mirror of https://github.com/F-Stack/f-stack.git
809 lines
21 KiB
C
809 lines
21 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2018-2021 HiSilicon Limited.
|
|
*/
|
|
|
|
#include <ethdev_pci.h>
|
|
#include <rte_io.h>
|
|
|
|
#include "hns3_common.h"
|
|
#include "hns3_regs.h"
|
|
#include "hns3_intr.h"
|
|
#include "hns3_logs.h"
|
|
|
|
static int
|
|
hns3_ring_space(struct hns3_cmq_ring *ring)
|
|
{
|
|
int ntu = ring->next_to_use;
|
|
int ntc = ring->next_to_clean;
|
|
int used = (ntu - ntc + ring->desc_num) % ring->desc_num;
|
|
|
|
return ring->desc_num - used - 1;
|
|
}
|
|
|
|
static bool
|
|
is_valid_csq_clean_head(struct hns3_cmq_ring *ring, int head)
|
|
{
|
|
int ntu = ring->next_to_use;
|
|
int ntc = ring->next_to_clean;
|
|
|
|
if (ntu > ntc)
|
|
return head >= ntc && head <= ntu;
|
|
|
|
return head >= ntc || head <= ntu;
|
|
}
|
|
|
|
/*
|
|
* hns3_allocate_dma_mem - Specific memory alloc for command function.
|
|
* Malloc a memzone, which is a contiguous portion of physical memory identified
|
|
* by a name.
|
|
* @ring: pointer to the ring structure
|
|
* @size: size of memory requested
|
|
* @alignment: what to align the allocation to
|
|
*/
|
|
static int
|
|
hns3_allocate_dma_mem(struct hns3_hw *hw, struct hns3_cmq_ring *ring,
|
|
uint64_t size, uint32_t alignment)
|
|
{
|
|
static uint64_t hns3_dma_memzone_id;
|
|
const struct rte_memzone *mz = NULL;
|
|
char z_name[RTE_MEMZONE_NAMESIZE];
|
|
|
|
snprintf(z_name, sizeof(z_name), "hns3_dma_%" PRIu64,
|
|
__atomic_fetch_add(&hns3_dma_memzone_id, 1, __ATOMIC_RELAXED));
|
|
mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY,
|
|
RTE_MEMZONE_IOVA_CONTIG, alignment,
|
|
RTE_PGSIZE_2M);
|
|
if (mz == NULL)
|
|
return -ENOMEM;
|
|
|
|
ring->buf_size = size;
|
|
ring->desc = mz->addr;
|
|
ring->desc_dma_addr = mz->iova;
|
|
ring->zone = (const void *)mz;
|
|
hns3_dbg(hw, "cmd ring memzone name: %s", mz->name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
hns3_free_dma_mem(struct hns3_cmq_ring *ring)
|
|
{
|
|
rte_memzone_free((const struct rte_memzone *)ring->zone);
|
|
ring->buf_size = 0;
|
|
ring->desc = NULL;
|
|
ring->desc_dma_addr = 0;
|
|
ring->zone = NULL;
|
|
}
|
|
|
|
static int
|
|
hns3_alloc_cmd_desc(struct hns3_hw *hw, struct hns3_cmq_ring *ring)
|
|
{
|
|
int size = ring->desc_num * sizeof(struct hns3_cmd_desc);
|
|
|
|
if (hns3_allocate_dma_mem(hw, ring, size, HNS3_CMD_DESC_ALIGNMENT)) {
|
|
hns3_err(hw, "allocate dma mem failed");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
hns3_free_cmd_desc(__rte_unused struct hns3_hw *hw, struct hns3_cmq_ring *ring)
|
|
{
|
|
if (ring->desc)
|
|
hns3_free_dma_mem(ring);
|
|
}
|
|
|
|
static int
|
|
hns3_alloc_cmd_queue(struct hns3_hw *hw, int ring_type)
|
|
{
|
|
struct hns3_cmq_ring *ring =
|
|
(ring_type == HNS3_TYPE_CSQ) ? &hw->cmq.csq : &hw->cmq.crq;
|
|
int ret;
|
|
|
|
ring->ring_type = ring_type;
|
|
ring->hw = hw;
|
|
|
|
ret = hns3_alloc_cmd_desc(hw, ring);
|
|
if (ret)
|
|
hns3_err(hw, "descriptor %s alloc error %d",
|
|
(ring_type == HNS3_TYPE_CSQ) ? "CSQ" : "CRQ", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
hns3_cmd_reuse_desc(struct hns3_cmd_desc *desc, bool is_read)
|
|
{
|
|
desc->flag = rte_cpu_to_le_16(HNS3_CMD_FLAG_NO_INTR | HNS3_CMD_FLAG_IN);
|
|
if (is_read)
|
|
desc->flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_WR);
|
|
else
|
|
desc->flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_WR);
|
|
}
|
|
|
|
void
|
|
hns3_cmd_setup_basic_desc(struct hns3_cmd_desc *desc,
|
|
enum hns3_opcode_type opcode, bool is_read)
|
|
{
|
|
memset((void *)desc, 0, sizeof(struct hns3_cmd_desc));
|
|
desc->opcode = rte_cpu_to_le_16(opcode);
|
|
desc->flag = rte_cpu_to_le_16(HNS3_CMD_FLAG_NO_INTR | HNS3_CMD_FLAG_IN);
|
|
|
|
if (is_read)
|
|
desc->flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_WR);
|
|
}
|
|
|
|
static void
|
|
hns3_cmd_clear_regs(struct hns3_hw *hw)
|
|
{
|
|
hns3_write_dev(hw, HNS3_CMDQ_TX_ADDR_L_REG, 0);
|
|
hns3_write_dev(hw, HNS3_CMDQ_TX_ADDR_H_REG, 0);
|
|
hns3_write_dev(hw, HNS3_CMDQ_TX_DEPTH_REG, 0);
|
|
hns3_write_dev(hw, HNS3_CMDQ_TX_HEAD_REG, 0);
|
|
hns3_write_dev(hw, HNS3_CMDQ_TX_TAIL_REG, 0);
|
|
hns3_write_dev(hw, HNS3_CMDQ_RX_ADDR_L_REG, 0);
|
|
hns3_write_dev(hw, HNS3_CMDQ_RX_ADDR_H_REG, 0);
|
|
hns3_write_dev(hw, HNS3_CMDQ_RX_DEPTH_REG, 0);
|
|
hns3_write_dev(hw, HNS3_CMDQ_RX_HEAD_REG, 0);
|
|
hns3_write_dev(hw, HNS3_CMDQ_RX_TAIL_REG, 0);
|
|
}
|
|
|
|
static void
|
|
hns3_cmd_config_regs(struct hns3_cmq_ring *ring)
|
|
{
|
|
uint64_t dma = ring->desc_dma_addr;
|
|
|
|
if (ring->ring_type == HNS3_TYPE_CSQ) {
|
|
hns3_write_dev(ring->hw, HNS3_CMDQ_TX_ADDR_L_REG,
|
|
lower_32_bits(dma));
|
|
hns3_write_dev(ring->hw, HNS3_CMDQ_TX_ADDR_H_REG,
|
|
upper_32_bits(dma));
|
|
hns3_write_dev(ring->hw, HNS3_CMDQ_TX_DEPTH_REG,
|
|
ring->desc_num >> HNS3_NIC_CMQ_DESC_NUM_S |
|
|
HNS3_NIC_SW_RST_RDY);
|
|
hns3_write_dev(ring->hw, HNS3_CMDQ_TX_HEAD_REG, 0);
|
|
hns3_write_dev(ring->hw, HNS3_CMDQ_TX_TAIL_REG, 0);
|
|
} else {
|
|
hns3_write_dev(ring->hw, HNS3_CMDQ_RX_ADDR_L_REG,
|
|
lower_32_bits(dma));
|
|
hns3_write_dev(ring->hw, HNS3_CMDQ_RX_ADDR_H_REG,
|
|
upper_32_bits(dma));
|
|
hns3_write_dev(ring->hw, HNS3_CMDQ_RX_DEPTH_REG,
|
|
ring->desc_num >> HNS3_NIC_CMQ_DESC_NUM_S);
|
|
hns3_write_dev(ring->hw, HNS3_CMDQ_RX_HEAD_REG, 0);
|
|
hns3_write_dev(ring->hw, HNS3_CMDQ_RX_TAIL_REG, 0);
|
|
}
|
|
}
|
|
|
|
static void
|
|
hns3_cmd_init_regs(struct hns3_hw *hw)
|
|
{
|
|
hns3_cmd_config_regs(&hw->cmq.csq);
|
|
hns3_cmd_config_regs(&hw->cmq.crq);
|
|
}
|
|
|
|
static int
|
|
hns3_cmd_csq_clean(struct hns3_hw *hw)
|
|
{
|
|
struct hns3_cmq_ring *csq = &hw->cmq.csq;
|
|
uint32_t head;
|
|
uint32_t addr;
|
|
int clean;
|
|
|
|
head = hns3_read_dev(hw, HNS3_CMDQ_TX_HEAD_REG);
|
|
addr = hns3_read_dev(hw, HNS3_CMDQ_TX_ADDR_L_REG);
|
|
if (!is_valid_csq_clean_head(csq, head) || addr == 0) {
|
|
hns3_err(hw, "wrong cmd addr(%0x) head (%u, %u-%u)", addr, head,
|
|
csq->next_to_use, csq->next_to_clean);
|
|
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
|
|
__atomic_store_n(&hw->reset.disable_cmd, 1,
|
|
__ATOMIC_RELAXED);
|
|
hns3_schedule_delayed_reset(HNS3_DEV_HW_TO_ADAPTER(hw));
|
|
}
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
clean = (head - csq->next_to_clean + csq->desc_num) % csq->desc_num;
|
|
csq->next_to_clean = head;
|
|
return clean;
|
|
}
|
|
|
|
static int
|
|
hns3_cmd_csq_done(struct hns3_hw *hw)
|
|
{
|
|
uint32_t head = hns3_read_dev(hw, HNS3_CMDQ_TX_HEAD_REG);
|
|
|
|
return head == hw->cmq.csq.next_to_use;
|
|
}
|
|
|
|
static bool
|
|
hns3_is_special_opcode(uint16_t opcode)
|
|
{
|
|
/*
|
|
* These commands have several descriptors,
|
|
* and use the first one to save opcode and return value.
|
|
*/
|
|
uint16_t spec_opcode[] = {HNS3_OPC_STATS_64_BIT,
|
|
HNS3_OPC_STATS_32_BIT,
|
|
HNS3_OPC_STATS_MAC,
|
|
HNS3_OPC_STATS_MAC_ALL,
|
|
HNS3_OPC_QUERY_32_BIT_REG,
|
|
HNS3_OPC_QUERY_64_BIT_REG,
|
|
HNS3_OPC_QUERY_CLEAR_MPF_RAS_INT,
|
|
HNS3_OPC_QUERY_CLEAR_PF_RAS_INT,
|
|
HNS3_OPC_QUERY_CLEAR_ALL_MPF_MSIX_INT,
|
|
HNS3_OPC_QUERY_CLEAR_ALL_PF_MSIX_INT,
|
|
HNS3_OPC_QUERY_ALL_ERR_INFO,};
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < RTE_DIM(spec_opcode); i++)
|
|
if (spec_opcode[i] == opcode)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int
|
|
hns3_cmd_convert_err_code(uint16_t desc_ret)
|
|
{
|
|
static const struct {
|
|
uint16_t imp_errcode;
|
|
int linux_errcode;
|
|
} hns3_cmdq_status[] = {
|
|
{HNS3_CMD_EXEC_SUCCESS, 0},
|
|
{HNS3_CMD_NO_AUTH, -EPERM},
|
|
{HNS3_CMD_NOT_SUPPORTED, -EOPNOTSUPP},
|
|
{HNS3_CMD_QUEUE_FULL, -EXFULL},
|
|
{HNS3_CMD_NEXT_ERR, -ENOSR},
|
|
{HNS3_CMD_UNEXE_ERR, -ENOTBLK},
|
|
{HNS3_CMD_PARA_ERR, -EINVAL},
|
|
{HNS3_CMD_RESULT_ERR, -ERANGE},
|
|
{HNS3_CMD_TIMEOUT, -ETIME},
|
|
{HNS3_CMD_HILINK_ERR, -ENOLINK},
|
|
{HNS3_CMD_QUEUE_ILLEGAL, -ENXIO},
|
|
{HNS3_CMD_INVALID, -EBADR},
|
|
{HNS3_CMD_ROH_CHECK_FAIL, -EINVAL}
|
|
};
|
|
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < RTE_DIM(hns3_cmdq_status); i++)
|
|
if (hns3_cmdq_status[i].imp_errcode == desc_ret)
|
|
return hns3_cmdq_status[i].linux_errcode;
|
|
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
static int
|
|
hns3_cmd_get_hardware_reply(struct hns3_hw *hw,
|
|
struct hns3_cmd_desc *desc, int num, int ntc)
|
|
{
|
|
uint16_t opcode, desc_ret;
|
|
int current_ntc = ntc;
|
|
int handle;
|
|
|
|
opcode = rte_le_to_cpu_16(desc[0].opcode);
|
|
for (handle = 0; handle < num; handle++) {
|
|
/* Get the result of hardware write back */
|
|
desc[handle] = hw->cmq.csq.desc[current_ntc];
|
|
|
|
current_ntc++;
|
|
if (current_ntc == hw->cmq.csq.desc_num)
|
|
current_ntc = 0;
|
|
}
|
|
|
|
if (likely(!hns3_is_special_opcode(opcode)))
|
|
desc_ret = rte_le_to_cpu_16(desc[num - 1].retval);
|
|
else
|
|
desc_ret = rte_le_to_cpu_16(desc[0].retval);
|
|
|
|
hw->cmq.last_status = desc_ret;
|
|
return hns3_cmd_convert_err_code(desc_ret);
|
|
}
|
|
|
|
static int hns3_cmd_poll_reply(struct hns3_hw *hw)
|
|
{
|
|
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
|
|
uint32_t timeout = 0;
|
|
|
|
do {
|
|
if (hns3_cmd_csq_done(hw))
|
|
return 0;
|
|
|
|
if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED)) {
|
|
hns3_err(hw,
|
|
"Don't wait for reply because of disable_cmd");
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (is_reset_pending(hns)) {
|
|
hns3_err(hw, "Don't wait for reply because of reset pending");
|
|
return -EIO;
|
|
}
|
|
|
|
rte_delay_us(1);
|
|
timeout++;
|
|
} while (timeout < hw->cmq.tx_timeout);
|
|
hns3_err(hw, "Wait for reply timeout");
|
|
return -ETIME;
|
|
}
|
|
|
|
/*
|
|
* hns3_cmd_send - send command to command queue
|
|
*
|
|
* @param hw
|
|
* pointer to the hw struct
|
|
* @param desc
|
|
* prefilled descriptor for describing the command
|
|
* @param num
|
|
* the number of descriptors to be sent
|
|
* @return
|
|
* - -EBUSY if detect device is in resetting
|
|
* - -EIO if detect cmd csq corrupted (due to reset) or
|
|
* there is reset pending
|
|
* - -ENOMEM/-ETIME/...(Non-Zero) if other error case
|
|
* - Zero if operation completed successfully
|
|
*
|
|
* Note -BUSY/-EIO only used in reset case
|
|
*
|
|
* Note this is the main send command for command queue, it
|
|
* sends the queue, cleans the queue, etc
|
|
*/
|
|
int
|
|
hns3_cmd_send(struct hns3_hw *hw, struct hns3_cmd_desc *desc, int num)
|
|
{
|
|
struct hns3_cmd_desc *desc_to_use;
|
|
int handle = 0;
|
|
int retval;
|
|
uint32_t ntc;
|
|
|
|
if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED))
|
|
return -EBUSY;
|
|
|
|
rte_spinlock_lock(&hw->cmq.csq.lock);
|
|
|
|
/* Clean the command send queue */
|
|
retval = hns3_cmd_csq_clean(hw);
|
|
if (retval < 0) {
|
|
rte_spinlock_unlock(&hw->cmq.csq.lock);
|
|
return retval;
|
|
}
|
|
|
|
if (num > hns3_ring_space(&hw->cmq.csq)) {
|
|
rte_spinlock_unlock(&hw->cmq.csq.lock);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Record the location of desc in the ring for this time
|
|
* which will be use for hardware to write back
|
|
*/
|
|
ntc = hw->cmq.csq.next_to_use;
|
|
|
|
while (handle < num) {
|
|
desc_to_use = &hw->cmq.csq.desc[hw->cmq.csq.next_to_use];
|
|
*desc_to_use = desc[handle];
|
|
(hw->cmq.csq.next_to_use)++;
|
|
if (hw->cmq.csq.next_to_use == hw->cmq.csq.desc_num)
|
|
hw->cmq.csq.next_to_use = 0;
|
|
handle++;
|
|
}
|
|
|
|
/* Write to hardware */
|
|
hns3_write_dev(hw, HNS3_CMDQ_TX_TAIL_REG, hw->cmq.csq.next_to_use);
|
|
|
|
/*
|
|
* If the command is sync, wait for the firmware to write back,
|
|
* if multi descriptors to be sent, use the first one to check.
|
|
*/
|
|
if (HNS3_CMD_SEND_SYNC(rte_le_to_cpu_16(desc->flag))) {
|
|
retval = hns3_cmd_poll_reply(hw);
|
|
if (!retval)
|
|
retval = hns3_cmd_get_hardware_reply(hw, desc, num,
|
|
ntc);
|
|
}
|
|
|
|
rte_spinlock_unlock(&hw->cmq.csq.lock);
|
|
return retval;
|
|
}
|
|
|
|
static const char *
|
|
hns3_get_caps_name(uint32_t caps_id)
|
|
{
|
|
const struct {
|
|
enum HNS3_CAPS_BITS caps;
|
|
const char *name;
|
|
} dev_caps[] = {
|
|
{ HNS3_CAPS_FD_QUEUE_REGION_B, "fd_queue_region" },
|
|
{ HNS3_CAPS_PTP_B, "ptp" },
|
|
{ HNS3_CAPS_TX_PUSH_B, "tx_push" },
|
|
{ HNS3_CAPS_PHY_IMP_B, "phy_imp" },
|
|
{ HNS3_CAPS_TQP_TXRX_INDEP_B, "tqp_txrx_indep" },
|
|
{ HNS3_CAPS_HW_PAD_B, "hw_pad" },
|
|
{ HNS3_CAPS_STASH_B, "stash" },
|
|
{ HNS3_CAPS_UDP_TUNNEL_CSUM_B, "udp_tunnel_csum" },
|
|
{ HNS3_CAPS_RAS_IMP_B, "ras_imp" },
|
|
{ HNS3_CAPS_RXD_ADV_LAYOUT_B, "rxd_adv_layout" },
|
|
{ HNS3_CAPS_TM_B, "tm_capability" }
|
|
};
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < RTE_DIM(dev_caps); i++) {
|
|
if (dev_caps[i].caps == caps_id)
|
|
return dev_caps[i].name;
|
|
}
|
|
|
|
return "unknown";
|
|
}
|
|
|
|
static void
|
|
hns3_mask_capability(struct hns3_hw *hw,
|
|
struct hns3_query_version_cmd *cmd)
|
|
{
|
|
#define MAX_CAPS_BIT 64
|
|
|
|
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
|
|
uint64_t caps_org, caps_new, caps_masked;
|
|
uint32_t i;
|
|
|
|
if (hns->dev_caps_mask == 0)
|
|
return;
|
|
|
|
memcpy(&caps_org, &cmd->caps[0], sizeof(caps_org));
|
|
caps_org = rte_le_to_cpu_64(caps_org);
|
|
caps_new = caps_org ^ (caps_org & hns->dev_caps_mask);
|
|
caps_masked = caps_org ^ caps_new;
|
|
caps_new = rte_cpu_to_le_64(caps_new);
|
|
memcpy(&cmd->caps[0], &caps_new, sizeof(caps_new));
|
|
|
|
for (i = 0; i < MAX_CAPS_BIT; i++) {
|
|
if (!(caps_masked & BIT_ULL(i)))
|
|
continue;
|
|
hns3_info(hw, "mask capability: id-%u, name-%s.",
|
|
i, hns3_get_caps_name(i));
|
|
}
|
|
}
|
|
|
|
static void
|
|
hns3_parse_capability(struct hns3_hw *hw,
|
|
struct hns3_query_version_cmd *cmd)
|
|
{
|
|
uint32_t caps = rte_le_to_cpu_32(cmd->caps[0]);
|
|
|
|
if (hns3_get_bit(caps, HNS3_CAPS_FD_QUEUE_REGION_B))
|
|
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_FD_QUEUE_REGION_B,
|
|
1);
|
|
if (hns3_get_bit(caps, HNS3_CAPS_PTP_B)) {
|
|
/*
|
|
* PTP depends on special packet type reported by hardware which
|
|
* enabled rxd advanced layout, so if the hardware doesn't
|
|
* support rxd advanced layout, driver should ignore the PTP
|
|
* capability.
|
|
*/
|
|
if (hns3_get_bit(caps, HNS3_CAPS_RXD_ADV_LAYOUT_B))
|
|
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_PTP_B, 1);
|
|
else
|
|
hns3_warn(hw, "ignore PTP capability due to lack of "
|
|
"rxd advanced layout capability.");
|
|
}
|
|
if (hns3_get_bit(caps, HNS3_CAPS_TX_PUSH_B))
|
|
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_TX_PUSH_B, 1);
|
|
if (hns3_get_bit(caps, HNS3_CAPS_PHY_IMP_B))
|
|
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_COPPER_B, 1);
|
|
if (hns3_get_bit(caps, HNS3_CAPS_TQP_TXRX_INDEP_B))
|
|
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_INDEP_TXRX_B, 1);
|
|
if (hns3_get_bit(caps, HNS3_CAPS_STASH_B))
|
|
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_STASH_B, 1);
|
|
if (hns3_get_bit(caps, HNS3_CAPS_RXD_ADV_LAYOUT_B))
|
|
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_RXD_ADV_LAYOUT_B,
|
|
1);
|
|
if (hns3_get_bit(caps, HNS3_CAPS_UDP_TUNNEL_CSUM_B))
|
|
hns3_set_bit(hw->capability,
|
|
HNS3_DEV_SUPPORT_OUTER_UDP_CKSUM_B, 1);
|
|
if (hns3_get_bit(caps, HNS3_CAPS_RAS_IMP_B))
|
|
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_RAS_IMP_B, 1);
|
|
if (hns3_get_bit(caps, HNS3_CAPS_TM_B))
|
|
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_TM_B, 1);
|
|
if (hns3_get_bit(caps, HNS3_CAPS_GRO_B))
|
|
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_GRO_B, 1);
|
|
}
|
|
|
|
static uint32_t
|
|
hns3_build_api_caps(void)
|
|
{
|
|
uint32_t api_caps = 0;
|
|
|
|
hns3_set_bit(api_caps, HNS3_API_CAP_FLEX_RSS_TBL_B, 1);
|
|
|
|
return rte_cpu_to_le_32(api_caps);
|
|
}
|
|
|
|
static void
|
|
hns3_set_dcb_capability(struct hns3_hw *hw)
|
|
{
|
|
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
|
|
struct rte_pci_device *pci_dev;
|
|
struct rte_eth_dev *eth_dev;
|
|
uint16_t device_id;
|
|
|
|
if (hns->is_vf)
|
|
return;
|
|
|
|
eth_dev = &rte_eth_devices[hw->data->port_id];
|
|
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
|
|
device_id = pci_dev->id.device_id;
|
|
|
|
if (device_id == HNS3_DEV_ID_25GE_RDMA ||
|
|
device_id == HNS3_DEV_ID_50GE_RDMA ||
|
|
device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
|
|
device_id == HNS3_DEV_ID_200G_RDMA ||
|
|
device_id == HNS3_DEV_ID_100G_ROH ||
|
|
device_id == HNS3_DEV_ID_200G_ROH)
|
|
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
|
|
}
|
|
|
|
static void
|
|
hns3_set_default_capability(struct hns3_hw *hw)
|
|
{
|
|
hns3_set_dcb_capability(hw);
|
|
|
|
/*
|
|
* The firmware of the network engines with HIP08 do not report some
|
|
* capabilities, like GRO. Set default capabilities for it.
|
|
*/
|
|
if (hw->revision < PCI_REVISION_ID_HIP09_A)
|
|
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_GRO_B, 1);
|
|
}
|
|
|
|
static int
|
|
hns3_cmd_query_firmware_version_and_capability(struct hns3_hw *hw)
|
|
{
|
|
struct hns3_query_version_cmd *resp;
|
|
struct hns3_cmd_desc desc;
|
|
int ret;
|
|
|
|
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FW_VER, 1);
|
|
resp = (struct hns3_query_version_cmd *)desc.data;
|
|
resp->api_caps = hns3_build_api_caps();
|
|
|
|
/* Initialize the cmd function */
|
|
ret = hns3_cmd_send(hw, &desc, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
hw->fw_version = rte_le_to_cpu_32(resp->firmware);
|
|
|
|
hns3_set_default_capability(hw);
|
|
|
|
/*
|
|
* Make sure mask the capability before parse capability because it
|
|
* may overwrite resp's data.
|
|
*/
|
|
hns3_mask_capability(hw, resp);
|
|
hns3_parse_capability(hw, resp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
hns3_cmd_init_queue(struct hns3_hw *hw)
|
|
{
|
|
int ret;
|
|
|
|
/* Setup the lock for command queue */
|
|
rte_spinlock_init(&hw->cmq.csq.lock);
|
|
rte_spinlock_init(&hw->cmq.crq.lock);
|
|
|
|
/*
|
|
* Clear up all command register,
|
|
* in case there are some residual values
|
|
*/
|
|
hns3_cmd_clear_regs(hw);
|
|
|
|
/* Setup the queue entries for use cmd queue */
|
|
hw->cmq.csq.desc_num = HNS3_NIC_CMQ_DESC_NUM;
|
|
hw->cmq.crq.desc_num = HNS3_NIC_CMQ_DESC_NUM;
|
|
|
|
/* Setup Tx write back timeout */
|
|
hw->cmq.tx_timeout = HNS3_CMDQ_TX_TIMEOUT;
|
|
|
|
/* Setup queue rings */
|
|
ret = hns3_alloc_cmd_queue(hw, HNS3_TYPE_CSQ);
|
|
if (ret) {
|
|
PMD_INIT_LOG(ERR, "CSQ ring setup error %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = hns3_alloc_cmd_queue(hw, HNS3_TYPE_CRQ);
|
|
if (ret) {
|
|
PMD_INIT_LOG(ERR, "CRQ ring setup error %d", ret);
|
|
goto err_crq;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_crq:
|
|
hns3_free_cmd_desc(hw, &hw->cmq.csq);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
hns3_update_dev_lsc_cap(struct hns3_hw *hw, int fw_compact_cmd_result)
|
|
{
|
|
struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
|
|
|
|
if (hw->adapter_state != HNS3_NIC_UNINITIALIZED)
|
|
return;
|
|
|
|
if (fw_compact_cmd_result != 0) {
|
|
/*
|
|
* If fw_compact_cmd_result is not zero, it means firmware don't
|
|
* support link status change interrupt.
|
|
* Framework already set RTE_ETH_DEV_INTR_LSC bit because driver
|
|
* declared RTE_PCI_DRV_INTR_LSC in drv_flags. It need to clear
|
|
* the RTE_ETH_DEV_INTR_LSC capability when detect firmware
|
|
* don't support link status change interrupt.
|
|
*/
|
|
dev->data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
|
|
}
|
|
}
|
|
|
|
static int
|
|
hns3_apply_fw_compat_cmd_result(struct hns3_hw *hw, int result)
|
|
{
|
|
if (result != 0 && hns3_dev_get_support(hw, COPPER)) {
|
|
hns3_err(hw, "firmware fails to initialize the PHY, ret = %d.",
|
|
result);
|
|
return result;
|
|
}
|
|
|
|
hns3_update_dev_lsc_cap(hw, result);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
hns3_firmware_compat_config(struct hns3_hw *hw, bool is_init)
|
|
{
|
|
struct hns3_firmware_compat_cmd *req;
|
|
struct hns3_cmd_desc desc;
|
|
uint32_t compat = 0;
|
|
|
|
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_FIRMWARE_COMPAT_CFG, false);
|
|
req = (struct hns3_firmware_compat_cmd *)desc.data;
|
|
|
|
if (is_init) {
|
|
hns3_set_bit(compat, HNS3_LINK_EVENT_REPORT_EN_B, 1);
|
|
hns3_set_bit(compat, HNS3_NCSI_ERROR_REPORT_EN_B, 0);
|
|
if (hns3_dev_get_support(hw, COPPER))
|
|
hns3_set_bit(compat, HNS3_FIRMWARE_PHY_DRIVER_EN_B, 1);
|
|
}
|
|
req->compat = rte_cpu_to_le_32(compat);
|
|
|
|
return hns3_cmd_send(hw, &desc, 1);
|
|
}
|
|
|
|
int
|
|
hns3_cmd_init(struct hns3_hw *hw)
|
|
{
|
|
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
|
|
uint32_t version;
|
|
int ret;
|
|
|
|
rte_spinlock_lock(&hw->cmq.csq.lock);
|
|
rte_spinlock_lock(&hw->cmq.crq.lock);
|
|
|
|
hw->cmq.csq.next_to_clean = 0;
|
|
hw->cmq.csq.next_to_use = 0;
|
|
hw->cmq.crq.next_to_clean = 0;
|
|
hw->cmq.crq.next_to_use = 0;
|
|
hns3_cmd_init_regs(hw);
|
|
|
|
rte_spinlock_unlock(&hw->cmq.crq.lock);
|
|
rte_spinlock_unlock(&hw->cmq.csq.lock);
|
|
|
|
/*
|
|
* Check if there is new reset pending, because the higher level
|
|
* reset may happen when lower level reset is being processed.
|
|
*/
|
|
if (is_reset_pending(HNS3_DEV_HW_TO_ADAPTER(hw))) {
|
|
PMD_INIT_LOG(ERR, "New reset pending, keep disable cmd");
|
|
ret = -EBUSY;
|
|
goto err_cmd_init;
|
|
}
|
|
__atomic_store_n(&hw->reset.disable_cmd, 0, __ATOMIC_RELAXED);
|
|
|
|
ret = hns3_cmd_query_firmware_version_and_capability(hw);
|
|
if (ret) {
|
|
PMD_INIT_LOG(ERR, "firmware version query failed %d", ret);
|
|
goto err_cmd_init;
|
|
}
|
|
|
|
version = hw->fw_version;
|
|
PMD_INIT_LOG(INFO, "The firmware version is %lu.%lu.%lu.%lu",
|
|
hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
|
|
HNS3_FW_VERSION_BYTE3_S),
|
|
hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
|
|
HNS3_FW_VERSION_BYTE2_S),
|
|
hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
|
|
HNS3_FW_VERSION_BYTE1_S),
|
|
hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
|
|
HNS3_FW_VERSION_BYTE0_S));
|
|
|
|
if (hns->is_vf)
|
|
return 0;
|
|
|
|
/*
|
|
* Requiring firmware to enable some features, fiber port can still
|
|
* work without it, but copper port can't work because the firmware
|
|
* fails to take over the PHY.
|
|
*/
|
|
ret = hns3_firmware_compat_config(hw, true);
|
|
if (ret)
|
|
PMD_INIT_LOG(WARNING, "firmware compatible features not "
|
|
"supported, ret = %d.", ret);
|
|
|
|
/*
|
|
* Perform some corresponding operations based on the firmware
|
|
* compatibility configuration result.
|
|
*/
|
|
ret = hns3_apply_fw_compat_cmd_result(hw, ret);
|
|
if (ret)
|
|
goto err_cmd_init;
|
|
|
|
return 0;
|
|
|
|
err_cmd_init:
|
|
__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
hns3_destroy_queue(struct hns3_hw *hw, struct hns3_cmq_ring *ring)
|
|
{
|
|
rte_spinlock_lock(&ring->lock);
|
|
|
|
hns3_free_cmd_desc(hw, ring);
|
|
|
|
rte_spinlock_unlock(&ring->lock);
|
|
}
|
|
|
|
void
|
|
hns3_cmd_destroy_queue(struct hns3_hw *hw)
|
|
{
|
|
hns3_destroy_queue(hw, &hw->cmq.csq);
|
|
hns3_destroy_queue(hw, &hw->cmq.crq);
|
|
}
|
|
|
|
void
|
|
hns3_cmd_uninit(struct hns3_hw *hw)
|
|
{
|
|
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
|
|
|
|
if (!hns->is_vf)
|
|
(void)hns3_firmware_compat_config(hw, false);
|
|
|
|
__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
|
|
|
|
/*
|
|
* A delay is added to ensure that the register cleanup operations
|
|
* will not be performed concurrently with the firmware command and
|
|
* ensure that all the reserved commands are executed.
|
|
* Concurrency may occur in two scenarios: asynchronous command and
|
|
* timeout command. If the command fails to be executed due to busy
|
|
* scheduling, the command will be processed in the next scheduling
|
|
* of the firmware.
|
|
*/
|
|
rte_delay_ms(HNS3_CMDQ_CLEAR_WAIT_TIME);
|
|
|
|
rte_spinlock_lock(&hw->cmq.csq.lock);
|
|
rte_spinlock_lock(&hw->cmq.crq.lock);
|
|
hns3_cmd_clear_regs(hw);
|
|
rte_spinlock_unlock(&hw->cmq.crq.lock);
|
|
rte_spinlock_unlock(&hw->cmq.csq.lock);
|
|
}
|