f-stack/dpdk/drivers/net/idpf/idpf_rxtx.c

2330 lines
60 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2022 Intel Corporation
*/
#include <ethdev_driver.h>
#include <rte_net.h>
#include <rte_vect.h>
#include "idpf_ethdev.h"
#include "idpf_rxtx.h"
#include "idpf_rxtx_vec_common.h"
static int idpf_timestamp_dynfield_offset = -1;
static int
check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
{
/* The following constraints must be satisfied:
* thresh < rxq->nb_rx_desc
*/
if (thresh >= nb_desc) {
PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
thresh, nb_desc);
return -EINVAL;
}
return 0;
}
static int
check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
uint16_t tx_free_thresh)
{
/* TX descriptors will have their RS bit set after tx_rs_thresh
* descriptors have been used. The TX descriptor ring will be cleaned
* after tx_free_thresh descriptors are used or if the number of
* descriptors required to transmit a packet is greater than the
* number of free TX descriptors.
*
* The following constraints must be satisfied:
* - tx_rs_thresh must be less than the size of the ring minus 2.
* - tx_free_thresh must be less than the size of the ring minus 3.
* - tx_rs_thresh must be less than or equal to tx_free_thresh.
* - tx_rs_thresh must be a divisor of the ring size.
*
* One descriptor in the TX ring is used as a sentinel to avoid a H/W
* race condition, hence the maximum threshold constraints. When set
* to zero use default values.
*/
if (tx_rs_thresh >= (nb_desc - 2)) {
PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
"number of TX descriptors (%u) minus 2",
tx_rs_thresh, nb_desc);
return -EINVAL;
}
if (tx_free_thresh >= (nb_desc - 3)) {
PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
"number of TX descriptors (%u) minus 3.",
tx_free_thresh, nb_desc);
return -EINVAL;
}
if (tx_rs_thresh > tx_free_thresh) {
PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
"equal to tx_free_thresh (%u).",
tx_rs_thresh, tx_free_thresh);
return -EINVAL;
}
if ((nb_desc % tx_rs_thresh) != 0) {
PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
"number of TX descriptors (%u).",
tx_rs_thresh, nb_desc);
return -EINVAL;
}
return 0;
}
static void
release_rxq_mbufs(struct idpf_rx_queue *rxq)
{
uint16_t i;
if (rxq->sw_ring == NULL)
return;
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i] != NULL) {
rte_pktmbuf_free_seg(rxq->sw_ring[i]);
rxq->sw_ring[i] = NULL;
}
}
}
static void
release_txq_mbufs(struct idpf_tx_queue *txq)
{
uint16_t nb_desc, i;
if (txq == NULL || txq->sw_ring == NULL) {
PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
return;
}
if (txq->sw_nb_desc != 0) {
/* For split queue model, descriptor ring */
nb_desc = txq->sw_nb_desc;
} else {
/* For single queue model */
nb_desc = txq->nb_tx_desc;
}
for (i = 0; i < nb_desc; i++) {
if (txq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
static const struct idpf_rxq_ops def_rxq_ops = {
.release_mbufs = release_rxq_mbufs,
};
static const struct idpf_txq_ops def_txq_ops = {
.release_mbufs = release_txq_mbufs,
};
static void
reset_split_rx_descq(struct idpf_rx_queue *rxq)
{
uint16_t len;
uint32_t i;
if (rxq == NULL)
return;
len = rxq->nb_rx_desc + IDPF_RX_MAX_BURST;
for (i = 0; i < len * sizeof(struct virtchnl2_rx_flex_desc_adv_nic_3);
i++)
((volatile char *)rxq->rx_ring)[i] = 0;
rxq->rx_tail = 0;
rxq->expected_gen_id = 1;
}
static void
reset_split_rx_bufq(struct idpf_rx_queue *rxq)
{
uint16_t len;
uint32_t i;
if (rxq == NULL)
return;
len = rxq->nb_rx_desc + IDPF_RX_MAX_BURST;
for (i = 0; i < len * sizeof(struct virtchnl2_splitq_rx_buf_desc);
i++)
((volatile char *)rxq->rx_ring)[i] = 0;
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
for (i = 0; i < IDPF_RX_MAX_BURST; i++)
rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
/* The next descriptor id which can be received. */
rxq->rx_next_avail = 0;
/* The next descriptor id which can be refilled. */
rxq->rx_tail = 0;
/* The number of descriptors which can be refilled. */
rxq->nb_rx_hold = rxq->nb_rx_desc - 1;
rxq->bufq1 = NULL;
rxq->bufq2 = NULL;
}
static void
idpf_rx_queue_release(void *rxq)
{
struct idpf_rx_queue *q = rxq;
if (q == NULL)
return;
/* Split queue */
if (q->bufq1 != NULL && q->bufq2 != NULL) {
q->bufq1->ops->release_mbufs(q->bufq1);
rte_free(q->bufq1->sw_ring);
rte_memzone_free(q->bufq1->mz);
rte_free(q->bufq1);
q->bufq2->ops->release_mbufs(q->bufq2);
rte_free(q->bufq2->sw_ring);
rte_memzone_free(q->bufq2->mz);
rte_free(q->bufq2);
rte_memzone_free(q->mz);
rte_free(q);
return;
}
/* Single queue */
q->ops->release_mbufs(q);
rte_free(q->sw_ring);
rte_memzone_free(q->mz);
rte_free(q);
}
static void
idpf_tx_queue_release(void *txq)
{
struct idpf_tx_queue *q = txq;
if (q == NULL)
return;
if (q->complq) {
rte_memzone_free(q->complq->mz);
rte_free(q->complq);
}
q->ops->release_mbufs(q);
rte_free(q->sw_ring);
rte_memzone_free(q->mz);
rte_free(q);
}
static inline void
reset_split_rx_queue(struct idpf_rx_queue *rxq)
{
reset_split_rx_descq(rxq);
reset_split_rx_bufq(rxq->bufq1);
reset_split_rx_bufq(rxq->bufq2);
}
static void
reset_single_rx_queue(struct idpf_rx_queue *rxq)
{
uint16_t len;
uint32_t i;
if (rxq == NULL)
return;
len = rxq->nb_rx_desc + IDPF_RX_MAX_BURST;
for (i = 0; i < len * sizeof(struct virtchnl2_singleq_rx_buf_desc);
i++)
((volatile char *)rxq->rx_ring)[i] = 0;
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
for (i = 0; i < IDPF_RX_MAX_BURST; i++)
rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
rxq->rx_tail = 0;
rxq->nb_rx_hold = 0;
rte_pktmbuf_free(rxq->pkt_first_seg);
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
rxq->rxrearm_start = 0;
rxq->rxrearm_nb = 0;
}
static void
reset_split_tx_descq(struct idpf_tx_queue *txq)
{
struct idpf_tx_entry *txe;
uint32_t i, size;
uint16_t prev;
if (txq == NULL) {
PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
return;
}
size = sizeof(struct idpf_flex_tx_sched_desc) * txq->nb_tx_desc;
for (i = 0; i < size; i++)
((volatile char *)txq->desc_ring)[i] = 0;
txe = txq->sw_ring;
prev = (uint16_t)(txq->sw_nb_desc - 1);
for (i = 0; i < txq->sw_nb_desc; i++) {
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->tx_tail = 0;
txq->nb_used = 0;
/* Use this as next to clean for split desc queue */
txq->last_desc_cleaned = 0;
txq->sw_tail = 0;
txq->nb_free = txq->nb_tx_desc - 1;
}
static void
reset_split_tx_complq(struct idpf_tx_queue *cq)
{
uint32_t i, size;
if (cq == NULL) {
PMD_DRV_LOG(DEBUG, "Pointer to complq is NULL");
return;
}
size = sizeof(struct idpf_splitq_tx_compl_desc) * cq->nb_tx_desc;
for (i = 0; i < size; i++)
((volatile char *)cq->compl_ring)[i] = 0;
cq->tx_tail = 0;
cq->expected_gen_id = 1;
}
static void
reset_single_tx_queue(struct idpf_tx_queue *txq)
{
struct idpf_tx_entry *txe;
uint32_t i, size;
uint16_t prev;
if (txq == NULL) {
PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
return;
}
txe = txq->sw_ring;
size = sizeof(struct idpf_flex_tx_desc) * txq->nb_tx_desc;
for (i = 0; i < size; i++)
((volatile char *)txq->tx_ring)[i] = 0;
prev = (uint16_t)(txq->nb_tx_desc - 1);
for (i = 0; i < txq->nb_tx_desc; i++) {
txq->tx_ring[i].qw1.cmd_dtype =
rte_cpu_to_le_16(IDPF_TX_DESC_DTYPE_DESC_DONE);
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->tx_tail = 0;
txq->nb_used = 0;
txq->last_desc_cleaned = txq->nb_tx_desc - 1;
txq->nb_free = txq->nb_tx_desc - 1;
txq->next_dd = txq->rs_thresh - 1;
txq->next_rs = txq->rs_thresh - 1;
}
static int
idpf_rx_split_bufq_setup(struct rte_eth_dev *dev, struct idpf_rx_queue *bufq,
uint16_t queue_idx, uint16_t rx_free_thresh,
uint16_t nb_desc, unsigned int socket_id,
struct rte_mempool *mp)
{
struct idpf_vport *vport = dev->data->dev_private;
struct idpf_adapter *adapter = vport->adapter;
struct idpf_hw *hw = &adapter->hw;
const struct rte_memzone *mz;
uint32_t ring_size;
uint16_t len;
bufq->mp = mp;
bufq->nb_rx_desc = nb_desc;
bufq->rx_free_thresh = rx_free_thresh;
bufq->queue_id = vport->chunks_info.rx_buf_start_qid + queue_idx;
bufq->port_id = dev->data->port_id;
bufq->rx_hdr_len = 0;
bufq->adapter = adapter;
len = rte_pktmbuf_data_room_size(bufq->mp) - RTE_PKTMBUF_HEADROOM;
bufq->rx_buf_len = RTE_ALIGN_FLOOR(len, (1 << IDPF_RLAN_CTX_DBUF_S));
bufq->rx_buf_len = RTE_MIN(bufq->rx_buf_len, IDPF_RX_MAX_DATA_BUF_SIZE);
/* Allocate the software ring. */
len = nb_desc + IDPF_RX_MAX_BURST;
bufq->sw_ring =
rte_zmalloc_socket("idpf rx bufq sw ring",
sizeof(struct rte_mbuf *) * len,
RTE_CACHE_LINE_SIZE,
socket_id);
if (bufq->sw_ring == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
return -ENOMEM;
}
/* Allocate a liitle more to support bulk allocate. */
len = nb_desc + IDPF_RX_MAX_BURST;
ring_size = RTE_ALIGN(len *
sizeof(struct virtchnl2_splitq_rx_buf_desc),
IDPF_DMA_MEM_ALIGN);
mz = rte_eth_dma_zone_reserve(dev, "rx_buf_ring", queue_idx,
ring_size, IDPF_RING_BASE_ALIGN,
socket_id);
if (mz == NULL) {
PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX buffer queue.");
rte_free(bufq->sw_ring);
return -ENOMEM;
}
/* Zero all the descriptors in the ring. */
memset(mz->addr, 0, ring_size);
bufq->rx_ring_phys_addr = mz->iova;
bufq->rx_ring = mz->addr;
bufq->mz = mz;
reset_split_rx_bufq(bufq);
bufq->q_set = true;
bufq->qrx_tail = hw->hw_addr + (vport->chunks_info.rx_buf_qtail_start +
queue_idx * vport->chunks_info.rx_buf_qtail_spacing);
bufq->ops = &def_rxq_ops;
/* TODO: allow bulk or vec */
return 0;
}
static int
idpf_rx_split_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct idpf_vport *vport = dev->data->dev_private;
struct idpf_adapter *adapter = vport->adapter;
struct idpf_rx_queue *bufq1, *bufq2;
const struct rte_memzone *mz;
struct idpf_rx_queue *rxq;
uint16_t rx_free_thresh;
uint32_t ring_size;
uint64_t offloads;
uint16_t qid;
uint16_t len;
int ret;
offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
/* Check free threshold */
rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
IDPF_DEFAULT_RX_FREE_THRESH :
rx_conf->rx_free_thresh;
if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
return -EINVAL;
/* Free memory if needed */
if (dev->data->rx_queues[queue_idx] != NULL) {
idpf_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* Setup Rx description queue */
rxq = rte_zmalloc_socket("idpf rxq",
sizeof(struct idpf_rx_queue),
RTE_CACHE_LINE_SIZE,
socket_id);
if (rxq == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for rx queue data structure");
return -ENOMEM;
}
rxq->mp = mp;
rxq->nb_rx_desc = nb_desc;
rxq->rx_free_thresh = rx_free_thresh;
rxq->queue_id = vport->chunks_info.rx_start_qid + queue_idx;
rxq->port_id = dev->data->port_id;
rxq->rx_deferred_start = rx_conf->rx_deferred_start;
rxq->rx_hdr_len = 0;
rxq->adapter = adapter;
rxq->offloads = offloads;
len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
rxq->rx_buf_len = RTE_ALIGN_FLOOR(len, (1 << IDPF_RLAN_CTX_DBUF_S));
rxq->rx_buf_len = RTE_MIN(rxq->rx_buf_len, IDPF_RX_MAX_DATA_BUF_SIZE);
len = rxq->nb_rx_desc + IDPF_RX_MAX_BURST;
ring_size = RTE_ALIGN(len *
sizeof(struct virtchnl2_rx_flex_desc_adv_nic_3),
IDPF_DMA_MEM_ALIGN);
mz = rte_eth_dma_zone_reserve(dev, "rx_cpmpl_ring", queue_idx,
ring_size, IDPF_RING_BASE_ALIGN,
socket_id);
if (mz == NULL) {
PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
ret = -ENOMEM;
goto free_rxq;
}
/* Zero all the descriptors in the ring. */
memset(mz->addr, 0, ring_size);
rxq->rx_ring_phys_addr = mz->iova;
rxq->rx_ring = mz->addr;
rxq->mz = mz;
reset_split_rx_descq(rxq);
/* TODO: allow bulk or vec */
/* setup Rx buffer queue */
bufq1 = rte_zmalloc_socket("idpf bufq1",
sizeof(struct idpf_rx_queue),
RTE_CACHE_LINE_SIZE,
socket_id);
if (bufq1 == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for rx buffer queue 1.");
ret = -ENOMEM;
goto free_mz;
}
qid = 2 * queue_idx;
ret = idpf_rx_split_bufq_setup(dev, bufq1, qid, rx_free_thresh,
nb_desc, socket_id, mp);
if (ret != 0) {
PMD_INIT_LOG(ERR, "Failed to setup buffer queue 1");
ret = -EINVAL;
goto free_bufq1;
}
rxq->bufq1 = bufq1;
bufq2 = rte_zmalloc_socket("idpf bufq2",
sizeof(struct idpf_rx_queue),
RTE_CACHE_LINE_SIZE,
socket_id);
if (bufq2 == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for rx buffer queue 2.");
rte_free(bufq1->sw_ring);
rte_memzone_free(bufq1->mz);
ret = -ENOMEM;
goto free_bufq1;
}
qid = 2 * queue_idx + 1;
ret = idpf_rx_split_bufq_setup(dev, bufq2, qid, rx_free_thresh,
nb_desc, socket_id, mp);
if (ret != 0) {
PMD_INIT_LOG(ERR, "Failed to setup buffer queue 2");
rte_free(bufq1->sw_ring);
rte_memzone_free(bufq1->mz);
ret = -EINVAL;
goto free_bufq2;
}
rxq->bufq2 = bufq2;
rxq->q_set = true;
dev->data->rx_queues[queue_idx] = rxq;
return 0;
free_bufq2:
rte_free(bufq2);
free_bufq1:
rte_free(bufq1);
free_mz:
rte_memzone_free(mz);
free_rxq:
rte_free(rxq);
return ret;
}
static int
idpf_rx_single_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct idpf_vport *vport = dev->data->dev_private;
struct idpf_adapter *adapter = vport->adapter;
struct idpf_hw *hw = &adapter->hw;
const struct rte_memzone *mz;
struct idpf_rx_queue *rxq;
uint16_t rx_free_thresh;
uint32_t ring_size;
uint64_t offloads;
uint16_t len;
offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
/* Check free threshold */
rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
IDPF_DEFAULT_RX_FREE_THRESH :
rx_conf->rx_free_thresh;
if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
return -EINVAL;
/* Free memory if needed */
if (dev->data->rx_queues[queue_idx] != NULL) {
idpf_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* Setup Rx description queue */
rxq = rte_zmalloc_socket("idpf rxq",
sizeof(struct idpf_rx_queue),
RTE_CACHE_LINE_SIZE,
socket_id);
if (rxq == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for rx queue data structure");
return -ENOMEM;
}
rxq->mp = mp;
rxq->nb_rx_desc = nb_desc;
rxq->rx_free_thresh = rx_free_thresh;
rxq->queue_id = vport->chunks_info.rx_start_qid + queue_idx;
rxq->port_id = dev->data->port_id;
rxq->rx_deferred_start = rx_conf->rx_deferred_start;
rxq->rx_hdr_len = 0;
rxq->adapter = adapter;
rxq->offloads = offloads;
len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
rxq->rx_buf_len = len;
len = nb_desc + IDPF_RX_MAX_BURST;
rxq->sw_ring =
rte_zmalloc_socket("idpf rxq sw ring",
sizeof(struct rte_mbuf *) * len,
RTE_CACHE_LINE_SIZE,
socket_id);
if (rxq->sw_ring == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
rte_free(rxq);
return -ENOMEM;
}
/* Allocate a liitle more to support bulk allocate. */
len = nb_desc + IDPF_RX_MAX_BURST;
ring_size = RTE_ALIGN(len *
sizeof(struct virtchnl2_singleq_rx_buf_desc),
IDPF_DMA_MEM_ALIGN);
mz = rte_eth_dma_zone_reserve(dev, "rx ring", queue_idx,
ring_size, IDPF_RING_BASE_ALIGN,
socket_id);
if (mz == NULL) {
PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX buffer queue.");
rte_free(rxq->sw_ring);
rte_free(rxq);
return -ENOMEM;
}
/* Zero all the descriptors in the ring. */
memset(mz->addr, 0, ring_size);
rxq->rx_ring_phys_addr = mz->iova;
rxq->rx_ring = mz->addr;
rxq->mz = mz;
reset_single_rx_queue(rxq);
rxq->q_set = true;
dev->data->rx_queues[queue_idx] = rxq;
rxq->qrx_tail = hw->hw_addr + (vport->chunks_info.rx_qtail_start +
queue_idx * vport->chunks_info.rx_qtail_spacing);
rxq->ops = &def_rxq_ops;
return 0;
}
int
idpf_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct idpf_vport *vport = dev->data->dev_private;
if (vport->rxq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE)
return idpf_rx_single_queue_setup(dev, queue_idx, nb_desc,
socket_id, rx_conf, mp);
else
return idpf_rx_split_queue_setup(dev, queue_idx, nb_desc,
socket_id, rx_conf, mp);
}
static int
idpf_tx_split_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct idpf_vport *vport = dev->data->dev_private;
struct idpf_adapter *adapter = vport->adapter;
uint16_t tx_rs_thresh, tx_free_thresh;
struct idpf_hw *hw = &adapter->hw;
struct idpf_tx_queue *txq, *cq;
const struct rte_memzone *mz;
uint32_t ring_size;
uint64_t offloads;
int ret;
offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh != 0) ?
tx_conf->tx_rs_thresh : IDPF_DEFAULT_TX_RS_THRESH);
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh != 0) ?
tx_conf->tx_free_thresh : IDPF_DEFAULT_TX_FREE_THRESH);
if (check_tx_thresh(nb_desc, tx_rs_thresh, tx_free_thresh) != 0)
return -EINVAL;
/* Free memory if needed. */
if (dev->data->tx_queues[queue_idx] != NULL) {
idpf_tx_queue_release(dev->data->tx_queues[queue_idx]);
dev->data->tx_queues[queue_idx] = NULL;
}
/* Allocate the TX queue data structure. */
txq = rte_zmalloc_socket("idpf split txq",
sizeof(struct idpf_tx_queue),
RTE_CACHE_LINE_SIZE,
socket_id);
if (txq == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for tx queue structure");
return -ENOMEM;
}
txq->nb_tx_desc = nb_desc;
txq->rs_thresh = tx_rs_thresh;
txq->free_thresh = tx_free_thresh;
txq->queue_id = vport->chunks_info.tx_start_qid + queue_idx;
txq->port_id = dev->data->port_id;
txq->offloads = offloads;
txq->tx_deferred_start = tx_conf->tx_deferred_start;
/* Allocate software ring */
txq->sw_nb_desc = 2 * nb_desc;
txq->sw_ring =
rte_zmalloc_socket("idpf split tx sw ring",
sizeof(struct idpf_tx_entry) *
txq->sw_nb_desc,
RTE_CACHE_LINE_SIZE,
socket_id);
if (txq->sw_ring == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
ret = -ENOMEM;
goto err_txq_sw_ring;
}
/* Allocate TX hardware ring descriptors. */
ring_size = sizeof(struct idpf_flex_tx_sched_desc) * txq->nb_tx_desc;
ring_size = RTE_ALIGN(ring_size, IDPF_DMA_MEM_ALIGN);
mz = rte_eth_dma_zone_reserve(dev, "split_tx_ring", queue_idx,
ring_size, IDPF_RING_BASE_ALIGN,
socket_id);
if (mz == NULL) {
PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
ret = -ENOMEM;
goto err_txq_mz;
}
txq->tx_ring_phys_addr = mz->iova;
txq->desc_ring = mz->addr;
txq->mz = mz;
reset_split_tx_descq(txq);
txq->qtx_tail = hw->hw_addr + (vport->chunks_info.tx_qtail_start +
queue_idx * vport->chunks_info.tx_qtail_spacing);
txq->ops = &def_txq_ops;
/* Allocate the TX completion queue data structure. */
txq->complq = rte_zmalloc_socket("idpf splitq cq",
sizeof(struct idpf_tx_queue),
RTE_CACHE_LINE_SIZE,
socket_id);
cq = txq->complq;
if (cq == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for tx queue structure");
ret = -ENOMEM;
goto err_cq;
}
cq->nb_tx_desc = 2 * nb_desc;
cq->queue_id = vport->chunks_info.tx_compl_start_qid + queue_idx;
cq->port_id = dev->data->port_id;
cq->txqs = dev->data->tx_queues;
cq->tx_start_qid = vport->chunks_info.tx_start_qid;
ring_size = sizeof(struct idpf_splitq_tx_compl_desc) * cq->nb_tx_desc;
ring_size = RTE_ALIGN(ring_size, IDPF_DMA_MEM_ALIGN);
mz = rte_eth_dma_zone_reserve(dev, "tx_split_compl_ring", queue_idx,
ring_size, IDPF_RING_BASE_ALIGN,
socket_id);
if (mz == NULL) {
PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX completion queue");
ret = -ENOMEM;
goto err_cq_mz;
}
cq->tx_ring_phys_addr = mz->iova;
cq->compl_ring = mz->addr;
cq->mz = mz;
reset_split_tx_complq(cq);
txq->q_set = true;
dev->data->tx_queues[queue_idx] = txq;
return 0;
err_cq_mz:
rte_free(cq);
err_cq:
rte_memzone_free(txq->mz);
err_txq_mz:
rte_free(txq->sw_ring);
err_txq_sw_ring:
rte_free(txq);
return ret;
}
static int
idpf_tx_single_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct idpf_vport *vport = dev->data->dev_private;
struct idpf_adapter *adapter = vport->adapter;
uint16_t tx_rs_thresh, tx_free_thresh;
struct idpf_hw *hw = &adapter->hw;
const struct rte_memzone *mz;
struct idpf_tx_queue *txq;
uint32_t ring_size;
uint64_t offloads;
offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh > 0) ?
tx_conf->tx_rs_thresh : IDPF_DEFAULT_TX_RS_THRESH);
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh > 0) ?
tx_conf->tx_free_thresh : IDPF_DEFAULT_TX_FREE_THRESH);
if (check_tx_thresh(nb_desc, tx_rs_thresh, tx_free_thresh) != 0)
return -EINVAL;
/* Free memory if needed. */
if (dev->data->tx_queues[queue_idx] != NULL) {
idpf_tx_queue_release(dev->data->tx_queues[queue_idx]);
dev->data->tx_queues[queue_idx] = NULL;
}
/* Allocate the TX queue data structure. */
txq = rte_zmalloc_socket("idpf txq",
sizeof(struct idpf_tx_queue),
RTE_CACHE_LINE_SIZE,
socket_id);
if (txq == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for tx queue structure");
return -ENOMEM;
}
/* TODO: vlan offload */
txq->nb_tx_desc = nb_desc;
txq->rs_thresh = tx_rs_thresh;
txq->free_thresh = tx_free_thresh;
txq->queue_id = vport->chunks_info.tx_start_qid + queue_idx;
txq->port_id = dev->data->port_id;
txq->offloads = offloads;
txq->tx_deferred_start = tx_conf->tx_deferred_start;
/* Allocate software ring */
txq->sw_ring =
rte_zmalloc_socket("idpf tx sw ring",
sizeof(struct idpf_tx_entry) * nb_desc,
RTE_CACHE_LINE_SIZE,
socket_id);
if (txq->sw_ring == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
rte_free(txq);
return -ENOMEM;
}
/* Allocate TX hardware ring descriptors. */
ring_size = sizeof(struct idpf_flex_tx_desc) * nb_desc;
ring_size = RTE_ALIGN(ring_size, IDPF_DMA_MEM_ALIGN);
mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
ring_size, IDPF_RING_BASE_ALIGN,
socket_id);
if (mz == NULL) {
PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
rte_free(txq->sw_ring);
rte_free(txq);
return -ENOMEM;
}
txq->tx_ring_phys_addr = mz->iova;
txq->tx_ring = mz->addr;
txq->mz = mz;
reset_single_tx_queue(txq);
txq->q_set = true;
dev->data->tx_queues[queue_idx] = txq;
txq->qtx_tail = hw->hw_addr + (vport->chunks_info.tx_qtail_start +
queue_idx * vport->chunks_info.tx_qtail_spacing);
txq->ops = &def_txq_ops;
return 0;
}
int
idpf_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct idpf_vport *vport = dev->data->dev_private;
if (vport->txq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE)
return idpf_tx_single_queue_setup(dev, queue_idx, nb_desc,
socket_id, tx_conf);
else
return idpf_tx_split_queue_setup(dev, queue_idx, nb_desc,
socket_id, tx_conf);
}
static int
idpf_register_ts_mbuf(struct idpf_rx_queue *rxq)
{
int err;
if ((rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) != 0) {
/* Register mbuf field and flag for Rx timestamp */
err = rte_mbuf_dyn_rx_timestamp_register(&idpf_timestamp_dynfield_offset,
&idpf_timestamp_dynflag);
if (err != 0) {
PMD_DRV_LOG(ERR,
"Cannot register mbuf field/flag for timestamp");
return -EINVAL;
}
}
return 0;
}
static int
idpf_alloc_single_rxq_mbufs(struct idpf_rx_queue *rxq)
{
volatile struct virtchnl2_singleq_rx_buf_desc *rxd;
struct rte_mbuf *mbuf = NULL;
uint64_t dma_addr;
uint16_t i;
for (i = 0; i < rxq->nb_rx_desc; i++) {
mbuf = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(mbuf == NULL)) {
PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
return -ENOMEM;
}
rte_mbuf_refcnt_set(mbuf, 1);
mbuf->next = NULL;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->port = rxq->port_id;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxd = &((volatile struct virtchnl2_singleq_rx_buf_desc *)(rxq->rx_ring))[i];
rxd->pkt_addr = dma_addr;
rxd->hdr_addr = 0;
rxd->rsvd1 = 0;
rxd->rsvd2 = 0;
rxq->sw_ring[i] = mbuf;
}
return 0;
}
static int
idpf_alloc_split_rxq_mbufs(struct idpf_rx_queue *rxq)
{
volatile struct virtchnl2_splitq_rx_buf_desc *rxd;
struct rte_mbuf *mbuf = NULL;
uint64_t dma_addr;
uint16_t i;
for (i = 0; i < rxq->nb_rx_desc; i++) {
mbuf = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(mbuf == NULL)) {
PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
return -ENOMEM;
}
rte_mbuf_refcnt_set(mbuf, 1);
mbuf->next = NULL;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->port = rxq->port_id;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxd = &((volatile struct virtchnl2_splitq_rx_buf_desc *)(rxq->rx_ring))[i];
rxd->qword0.buf_id = i;
rxd->qword0.rsvd0 = 0;
rxd->qword0.rsvd1 = 0;
rxd->pkt_addr = dma_addr;
rxd->hdr_addr = 0;
rxd->rsvd2 = 0;
rxq->sw_ring[i] = mbuf;
}
rxq->nb_rx_hold = 0;
rxq->rx_tail = rxq->nb_rx_desc - 1;
return 0;
}
int
idpf_rx_queue_init(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct idpf_rx_queue *rxq;
int err;
if (rx_queue_id >= dev->data->nb_rx_queues)
return -EINVAL;
rxq = dev->data->rx_queues[rx_queue_id];
if (rxq == NULL || !rxq->q_set) {
PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
rx_queue_id);
return -EINVAL;
}
err = idpf_register_ts_mbuf(rxq);
if (err != 0) {
PMD_DRV_LOG(ERR, "fail to regidter timestamp mbuf %u",
rx_queue_id);
return -EIO;
}
if (rxq->bufq1 == NULL) {
/* Single queue */
err = idpf_alloc_single_rxq_mbufs(rxq);
if (err != 0) {
PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
return err;
}
rte_wmb();
/* Init the RX tail register. */
IDPF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
} else {
/* Split queue */
err = idpf_alloc_split_rxq_mbufs(rxq->bufq1);
if (err != 0) {
PMD_DRV_LOG(ERR, "Failed to allocate RX buffer queue mbuf");
return err;
}
err = idpf_alloc_split_rxq_mbufs(rxq->bufq2);
if (err != 0) {
PMD_DRV_LOG(ERR, "Failed to allocate RX buffer queue mbuf");
return err;
}
rte_wmb();
/* Init the RX tail register. */
IDPF_PCI_REG_WRITE(rxq->bufq1->qrx_tail, rxq->bufq1->rx_tail);
IDPF_PCI_REG_WRITE(rxq->bufq2->qrx_tail, rxq->bufq2->rx_tail);
}
return err;
}
int
idpf_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct idpf_vport *vport = dev->data->dev_private;
struct idpf_rx_queue *rxq =
dev->data->rx_queues[rx_queue_id];
int err = 0;
err = idpf_vc_config_rxq(vport, rx_queue_id);
if (err != 0) {
PMD_DRV_LOG(ERR, "Fail to configure Rx queue %u", rx_queue_id);
return err;
}
err = idpf_rx_queue_init(dev, rx_queue_id);
if (err != 0) {
PMD_DRV_LOG(ERR, "Failed to init RX queue %u",
rx_queue_id);
return err;
}
/* Ready to switch the queue on */
err = idpf_switch_queue(vport, rx_queue_id, true, true);
if (err != 0) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
rx_queue_id);
} else {
rxq->q_started = true;
dev->data->rx_queue_state[rx_queue_id] =
RTE_ETH_QUEUE_STATE_STARTED;
}
return err;
}
int
idpf_tx_queue_init(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct idpf_tx_queue *txq;
if (tx_queue_id >= dev->data->nb_tx_queues)
return -EINVAL;
txq = dev->data->tx_queues[tx_queue_id];
/* Init the RX tail register. */
IDPF_PCI_REG_WRITE(txq->qtx_tail, 0);
return 0;
}
int
idpf_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct idpf_vport *vport = dev->data->dev_private;
struct idpf_tx_queue *txq =
dev->data->tx_queues[tx_queue_id];
int err = 0;
err = idpf_vc_config_txq(vport, tx_queue_id);
if (err != 0) {
PMD_DRV_LOG(ERR, "Fail to configure Tx queue %u", tx_queue_id);
return err;
}
err = idpf_tx_queue_init(dev, tx_queue_id);
if (err != 0) {
PMD_DRV_LOG(ERR, "Failed to init TX queue %u",
tx_queue_id);
return err;
}
/* Ready to switch the queue on */
err = idpf_switch_queue(vport, tx_queue_id, false, true);
if (err != 0) {
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
tx_queue_id);
} else {
txq->q_started = true;
dev->data->tx_queue_state[tx_queue_id] =
RTE_ETH_QUEUE_STATE_STARTED;
}
return err;
}
int
idpf_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct idpf_vport *vport = dev->data->dev_private;
struct idpf_rx_queue *rxq;
int err;
if (rx_queue_id >= dev->data->nb_rx_queues)
return -EINVAL;
err = idpf_switch_queue(vport, rx_queue_id, true, false);
if (err != 0) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
rx_queue_id);
return err;
}
rxq = dev->data->rx_queues[rx_queue_id];
rxq->q_started = false;
if (vport->rxq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE) {
rxq->ops->release_mbufs(rxq);
reset_single_rx_queue(rxq);
} else {
rxq->bufq1->ops->release_mbufs(rxq->bufq1);
rxq->bufq2->ops->release_mbufs(rxq->bufq2);
reset_split_rx_queue(rxq);
}
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
int
idpf_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct idpf_vport *vport = dev->data->dev_private;
struct idpf_tx_queue *txq;
int err;
if (tx_queue_id >= dev->data->nb_tx_queues)
return -EINVAL;
err = idpf_switch_queue(vport, tx_queue_id, false, false);
if (err != 0) {
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
tx_queue_id);
return err;
}
txq = dev->data->tx_queues[tx_queue_id];
txq->q_started = false;
txq->ops->release_mbufs(txq);
if (vport->txq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE) {
reset_single_tx_queue(txq);
} else {
reset_split_tx_descq(txq);
reset_split_tx_complq(txq->complq);
}
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
void
idpf_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
idpf_rx_queue_release(dev->data->rx_queues[qid]);
}
void
idpf_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
idpf_tx_queue_release(dev->data->tx_queues[qid]);
}
void
idpf_stop_queues(struct rte_eth_dev *dev)
{
struct idpf_rx_queue *rxq;
struct idpf_tx_queue *txq;
int i;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (rxq == NULL)
continue;
if (idpf_rx_queue_stop(dev, i) != 0)
PMD_DRV_LOG(WARNING, "Fail to stop Rx queue %d", i);
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (txq == NULL)
continue;
if (idpf_tx_queue_stop(dev, i) != 0)
PMD_DRV_LOG(WARNING, "Fail to stop Tx queue %d", i);
}
}
#define IDPF_RX_FLEX_DESC_ADV_STATUS0_XSUM_S \
(RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_IPE_S) | \
RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_L4E_S) | \
RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_EIPE_S) | \
RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_EUDPE_S))
static inline uint64_t
idpf_splitq_rx_csum_offload(uint8_t err)
{
uint64_t flags = 0;
if (unlikely((err & RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_L3L4P_S)) == 0))
return flags;
if (likely((err & IDPF_RX_FLEX_DESC_ADV_STATUS0_XSUM_S) == 0)) {
flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD);
return flags;
}
if (unlikely((err & RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_IPE_S)) != 0))
flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
if (unlikely((err & RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_L4E_S)) != 0))
flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
if (unlikely((err & RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_EIPE_S)) != 0))
flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
if (unlikely((err & RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_EUDPE_S)) != 0))
flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD;
return flags;
}
#define IDPF_RX_FLEX_DESC_ADV_HASH1_S 0
#define IDPF_RX_FLEX_DESC_ADV_HASH2_S 16
#define IDPF_RX_FLEX_DESC_ADV_HASH3_S 24
static inline uint64_t
idpf_splitq_rx_rss_offload(struct rte_mbuf *mb,
volatile struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc)
{
uint8_t status_err0_qw0;
uint64_t flags = 0;
status_err0_qw0 = rx_desc->status_err0_qw0;
if ((status_err0_qw0 & RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_RSS_VALID_S)) != 0) {
flags |= RTE_MBUF_F_RX_RSS_HASH;
mb->hash.rss = (rte_le_to_cpu_16(rx_desc->hash1) <<
IDPF_RX_FLEX_DESC_ADV_HASH1_S) |
((uint32_t)(rx_desc->ff2_mirrid_hash2.hash2) <<
IDPF_RX_FLEX_DESC_ADV_HASH2_S) |
((uint32_t)(rx_desc->hash3) <<
IDPF_RX_FLEX_DESC_ADV_HASH3_S);
}
return flags;
}
static void
idpf_split_rx_bufq_refill(struct idpf_rx_queue *rx_bufq)
{
volatile struct virtchnl2_splitq_rx_buf_desc *rx_buf_ring;
volatile struct virtchnl2_splitq_rx_buf_desc *rx_buf_desc;
uint16_t nb_refill = rx_bufq->rx_free_thresh;
uint16_t nb_desc = rx_bufq->nb_rx_desc;
uint16_t next_avail = rx_bufq->rx_tail;
struct rte_mbuf *nmb[rx_bufq->rx_free_thresh];
struct rte_eth_dev *dev;
uint64_t dma_addr;
uint16_t delta;
int i;
if (rx_bufq->nb_rx_hold < rx_bufq->rx_free_thresh)
return;
rx_buf_ring = rx_bufq->rx_ring;
delta = nb_desc - next_avail;
if (unlikely(delta < nb_refill)) {
if (likely(rte_pktmbuf_alloc_bulk(rx_bufq->mp, nmb, delta) == 0)) {
for (i = 0; i < delta; i++) {
rx_buf_desc = &rx_buf_ring[next_avail + i];
rx_bufq->sw_ring[next_avail + i] = nmb[i];
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb[i]));
rx_buf_desc->hdr_addr = 0;
rx_buf_desc->pkt_addr = dma_addr;
}
nb_refill -= delta;
next_avail = 0;
rx_bufq->nb_rx_hold -= delta;
} else {
dev = &rte_eth_devices[rx_bufq->port_id];
dev->data->rx_mbuf_alloc_failed += nb_desc - next_avail;
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u queue_id=%u",
rx_bufq->port_id, rx_bufq->queue_id);
return;
}
}
if (nb_desc - next_avail >= nb_refill) {
if (likely(rte_pktmbuf_alloc_bulk(rx_bufq->mp, nmb, nb_refill) == 0)) {
for (i = 0; i < nb_refill; i++) {
rx_buf_desc = &rx_buf_ring[next_avail + i];
rx_bufq->sw_ring[next_avail + i] = nmb[i];
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb[i]));
rx_buf_desc->hdr_addr = 0;
rx_buf_desc->pkt_addr = dma_addr;
}
next_avail += nb_refill;
rx_bufq->nb_rx_hold -= nb_refill;
} else {
dev = &rte_eth_devices[rx_bufq->port_id];
dev->data->rx_mbuf_alloc_failed += nb_desc - next_avail;
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u queue_id=%u",
rx_bufq->port_id, rx_bufq->queue_id);
}
}
IDPF_PCI_REG_WRITE(rx_bufq->qrx_tail, next_avail);
rx_bufq->rx_tail = next_avail;
}
uint16_t
idpf_splitq_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
volatile struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc_ring;
volatile struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc;
uint16_t pktlen_gen_bufq_id;
struct idpf_rx_queue *rxq;
const uint32_t *ptype_tbl;
uint8_t status_err0_qw1;
struct idpf_adapter *ad;
struct rte_mbuf *rxm;
uint16_t rx_id_bufq1;
uint16_t rx_id_bufq2;
uint64_t pkt_flags;
uint16_t pkt_len;
uint16_t bufq_id;
uint16_t gen_id;
uint16_t rx_id;
uint16_t nb_rx;
uint64_t ts_ns;
nb_rx = 0;
rxq = rx_queue;
ad = rxq->adapter;
if (unlikely(rxq == NULL) || unlikely(!rxq->q_started))
return nb_rx;
rx_id = rxq->rx_tail;
rx_id_bufq1 = rxq->bufq1->rx_next_avail;
rx_id_bufq2 = rxq->bufq2->rx_next_avail;
rx_desc_ring = rxq->rx_ring;
ptype_tbl = rxq->adapter->ptype_tbl;
if ((rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) != 0)
rxq->hw_register_set = 1;
while (nb_rx < nb_pkts) {
rx_desc = &rx_desc_ring[rx_id];
pktlen_gen_bufq_id =
rte_le_to_cpu_16(rx_desc->pktlen_gen_bufq_id);
gen_id = (pktlen_gen_bufq_id &
VIRTCHNL2_RX_FLEX_DESC_ADV_GEN_M) >>
VIRTCHNL2_RX_FLEX_DESC_ADV_GEN_S;
if (gen_id != rxq->expected_gen_id)
break;
pkt_len = (pktlen_gen_bufq_id &
VIRTCHNL2_RX_FLEX_DESC_ADV_LEN_PBUF_M) >>
VIRTCHNL2_RX_FLEX_DESC_ADV_LEN_PBUF_S;
if (pkt_len == 0)
PMD_RX_LOG(ERR, "Packet length is 0");
rx_id++;
if (unlikely(rx_id == rxq->nb_rx_desc)) {
rx_id = 0;
rxq->expected_gen_id ^= 1;
}
bufq_id = (pktlen_gen_bufq_id &
VIRTCHNL2_RX_FLEX_DESC_ADV_BUFQ_ID_M) >>
VIRTCHNL2_RX_FLEX_DESC_ADV_BUFQ_ID_S;
if (bufq_id == 0) {
rxm = rxq->bufq1->sw_ring[rx_id_bufq1];
rx_id_bufq1++;
if (unlikely(rx_id_bufq1 == rxq->bufq1->nb_rx_desc))
rx_id_bufq1 = 0;
rxq->bufq1->nb_rx_hold++;
} else {
rxm = rxq->bufq2->sw_ring[rx_id_bufq2];
rx_id_bufq2++;
if (unlikely(rx_id_bufq2 == rxq->bufq2->nb_rx_desc))
rx_id_bufq2 = 0;
rxq->bufq2->nb_rx_hold++;
}
rxm->pkt_len = pkt_len;
rxm->data_len = pkt_len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rxm->next = NULL;
rxm->nb_segs = 1;
rxm->port = rxq->port_id;
rxm->ol_flags = 0;
rxm->packet_type =
ptype_tbl[(rte_le_to_cpu_16(rx_desc->ptype_err_fflags0) &
VIRTCHNL2_RX_FLEX_DESC_ADV_PTYPE_M) >>
VIRTCHNL2_RX_FLEX_DESC_ADV_PTYPE_S];
status_err0_qw1 = rx_desc->status_err0_qw1;
pkt_flags = idpf_splitq_rx_csum_offload(status_err0_qw1);
pkt_flags |= idpf_splitq_rx_rss_offload(rxm, rx_desc);
if (idpf_timestamp_dynflag > 0 &&
(rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)) {
/* timestamp */
ts_ns = idpf_tstamp_convert_32b_64b(ad,
rxq->hw_register_set,
rte_le_to_cpu_32(rx_desc->ts_high));
rxq->hw_register_set = 0;
*RTE_MBUF_DYNFIELD(rxm,
idpf_timestamp_dynfield_offset,
rte_mbuf_timestamp_t *) = ts_ns;
rxm->ol_flags |= idpf_timestamp_dynflag;
}
rxm->ol_flags |= pkt_flags;
rx_pkts[nb_rx++] = rxm;
}
if (nb_rx > 0) {
rxq->rx_tail = rx_id;
if (rx_id_bufq1 != rxq->bufq1->rx_next_avail)
rxq->bufq1->rx_next_avail = rx_id_bufq1;
if (rx_id_bufq2 != rxq->bufq2->rx_next_avail)
rxq->bufq2->rx_next_avail = rx_id_bufq2;
idpf_split_rx_bufq_refill(rxq->bufq1);
idpf_split_rx_bufq_refill(rxq->bufq2);
}
return nb_rx;
}
static inline void
idpf_split_tx_free(struct idpf_tx_queue *cq)
{
volatile struct idpf_splitq_tx_compl_desc *compl_ring = cq->compl_ring;
volatile struct idpf_splitq_tx_compl_desc *txd;
uint16_t next = cq->tx_tail;
struct idpf_tx_entry *txe;
struct idpf_tx_queue *txq;
uint16_t gen, qid, q_head;
uint16_t nb_desc_clean;
uint8_t ctype;
txd = &compl_ring[next];
gen = (rte_le_to_cpu_16(txd->qid_comptype_gen) &
IDPF_TXD_COMPLQ_GEN_M) >> IDPF_TXD_COMPLQ_GEN_S;
if (gen != cq->expected_gen_id)
return;
ctype = (rte_le_to_cpu_16(txd->qid_comptype_gen) &
IDPF_TXD_COMPLQ_COMPL_TYPE_M) >> IDPF_TXD_COMPLQ_COMPL_TYPE_S;
qid = (rte_le_to_cpu_16(txd->qid_comptype_gen) &
IDPF_TXD_COMPLQ_QID_M) >> IDPF_TXD_COMPLQ_QID_S;
q_head = rte_le_to_cpu_16(txd->q_head_compl_tag.compl_tag);
txq = cq->txqs[qid - cq->tx_start_qid];
switch (ctype) {
case IDPF_TXD_COMPLT_RE:
/* clean to q_head which indicates be fetched txq desc id + 1.
* TODO: need to refine and remove the if condition.
*/
if (unlikely(q_head % 32)) {
PMD_DRV_LOG(ERR, "unexpected desc (head = %u) completion.",
q_head);
return;
}
if (txq->last_desc_cleaned > q_head)
nb_desc_clean = (txq->nb_tx_desc - txq->last_desc_cleaned) +
q_head;
else
nb_desc_clean = q_head - txq->last_desc_cleaned;
txq->nb_free += nb_desc_clean;
txq->last_desc_cleaned = q_head;
break;
case IDPF_TXD_COMPLT_RS:
/* q_head indicates sw_id when ctype is 2 */
txe = &txq->sw_ring[q_head];
if (txe->mbuf != NULL) {
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = NULL;
}
break;
default:
PMD_DRV_LOG(ERR, "unknown completion type.");
return;
}
if (++next == cq->nb_tx_desc) {
next = 0;
cq->expected_gen_id ^= 1;
}
cq->tx_tail = next;
}
/* Check if the context descriptor is needed for TX offloading */
static inline uint16_t
idpf_calc_context_desc(uint64_t flags)
{
if ((flags & RTE_MBUF_F_TX_TCP_SEG) != 0)
return 1;
return 0;
}
/* set TSO context descriptor
*/
static inline void
idpf_set_splitq_tso_ctx(struct rte_mbuf *mbuf,
union idpf_tx_offload tx_offload,
volatile union idpf_flex_tx_ctx_desc *ctx_desc)
{
uint16_t cmd_dtype;
uint32_t tso_len;
uint8_t hdr_len;
if (tx_offload.l4_len == 0) {
PMD_TX_LOG(DEBUG, "L4 length set to 0");
return;
}
hdr_len = tx_offload.l2_len +
tx_offload.l3_len +
tx_offload.l4_len;
cmd_dtype = IDPF_TX_DESC_DTYPE_FLEX_TSO_CTX |
IDPF_TX_FLEX_CTX_DESC_CMD_TSO;
tso_len = mbuf->pkt_len - hdr_len;
ctx_desc->tso.qw1.cmd_dtype = rte_cpu_to_le_16(cmd_dtype);
ctx_desc->tso.qw0.hdr_len = hdr_len;
ctx_desc->tso.qw0.mss_rt =
rte_cpu_to_le_16((uint16_t)mbuf->tso_segsz &
IDPF_TXD_FLEX_CTX_MSS_RT_M);
ctx_desc->tso.qw0.flex_tlen =
rte_cpu_to_le_32(tso_len &
IDPF_TXD_FLEX_CTX_MSS_RT_M);
}
uint16_t
idpf_splitq_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct idpf_tx_queue *txq = (struct idpf_tx_queue *)tx_queue;
volatile struct idpf_flex_tx_sched_desc *txr;
volatile struct idpf_flex_tx_sched_desc *txd;
struct idpf_tx_entry *sw_ring;
union idpf_tx_offload tx_offload = {0};
struct idpf_tx_entry *txe, *txn;
uint16_t nb_used, tx_id, sw_id;
struct rte_mbuf *tx_pkt;
uint16_t nb_to_clean;
uint16_t nb_tx = 0;
uint64_t ol_flags;
uint16_t nb_ctx;
if (unlikely(txq == NULL) || unlikely(!txq->q_started))
return nb_tx;
txr = txq->desc_ring;
sw_ring = txq->sw_ring;
tx_id = txq->tx_tail;
sw_id = txq->sw_tail;
txe = &sw_ring[sw_id];
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
tx_pkt = tx_pkts[nb_tx];
if (txq->nb_free <= txq->free_thresh) {
/* TODO: Need to refine
* 1. free and clean: Better to decide a clean destination instead of
* loop times. And don't free mbuf when RS got immediately, free when
* transmit or according to the clean destination.
* Now, just ignore the RE write back, free mbuf when get RS
* 2. out-of-order rewrite back haven't be supported, SW head and HW head
* need to be separated.
**/
nb_to_clean = 2 * txq->rs_thresh;
while (nb_to_clean--)
idpf_split_tx_free(txq->complq);
}
if (txq->nb_free < tx_pkt->nb_segs)
break;
ol_flags = tx_pkt->ol_flags;
tx_offload.l2_len = tx_pkt->l2_len;
tx_offload.l3_len = tx_pkt->l3_len;
tx_offload.l4_len = tx_pkt->l4_len;
tx_offload.tso_segsz = tx_pkt->tso_segsz;
/* Calculate the number of context descriptors needed. */
nb_ctx = idpf_calc_context_desc(ol_flags);
nb_used = tx_pkt->nb_segs + nb_ctx;
/* context descriptor */
if (nb_ctx != 0) {
volatile union idpf_flex_tx_ctx_desc *ctx_desc =
(volatile union idpf_flex_tx_ctx_desc *)&txr[tx_id];
if ((ol_flags & RTE_MBUF_F_TX_TCP_SEG) != 0)
idpf_set_splitq_tso_ctx(tx_pkt, tx_offload,
ctx_desc);
tx_id++;
if (tx_id == txq->nb_tx_desc)
tx_id = 0;
}
do {
txd = &txr[tx_id];
txn = &sw_ring[txe->next_id];
txe->mbuf = tx_pkt;
/* Setup TX descriptor */
txd->buf_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova(tx_pkt));
txd->qw1.cmd_dtype =
rte_cpu_to_le_16(IDPF_TX_DESC_DTYPE_FLEX_FLOW_SCHE);
txd->qw1.rxr_bufsize = tx_pkt->data_len;
txd->qw1.compl_tag = sw_id;
tx_id++;
if (tx_id == txq->nb_tx_desc)
tx_id = 0;
sw_id = txe->next_id;
txe = txn;
tx_pkt = tx_pkt->next;
} while (tx_pkt);
/* fill the last descriptor with End of Packet (EOP) bit */
txd->qw1.cmd_dtype |= IDPF_TXD_FLEX_FLOW_CMD_EOP;
if (ol_flags & IDPF_TX_CKSUM_OFFLOAD_MASK)
txd->qw1.cmd_dtype |= IDPF_TXD_FLEX_FLOW_CMD_CS_EN;
txq->nb_free = (uint16_t)(txq->nb_free - nb_used);
txq->nb_used = (uint16_t)(txq->nb_used + nb_used);
if (txq->nb_used >= 32) {
txd->qw1.cmd_dtype |= IDPF_TXD_FLEX_FLOW_CMD_RE;
/* Update txq RE bit counters */
txq->nb_used = 0;
}
}
/* update the tail pointer if any packets were processed */
if (likely(nb_tx > 0)) {
IDPF_PCI_REG_WRITE(txq->qtx_tail, tx_id);
txq->tx_tail = tx_id;
txq->sw_tail = sw_id;
}
return nb_tx;
}
#define IDPF_RX_FLEX_DESC_STATUS0_XSUM_S \
(RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | \
RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) | \
RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S))
/* Translate the rx descriptor status and error fields to pkt flags */
static inline uint64_t
idpf_rxd_to_pkt_flags(uint16_t status_error)
{
uint64_t flags = 0;
if (unlikely((status_error & RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_STATUS0_L3L4P_S)) == 0))
return flags;
if (likely((status_error & IDPF_RX_FLEX_DESC_STATUS0_XSUM_S) == 0)) {
flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD);
return flags;
}
if (unlikely((status_error & RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)) != 0))
flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
if (unlikely((status_error & RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)) != 0))
flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
if (unlikely((status_error & RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)) != 0))
flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
if (unlikely((status_error & RTE_BIT32(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)) != 0))
flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD;
return flags;
}
static inline void
idpf_update_rx_tail(struct idpf_rx_queue *rxq, uint16_t nb_hold,
uint16_t rx_id)
{
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG,
"port_id=%u queue_id=%u rx_tail=%u nb_hold=%u",
rxq->port_id, rxq->queue_id, rx_id, nb_hold);
rx_id = (uint16_t)((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
IDPF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
}
uint16_t
idpf_singleq_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
volatile union virtchnl2_rx_desc *rx_ring;
volatile union virtchnl2_rx_desc *rxdp;
union virtchnl2_rx_desc rxd;
struct idpf_rx_queue *rxq;
const uint32_t *ptype_tbl;
uint16_t rx_id, nb_hold;
struct rte_eth_dev *dev;
struct idpf_adapter *ad;
uint16_t rx_packet_len;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
uint16_t rx_status0;
uint64_t pkt_flags;
uint64_t dma_addr;
uint64_t ts_ns;
uint16_t nb_rx;
nb_rx = 0;
nb_hold = 0;
rxq = rx_queue;
ad = rxq->adapter;
if (unlikely(rxq == NULL) || unlikely(!rxq->q_started))
return nb_rx;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
ptype_tbl = rxq->adapter->ptype_tbl;
if ((rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) != 0)
rxq->hw_register_set = 1;
while (nb_rx < nb_pkts) {
rxdp = &rx_ring[rx_id];
rx_status0 = rte_le_to_cpu_16(rxdp->flex_nic_wb.status_error0);
/* Check the DD bit first */
if ((rx_status0 & (1 << VIRTCHNL2_RX_FLEX_DESC_STATUS0_DD_S)) == 0)
break;
nmb = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(nmb == NULL)) {
dev = &rte_eth_devices[rxq->port_id];
dev->data->rx_mbuf_alloc_failed++;
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u", rxq->port_id, rxq->queue_id);
break;
}
rxd = *rxdp; /* copy descriptor in ring to temp variable*/
nb_hold++;
rxm = rxq->sw_ring[rx_id];
rxq->sw_ring[rx_id] = nmb;
rx_id++;
if (unlikely(rx_id == rxq->nb_rx_desc))
rx_id = 0;
/* Prefetch next mbuf */
rte_prefetch0(rxq->sw_ring[rx_id]);
/* When next RX descriptor is on a cache line boundary,
* prefetch the next 4 RX descriptors and next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_prefetch0(&rx_ring[rx_id]);
rte_prefetch0(rxq->sw_ring[rx_id]);
}
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr = dma_addr;
rx_packet_len = (rte_cpu_to_le_16(rxd.flex_nic_wb.pkt_len) &
VIRTCHNL2_RX_FLEX_DESC_PKT_LEN_M);
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
rxm->nb_segs = 1;
rxm->next = NULL;
rxm->pkt_len = rx_packet_len;
rxm->data_len = rx_packet_len;
rxm->port = rxq->port_id;
rxm->ol_flags = 0;
pkt_flags = idpf_rxd_to_pkt_flags(rx_status0);
rxm->packet_type =
ptype_tbl[(uint8_t)(rte_cpu_to_le_16(rxd.flex_nic_wb.ptype_flex_flags0) &
VIRTCHNL2_RX_FLEX_DESC_PTYPE_M)];
rxm->ol_flags |= pkt_flags;
if (idpf_timestamp_dynflag > 0 &&
(rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) != 0) {
/* timestamp */
ts_ns = idpf_tstamp_convert_32b_64b(ad,
rxq->hw_register_set,
rte_le_to_cpu_32(rxd.flex_nic_wb.flex_ts.ts_high));
rxq->hw_register_set = 0;
*RTE_MBUF_DYNFIELD(rxm,
idpf_timestamp_dynfield_offset,
rte_mbuf_timestamp_t *) = ts_ns;
rxm->ol_flags |= idpf_timestamp_dynflag;
}
rx_pkts[nb_rx++] = rxm;
}
rxq->rx_tail = rx_id;
idpf_update_rx_tail(rxq, nb_hold, rx_id);
return nb_rx;
}
static inline int
idpf_xmit_cleanup(struct idpf_tx_queue *txq)
{
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
struct idpf_tx_entry *sw_ring = txq->sw_ring;
uint16_t nb_tx_desc = txq->nb_tx_desc;
uint16_t desc_to_clean_to;
uint16_t nb_tx_to_clean;
uint16_t i;
volatile struct idpf_flex_tx_desc *txd = txq->tx_ring;
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
if (desc_to_clean_to >= nb_tx_desc)
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
/* In the writeback Tx desccriptor, the only significant fields are the 4-bit DTYPE */
if ((txd[desc_to_clean_to].qw1.cmd_dtype &
rte_cpu_to_le_16(IDPF_TXD_QW1_DTYPE_M)) !=
rte_cpu_to_le_16(IDPF_TX_DESC_DTYPE_DESC_DONE)) {
PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
"(port=%d queue=%d)", desc_to_clean_to,
txq->port_id, txq->queue_id);
return -1;
}
if (last_desc_cleaned > desc_to_clean_to)
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
desc_to_clean_to);
else
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
last_desc_cleaned);
txd[desc_to_clean_to].qw1.cmd_dtype = 0;
txd[desc_to_clean_to].qw1.buf_size = 0;
for (i = 0; i < RTE_DIM(txd[desc_to_clean_to].qw1.flex.raw); i++)
txd[desc_to_clean_to].qw1.flex.raw[i] = 0;
txq->last_desc_cleaned = desc_to_clean_to;
txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
return 0;
}
/* TX function */
uint16_t
idpf_singleq_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
volatile struct idpf_flex_tx_desc *txd;
volatile struct idpf_flex_tx_desc *txr;
union idpf_tx_offload tx_offload = {0};
struct idpf_tx_entry *txe, *txn;
struct idpf_tx_entry *sw_ring;
struct idpf_tx_queue *txq;
struct rte_mbuf *tx_pkt;
struct rte_mbuf *m_seg;
uint64_t buf_dma_addr;
uint64_t ol_flags;
uint16_t tx_last;
uint16_t nb_used;
uint16_t nb_ctx;
uint16_t td_cmd;
uint16_t tx_id;
uint16_t nb_tx;
uint16_t slen;
nb_tx = 0;
txq = tx_queue;
if (unlikely(txq == NULL) || unlikely(!txq->q_started))
return nb_tx;
sw_ring = txq->sw_ring;
txr = txq->tx_ring;
tx_id = txq->tx_tail;
txe = &sw_ring[tx_id];
/* Check if the descriptor ring needs to be cleaned. */
if (txq->nb_free < txq->free_thresh)
(void)idpf_xmit_cleanup(txq);
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
td_cmd = 0;
tx_pkt = *tx_pkts++;
RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
ol_flags = tx_pkt->ol_flags;
tx_offload.l2_len = tx_pkt->l2_len;
tx_offload.l3_len = tx_pkt->l3_len;
tx_offload.l4_len = tx_pkt->l4_len;
tx_offload.tso_segsz = tx_pkt->tso_segsz;
/* Calculate the number of context descriptors needed. */
nb_ctx = idpf_calc_context_desc(ol_flags);
/* The number of descriptors that must be allocated for
* a packet equals to the number of the segments of that
* packet plus 1 context descriptor if needed.
*/
nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
tx_last = (uint16_t)(tx_id + nb_used - 1);
/* Circular ring */
if (tx_last >= txq->nb_tx_desc)
tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u"
" tx_first=%u tx_last=%u",
txq->port_id, txq->queue_id, tx_id, tx_last);
if (nb_used > txq->nb_free) {
if (idpf_xmit_cleanup(txq) != 0) {
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
if (unlikely(nb_used > txq->rs_thresh)) {
while (nb_used > txq->nb_free) {
if (idpf_xmit_cleanup(txq) != 0) {
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
}
}
}
if (nb_ctx != 0) {
/* Setup TX context descriptor if required */
volatile union idpf_flex_tx_ctx_desc *ctx_txd =
(volatile union idpf_flex_tx_ctx_desc *)
&txr[tx_id];
txn = &sw_ring[txe->next_id];
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
if (txe->mbuf != NULL) {
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = NULL;
}
/* TSO enabled */
if ((ol_flags & RTE_MBUF_F_TX_TCP_SEG) != 0)
idpf_set_splitq_tso_ctx(tx_pkt, tx_offload,
ctx_txd);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
}
m_seg = tx_pkt;
do {
txd = &txr[tx_id];
txn = &sw_ring[txe->next_id];
if (txe->mbuf != NULL)
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = m_seg;
/* Setup TX Descriptor */
slen = m_seg->data_len;
buf_dma_addr = rte_mbuf_data_iova(m_seg);
txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
txd->qw1.buf_size = slen;
txd->qw1.cmd_dtype = rte_cpu_to_le_16(IDPF_TX_DESC_DTYPE_FLEX_DATA <<
IDPF_FLEX_TXD_QW1_DTYPE_S);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
m_seg = m_seg->next;
} while (m_seg);
/* The last packet data descriptor needs End Of Packet (EOP) */
td_cmd |= IDPF_TX_FLEX_DESC_CMD_EOP;
txq->nb_used = (uint16_t)(txq->nb_used + nb_used);
txq->nb_free = (uint16_t)(txq->nb_free - nb_used);
if (txq->nb_used >= txq->rs_thresh) {
PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
"%4u (port=%d queue=%d)",
tx_last, txq->port_id, txq->queue_id);
td_cmd |= IDPF_TX_FLEX_DESC_CMD_RS;
/* Update txq RS bit counters */
txq->nb_used = 0;
}
if (ol_flags & IDPF_TX_CKSUM_OFFLOAD_MASK)
td_cmd |= IDPF_TX_FLEX_DESC_CMD_CS_EN;
txd->qw1.cmd_dtype |= rte_cpu_to_le_16(td_cmd << IDPF_FLEX_TXD_QW1_CMD_S);
}
end_of_tx:
rte_wmb();
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
txq->port_id, txq->queue_id, tx_id, nb_tx);
IDPF_PCI_REG_WRITE(txq->qtx_tail, tx_id);
txq->tx_tail = tx_id;
return nb_tx;
}
/* TX prep functions */
uint16_t
idpf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
int ret;
#endif
int i;
uint64_t ol_flags;
struct rte_mbuf *m;
for (i = 0; i < nb_pkts; i++) {
m = tx_pkts[i];
ol_flags = m->ol_flags;
/* Check condition for nb_segs > IDPF_TX_MAX_MTU_SEG. */
if ((ol_flags & RTE_MBUF_F_TX_TCP_SEG) == 0) {
if (m->nb_segs > IDPF_TX_MAX_MTU_SEG) {
rte_errno = EINVAL;
return i;
}
} else if ((m->tso_segsz < IDPF_MIN_TSO_MSS) ||
(m->tso_segsz > IDPF_MAX_TSO_MSS) ||
(m->pkt_len > IDPF_MAX_TSO_FRAME_SIZE)) {
/* MSS outside the range are considered malicious */
rte_errno = EINVAL;
return i;
}
if ((ol_flags & IDPF_TX_OFFLOAD_NOTSUP_MASK) != 0) {
rte_errno = ENOTSUP;
return i;
}
if (m->pkt_len < IDPF_MIN_FRAME_SIZE) {
rte_errno = EINVAL;
return i;
}
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
#endif
}
return i;
}
static void __rte_cold
release_rxq_mbufs_vec(struct idpf_rx_queue *rxq)
{
const uint16_t mask = rxq->nb_rx_desc - 1;
uint16_t i;
if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_rx_desc)
return;
/* free all mbufs that are valid in the ring */
if (rxq->rxrearm_nb == 0) {
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i] != NULL)
rte_pktmbuf_free_seg(rxq->sw_ring[i]);
}
} else {
for (i = rxq->rx_tail; i != rxq->rxrearm_start; i = (i + 1) & mask) {
if (rxq->sw_ring[i] != NULL)
rte_pktmbuf_free_seg(rxq->sw_ring[i]);
}
}
rxq->rxrearm_nb = rxq->nb_rx_desc;
/* set all entries to NULL */
memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_rx_desc);
}
static const struct idpf_rxq_ops def_singleq_rx_ops_vec = {
.release_mbufs = release_rxq_mbufs_vec,
};
static inline int
idpf_singleq_rx_vec_setup_default(struct idpf_rx_queue *rxq)
{
uintptr_t p;
struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
mb_def.nb_segs = 1;
mb_def.data_off = RTE_PKTMBUF_HEADROOM;
mb_def.port = rxq->port_id;
rte_mbuf_refcnt_set(&mb_def, 1);
/* prevent compiler reordering: rearm_data covers previous fields */
rte_compiler_barrier();
p = (uintptr_t)&mb_def.rearm_data;
rxq->mbuf_initializer = *(uint64_t *)p;
return 0;
}
int __rte_cold
idpf_singleq_rx_vec_setup(struct idpf_rx_queue *rxq)
{
rxq->ops = &def_singleq_rx_ops_vec;
return idpf_singleq_rx_vec_setup_default(rxq);
}
void
idpf_set_rx_function(struct rte_eth_dev *dev)
{
struct idpf_vport *vport = dev->data->dev_private;
#ifdef RTE_ARCH_X86
struct idpf_adapter *ad = vport->adapter;
struct idpf_rx_queue *rxq;
int i;
if (idpf_rx_vec_dev_check_default(dev) == IDPF_VECTOR_PATH &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
ad->rx_vec_allowed = true;
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
#ifdef CC_AVX512_SUPPORT
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
ad->rx_use_avx512 = true;
#else
PMD_DRV_LOG(NOTICE,
"AVX512 is not supported in build env");
#endif /* CC_AVX512_SUPPORT */
} else {
ad->rx_vec_allowed = false;
}
#endif /* RTE_ARCH_X86 */
#ifdef RTE_ARCH_X86
if (vport->rxq_model == VIRTCHNL2_QUEUE_MODEL_SPLIT) {
dev->rx_pkt_burst = idpf_splitq_recv_pkts;
} else {
if (ad->rx_vec_allowed) {
for (i = 0; i < dev->data->nb_tx_queues; i++) {
rxq = dev->data->rx_queues[i];
(void)idpf_singleq_rx_vec_setup(rxq);
}
#ifdef CC_AVX512_SUPPORT
if (ad->rx_use_avx512) {
dev->rx_pkt_burst = idpf_singleq_recv_pkts_avx512;
return;
}
#endif /* CC_AVX512_SUPPORT */
}
dev->rx_pkt_burst = idpf_singleq_recv_pkts;
}
#else
if (vport->rxq_model == VIRTCHNL2_QUEUE_MODEL_SPLIT)
dev->rx_pkt_burst = idpf_splitq_recv_pkts;
else
dev->rx_pkt_burst = idpf_singleq_recv_pkts;
#endif /* RTE_ARCH_X86 */
}
void
idpf_set_tx_function(struct rte_eth_dev *dev)
{
struct idpf_vport *vport = dev->data->dev_private;
#ifdef RTE_ARCH_X86
struct idpf_adapter *ad = vport->adapter;
#ifdef CC_AVX512_SUPPORT
struct idpf_tx_queue *txq;
int i;
#endif /* CC_AVX512_SUPPORT */
if (idpf_rx_vec_dev_check_default(dev) == IDPF_VECTOR_PATH &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
ad->tx_vec_allowed = true;
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
#ifdef CC_AVX512_SUPPORT
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
ad->tx_use_avx512 = true;
#else
PMD_DRV_LOG(NOTICE,
"AVX512 is not supported in build env");
#endif /* CC_AVX512_SUPPORT */
} else {
ad->tx_vec_allowed = false;
}
#endif /* RTE_ARCH_X86 */
if (vport->txq_model == VIRTCHNL2_QUEUE_MODEL_SPLIT) {
dev->tx_pkt_burst = idpf_splitq_xmit_pkts;
dev->tx_pkt_prepare = idpf_prep_pkts;
} else {
#ifdef RTE_ARCH_X86
if (ad->tx_vec_allowed) {
#ifdef CC_AVX512_SUPPORT
if (ad->tx_use_avx512) {
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (txq == NULL)
continue;
idpf_singleq_tx_vec_setup_avx512(txq);
}
dev->tx_pkt_burst = idpf_singleq_xmit_pkts_avx512;
dev->tx_pkt_prepare = idpf_prep_pkts;
return;
}
#endif /* CC_AVX512_SUPPORT */
}
#endif /* RTE_ARCH_X86 */
dev->tx_pkt_burst = idpf_singleq_xmit_pkts;
dev->tx_pkt_prepare = idpf_prep_pkts;
}
}