VT Mode is set
* We don't write the VFTA until we know the VLVF part succeeded.
*/
/* Part 1
* The VFTA is a bitstring made up of 128 32-bit registers
* that enable the particular VLAN id, much like the MTA:
* bits[11-5]: which register
* bits[4-0]: which bit in the register
*/
regidx = vlan / 32;
vfta_delta = 1 << (vlan % 32);
vfta = rd32(hw, NGBE_VLANTBL(regidx));
/*
* vfta_delta represents the difference between the current value
* of vfta and the value we want in the register. Since the diff
* is an XOR mask we can just update the vfta using an XOR
*/
vfta_delta &= vlan_on ? ~vfta : vfta;
vfta ^= vfta_delta;
/* Part 2
* Call ngbe_set_vlvf to set VLVFB and VLVF
*/
err = ngbe_set_vlvf(hw, vlan, vind, vlan_on, &vfta_delta,
vfta, vlvf_bypass);
if (err != 0) {
if (vlvf_bypass)
goto vfta_update;
return err;
}
vfta_update:
/* Update VFTA now that we are ready for traffic */
if (vfta_delta)
wr32(hw, NGBE_VLANTBL(regidx), vfta);
return 0;
}
/**
* ngbe_set_vlvf - Set VLAN Pool Filter
* @hw: pointer to hardware structure
* @vlan: VLAN id to write to VLAN filter
* @vind: VMDq output index that maps queue to VLAN id in PSRVLANPLM
* @vlan_on: boolean flag to turn on/off VLAN in PSRVLAN
* @vfta_delta: pointer to the difference between the current value
* of PSRVLANPLM and the desired value
* @vfta: the desired value of the VFTA
* @vlvf_bypass: boolean flag indicating updating default pool is okay
*
* Turn on/off specified bit in VLVF table.
**/
s32 ngbe_set_vlvf(struct ngbe_hw *hw, u32 vlan, u32 vind,
bool vlan_on, u32 *vfta_delta, u32 vfta,
bool vlvf_bypass)
{
u32 bits;
u32 portctl;
s32 vlvf_index;
if (vlan > 4095 || vind > 63)
return NGBE_ERR_PARAM;
/* If VT Mode is set
* Either vlan_on
* make sure the vlan is in PSRVLAN
* set the vind bit in the matching PSRVLANPLM
* Or !vlan_on
* clear the pool bit and possibly the vind
*/
portctl = rd32(hw, NGBE_PORTCTL);
if (!(portctl & NGBE_PORTCTL_NUMVT_MASK))
return 0;
vlvf_index = ngbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
if (vlvf_index < 0)
return vlvf_index;
wr32(hw, NGBE_PSRVLANIDX, vlvf_index);
bits = rd32(hw, NGBE_PSRVLANPLM(vind / 32));
/* set the pool bit */
bits |= 1 << (vind % 32);
if (vlan_on)
goto vlvf_update;
/* clear the pool bit */
bits ^= 1 << (vind % 32);
if (!bits &&
!rd32(hw, NGBE_PSRVLANPLM(vind / 32))) {
/* Clear PSRVLANPLM first, then disable PSRVLAN. Otherwise
* we run the risk of stray packets leaking into
* the PF via the default pool
*/
if (*vfta_delta)
wr32(hw, NGBE_PSRVLANPLM(vlan / 32), vfta);
/* disable VLVF and clear remaining bit from pool */
wr32(hw, NGBE_PSRVLAN, 0);
wr32(hw, NGBE_PSRVLANPLM(vind / 32), 0);
return 0;
}
/* If there are still bits set in the PSRVLANPLM registers
* for the VLAN ID indicated we need to see if the
* caller is requesting that we clear the PSRVLANPLM entry bit.
* If the caller has requested that we clear the PSRVLANPLM
* entry bit but there are still pools/VFs using this VLAN
* ID entry then ignore the request. We're not worried
* about the case where we're turning the PSRVLANPLM VLAN ID
* entry bit on, only when requested to turn it off as
* there may be multiple pools and/or VFs using the
* VLAN ID entry. In that case we cannot clear the
* PSRVLANPLM bit until all pools/VFs using that VLAN ID have also
* been cleared. This will be indicated by "bits" being
* zero.
*/
*vfta_delta = 0;
vlvf_update:
/* record pool change and enable VLAN ID if not already enabled */
wr32(hw, NGBE_PSRVLANPLM(vind / 32), bits);
wr32(hw, NGBE_PSRVLAN, NGBE_PSRVLAN_EA | vlan);
return 0;
}
/**
* ngbe_clear_vfta - Clear VLAN filter table
* @hw: pointer to hardware structure
*
* Clears the VLAN filer table, and the VMDq index associated with the filter
**/
s32 ngbe_clear_vfta(struct ngbe_hw *hw)
{
u32 offset;
for (offset = 0; offset < hw->mac.vft_size; offset++)
wr32(hw, NGBE_VLANTBL(offset), 0);
for (offset = 0; offset < NGBE_NUM_POOL; offset++) {
wr32(hw, NGBE_PSRVLANIDX, offset);
wr32(hw, NGBE_PSRVLAN, 0);
wr32(hw, NGBE_PSRVLANPLM(0), 0);
}
return 0;
}
/**
* ngbe_check_mac_link_em - Determine link and speed status
* @hw: pointer to hardware structure
* @speed: pointer to link speed
* @link_up: true when link is up
* @link_up_wait_to_complete: bool used to wait for link up or not
*
* Reads the links register to determine if link is up and the current speed
**/
s32 ngbe_check_mac_link_em(struct ngbe_hw *hw, u32 *speed,
bool *link_up, bool link_up_wait_to_complete)
{
u32 i;
s32 status = 0;
if (hw->lsc) {
u32 reg;
reg = rd32(hw, NGBE_GPIOINTSTAT);
wr32(hw, NGBE_GPIOEOI, reg);
}
if (link_up_wait_to_complete) {
for (i = 0; i < hw->mac.max_link_up_time; i++) {
status = hw->phy.check_link(hw, speed, link_up);
if (*link_up)
break;
msec_delay(100);
}
} else {
status = hw->phy.check_link(hw, speed, link_up);
}
return status;
}
s32 ngbe_get_link_capabilities_em(struct ngbe_hw *hw,
u32 *speed,
bool *autoneg)
{
s32 status = 0;
u16 value = 0;
hw->mac.autoneg = *autoneg;
if (hw->phy.type == ngbe_phy_rtl) {
*speed = NGBE_LINK_SPEED_1GB_FULL |
NGBE_LINK_SPEED_100M_FULL |
NGBE_LINK_SPEED_10M_FULL;
}
if (hw->phy.type == ngbe_phy_yt8521s_sfi) {
ngbe_read_phy_reg_ext_yt(hw, YT_CHIP, 0, &value);
if ((value & YT_CHIP_MODE_MASK) == YT_CHIP_MODE_SEL(1))
*speed = NGBE_LINK_SPEED_1GB_FULL;
}
return status;
}
s32 ngbe_setup_mac_link_em(struct ngbe_hw *hw,
u32 speed,
bool autoneg_wait_to_complete)
{
s32 status;
/* Setup the PHY according to input speed */
status = hw->phy.setup_link(hw, speed, autoneg_wait_to_complete);
return status;
}
/**
* ngbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
* @hw: pointer to hardware structure
* @enable: enable or disable switch for MAC anti-spoofing
* @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
*
**/
void ngbe_set_mac_anti_spoofing(struct ngbe_hw *hw, bool enable, int vf)
{
u32 pfvfspoof;
pfvfspoof = rd32(hw, NGBE_POOLTXASMAC);
if (enable)
pfvfspoof |= (1 << vf);
else
pfvfspoof &= ~(1 << vf);
wr32(hw, NGBE_POOLTXASMAC, pfvfspoof);
}
/**
* ngbe_set_pba - Initialize Rx packet buffer
* @hw: pointer to hardware structure
* @headroom: reserve n KB of headroom
**/
void ngbe_set_pba(struct ngbe_hw *hw)
{
u32 rxpktsize = hw->mac.rx_pb_size;
u32 txpktsize, txpbthresh;
/* Reserve 256 KB of headroom */
rxpktsize -= 256;
rxpktsize <<= 10;
wr32(hw, NGBE_PBRXSIZE, rxpktsize);
/* Only support an equally distributed Tx packet buffer strategy. */
txpktsize = NGBE_PBTXSIZE_MAX;
txpbthresh = (txpktsize / 1024) - NGBE_TXPKT_SIZE_MAX;
wr32(hw, NGBE_PBTXSIZE, txpktsize);
wr32(hw, NGBE_PBTXDMATH, txpbthresh);
}
/**
* ngbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
* @hw: pointer to hardware structure
* @enable: enable or disable switch for VLAN anti-spoofing
* @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
*
**/
void ngbe_set_vlan_anti_spoofing(struct ngbe_hw *hw, bool enable, int vf)
{
u32 pfvfspoof;
pfvfspoof = rd32(hw, NGBE_POOLTXASVLAN);
if (enable)
pfvfspoof |= (1 << vf);
else
pfvfspoof &= ~(1 << vf);
wr32(hw, NGBE_POOLTXASVLAN, pfvfspoof);
}
/**
* ngbe_init_thermal_sensor_thresh - Inits thermal sensor thresholds
* @hw: pointer to hardware structure
*
* Inits the thermal sensor thresholds according to the NVM map
* and save off the threshold and location values into mac.thermal_sensor_data
**/
s32 ngbe_init_thermal_sensor_thresh(struct ngbe_hw *hw)
{
struct ngbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
memset(data, 0, sizeof(struct ngbe_thermal_sensor_data));
if (hw->bus.lan_id != 0)
return NGBE_NOT_IMPLEMENTED;
wr32(hw, NGBE_TSINTR,
NGBE_TSINTR_AEN | NGBE_TSINTR_DEN);
wr32(hw, NGBE_TSEN, NGBE_TSEN_ENA);
data->sensor[0].alarm_thresh = 115;
wr32(hw, NGBE_TSATHRE, 0x344);
data->sensor[0].dalarm_thresh = 110;
wr32(hw, NGBE_TSDTHRE, 0x330);
return 0;
}
s32 ngbe_mac_check_overtemp(struct ngbe_hw *hw)
{
s32 status = 0;
u32 ts_state;
/* Check that the LASI temp alarm status was triggered */
ts_state = rd32(hw, NGBE_TSALM);
if (ts_state & NGBE_TSALM_HI)
status = NGBE_ERR_UNDERTEMP;
else if (ts_state & NGBE_TSALM_LO)
status = NGBE_ERR_OVERTEMP;
return status;
}
void ngbe_disable_rx(struct ngbe_hw *hw)
{
u32 pfdtxgswc;
pfdtxgswc = rd32(hw, NGBE_PSRCTL);
if (pfdtxgswc & NGBE_PSRCTL_LBENA) {
pfdtxgswc &= ~NGBE_PSRCTL_LBENA;
wr32(hw, NGBE_PSRCTL, pfdtxgswc);
hw->mac.set_lben = true;
} else {
hw->mac.set_lben = false;
}
wr32m(hw, NGBE_PBRXCTL, NGBE_PBRXCTL_ENA, 0);
wr32m(hw, NGBE_MACRXCFG, NGBE_MACRXCFG_ENA, 0);
}
void ngbe_enable_rx(struct ngbe_hw *hw)
{
u32 pfdtxgswc;
wr32m(hw, NGBE_MACRXCFG, NGBE_MACRXCFG_ENA, NGBE_MACRXCFG_ENA);
wr32m(hw, NGBE_PBRXCTL, NGBE_PBRXCTL_ENA, NGBE_PBRXCTL_ENA);
if (hw->mac.set_lben) {
pfdtxgswc = rd32(hw, NGBE_PSRCTL);
pfdtxgswc |= NGBE_PSRCTL_LBENA;
wr32(hw, NGBE_PSRCTL, pfdtxgswc);
hw->mac.set_lben = false;
}
}
/**
* ngbe_set_mac_type - Sets MAC type
* @hw: pointer to the HW structure
*
* This function sets the mac type of the adapter based on the
* vendor ID and device ID stored in the hw structure.
**/
s32 ngbe_set_mac_type(struct ngbe_hw *hw)
{
s32 err = 0;
if (hw->vendor_id != PCI_VENDOR_ID_WANGXUN) {
DEBUGOUT("Unsupported vendor id: %x", hw->vendor_id);
return NGBE_ERR_DEVICE_NOT_SUPPORTED;
}
switch (hw->sub_device_id) {
case NGBE_SUB_DEV_ID_EM_RTL_SGMII:
case NGBE_SUB_DEV_ID_EM_MVL_RGMII:
hw->phy.media_type = ngbe_media_type_copper;
hw->mac.type = ngbe_mac_em;
hw->mac.link_type = ngbe_link_copper;
break;
case NGBE_SUB_DEV_ID_EM_RTL_YT8521S_SFP:
hw->phy.media_type = ngbe_media_type_copper;
hw->mac.type = ngbe_mac_em;
hw->mac.link_type = ngbe_link_fiber;
break;
case NGBE_SUB_DEV_ID_EM_MVL_SFP:
case NGBE_SUB_DEV_ID_EM_YT8521S_SFP:
hw->phy.media_type = ngbe_media_type_fiber;
hw->mac.type = ngbe_mac_em;
hw->mac.link_type = ngbe_link_fiber;
break;
case NGBE_SUB_DEV_ID_EM_MVL_MIX:
hw->phy.media_type = ngbe_media_type_unknown;
hw->mac.type = ngbe_mac_em;
hw->mac.link_type = ngbe_link_type_unknown;
break;
case NGBE_SUB_DEV_ID_EM_VF:
hw->phy.media_type = ngbe_media_type_virtual;
hw->mac.type = ngbe_mac_em_vf;
break;
default:
err = NGBE_ERR_DEVICE_NOT_SUPPORTED;
hw->phy.media_type = ngbe_media_type_unknown;
hw->mac.type = ngbe_mac_unknown;
DEBUGOUT("Unsupported device id: %x", hw->device_id);
break;
}
DEBUGOUT("found mac: %d media: %d, returns: %d",
hw->mac.type, hw->phy.media_type, err);
return err;
}
/**
* ngbe_enable_rx_dma - Enable the Rx DMA unit
* @hw: pointer to hardware structure
* @regval: register value to write to RXCTRL
*
* Enables the Rx DMA unit
**/
s32 ngbe_enable_rx_dma(struct ngbe_hw *hw, u32 regval)
{
/*
* Workaround silicon errata when enabling the Rx datapath.
* If traffic is incoming before we enable the Rx unit, it could hang
* the Rx DMA unit. Therefore, make sure the security engine is
* completely disabled prior to enabling the Rx unit.
*/
hw->mac.disable_sec_rx_path(hw);
if (regval & NGBE_PBRXCTL_ENA)
ngbe_enable_rx(hw);
else
ngbe_disable_rx(hw);
hw->mac.enable_sec_rx_path(hw);
return 0;
}
/* cmd_addr is used for some special command:
* 1. to be sector address, when implemented erase sector command
* 2. to be flash address when implemented read, write flash address
*
* Return 0 on success, return 1 on failure.
*/
u32 ngbe_fmgr_cmd_op(struct ngbe_hw *hw, u32 cmd, u32 cmd_addr)
{
u32 cmd_val, i;
cmd_val = NGBE_SPICMD_CMD(cmd) | NGBE_SPICMD_CLK(3) | cmd_addr;
wr32(hw, NGBE_SPICMD, cmd_val);
for (i = 0; i < NGBE_SPI_TIMEOUT; i++) {
if (rd32(hw, NGBE_SPISTAT) & NGBE_SPISTAT_OPDONE)
break;
usec_delay(10);
}
if (i == NGBE_SPI_TIMEOUT)
return 1;
return 0;
}
u32 ngbe_flash_read_dword(struct ngbe_hw *hw, u32 addr)
{
u32 status;
status = ngbe_fmgr_cmd_op(hw, 1, addr);
if (status == 0x1) {
DEBUGOUT("Read flash timeout.");
return status;
}
return rd32(hw, NGBE_SPIDAT);
}
void ngbe_read_efuse(struct ngbe_hw *hw)
{
u32 efuse[2];
u8 lan_id = hw->bus.lan_id;
efuse[0] = ngbe_flash_read_dword(hw, 0xfe010 + lan_id * 8);
efuse[1] = ngbe_flash_read_dword(hw, 0xfe010 + lan_id * 8 + 4);
DEBUGOUT("port %d efuse[0] = %08x, efuse[1] = %08x\n",
lan_id, efuse[0], efuse[1]);
hw->gphy_efuse[0] = efuse[0];
hw->gphy_efuse[1] = efuse[1];
}
void ngbe_map_device_id(struct ngbe_hw *hw)
{
u16 oem = hw->sub_system_id & NGBE_OEM_MASK;
hw->is_pf = true;
/* move subsystem_device_id to device_id */
switch (hw->device_id) {
case NGBE_DEV_ID_EM_WX1860AL_W_VF:
case NGBE_DEV_ID_EM_WX1860A2_VF:
case NGBE_DEV_ID_EM_WX1860A2S_VF:
case NGBE_DEV_ID_EM_WX1860A4_VF:
case NGBE_DEV_ID_EM_WX1860A4S_VF:
case NGBE_DEV_ID_EM_WX1860AL2_VF:
case NGBE_DEV_ID_EM_WX1860AL2S_VF:
case NGBE_DEV_ID_EM_WX1860AL4_VF:
case NGBE_DEV_ID_EM_WX1860AL4S_VF:
case NGBE_DEV_ID_EM_WX1860NCSI_VF:
case NGBE_DEV_ID_EM_WX1860A1_VF:
case NGBE_DEV_ID_EM_WX1860A1L_VF:
hw->device_id = NGBE_DEV_ID_EM_VF;
hw->sub_device_id = NGBE_SUB_DEV_ID_EM_VF;
hw->is_pf = false;
break;
case NGBE_DEV_ID_EM_WX1860AL_W:
case NGBE_DEV_ID_EM_WX1860A2:
case NGBE_DEV_ID_EM_WX1860A2S:
case NGBE_DEV_ID_EM_WX1860A4:
case NGBE_DEV_ID_EM_WX1860A4S:
case NGBE_DEV_ID_EM_WX1860AL2:
case NGBE_DEV_ID_EM_WX1860AL2S:
case NGBE_DEV_ID_EM_WX1860AL4:
case NGBE_DEV_ID_EM_WX1860AL4S:
case NGBE_DEV_ID_EM_WX1860NCSI:
case NGBE_DEV_ID_EM_WX1860A1:
case NGBE_DEV_ID_EM_WX1860A1L:
hw->device_id = NGBE_DEV_ID_EM;
if (oem == NGBE_M88E1512_SFP || oem == NGBE_LY_M88E1512_SFP)
hw->sub_device_id = NGBE_SUB_DEV_ID_EM_MVL_SFP;
else if (oem == NGBE_M88E1512_RJ45 ||
(hw->sub_system_id == NGBE_SUB_DEV_ID_EM_M88E1512_RJ45))
hw->sub_device_id = NGBE_SUB_DEV_ID_EM_MVL_RGMII;
else if (oem == NGBE_M88E1512_MIX)
hw->sub_device_id = NGBE_SUB_DEV_ID_EM_MVL_MIX;
else if (oem == NGBE_YT8521S_SFP ||
oem == NGBE_YT8521S_SFP_GPIO ||
oem == NGBE_LY_YT8521S_SFP)
hw->sub_device_id = NGBE_SUB_DEV_ID_EM_YT8521S_SFP;
else if (oem == NGBE_INTERNAL_YT8521S_SFP ||
oem == NGBE_INTERNAL_YT8521S_SFP_GPIO)
hw->sub_device_id = NGBE_SUB_DEV_ID_EM_RTL_YT8521S_SFP;
else
hw->sub_device_id = NGBE_SUB_DEV_ID_EM_RTL_SGMII;
break;
default:
break;
}
if (oem == NGBE_LY_M88E1512_SFP || oem == NGBE_YT8521S_SFP_GPIO ||
oem == NGBE_INTERNAL_YT8521S_SFP_GPIO ||
oem == NGBE_LY_YT8521S_SFP)
hw->gpio_ctl = true;
}
/**
* ngbe_init_ops_pf - Inits func ptrs and MAC type
* @hw: pointer to hardware structure
*
* Initialize the function pointers and assign the MAC type.
* Does not touch the hardware.
**/
s32 ngbe_init_ops_pf(struct ngbe_hw *hw)
{
struct ngbe_bus_info *bus = &hw->bus;
struct ngbe_mac_info *mac = &hw->mac;
struct ngbe_phy_info *phy = &hw->phy;
struct ngbe_rom_info *rom = &hw->rom;
struct ngbe_mbx_info *mbx = &hw->mbx;
/* BUS */
bus->set_lan_id = ngbe_set_lan_id_multi_port;
/* PHY */
phy->identify = ngbe_identify_phy;
phy->read_reg = ngbe_read_phy_reg;
phy->write_reg = ngbe_write_phy_reg;
phy->read_reg_unlocked = ngbe_read_phy_reg_mdi;
phy->write_reg_unlocked = ngbe_write_phy_reg_mdi;
phy->reset_hw = ngbe_reset_phy;
phy->led_oem_chk = ngbe_phy_led_oem_chk;
/* MAC */
mac->init_hw = ngbe_init_hw;
mac->reset_hw = ngbe_reset_hw_em;
mac->start_hw = ngbe_start_hw;
mac->clear_hw_cntrs = ngbe_clear_hw_cntrs;
mac->enable_rx_dma = ngbe_enable_rx_dma;
mac->get_mac_addr = ngbe_get_mac_addr;
mac->stop_hw = ngbe_stop_hw;
mac->acquire_swfw_sync = ngbe_acquire_swfw_sync;
mac->release_swfw_sync = ngbe_release_swfw_sync;
mac->disable_sec_rx_path = ngbe_disable_sec_rx_path;
mac->enable_sec_rx_path = ngbe_enable_sec_rx_path;
/* LEDs */
mac->led_on = ngbe_led_on;
mac->led_off = ngbe_led_off;
/* RAR, VLAN, Multicast */
mac->set_rar = ngbe_set_rar;
mac->clear_rar = ngbe_clear_rar;
mac->init_rx_addrs = ngbe_init_rx_addrs;
mac->update_mc_addr_list = ngbe_update_mc_addr_list;
mac->set_vmdq = ngbe_set_vmdq;
mac->clear_vmdq = ngbe_clear_vmdq;
mac->set_vfta = ngbe_set_vfta;
mac->set_vlvf = ngbe_set_vlvf;
mac->clear_vfta = ngbe_clear_vfta;
mac->set_mac_anti_spoofing = ngbe_set_mac_anti_spoofing;
mac->set_vlan_anti_spoofing = ngbe_set_vlan_anti_spoofing;
/* Flow Control */
mac->fc_enable = ngbe_fc_enable;
mac->fc_autoneg = ngbe_fc_autoneg;
mac->setup_fc = ngbe_setup_fc_em;
/* Link */
mac->get_link_capabilities = ngbe_get_link_capabilities_em;
mac->check_link = ngbe_check_mac_link_em;
mac->setup_link = ngbe_setup_mac_link_em;
mac->setup_pba = ngbe_set_pba;
/* Manageability interface */
mac->init_thermal_sensor_thresh = ngbe_init_thermal_sensor_thresh;
mac->check_overtemp = ngbe_mac_check_overtemp;
mbx->init_params = ngbe_init_mbx_params_pf;
mbx->read = ngbe_read_mbx_pf;
mbx->write = ngbe_write_mbx_pf;
mbx->check_for_msg = ngbe_check_for_msg_pf;
mbx->check_for_ack = ngbe_check_for_ack_pf;
mbx->check_for_rst = ngbe_check_for_rst_pf;
/* EEPROM */
rom->init_params = ngbe_init_eeprom_params;
rom->readw_buffer = ngbe_ee_readw_buffer;
rom->read32 = ngbe_ee_read32;
rom->writew_buffer = ngbe_ee_writew_buffer;
rom->validate_checksum = ngbe_validate_eeprom_checksum_em;
mac->mcft_size = NGBE_EM_MC_TBL_SIZE;
mac->vft_size = NGBE_EM_VFT_TBL_SIZE;
mac->num_rar_entries = NGBE_EM_RAR_ENTRIES;
mac->rx_pb_size = NGBE_EM_RX_PB_SIZE;
mac->max_rx_queues = NGBE_EM_MAX_RX_QUEUES;
mac->max_tx_queues = NGBE_EM_MAX_TX_QUEUES;
mac->default_speeds = NGBE_LINK_SPEED_10M_FULL |
NGBE_LINK_SPEED_100M_FULL |
NGBE_LINK_SPEED_1GB_FULL;
return 0;
}
/**
* ngbe_init_shared_code - Initialize the shared code
* @hw: pointer to hardware structure
*
* This will assign function pointers and assign the MAC type and PHY code.
* Does not touch the hardware. This function must be called prior to any
* other function in the shared code. The ngbe_hw structure should be
* memset to 0 prior to calling this function. The following fields in
* hw structure should be filled in prior to calling this function:
* hw_addr, back, device_id, vendor_id, subsystem_device_id
**/
s32 ngbe_init_shared_code(struct ngbe_hw *hw)
{
s32 status = 0;
/*
* Set the mac type
*/
ngbe_set_mac_type(hw);
ngbe_init_ops_dummy(hw);
switch (hw->mac.type) {
case ngbe_mac_em:
ngbe_init_ops_pf(hw);
break;
default:
status = NGBE_ERR_DEVICE_NOT_SUPPORTED;
break;
}
hw->mac.max_link_up_time = NGBE_LINK_UP_TIME;
hw->bus.set_lan_id(hw);
return status;
}