f-stack/dpdk/drivers/net/idpf/idpf_rxtx.h

303 lines
10 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2022 Intel Corporation
*/
#ifndef _IDPF_RXTX_H_
#define _IDPF_RXTX_H_
#include "idpf_ethdev.h"
#define IDPF_RLAN_CTX_DBUF_S 7
#define IDPF_RX_MAX_DATA_BUF_SIZE (16 * 1024 - 128)
/* MTS */
#define GLTSYN_CMD_SYNC_0_0 (PF_TIMESYNC_BASE + 0x0)
#define PF_GLTSYN_SHTIME_0_0 (PF_TIMESYNC_BASE + 0x4)
#define PF_GLTSYN_SHTIME_L_0 (PF_TIMESYNC_BASE + 0x8)
#define PF_GLTSYN_SHTIME_H_0 (PF_TIMESYNC_BASE + 0xC)
#define GLTSYN_ART_L_0 (PF_TIMESYNC_BASE + 0x10)
#define GLTSYN_ART_H_0 (PF_TIMESYNC_BASE + 0x14)
#define PF_GLTSYN_SHTIME_0_1 (PF_TIMESYNC_BASE + 0x24)
#define PF_GLTSYN_SHTIME_L_1 (PF_TIMESYNC_BASE + 0x28)
#define PF_GLTSYN_SHTIME_H_1 (PF_TIMESYNC_BASE + 0x2C)
#define PF_GLTSYN_SHTIME_0_2 (PF_TIMESYNC_BASE + 0x44)
#define PF_GLTSYN_SHTIME_L_2 (PF_TIMESYNC_BASE + 0x48)
#define PF_GLTSYN_SHTIME_H_2 (PF_TIMESYNC_BASE + 0x4C)
#define PF_GLTSYN_SHTIME_0_3 (PF_TIMESYNC_BASE + 0x64)
#define PF_GLTSYN_SHTIME_L_3 (PF_TIMESYNC_BASE + 0x68)
#define PF_GLTSYN_SHTIME_H_3 (PF_TIMESYNC_BASE + 0x6C)
#define PF_TIMESYNC_BAR4_BASE 0x0E400000
#define GLTSYN_ENA (PF_TIMESYNC_BAR4_BASE + 0x90)
#define GLTSYN_CMD (PF_TIMESYNC_BAR4_BASE + 0x94)
#define GLTSYC_TIME_L (PF_TIMESYNC_BAR4_BASE + 0x104)
#define GLTSYC_TIME_H (PF_TIMESYNC_BAR4_BASE + 0x108)
#define GLTSYN_CMD_SYNC_0_4 (PF_TIMESYNC_BAR4_BASE + 0x110)
#define PF_GLTSYN_SHTIME_L_4 (PF_TIMESYNC_BAR4_BASE + 0x118)
#define PF_GLTSYN_SHTIME_H_4 (PF_TIMESYNC_BAR4_BASE + 0x11C)
#define GLTSYN_INCVAL_L (PF_TIMESYNC_BAR4_BASE + 0x150)
#define GLTSYN_INCVAL_H (PF_TIMESYNC_BAR4_BASE + 0x154)
#define GLTSYN_SHADJ_L (PF_TIMESYNC_BAR4_BASE + 0x158)
#define GLTSYN_SHADJ_H (PF_TIMESYNC_BAR4_BASE + 0x15C)
#define GLTSYN_CMD_SYNC_0_5 (PF_TIMESYNC_BAR4_BASE + 0x130)
#define PF_GLTSYN_SHTIME_L_5 (PF_TIMESYNC_BAR4_BASE + 0x138)
#define PF_GLTSYN_SHTIME_H_5 (PF_TIMESYNC_BAR4_BASE + 0x13C)
/* In QLEN must be whole number of 32 descriptors. */
#define IDPF_ALIGN_RING_DESC 32
#define IDPF_MIN_RING_DESC 32
#define IDPF_MAX_RING_DESC 4096
#define IDPF_DMA_MEM_ALIGN 4096
/* Base address of the HW descriptor ring should be 128B aligned. */
#define IDPF_RING_BASE_ALIGN 128
#define IDPF_RX_MAX_BURST 32
#define IDPF_DEFAULT_RX_FREE_THRESH 32
/* used for Vector PMD */
#define IDPF_VPMD_RX_MAX_BURST 32
#define IDPF_VPMD_TX_MAX_BURST 32
#define IDPF_VPMD_DESCS_PER_LOOP 4
#define IDPF_RXQ_REARM_THRESH 64
#define IDPF_DEFAULT_TX_RS_THRESH 32
#define IDPF_DEFAULT_TX_FREE_THRESH 32
#define IDPF_TX_MAX_MTU_SEG 10
#define IDPF_MIN_TSO_MSS 88
#define IDPF_MAX_TSO_MSS 9728
#define IDPF_MAX_TSO_FRAME_SIZE 262143
#define IDPF_TX_MAX_MTU_SEG 10
#define IDPF_TX_CKSUM_OFFLOAD_MASK ( \
RTE_MBUF_F_TX_IP_CKSUM | \
RTE_MBUF_F_TX_L4_MASK | \
RTE_MBUF_F_TX_TCP_SEG)
#define IDPF_TX_OFFLOAD_MASK ( \
IDPF_TX_CKSUM_OFFLOAD_MASK | \
RTE_MBUF_F_TX_IPV4 | \
RTE_MBUF_F_TX_IPV6)
#define IDPF_TX_OFFLOAD_NOTSUP_MASK \
(RTE_MBUF_F_TX_OFFLOAD_MASK ^ IDPF_TX_OFFLOAD_MASK)
#define IDPF_GET_PTYPE_SIZE(p) \
(sizeof(struct virtchnl2_ptype) + \
(((p)->proto_id_count ? ((p)->proto_id_count - 1) : 0) * sizeof((p)->proto_id[0])))
extern uint64_t idpf_timestamp_dynflag;
struct idpf_rx_queue {
struct idpf_adapter *adapter; /* the adapter this queue belongs to */
struct rte_mempool *mp; /* mbuf pool to populate Rx ring */
const struct rte_memzone *mz; /* memzone for Rx ring */
volatile void *rx_ring;
struct rte_mbuf **sw_ring; /* address of SW ring */
uint64_t rx_ring_phys_addr; /* Rx ring DMA address */
uint16_t nb_rx_desc; /* ring length */
uint16_t rx_tail; /* current value of tail */
volatile uint8_t *qrx_tail; /* register address of tail */
uint16_t rx_free_thresh; /* max free RX desc to hold */
uint16_t nb_rx_hold; /* number of held free RX desc */
struct rte_mbuf *pkt_first_seg; /* first segment of current packet */
struct rte_mbuf *pkt_last_seg; /* last segment of current packet */
struct rte_mbuf fake_mbuf; /* dummy mbuf */
/* used for VPMD */
uint16_t rxrearm_nb; /* number of remaining to be re-armed */
uint16_t rxrearm_start; /* the idx we start the re-arming from */
uint64_t mbuf_initializer; /* value to init mbufs */
uint16_t rx_nb_avail;
uint16_t rx_next_avail;
uint16_t port_id; /* device port ID */
uint16_t queue_id; /* Rx queue index */
uint16_t rx_buf_len; /* The packet buffer size */
uint16_t rx_hdr_len; /* The header buffer size */
uint16_t max_pkt_len; /* Maximum packet length */
uint8_t rxdid;
bool q_set; /* if rx queue has been configured */
bool q_started; /* if rx queue has been started */
bool rx_deferred_start; /* don't start this queue in dev start */
const struct idpf_rxq_ops *ops;
/* only valid for split queue mode */
uint8_t expected_gen_id;
struct idpf_rx_queue *bufq1;
struct idpf_rx_queue *bufq2;
uint64_t offloads;
uint32_t hw_register_set;
};
struct idpf_tx_entry {
struct rte_mbuf *mbuf;
uint16_t next_id;
uint16_t last_id;
};
struct idpf_tx_vec_entry {
struct rte_mbuf *mbuf;
};
/* Structure associated with each TX queue. */
struct idpf_tx_queue {
const struct rte_memzone *mz; /* memzone for Tx ring */
volatile struct idpf_flex_tx_desc *tx_ring; /* Tx ring virtual address */
volatile union {
struct idpf_flex_tx_sched_desc *desc_ring;
struct idpf_splitq_tx_compl_desc *compl_ring;
};
uint64_t tx_ring_phys_addr; /* Tx ring DMA address */
struct idpf_tx_entry *sw_ring; /* address array of SW ring */
uint16_t nb_tx_desc; /* ring length */
uint16_t tx_tail; /* current value of tail */
volatile uint8_t *qtx_tail; /* register address of tail */
/* number of used desc since RS bit set */
uint16_t nb_used;
uint16_t nb_free;
uint16_t last_desc_cleaned; /* last desc have been cleaned*/
uint16_t free_thresh;
uint16_t rs_thresh;
uint16_t port_id;
uint16_t queue_id;
uint64_t offloads;
uint16_t next_dd; /* next to set RS, for VPMD */
uint16_t next_rs; /* next to check DD, for VPMD */
bool q_set; /* if tx queue has been configured */
bool q_started; /* if tx queue has been started */
bool tx_deferred_start; /* don't start this queue in dev start */
const struct idpf_txq_ops *ops;
/* only valid for split queue mode */
uint16_t sw_nb_desc;
uint16_t sw_tail;
void **txqs;
uint32_t tx_start_qid;
uint8_t expected_gen_id;
struct idpf_tx_queue *complq;
};
/* Offload features */
union idpf_tx_offload {
uint64_t data;
struct {
uint64_t l2_len:7; /* L2 (MAC) Header Length. */
uint64_t l3_len:9; /* L3 (IP) Header Length. */
uint64_t l4_len:8; /* L4 Header Length. */
uint64_t tso_segsz:16; /* TCP TSO segment size */
/* uint64_t unused : 24; */
};
};
struct idpf_rxq_ops {
void (*release_mbufs)(struct idpf_rx_queue *rxq);
};
struct idpf_txq_ops {
void (*release_mbufs)(struct idpf_tx_queue *txq);
};
int idpf_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp);
int idpf_singleq_tx_vec_setup_avx512(struct idpf_tx_queue *txq);
int idpf_rx_queue_init(struct rte_eth_dev *dev, uint16_t rx_queue_id);
int idpf_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id);
int idpf_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id);
void idpf_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
int idpf_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf);
int idpf_singleq_rx_vec_setup(struct idpf_rx_queue *rxq);
int idpf_tx_queue_init(struct rte_eth_dev *dev, uint16_t tx_queue_id);
int idpf_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id);
int idpf_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id);
void idpf_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
uint16_t idpf_singleq_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
uint16_t idpf_singleq_recv_pkts_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
uint16_t idpf_splitq_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
uint16_t idpf_singleq_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
uint16_t idpf_singleq_xmit_pkts_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
uint16_t idpf_splitq_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
uint16_t idpf_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
void idpf_stop_queues(struct rte_eth_dev *dev);
void idpf_set_rx_function(struct rte_eth_dev *dev);
void idpf_set_tx_function(struct rte_eth_dev *dev);
#define IDPF_TIMESYNC_REG_WRAP_GUARD_BAND 10000
/* Helper function to convert a 32b nanoseconds timestamp to 64b. */
static inline uint64_t
idpf_tstamp_convert_32b_64b(struct idpf_adapter *ad, uint32_t flag,
uint32_t in_timestamp)
{
#ifdef RTE_ARCH_X86_64
struct idpf_hw *hw = &ad->hw;
const uint64_t mask = 0xFFFFFFFF;
uint32_t hi, lo, lo2, delta;
uint64_t ns;
if (flag != 0) {
IDPF_WRITE_REG(hw, GLTSYN_CMD_SYNC_0_0, PF_GLTSYN_CMD_SYNC_SHTIME_EN_M);
IDPF_WRITE_REG(hw, GLTSYN_CMD_SYNC_0_0, PF_GLTSYN_CMD_SYNC_EXEC_CMD_M |
PF_GLTSYN_CMD_SYNC_SHTIME_EN_M);
lo = IDPF_READ_REG(hw, PF_GLTSYN_SHTIME_L_0);
hi = IDPF_READ_REG(hw, PF_GLTSYN_SHTIME_H_0);
/*
* On typical system, the delta between lo and lo2 is ~1000ns,
* so 10000 seems a large-enough but not overly-big guard band.
*/
if (lo > (UINT32_MAX - IDPF_TIMESYNC_REG_WRAP_GUARD_BAND))
lo2 = IDPF_READ_REG(hw, PF_GLTSYN_SHTIME_L_0);
else
lo2 = lo;
if (lo2 < lo) {
lo = IDPF_READ_REG(hw, PF_GLTSYN_SHTIME_L_0);
hi = IDPF_READ_REG(hw, PF_GLTSYN_SHTIME_H_0);
}
ad->time_hw = ((uint64_t)hi << 32) | lo;
}
delta = (in_timestamp - (uint32_t)(ad->time_hw & mask));
if (delta > (mask / 2)) {
delta = ((uint32_t)(ad->time_hw & mask) - in_timestamp);
ns = ad->time_hw - delta;
} else {
ns = ad->time_hw + delta;
}
return ns;
#else /* !RTE_ARCH_X86_64 */
RTE_SET_USED(ad);
RTE_SET_USED(flag);
RTE_SET_USED(in_timestamp);
return 0;
#endif /* RTE_ARCH_X86_64 */
}
#endif /* _IDPF_RXTX_H_ */