f-stack/dpdk/drivers/net/hns3/hns3_common.c

954 lines
26 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 HiSilicon Limited
*/
#include <rte_kvargs.h>
#include <bus_pci_driver.h>
#include <ethdev_pci.h>
#include <rte_pci.h>
#include "hns3_logs.h"
#include "hns3_regs.h"
#include "hns3_rxtx.h"
#include "hns3_dcb.h"
#include "hns3_common.h"
int
hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
size_t fw_size)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint32_t version = hw->fw_version;
int ret;
ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
HNS3_FW_VERSION_BYTE3_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
HNS3_FW_VERSION_BYTE2_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
HNS3_FW_VERSION_BYTE1_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
HNS3_FW_VERSION_BYTE0_S));
if (ret < 0)
return -EINVAL;
ret += 1; /* add the size of '\0' */
if (fw_size < (size_t)ret)
return ret;
else
return 0;
}
int
hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint16_t queue_num = hw->tqps_num;
/*
* In interrupt mode, 'max_rx_queues' is set based on the number of
* MSI-X interrupt resources of the hardware.
*/
if (hw->data->dev_conf.intr_conf.rxq == 1)
queue_num = hw->intr_tqps_num;
info->max_rx_queues = queue_num;
info->max_tx_queues = hw->tqps_num;
info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
info->rx_offload_capa = (RTE_ETH_RX_OFFLOAD_IPV4_CKSUM |
RTE_ETH_RX_OFFLOAD_TCP_CKSUM |
RTE_ETH_RX_OFFLOAD_UDP_CKSUM |
RTE_ETH_RX_OFFLOAD_SCTP_CKSUM |
RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
RTE_ETH_RX_OFFLOAD_OUTER_UDP_CKSUM |
RTE_ETH_RX_OFFLOAD_SCATTER |
RTE_ETH_RX_OFFLOAD_VLAN_STRIP |
RTE_ETH_RX_OFFLOAD_VLAN_FILTER |
RTE_ETH_RX_OFFLOAD_RSS_HASH);
info->tx_offload_capa = (RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM |
RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
RTE_ETH_TX_OFFLOAD_SCTP_CKSUM |
RTE_ETH_TX_OFFLOAD_MULTI_SEGS |
RTE_ETH_TX_OFFLOAD_TCP_TSO |
RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO |
RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO |
RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE |
RTE_ETH_TX_OFFLOAD_VLAN_INSERT);
if (!hns->is_vf && !hw->port_base_vlan_cfg.state)
info->tx_offload_capa |= RTE_ETH_TX_OFFLOAD_QINQ_INSERT;
if (hns3_dev_get_support(hw, OUTER_UDP_CKSUM))
info->tx_offload_capa |= RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM;
info->dev_capa = RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP |
RTE_ETH_DEV_CAPA_FLOW_SHARED_OBJECT_KEEP;
if (hns3_dev_get_support(hw, INDEP_TXRX))
info->dev_capa |= RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
if (hns3_dev_get_support(hw, PTP))
info->rx_offload_capa |= RTE_ETH_RX_OFFLOAD_TIMESTAMP;
if (hns3_dev_get_support(hw, GRO))
info->rx_offload_capa |= RTE_ETH_RX_OFFLOAD_TCP_LRO;
info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = HNS3_MAX_RING_DESC,
.nb_min = HNS3_MIN_RING_DESC,
.nb_align = HNS3_ALIGN_RING_DESC,
};
info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = HNS3_MAX_RING_DESC,
.nb_min = HNS3_MIN_RING_DESC,
.nb_align = HNS3_ALIGN_RING_DESC,
.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
.nb_mtu_seg_max = hw->max_non_tso_bd_num,
};
info->default_rxconf = (struct rte_eth_rxconf) {
.rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
/*
* If there are no available Rx buffer descriptors, incoming
* packets are always dropped by hardware based on hns3 network
* engine.
*/
.rx_drop_en = 1,
.offloads = 0,
};
info->default_txconf = (struct rte_eth_txconf) {
.tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
.offloads = 0,
};
info->reta_size = hw->rss_ind_tbl_size;
info->hash_key_size = hw->rss_key_size;
info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
/*
* Next is the PF/VF difference section.
*/
if (!hns->is_vf) {
info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
info->rx_offload_capa |= RTE_ETH_RX_OFFLOAD_KEEP_CRC;
info->speed_capa = hns3_get_speed_capa(hw);
} else {
info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
}
info->err_handle_mode = RTE_ETH_ERROR_HANDLE_MODE_PROACTIVE;
return 0;
}
static int
hns3_parse_io_hint_func(const char *key, const char *value, void *extra_args)
{
uint32_t hint = HNS3_IO_FUNC_HINT_NONE;
RTE_SET_USED(key);
if (value == NULL || extra_args == NULL)
return 0;
if (strcmp(value, "vec") == 0)
hint = HNS3_IO_FUNC_HINT_VEC;
else if (strcmp(value, "sve") == 0)
hint = HNS3_IO_FUNC_HINT_SVE;
else if (strcmp(value, "simple") == 0)
hint = HNS3_IO_FUNC_HINT_SIMPLE;
else if (strcmp(value, "common") == 0)
hint = HNS3_IO_FUNC_HINT_COMMON;
/* If the hint is valid then update output parameters */
if (hint != HNS3_IO_FUNC_HINT_NONE)
*(uint32_t *)extra_args = hint;
return 0;
}
static const char *
hns3_get_io_hint_func_name(uint32_t hint)
{
switch (hint) {
case HNS3_IO_FUNC_HINT_VEC:
return "vec";
case HNS3_IO_FUNC_HINT_SVE:
return "sve";
case HNS3_IO_FUNC_HINT_SIMPLE:
return "simple";
case HNS3_IO_FUNC_HINT_COMMON:
return "common";
default:
return "none";
}
}
static int
hns3_parse_dev_caps_mask(const char *key, const char *value, void *extra_args)
{
uint64_t val;
RTE_SET_USED(key);
if (value == NULL || extra_args == NULL)
return 0;
val = strtoull(value, NULL, HNS3_CONVERT_TO_HEXADECIMAL);
*(uint64_t *)extra_args = val;
return 0;
}
static int
hns3_parse_mbx_time_limit(const char *key, const char *value, void *extra_args)
{
uint64_t val;
RTE_SET_USED(key);
if (value == NULL || extra_args == NULL)
return 0;
val = strtoul(value, NULL, HNS3_CONVERT_TO_DECIMAL);
/*
* 500ms is empirical value in process of mailbox communication. If
* the delay value is set to one lower than the empirical value, mailbox
* communication may fail.
*/
if (val > HNS3_MBX_DEF_TIME_LIMIT_MS && val <= UINT16_MAX)
*(uint16_t *)extra_args = val;
return 0;
}
void
hns3_parse_devargs(struct rte_eth_dev *dev)
{
uint16_t mbx_time_limit_ms = HNS3_MBX_DEF_TIME_LIMIT_MS;
struct hns3_adapter *hns = dev->data->dev_private;
uint32_t rx_func_hint = HNS3_IO_FUNC_HINT_NONE;
uint32_t tx_func_hint = HNS3_IO_FUNC_HINT_NONE;
struct hns3_hw *hw = &hns->hw;
uint64_t dev_caps_mask = 0;
struct rte_kvargs *kvlist;
/* Set default value of runtime config parameters. */
hns->rx_func_hint = HNS3_IO_FUNC_HINT_NONE;
hns->tx_func_hint = HNS3_IO_FUNC_HINT_NONE;
hns->dev_caps_mask = 0;
hns->mbx_time_limit_ms = HNS3_MBX_DEF_TIME_LIMIT_MS;
if (dev->device->devargs == NULL)
return;
kvlist = rte_kvargs_parse(dev->device->devargs->args, NULL);
if (!kvlist)
return;
(void)rte_kvargs_process(kvlist, HNS3_DEVARG_RX_FUNC_HINT,
&hns3_parse_io_hint_func, &rx_func_hint);
(void)rte_kvargs_process(kvlist, HNS3_DEVARG_TX_FUNC_HINT,
&hns3_parse_io_hint_func, &tx_func_hint);
(void)rte_kvargs_process(kvlist, HNS3_DEVARG_DEV_CAPS_MASK,
&hns3_parse_dev_caps_mask, &dev_caps_mask);
(void)rte_kvargs_process(kvlist, HNS3_DEVARG_MBX_TIME_LIMIT_MS,
&hns3_parse_mbx_time_limit, &mbx_time_limit_ms);
rte_kvargs_free(kvlist);
if (rx_func_hint != HNS3_IO_FUNC_HINT_NONE)
hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_RX_FUNC_HINT,
hns3_get_io_hint_func_name(rx_func_hint));
hns->rx_func_hint = rx_func_hint;
if (tx_func_hint != HNS3_IO_FUNC_HINT_NONE)
hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_TX_FUNC_HINT,
hns3_get_io_hint_func_name(tx_func_hint));
hns->tx_func_hint = tx_func_hint;
if (dev_caps_mask != 0)
hns3_warn(hw, "parsed %s = 0x%" PRIx64 ".",
HNS3_DEVARG_DEV_CAPS_MASK, dev_caps_mask);
hns->dev_caps_mask = dev_caps_mask;
if (mbx_time_limit_ms != HNS3_MBX_DEF_TIME_LIMIT_MS)
hns3_warn(hw, "parsed %s = %u.", HNS3_DEVARG_MBX_TIME_LIMIT_MS,
mbx_time_limit_ms);
hns->mbx_time_limit_ms = mbx_time_limit_ms;
}
void
hns3_clock_gettime(struct timeval *tv)
{
#ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */
#define CLOCK_TYPE CLOCK_MONOTONIC_RAW
#else
#define CLOCK_TYPE CLOCK_MONOTONIC
#endif
#define NSEC_TO_USEC_DIV 1000
struct timespec spec;
(void)clock_gettime(CLOCK_TYPE, &spec);
tv->tv_sec = spec.tv_sec;
tv->tv_usec = spec.tv_nsec / NSEC_TO_USEC_DIV;
}
uint64_t
hns3_clock_calctime_ms(struct timeval *tv)
{
return (uint64_t)tv->tv_sec * MSEC_PER_SEC +
tv->tv_usec / USEC_PER_MSEC;
}
uint64_t
hns3_clock_gettime_ms(void)
{
struct timeval tv;
hns3_clock_gettime(&tv);
return hns3_clock_calctime_ms(&tv);
}
void hns3_ether_format_addr(char *buf, uint16_t size,
const struct rte_ether_addr *ether_addr)
{
(void)snprintf(buf, size, "%02X:**:**:**:%02X:%02X",
ether_addr->addr_bytes[0],
ether_addr->addr_bytes[4],
ether_addr->addr_bytes[5]);
}
static int
hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct rte_ether_addr *addr;
uint16_t mac_addrs_capa;
uint32_t i;
uint32_t j;
if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
"invalid. valid range: 0~%d",
nb_mc_addr, HNS3_MC_MACADDR_NUM);
return -ENOSPC;
}
/* Check if input mac addresses are valid */
for (i = 0; i < nb_mc_addr; i++) {
addr = &mc_addr_set[i];
if (!rte_is_multicast_ether_addr(addr)) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw,
"failed to set mc mac addr, addr(%s) invalid.",
mac_str);
return -EINVAL;
}
/* Check if there are duplicate addresses */
for (j = i + 1; j < nb_mc_addr; j++) {
if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
hns3_ether_format_addr(mac_str,
RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to set mc mac addr, "
"addrs invalid. two same addrs(%s).",
mac_str);
return -EINVAL;
}
}
/*
* Check if there are duplicate addresses between mac_addrs
* and mc_addr_set
*/
mac_addrs_capa = hns->is_vf ? HNS3_VF_UC_MACADDR_NUM :
HNS3_UC_MACADDR_NUM;
for (j = 0; j < mac_addrs_capa; j++) {
if (rte_is_same_ether_addr(addr,
&hw->data->mac_addrs[j])) {
hns3_ether_format_addr(mac_str,
RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to set mc mac addr, "
"addrs invalid. addrs(%s) has already "
"configured in mac_addr add API",
mac_str);
return -EINVAL;
}
}
}
return 0;
}
int
hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct rte_ether_addr *addr;
int cur_addr_num;
int set_addr_num;
int num;
int ret;
int i;
if (mc_addr_set == NULL || nb_mc_addr == 0) {
rte_spinlock_lock(&hw->lock);
ret = hns3_configure_all_mc_mac_addr(hns, true);
if (ret == 0)
hw->mc_addrs_num = 0;
rte_spinlock_unlock(&hw->lock);
return ret;
}
/* Check if input parameters are valid */
ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
if (ret)
return ret;
rte_spinlock_lock(&hw->lock);
cur_addr_num = hw->mc_addrs_num;
for (i = 0; i < cur_addr_num; i++) {
num = cur_addr_num - i - 1;
addr = &hw->mc_addrs[num];
ret = hw->ops.del_mc_mac_addr(hw, addr);
if (ret) {
rte_spinlock_unlock(&hw->lock);
return ret;
}
hw->mc_addrs_num--;
}
set_addr_num = (int)nb_mc_addr;
for (i = 0; i < set_addr_num; i++) {
addr = &mc_addr_set[i];
ret = hw->ops.add_mc_mac_addr(hw, addr);
if (ret) {
rte_spinlock_unlock(&hw->lock);
return ret;
}
rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
hw->mc_addrs_num++;
}
rte_spinlock_unlock(&hw->lock);
return 0;
}
int
hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct hns3_hw *hw = &hns->hw;
struct rte_ether_addr *addr;
int ret = 0;
int i;
for (i = 0; i < hw->mc_addrs_num; i++) {
addr = &hw->mc_addrs[i];
if (!rte_is_multicast_ether_addr(addr))
continue;
if (del)
ret = hw->ops.del_mc_mac_addr(hw, addr);
else
ret = hw->ops.add_mc_mac_addr(hw, addr);
if (ret) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_dbg(hw, "failed to %s mc mac addr: %s ret = %d",
del ? "Remove" : "Restore", mac_str, ret);
}
}
return ret;
}
int
hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct hns3_hw *hw = &hns->hw;
struct hns3_hw_ops *ops = &hw->ops;
struct rte_ether_addr *addr;
uint16_t mac_addrs_capa;
int ret = 0;
uint16_t i;
mac_addrs_capa =
hns->is_vf ? HNS3_VF_UC_MACADDR_NUM : HNS3_UC_MACADDR_NUM;
for (i = 0; i < mac_addrs_capa; i++) {
addr = &hw->data->mac_addrs[i];
if (rte_is_zero_ether_addr(addr))
continue;
if (rte_is_multicast_ether_addr(addr))
ret = del ? ops->del_mc_mac_addr(hw, addr) :
ops->add_mc_mac_addr(hw, addr);
else
ret = del ? ops->del_uc_mac_addr(hw, addr) :
ops->add_uc_mac_addr(hw, addr);
if (ret) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to %s mac addr(%s) index:%u ret = %d.",
del ? "remove" : "restore", mac_str, i, ret);
}
}
return ret;
}
static bool
hns3_find_duplicate_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mc_addr)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct rte_ether_addr *addr;
int i;
for (i = 0; i < hw->mc_addrs_num; i++) {
addr = &hw->mc_addrs[i];
/* Check if there are duplicate addresses in mc_addrs[] */
if (rte_is_same_ether_addr(addr, mc_addr)) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to add mc mac addr, same addrs"
"(%s) is added by the set_mc_mac_addr_list "
"API", mac_str);
return true;
}
}
return false;
}
int
hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
__rte_unused uint32_t idx, __rte_unused uint32_t pool)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
rte_spinlock_lock(&hw->lock);
/*
* In hns3 network engine adding UC and MC mac address with different
* commands with firmware. We need to determine whether the input
* address is a UC or a MC address to call different commands.
* By the way, it is recommended calling the API function named
* rte_eth_dev_set_mc_addr_list to set the MC mac address, because
* using the rte_eth_dev_mac_addr_add API function to set MC mac address
* may affect the specifications of UC mac addresses.
*/
if (rte_is_multicast_ether_addr(mac_addr)) {
if (hns3_find_duplicate_mc_addr(hw, mac_addr)) {
rte_spinlock_unlock(&hw->lock);
return -EINVAL;
}
ret = hw->ops.add_mc_mac_addr(hw, mac_addr);
} else {
ret = hw->ops.add_uc_mac_addr(hw, mac_addr);
}
rte_spinlock_unlock(&hw->lock);
if (ret) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
ret);
}
return ret;
}
void
hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* index will be checked by upper level rte interface */
struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
rte_spinlock_lock(&hw->lock);
if (rte_is_multicast_ether_addr(mac_addr))
ret = hw->ops.del_mc_mac_addr(hw, mac_addr);
else
ret = hw->ops.del_uc_mac_addr(hw, mac_addr);
rte_spinlock_unlock(&hw->lock);
if (ret) {
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
ret);
}
}
int
hns3_init_mac_addrs(struct rte_eth_dev *dev)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
const char *memory_name = hns->is_vf ? "hns3vf-mac" : "hns3-mac";
uint16_t mac_addrs_capa = hns->is_vf ? HNS3_VF_UC_MACADDR_NUM :
HNS3_UC_MACADDR_NUM;
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct rte_ether_addr *eth_addr;
/* Allocate memory for storing MAC addresses */
dev->data->mac_addrs = rte_zmalloc(memory_name,
sizeof(struct rte_ether_addr) * mac_addrs_capa,
0);
if (dev->data->mac_addrs == NULL) {
hns3_err(hw, "failed to allocate %zx bytes needed to store MAC addresses",
sizeof(struct rte_ether_addr) * mac_addrs_capa);
return -ENOMEM;
}
eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
if (!hns->is_vf) {
if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
rte_eth_random_addr(hw->mac.mac_addr);
hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
(struct rte_ether_addr *)hw->mac.mac_addr);
hns3_warn(hw, "default mac_addr from firmware is an invalid "
"unicast address, using random MAC address %s",
mac_str);
}
} else {
/*
* The hns3 PF ethdev driver in kernel support setting VF MAC
* address on the host by "ip link set ..." command. To avoid
* some incorrect scenes, for example, hns3 VF PMD driver fails
* to receive and send packets after user configure the MAC
* address by using the "ip link set ..." command, hns3 VF PMD
* driver keep the same MAC address strategy as the hns3 kernel
* ethdev driver in the initialization. If user configure a MAC
* address by the ip command for VF device, then hns3 VF PMD
* driver will start with it, otherwise start with a random MAC
* address in the initialization.
*/
if (rte_is_zero_ether_addr(eth_addr))
rte_eth_random_addr(hw->mac.mac_addr);
}
rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
&dev->data->mac_addrs[0]);
return 0;
}
int
hns3_init_ring_with_vector(struct hns3_hw *hw)
{
uint16_t vec;
uint16_t i;
int ret;
/*
* In hns3 network engine, vector 0 is always the misc interrupt of this
* function, vector 1~N can be used respectively for the queues of the
* function. Tx and Rx queues with the same number share the interrupt
* vector. In the initialization clearing the all hardware mapping
* relationship configurations between queues and interrupt vectors is
* needed, so some error caused by the residual configurations, such as
* the unexpected Tx interrupt, can be avoid.
*/
vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
vec = vec - 1; /* the last interrupt is reserved */
hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
for (i = 0; i < hw->intr_tqps_num; i++) {
/*
* Set gap limiter/rate limiter/quantity limiter algorithm
* configuration for interrupt coalesce of queue's interrupt.
*/
hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
HNS3_TQP_INTR_GL_DEFAULT);
hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
HNS3_TQP_INTR_GL_DEFAULT);
hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
/*
* QL(quantity limiter) is not used currently, just set 0 to
* close it.
*/
hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
ret = hw->ops.bind_ring_with_vector(hw, vec, false,
HNS3_RING_TYPE_TX, i);
if (ret) {
PMD_INIT_LOG(ERR, "fail to unbind TX ring(%u) with vector: %u, ret=%d",
i, vec, ret);
return ret;
}
ret = hw->ops.bind_ring_with_vector(hw, vec, false,
HNS3_RING_TYPE_RX, i);
if (ret) {
PMD_INIT_LOG(ERR, "fail to unbind RX ring(%d) with vector: %u, ret=%d",
i, vec, ret);
return ret;
}
}
return 0;
}
int
hns3_map_rx_interrupt(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t base = RTE_INTR_VEC_ZERO_OFFSET;
uint16_t vec = RTE_INTR_VEC_ZERO_OFFSET;
uint32_t intr_vector;
uint16_t q_id;
int ret;
/*
* hns3 needs a separate interrupt to be used as event interrupt which
* could not be shared with task queue pair, so KERNEL drivers need
* support multiple interrupt vectors.
*/
if (dev->data->dev_conf.intr_conf.rxq == 0 ||
!rte_intr_cap_multiple(intr_handle))
return 0;
rte_intr_disable(intr_handle);
intr_vector = hw->used_rx_queues;
/* creates event fd for each intr vector when MSIX is used */
if (rte_intr_efd_enable(intr_handle, intr_vector))
return -EINVAL;
/* Allocate vector list */
if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
hw->used_rx_queues)) {
hns3_err(hw, "failed to allocate %u rx_queues intr_vec",
hw->used_rx_queues);
ret = -ENOMEM;
goto alloc_intr_vec_error;
}
if (rte_intr_allow_others(intr_handle)) {
vec = RTE_INTR_VEC_RXTX_OFFSET;
base = RTE_INTR_VEC_RXTX_OFFSET;
}
for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
ret = hw->ops.bind_ring_with_vector(hw, vec, true,
HNS3_RING_TYPE_RX, q_id);
if (ret)
goto bind_vector_error;
if (rte_intr_vec_list_index_set(intr_handle, q_id, vec))
goto bind_vector_error;
/*
* If there are not enough efds (e.g. not enough interrupt),
* remaining queues will be bond to the last interrupt.
*/
if (vec < base + rte_intr_nb_efd_get(intr_handle) - 1)
vec++;
}
rte_intr_enable(intr_handle);
return 0;
bind_vector_error:
rte_intr_vec_list_free(intr_handle);
alloc_intr_vec_error:
rte_intr_efd_disable(intr_handle);
return ret;
}
void
hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
uint16_t q_id;
if (dev->data->dev_conf.intr_conf.rxq == 0)
return;
/* unmap the ring with vector */
if (rte_intr_allow_others(intr_handle)) {
vec = RTE_INTR_VEC_RXTX_OFFSET;
base = RTE_INTR_VEC_RXTX_OFFSET;
}
if (rte_intr_dp_is_en(intr_handle)) {
for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
(void)hw->ops.bind_ring_with_vector(hw, vec, false,
HNS3_RING_TYPE_RX,
q_id);
if (vec < base + rte_intr_nb_efd_get(intr_handle) - 1)
vec++;
}
}
/* Clean datapath event and queue/vec mapping */
rte_intr_efd_disable(intr_handle);
rte_intr_vec_list_free(intr_handle);
}
int
hns3_restore_rx_interrupt(struct hns3_hw *hw)
{
struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
uint16_t q_id;
int ret;
if (dev->data->dev_conf.intr_conf.rxq == 0)
return 0;
if (rte_intr_dp_is_en(intr_handle)) {
for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
ret = hw->ops.bind_ring_with_vector(hw,
rte_intr_vec_list_index_get(intr_handle,
q_id),
true, HNS3_RING_TYPE_RX, q_id);
if (ret)
return ret;
}
}
return 0;
}
int
hns3_get_pci_revision_id(struct hns3_hw *hw, uint8_t *revision_id)
{
struct rte_pci_device *pci_dev;
struct rte_eth_dev *eth_dev;
uint8_t revision;
int ret;
eth_dev = &rte_eth_devices[hw->data->port_id];
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
HNS3_PCI_REVISION_ID);
if (ret != HNS3_PCI_REVISION_ID_LEN) {
hns3_err(hw, "failed to read pci revision id, ret = %d", ret);
return -EIO;
}
*revision_id = revision;
return 0;
}
void
hns3_set_default_dev_specifications(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
hw->rss_key_size = HNS3_RSS_KEY_SIZE;
hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
if (hns->is_vf)
return;
hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
}
static void
hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_dev_specs_0_cmd *req0;
struct hns3_dev_specs_1_cmd *req1;
req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
req1 = (struct hns3_dev_specs_1_cmd *)desc[1].data;
hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
hw->min_tx_pkt_len = req1->min_tx_pkt_len;
if (hns->is_vf)
return;
hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
}
static int
hns3_check_dev_specifications(struct hns3_hw *hw)
{
if (hw->rss_ind_tbl_size == 0 ||
hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
hns3_err(hw, "the indirection table size obtained (%u) is invalid, and should not be zero or exceed the maximum(%u)",
hw->rss_ind_tbl_size, HNS3_RSS_IND_TBL_SIZE_MAX);
return -EINVAL;
}
if (hw->rss_key_size == 0 || hw->rss_key_size > HNS3_RSS_KEY_SIZE_MAX) {
hns3_err(hw, "the RSS key size obtained (%u) is invalid, and should not be zero or exceed the maximum(%u)",
hw->rss_key_size, HNS3_RSS_KEY_SIZE_MAX);
return -EINVAL;
}
if (hw->rss_key_size > HNS3_RSS_KEY_SIZE)
hns3_warn(hw, "the RSS key size obtained (%u) is greater than the default key size (%u)",
hw->rss_key_size, HNS3_RSS_KEY_SIZE);
return 0;
}
int
hns3_query_dev_specifications(struct hns3_hw *hw)
{
struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
int ret;
int i;
for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
true);
desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
}
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
if (ret)
return ret;
hns3_parse_dev_specifications(hw, desc);
return hns3_check_dev_specifications(hw);
}