f-stack/dpdk/drivers/net/ionic/ionic_rxtx.c

841 lines
22 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2018-2022 Advanced Micro Devices, Inc.
*/
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_errno.h>
#include <rte_log.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_ethdev.h>
#include <ethdev_driver.h>
#include "ionic.h"
#include "ionic_dev.h"
#include "ionic_lif.h"
#include "ionic_ethdev.h"
#include "ionic_rxtx.h"
#include "ionic_logs.h"
static void
ionic_empty_array(void **array, uint32_t free_idx, uint32_t zero_idx)
{
uint32_t i;
for (i = 0; i < free_idx; i++)
if (array[i])
rte_pktmbuf_free_seg(array[i]);
memset(array, 0, sizeof(void *) * zero_idx);
}
static void __rte_cold
ionic_tx_empty(struct ionic_tx_qcq *txq)
{
struct ionic_queue *q = &txq->qcq.q;
uint32_t info_len = q->num_descs * q->num_segs;
ionic_empty_array(q->info, info_len, info_len);
}
static void __rte_cold
ionic_rx_empty(struct ionic_rx_qcq *rxq)
{
struct ionic_queue *q = &rxq->qcq.q;
uint32_t info_len = q->num_descs * q->num_segs;
/*
* Walk the full info array so that the clean up includes any
* fragments that were left dangling for later reuse
*/
ionic_empty_array(q->info, info_len, info_len);
ionic_empty_array((void **)rxq->mbs, rxq->mb_idx,
IONIC_MBUF_BULK_ALLOC);
rxq->mb_idx = 0;
}
/*********************************************************************
*
* TX functions
*
**********************************************************************/
void
ionic_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_txq_info *qinfo)
{
struct ionic_tx_qcq *txq = dev->data->tx_queues[queue_id];
struct ionic_queue *q = &txq->qcq.q;
qinfo->nb_desc = q->num_descs;
qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads;
if (txq->flags & IONIC_QCQ_F_FAST_FREE)
qinfo->conf.offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
qinfo->conf.tx_deferred_start = txq->flags & IONIC_QCQ_F_DEFERRED;
}
void __rte_cold
ionic_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct ionic_tx_qcq *txq = dev->data->tx_queues[qid];
IONIC_PRINT_CALL();
ionic_qcq_free(&txq->qcq);
}
int __rte_cold
ionic_dev_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
{
struct ionic_tx_stats *stats;
struct ionic_tx_qcq *txq;
IONIC_PRINT(DEBUG, "Stopping TX queue %u", tx_queue_id);
txq = eth_dev->data->tx_queues[tx_queue_id];
eth_dev->data->tx_queue_state[tx_queue_id] =
RTE_ETH_QUEUE_STATE_STOPPED;
/*
* Note: we should better post NOP Tx desc and wait for its completion
* before disabling Tx queue
*/
ionic_lif_txq_deinit(txq);
/* Free all buffers from descriptor ring */
ionic_tx_empty(txq);
stats = &txq->stats;
IONIC_PRINT(DEBUG, "TX queue %u pkts %ju tso %ju",
txq->qcq.q.index, stats->packets, stats->tso);
return 0;
}
int __rte_cold
ionic_dev_tx_queue_setup(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id,
uint16_t nb_desc, uint32_t socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct ionic_lif *lif = IONIC_ETH_DEV_TO_LIF(eth_dev);
struct ionic_tx_qcq *txq;
uint64_t offloads;
int err;
if (tx_queue_id >= lif->ntxqcqs) {
IONIC_PRINT(DEBUG, "Queue index %u not available "
"(max %u queues)",
tx_queue_id, lif->ntxqcqs);
return -EINVAL;
}
offloads = tx_conf->offloads | eth_dev->data->dev_conf.txmode.offloads;
IONIC_PRINT(DEBUG,
"Configuring skt %u TX queue %u with %u buffers, offloads %jx",
socket_id, tx_queue_id, nb_desc, offloads);
/* Validate number of receive descriptors */
if (!rte_is_power_of_2(nb_desc) || nb_desc < IONIC_MIN_RING_DESC)
return -EINVAL; /* or use IONIC_DEFAULT_RING_DESC */
if (tx_conf->tx_free_thresh > nb_desc) {
IONIC_PRINT(ERR,
"tx_free_thresh must be less than nb_desc (%u)",
nb_desc);
return -EINVAL;
}
/* Free memory prior to re-allocation if needed... */
if (eth_dev->data->tx_queues[tx_queue_id] != NULL) {
ionic_dev_tx_queue_release(eth_dev, tx_queue_id);
eth_dev->data->tx_queues[tx_queue_id] = NULL;
}
eth_dev->data->tx_queue_state[tx_queue_id] =
RTE_ETH_QUEUE_STATE_STOPPED;
err = ionic_tx_qcq_alloc(lif, socket_id, tx_queue_id, nb_desc, &txq);
if (err) {
IONIC_PRINT(DEBUG, "Queue allocation failure");
return -EINVAL;
}
/* Do not start queue with rte_eth_dev_start() */
if (tx_conf->tx_deferred_start)
txq->flags |= IONIC_QCQ_F_DEFERRED;
/* Convert the offload flags into queue flags */
if (offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)
txq->flags |= IONIC_QCQ_F_CSUM_L3;
if (offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)
txq->flags |= IONIC_QCQ_F_CSUM_TCP;
if (offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)
txq->flags |= IONIC_QCQ_F_CSUM_UDP;
if (offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
txq->flags |= IONIC_QCQ_F_FAST_FREE;
txq->free_thresh =
tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
nb_desc - IONIC_DEF_TXRX_BURST;
eth_dev->data->tx_queues[tx_queue_id] = txq;
return 0;
}
/*
* Start Transmit Units for specified queue.
*/
int __rte_cold
ionic_dev_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
{
uint8_t *tx_queue_state = eth_dev->data->tx_queue_state;
struct ionic_tx_qcq *txq;
int err;
if (tx_queue_state[tx_queue_id] == RTE_ETH_QUEUE_STATE_STARTED) {
IONIC_PRINT(DEBUG, "TX queue %u already started",
tx_queue_id);
return 0;
}
txq = eth_dev->data->tx_queues[tx_queue_id];
IONIC_PRINT(DEBUG, "Starting TX queue %u, %u descs",
tx_queue_id, txq->qcq.q.num_descs);
err = ionic_lif_txq_init(txq);
if (err)
return err;
tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
static void
ionic_tx_tcp_pseudo_csum(struct rte_mbuf *txm)
{
struct ether_hdr *eth_hdr = rte_pktmbuf_mtod(txm, struct ether_hdr *);
char *l3_hdr = ((char *)eth_hdr) + txm->l2_len;
struct rte_tcp_hdr *tcp_hdr = (struct rte_tcp_hdr *)
(l3_hdr + txm->l3_len);
if (txm->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
struct rte_ipv4_hdr *ipv4_hdr = (struct rte_ipv4_hdr *)l3_hdr;
ipv4_hdr->hdr_checksum = 0;
tcp_hdr->cksum = 0;
tcp_hdr->cksum = rte_ipv4_udptcp_cksum(ipv4_hdr, tcp_hdr);
} else {
struct rte_ipv6_hdr *ipv6_hdr = (struct rte_ipv6_hdr *)l3_hdr;
tcp_hdr->cksum = 0;
tcp_hdr->cksum = rte_ipv6_udptcp_cksum(ipv6_hdr, tcp_hdr);
}
}
static void
ionic_tx_tcp_inner_pseudo_csum(struct rte_mbuf *txm)
{
struct ether_hdr *eth_hdr = rte_pktmbuf_mtod(txm, struct ether_hdr *);
char *l3_hdr = ((char *)eth_hdr) + txm->outer_l2_len +
txm->outer_l3_len + txm->l2_len;
struct rte_tcp_hdr *tcp_hdr = (struct rte_tcp_hdr *)
(l3_hdr + txm->l3_len);
if (txm->ol_flags & RTE_MBUF_F_TX_IPV4) {
struct rte_ipv4_hdr *ipv4_hdr = (struct rte_ipv4_hdr *)l3_hdr;
ipv4_hdr->hdr_checksum = 0;
tcp_hdr->cksum = 0;
tcp_hdr->cksum = rte_ipv4_udptcp_cksum(ipv4_hdr, tcp_hdr);
} else {
struct rte_ipv6_hdr *ipv6_hdr = (struct rte_ipv6_hdr *)l3_hdr;
tcp_hdr->cksum = 0;
tcp_hdr->cksum = rte_ipv6_udptcp_cksum(ipv6_hdr, tcp_hdr);
}
}
static void
ionic_tx_tso_post(struct ionic_queue *q, struct ionic_txq_desc *desc,
struct rte_mbuf *txm,
rte_iova_t addr, uint8_t nsge, uint16_t len,
uint32_t hdrlen, uint32_t mss,
bool encap,
uint16_t vlan_tci, bool has_vlan,
bool start, bool done)
{
struct rte_mbuf *txm_seg;
void **info;
uint64_t cmd;
uint8_t flags = 0;
int i;
flags |= has_vlan ? IONIC_TXQ_DESC_FLAG_VLAN : 0;
flags |= encap ? IONIC_TXQ_DESC_FLAG_ENCAP : 0;
flags |= start ? IONIC_TXQ_DESC_FLAG_TSO_SOT : 0;
flags |= done ? IONIC_TXQ_DESC_FLAG_TSO_EOT : 0;
cmd = encode_txq_desc_cmd(IONIC_TXQ_DESC_OPCODE_TSO,
flags, nsge, addr);
desc->cmd = rte_cpu_to_le_64(cmd);
desc->len = rte_cpu_to_le_16(len);
desc->vlan_tci = rte_cpu_to_le_16(vlan_tci);
desc->hdr_len = rte_cpu_to_le_16(hdrlen);
desc->mss = rte_cpu_to_le_16(mss);
if (done) {
info = IONIC_INFO_PTR(q, q->head_idx);
/* Walk the mbuf chain to stash pointers in the array */
txm_seg = txm;
for (i = 0; i < txm->nb_segs; i++) {
info[i] = txm_seg;
txm_seg = txm_seg->next;
}
}
q->head_idx = Q_NEXT_TO_POST(q, 1);
}
static struct ionic_txq_desc *
ionic_tx_tso_next(struct ionic_tx_qcq *txq, struct ionic_txq_sg_elem **elem)
{
struct ionic_queue *q = &txq->qcq.q;
struct ionic_txq_desc *desc_base = q->base;
struct ionic_txq_sg_desc_v1 *sg_desc_base = q->sg_base;
struct ionic_txq_desc *desc = &desc_base[q->head_idx];
struct ionic_txq_sg_desc_v1 *sg_desc = &sg_desc_base[q->head_idx];
*elem = sg_desc->elems;
return desc;
}
int
ionic_tx_tso(struct ionic_tx_qcq *txq, struct rte_mbuf *txm)
{
struct ionic_queue *q = &txq->qcq.q;
struct ionic_tx_stats *stats = &txq->stats;
struct ionic_txq_desc *desc;
struct ionic_txq_sg_elem *elem;
struct rte_mbuf *txm_seg;
rte_iova_t data_iova;
uint64_t desc_addr = 0, next_addr;
uint16_t desc_len = 0;
uint8_t desc_nsge = 0;
uint32_t hdrlen;
uint32_t mss = txm->tso_segsz;
uint32_t frag_left = 0;
uint32_t left;
uint32_t seglen;
uint32_t len;
uint32_t offset = 0;
bool start, done;
bool encap;
bool has_vlan = !!(txm->ol_flags & RTE_MBUF_F_TX_VLAN);
bool use_sgl = !!(txq->flags & IONIC_QCQ_F_SG);
uint16_t vlan_tci = txm->vlan_tci;
uint64_t ol_flags = txm->ol_flags;
encap = ((ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM) ||
(ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM)) &&
((ol_flags & RTE_MBUF_F_TX_OUTER_IPV4) ||
(ol_flags & RTE_MBUF_F_TX_OUTER_IPV6));
/* Preload inner-most TCP csum field with IP pseudo hdr
* calculated with IP length set to zero. HW will later
* add in length to each TCP segment resulting from the TSO.
*/
if (encap) {
ionic_tx_tcp_inner_pseudo_csum(txm);
hdrlen = txm->outer_l2_len + txm->outer_l3_len +
txm->l2_len + txm->l3_len + txm->l4_len;
} else {
ionic_tx_tcp_pseudo_csum(txm);
hdrlen = txm->l2_len + txm->l3_len + txm->l4_len;
}
desc = ionic_tx_tso_next(txq, &elem);
txm_seg = txm;
start = true;
seglen = hdrlen + mss;
/* Walk the chain of mbufs */
while (txm_seg != NULL) {
offset = 0;
data_iova = rte_mbuf_data_iova(txm_seg);
left = txm_seg->data_len;
/* Split the mbuf data up into multiple descriptors */
while (left > 0) {
next_addr = rte_cpu_to_le_64(data_iova + offset);
if (frag_left > 0 && use_sgl) {
/* Fill previous descriptor's SGE */
len = RTE_MIN(frag_left, left);
frag_left -= len;
elem->addr = next_addr;
elem->len = rte_cpu_to_le_16(len);
elem++;
desc_nsge++;
} else {
/* Fill new descriptor's data field */
len = RTE_MIN(seglen, left);
frag_left = seglen - len;
desc_addr = next_addr;
desc_len = len;
desc_nsge = 0;
}
left -= len;
offset += len;
/* Pack the next mbuf's data into the descriptor */
if (txm_seg->next != NULL && frag_left > 0 && use_sgl)
break;
done = (txm_seg->next == NULL && left == 0);
ionic_tx_tso_post(q, desc, txm_seg,
desc_addr, desc_nsge, desc_len,
hdrlen, mss,
encap,
vlan_tci, has_vlan,
start, done);
desc = ionic_tx_tso_next(txq, &elem);
start = false;
seglen = mss;
}
txm_seg = txm_seg->next;
}
stats->tso++;
return 0;
}
/*********************************************************************
*
* TX prep functions
*
**********************************************************************/
#define IONIC_TX_OFFLOAD_MASK (RTE_MBUF_F_TX_IPV4 | \
RTE_MBUF_F_TX_IPV6 | \
RTE_MBUF_F_TX_VLAN | \
RTE_MBUF_F_TX_IP_CKSUM | \
RTE_MBUF_F_TX_TCP_SEG | \
RTE_MBUF_F_TX_L4_MASK)
#define IONIC_TX_OFFLOAD_NOTSUP_MASK \
(RTE_MBUF_F_TX_OFFLOAD_MASK ^ IONIC_TX_OFFLOAD_MASK)
uint16_t
ionic_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct ionic_tx_qcq *txq = tx_queue;
struct rte_mbuf *txm;
uint64_t offloads;
int i = 0;
for (i = 0; i < nb_pkts; i++) {
txm = tx_pkts[i];
if (txm->nb_segs > txq->num_segs_fw) {
rte_errno = -EINVAL;
break;
}
offloads = txm->ol_flags;
if (offloads & IONIC_TX_OFFLOAD_NOTSUP_MASK) {
rte_errno = -ENOTSUP;
break;
}
}
return i;
}
/*********************************************************************
*
* RX functions
*
**********************************************************************/
void
ionic_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct ionic_rx_qcq *rxq = dev->data->rx_queues[queue_id];
struct ionic_queue *q = &rxq->qcq.q;
qinfo->mp = rxq->mb_pool;
qinfo->scattered_rx = dev->data->scattered_rx;
qinfo->nb_desc = q->num_descs;
qinfo->conf.rx_deferred_start = rxq->flags & IONIC_QCQ_F_DEFERRED;
qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
}
void __rte_cold
ionic_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct ionic_rx_qcq *rxq = dev->data->rx_queues[qid];
if (!rxq)
return;
IONIC_PRINT_CALL();
ionic_qcq_free(&rxq->qcq);
}
int __rte_cold
ionic_dev_rx_queue_setup(struct rte_eth_dev *eth_dev,
uint16_t rx_queue_id,
uint16_t nb_desc,
uint32_t socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct ionic_lif *lif = IONIC_ETH_DEV_TO_LIF(eth_dev);
struct ionic_rx_qcq *rxq;
uint64_t offloads;
int err;
if (rx_queue_id >= lif->nrxqcqs) {
IONIC_PRINT(ERR,
"Queue index %u not available (max %u queues)",
rx_queue_id, lif->nrxqcqs);
return -EINVAL;
}
offloads = rx_conf->offloads | eth_dev->data->dev_conf.rxmode.offloads;
IONIC_PRINT(DEBUG,
"Configuring skt %u RX queue %u with %u buffers, offloads %jx",
socket_id, rx_queue_id, nb_desc, offloads);
if (!rx_conf->rx_drop_en)
IONIC_PRINT(WARNING, "No-drop mode is not supported");
/* Validate number of receive descriptors */
if (!rte_is_power_of_2(nb_desc) ||
nb_desc < IONIC_MIN_RING_DESC ||
nb_desc > IONIC_MAX_RING_DESC) {
IONIC_PRINT(ERR,
"Bad descriptor count (%u) for queue %u (min: %u)",
nb_desc, rx_queue_id, IONIC_MIN_RING_DESC);
return -EINVAL; /* or use IONIC_DEFAULT_RING_DESC */
}
/* Free memory prior to re-allocation if needed... */
if (eth_dev->data->rx_queues[rx_queue_id] != NULL) {
ionic_dev_rx_queue_release(eth_dev, rx_queue_id);
eth_dev->data->rx_queues[rx_queue_id] = NULL;
}
eth_dev->data->rx_queue_state[rx_queue_id] =
RTE_ETH_QUEUE_STATE_STOPPED;
err = ionic_rx_qcq_alloc(lif, socket_id, rx_queue_id, nb_desc, mp,
&rxq);
if (err) {
IONIC_PRINT(ERR, "Queue %d allocation failure", rx_queue_id);
return -EINVAL;
}
rxq->mb_pool = mp;
rxq->wdog_ms = IONIC_Q_WDOG_MS;
/*
* Note: the interface does not currently support
* RTE_ETH_RX_OFFLOAD_KEEP_CRC, please also consider ETHER_CRC_LEN
* when the adapter will be able to keep the CRC and subtract
* it to the length for all received packets:
* if (eth_dev->data->dev_conf.rxmode.offloads &
* RTE_ETH_RX_OFFLOAD_KEEP_CRC)
* rxq->crc_len = ETHER_CRC_LEN;
*/
/* Do not start queue with rte_eth_dev_start() */
if (rx_conf->rx_deferred_start)
rxq->flags |= IONIC_QCQ_F_DEFERRED;
eth_dev->data->rx_queues[rx_queue_id] = rxq;
return 0;
}
#define IONIC_CSUM_FLAG_MASK (IONIC_RXQ_COMP_CSUM_F_VLAN - 1)
const uint64_t ionic_csum_flags[IONIC_CSUM_FLAG_MASK]
__rte_cache_aligned = {
/* IP_BAD set */
[IONIC_RXQ_COMP_CSUM_F_IP_BAD] = RTE_MBUF_F_RX_IP_CKSUM_BAD,
[IONIC_RXQ_COMP_CSUM_F_IP_BAD | IONIC_RXQ_COMP_CSUM_F_TCP_OK] =
RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD,
[IONIC_RXQ_COMP_CSUM_F_IP_BAD | IONIC_RXQ_COMP_CSUM_F_TCP_BAD] =
RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
[IONIC_RXQ_COMP_CSUM_F_IP_BAD | IONIC_RXQ_COMP_CSUM_F_UDP_OK] =
RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD,
[IONIC_RXQ_COMP_CSUM_F_IP_BAD | IONIC_RXQ_COMP_CSUM_F_UDP_BAD] =
RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
/* IP_OK set */
[IONIC_RXQ_COMP_CSUM_F_IP_OK] = RTE_MBUF_F_RX_IP_CKSUM_GOOD,
[IONIC_RXQ_COMP_CSUM_F_IP_OK | IONIC_RXQ_COMP_CSUM_F_TCP_OK] =
RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD,
[IONIC_RXQ_COMP_CSUM_F_IP_OK | IONIC_RXQ_COMP_CSUM_F_TCP_BAD] =
RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
[IONIC_RXQ_COMP_CSUM_F_IP_OK | IONIC_RXQ_COMP_CSUM_F_UDP_OK] =
RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD,
[IONIC_RXQ_COMP_CSUM_F_IP_OK | IONIC_RXQ_COMP_CSUM_F_UDP_BAD] =
RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
/* No IP flag set */
[IONIC_RXQ_COMP_CSUM_F_TCP_OK] = RTE_MBUF_F_RX_L4_CKSUM_GOOD,
[IONIC_RXQ_COMP_CSUM_F_TCP_BAD] = RTE_MBUF_F_RX_L4_CKSUM_BAD,
[IONIC_RXQ_COMP_CSUM_F_UDP_OK] = RTE_MBUF_F_RX_L4_CKSUM_GOOD,
[IONIC_RXQ_COMP_CSUM_F_UDP_BAD] = RTE_MBUF_F_RX_L4_CKSUM_BAD,
};
/* RTE_PTYPE_UNKNOWN is 0x0 */
const uint32_t ionic_ptype_table[IONIC_RXQ_COMP_PKT_TYPE_MASK]
__rte_cache_aligned = {
[IONIC_PKT_TYPE_NON_IP] = RTE_PTYPE_UNKNOWN,
[IONIC_PKT_TYPE_IPV4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4,
[IONIC_PKT_TYPE_IPV4_TCP] =
RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
[IONIC_PKT_TYPE_IPV4_UDP] =
RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
[IONIC_PKT_TYPE_IPV6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6,
[IONIC_PKT_TYPE_IPV6_TCP] =
RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
[IONIC_PKT_TYPE_IPV6_UDP] =
RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
};
const uint32_t *
ionic_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
{
/* See ionic_ptype_table[] */
static const uint32_t ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_TIMESYNC,
RTE_PTYPE_L2_ETHER_LLDP,
RTE_PTYPE_L2_ETHER_ARP,
RTE_PTYPE_L3_IPV4,
RTE_PTYPE_L3_IPV6,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_UNKNOWN
};
return ptypes;
}
/*
* Perform one-time initialization of descriptor fields
* which will not change for the life of the queue.
*/
static void __rte_cold
ionic_rx_init_descriptors(struct ionic_rx_qcq *rxq)
{
struct ionic_queue *q = &rxq->qcq.q;
struct ionic_rxq_desc *desc, *desc_base = q->base;
struct ionic_rxq_sg_desc *sg_desc, *sg_desc_base = q->sg_base;
uint32_t i, j;
uint8_t opcode;
opcode = (q->num_segs > 1) ?
IONIC_RXQ_DESC_OPCODE_SG : IONIC_RXQ_DESC_OPCODE_SIMPLE;
/*
* NB: Only the first segment needs to leave headroom (hdr_seg_size).
* Later segments (seg_size) do not.
*/
for (i = 0; i < q->num_descs; i++) {
desc = &desc_base[i];
desc->len = rte_cpu_to_le_16(rxq->hdr_seg_size);
desc->opcode = opcode;
sg_desc = &sg_desc_base[i];
for (j = 0; j < q->num_segs - 1u; j++)
sg_desc->elems[j].len =
rte_cpu_to_le_16(rxq->seg_size);
}
}
/*
* Start Receive Units for specified queue.
*/
int __rte_cold
ionic_dev_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
{
uint8_t *rx_queue_state = eth_dev->data->rx_queue_state;
struct ionic_rx_qcq *rxq;
struct ionic_queue *q;
int err;
if (rx_queue_state[rx_queue_id] == RTE_ETH_QUEUE_STATE_STARTED) {
IONIC_PRINT(DEBUG, "RX queue %u already started",
rx_queue_id);
return 0;
}
rxq = eth_dev->data->rx_queues[rx_queue_id];
q = &rxq->qcq.q;
rxq->frame_size = rxq->qcq.lif->frame_size - RTE_ETHER_CRC_LEN;
/* Recalculate segment count based on MTU */
q->num_segs = 1 +
(rxq->frame_size + RTE_PKTMBUF_HEADROOM - 1) / rxq->seg_size;
IONIC_PRINT(DEBUG, "Starting RX queue %u, %u descs, size %u segs %u",
rx_queue_id, q->num_descs, rxq->frame_size, q->num_segs);
ionic_rx_init_descriptors(rxq);
err = ionic_lif_rxq_init(rxq);
if (err)
return err;
/* Allocate buffers for descriptor ring */
if (rxq->flags & IONIC_QCQ_F_SG)
err = ionic_rx_fill_sg(rxq);
else
err = ionic_rx_fill(rxq);
if (err != 0) {
IONIC_PRINT(ERR, "Could not fill queue %d", rx_queue_id);
return -1;
}
rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
/*
* Stop Receive Units for specified queue.
*/
int __rte_cold
ionic_dev_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
{
uint8_t *rx_queue_state = eth_dev->data->rx_queue_state;
struct ionic_rx_stats *stats;
struct ionic_rx_qcq *rxq;
IONIC_PRINT(DEBUG, "Stopping RX queue %u", rx_queue_id);
rxq = eth_dev->data->rx_queues[rx_queue_id];
rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
ionic_lif_rxq_deinit(rxq);
/* Free all buffers from descriptor ring */
ionic_rx_empty(rxq);
stats = &rxq->stats;
IONIC_PRINT(DEBUG, "RX queue %u pkts %ju mtod %ju",
rxq->qcq.q.index, stats->packets, stats->mtods);
return 0;
}
int
ionic_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
{
struct ionic_rx_qcq *rxq = rx_queue;
struct ionic_qcq *qcq = &rxq->qcq;
volatile struct ionic_rxq_comp *cq_desc;
uint16_t mask, head, tail, pos;
bool done_color;
mask = qcq->q.size_mask;
/* offset must be within the size of the ring */
if (offset > mask)
return -EINVAL;
head = qcq->q.head_idx;
tail = qcq->q.tail_idx;
/* offset is beyond what is posted */
if (offset >= ((head - tail) & mask))
return RTE_ETH_RX_DESC_UNAVAIL;
/* interested in this absolute position in the rxq */
pos = (tail + offset) & mask;
/* rx cq position == rx q position */
cq_desc = qcq->cq.base;
cq_desc = &cq_desc[pos];
/* expected done color at this position */
done_color = qcq->cq.done_color != (pos < tail);
/* has the hw indicated the done color at this position? */
if (color_match(cq_desc->pkt_type_color, done_color))
return RTE_ETH_RX_DESC_DONE;
return RTE_ETH_RX_DESC_AVAIL;
}
int
ionic_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
{
struct ionic_tx_qcq *txq = tx_queue;
struct ionic_qcq *qcq = &txq->qcq;
volatile struct ionic_txq_comp *cq_desc;
uint16_t mask, head, tail, pos, cq_pos;
bool done_color;
mask = qcq->q.size_mask;
/* offset must be within the size of the ring */
if (offset > mask)
return -EINVAL;
head = qcq->q.head_idx;
tail = qcq->q.tail_idx;
/* offset is beyond what is posted */
if (offset >= ((head - tail) & mask))
return RTE_ETH_TX_DESC_DONE;
/* interested in this absolute position in the txq */
pos = (tail + offset) & mask;
/* tx cq position != tx q position, need to walk cq */
cq_pos = qcq->cq.tail_idx;
cq_desc = qcq->cq.base;
cq_desc = &cq_desc[cq_pos];
/* how far behind is pos from head? */
offset = (head - pos) & mask;
/* walk cq descriptors that match the expected done color */
done_color = qcq->cq.done_color;
while (color_match(cq_desc->color, done_color)) {
/* is comp index no further behind than pos? */
tail = rte_cpu_to_le_16(cq_desc->comp_index);
if (((head - tail) & mask) <= offset)
return RTE_ETH_TX_DESC_DONE;
cq_pos = (cq_pos + 1) & mask;
cq_desc = qcq->cq.base;
cq_desc = &cq_desc[cq_pos];
done_color = done_color != (cq_pos == 0);
}
return RTE_ETH_TX_DESC_FULL;
}