f-stack/dpdk/drivers/net/enic/enic_fm_flow.c

3642 lines
99 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2008-2019 Cisco Systems, Inc. All rights reserved.
*/
#include <errno.h>
#include <stdint.h>
#include <rte_log.h>
#include <ethdev_driver.h>
#include <rte_flow_driver.h>
#include <rte_ether.h>
#include <rte_geneve.h>
#include <rte_hash.h>
#include <rte_jhash.h>
#include <rte_ip.h>
#include <rte_udp.h>
#include <rte_memzone.h>
#include "enic_compat.h"
#include "enic.h"
#include "vnic_dev.h"
#include "vnic_nic.h"
#define IP_DEFTTL 64 /* from RFC 1340. */
#define IP6_VTC_FLOW 0x60000000
/* Up to 1024 TCAM entries */
#define FM_MAX_TCAM_TABLE_SIZE 1024
/* Up to 4096 entries per exact match table */
#define FM_MAX_EXACT_TABLE_SIZE 4096
/* Number of counters to increase on for each increment */
#define FM_COUNTERS_EXPAND 100
#define FM_INVALID_HANDLE 0
/* Low priority used for implicit VF -> representor flow */
#define FM_LOWEST_PRIORITY 100000
/* High priority used for implicit representor -> VF flow */
#define FM_HIGHEST_PRIORITY 0
/* Tag used for implicit VF <-> representor flows */
#define FM_VF_REP_TAG 1
/* Max number of actions supported by VIC is 2K. Make hash table double that. */
#define FM_MAX_ACTION_TABLE_SIZE 4096
/*
* Flow exact match tables (FET) in the VIC and rte_flow groups.
* Use a simple scheme to map groups to tables.
* Group 0 uses the single TCAM tables, one for each direction.
* Group 1, 2, ... uses its own exact match table.
*
* The TCAM tables are allocated upfront during init.
*
* Exact match tables are allocated on demand. 3 paths that lead allocations.
*
* 1. Add a flow that jumps from group 0 to group N.
*
* If N does not exist, we allocate an exact match table for it, using
* a dummy key. A key is required for the table.
*
* 2. Add a flow that uses group N.
*
* If N does not exist, we allocate an exact match table for it, using
* the flow's key. Subsequent flows to the same group all should have
* the same key.
*
* Without a jump flow to N, N is not reachable in hardware. No packets
* reach N and match.
*
* 3. Add a flow to an empty group N.
*
* N has been created via (1) and the dummy key. We free that table, allocate
* a new table using the new flow's key. Also re-do the existing jump flow to
* point to the new table.
*/
#define FM_TCAM_RTE_GROUP 0
struct enic_fm_fet {
TAILQ_ENTRY(enic_fm_fet) list;
uint32_t group; /* rte_flow group ID */
uint64_t handle; /* Exact match table handle from flowman */
uint8_t ingress;
uint8_t default_key;
int ref; /* Reference count via get/put */
struct fm_key_template key; /* Key associated with the table */
};
struct enic_fm_counter {
SLIST_ENTRY(enic_fm_counter) next;
uint32_t handle;
};
struct enic_fm_action {
int ref;
uint64_t handle;
struct fm_action key;
};
/* rte_flow.fm */
struct enic_fm_flow {
bool counter_valid;
uint64_t entry_handle;
struct enic_fm_action *action;
struct enic_fm_counter *counter;
struct enic_fm_fet *fet;
/* Auto-added steer action for hairpin flows (e.g. vnic->vnic) */
struct enic_fm_flow *hairpin_steer_flow;
};
struct enic_fm_jump_flow {
TAILQ_ENTRY(enic_fm_jump_flow) list;
struct rte_flow *flow;
uint32_t group;
struct fm_tcam_match_entry match;
struct fm_action action;
};
/*
* Flowman uses host memory for commands. This structure is allocated
* in DMA-able memory.
*/
union enic_flowman_cmd_mem {
struct fm_tcam_match_table fm_tcam_match_table;
struct fm_exact_match_table fm_exact_match_table;
struct fm_tcam_match_entry fm_tcam_match_entry;
struct fm_exact_match_entry fm_exact_match_entry;
struct fm_action fm_action;
};
/*
* PF has a flowman instance, and VF representors share it with PF.
* PF allocates this structure and owns it. VF representors borrow
* the PF's structure during API calls (e.g. create, query).
*/
struct enic_flowman {
struct enic *owner_enic; /* PF */
struct enic *user_enic; /* API caller (PF or representor) */
/*
* Representors and PF share the same underlying flowman.
* Lock API calls to serialize accesses from them. Only used
* when VF representors are present.
*/
rte_spinlock_t lock;
/* Command buffer */
struct {
union enic_flowman_cmd_mem *va;
dma_addr_t pa;
} cmd;
/* TCAM tables allocated upfront, used for group 0 */
uint64_t ig_tcam_hndl;
uint64_t eg_tcam_hndl;
/* Counters */
SLIST_HEAD(enic_free_counters, enic_fm_counter) counters;
void *counter_stack;
uint32_t counters_alloced;
/* Exact match tables for groups != 0, dynamically allocated */
TAILQ_HEAD(fet_list, enic_fm_fet) fet_list;
/*
* Default exact match tables used for jump actions to
* non-existent groups.
*/
struct enic_fm_fet *default_eg_fet;
struct enic_fm_fet *default_ig_fet;
/* hash table for Action reuse */
struct rte_hash *action_hash;
/* Flows that jump to the default table above */
TAILQ_HEAD(jump_flow_list, enic_fm_jump_flow) jump_list;
/*
* Scratch data used during each invocation of flow_create
* and flow_validate.
*/
struct enic_fm_fet *fet;
struct fm_tcam_match_entry tcam_entry;
struct fm_action action;
struct fm_action action_tmp; /* enic_fm_reorder_action_op */
int action_op_count;
/* Tags used for representor flows */
uint8_t vf_rep_tag;
/* For auto-added steer action for hairpin */
int need_hairpin_steer;
uint64_t hairpin_steer_vnic_h;
};
static int enic_fm_tbl_free(struct enic_flowman *fm, uint64_t handle);
/*
* API functions (create, destroy, validate, flush) call begin_fm()
* upon entering to save the caller enic (PF or VF representor) and
* lock. Upon exit, they call end_fm() to unlock.
*/
static struct enic_flowman *begin_fm(struct enic *enic);
static void end_fm(struct enic_flowman *fm);
/* Delete internal flows created for representor paths */
static void delete_rep_flows(struct enic *enic);
/*
* Common arguments passed to copy_item functions. Use this structure
* so we can easily add new arguments.
* item: Item specification.
* fm_tcam_entry: Flowman TCAM match entry.
* header_level: 0 for outer header, 1 for inner header.
*/
struct copy_item_args {
const struct rte_flow_item *item;
struct fm_tcam_match_entry *fm_tcam_entry;
uint8_t header_level;
struct rte_flow_error *error;
};
/* functions for copying items into flowman match */
typedef int (enic_copy_item_fn)(struct copy_item_args *arg);
/* Info about how to copy items into flowman match */
struct enic_fm_items {
/* Function for copying and validating an item. */
enic_copy_item_fn * const copy_item;
/* List of valid previous items. */
const enum rte_flow_item_type * const prev_items;
/*
* True if it's OK for this item to be the first item. For some NIC
* versions, it's invalid to start the stack above layer 3.
*/
const uint8_t valid_start_item;
};
static enic_copy_item_fn enic_fm_copy_item_eth;
static enic_copy_item_fn enic_fm_copy_item_ipv4;
static enic_copy_item_fn enic_fm_copy_item_ipv6;
static enic_copy_item_fn enic_fm_copy_item_raw;
static enic_copy_item_fn enic_fm_copy_item_sctp;
static enic_copy_item_fn enic_fm_copy_item_tcp;
static enic_copy_item_fn enic_fm_copy_item_udp;
static enic_copy_item_fn enic_fm_copy_item_vlan;
static enic_copy_item_fn enic_fm_copy_item_vxlan;
static enic_copy_item_fn enic_fm_copy_item_gtp;
static enic_copy_item_fn enic_fm_copy_item_geneve;
static enic_copy_item_fn enic_fm_copy_item_geneve_opt;
static enic_copy_item_fn enic_fm_copy_item_ecpri;
/* Ingress actions */
static const enum rte_flow_action_type enic_fm_supported_ig_actions[] = {
RTE_FLOW_ACTION_TYPE_COUNT,
RTE_FLOW_ACTION_TYPE_DROP,
RTE_FLOW_ACTION_TYPE_FLAG,
RTE_FLOW_ACTION_TYPE_JUMP,
RTE_FLOW_ACTION_TYPE_MARK,
RTE_FLOW_ACTION_TYPE_OF_POP_VLAN,
RTE_FLOW_ACTION_TYPE_PORT_ID,
RTE_FLOW_ACTION_TYPE_PASSTHRU,
RTE_FLOW_ACTION_TYPE_QUEUE,
RTE_FLOW_ACTION_TYPE_RSS,
RTE_FLOW_ACTION_TYPE_VOID,
RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP,
RTE_FLOW_ACTION_TYPE_VXLAN_DECAP,
RTE_FLOW_ACTION_TYPE_END, /* END must be the last entry */
};
/* Egress actions */
static const enum rte_flow_action_type enic_fm_supported_eg_actions[] = {
RTE_FLOW_ACTION_TYPE_COUNT,
RTE_FLOW_ACTION_TYPE_DROP,
RTE_FLOW_ACTION_TYPE_JUMP,
RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN,
RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP,
RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID,
RTE_FLOW_ACTION_TYPE_PORT_ID,
RTE_FLOW_ACTION_TYPE_PASSTHRU,
RTE_FLOW_ACTION_TYPE_VOID,
RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP,
RTE_FLOW_ACTION_TYPE_END,
};
static const struct enic_fm_items enic_fm_items[] = {
[RTE_FLOW_ITEM_TYPE_RAW] = {
.copy_item = enic_fm_copy_item_raw,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_ETH] = {
.copy_item = enic_fm_copy_item_eth,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_VLAN] = {
.copy_item = enic_fm_copy_item_vlan,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_IPV4] = {
.copy_item = enic_fm_copy_item_ipv4,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_IPV6] = {
.copy_item = enic_fm_copy_item_ipv6,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_UDP] = {
.copy_item = enic_fm_copy_item_udp,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_TCP] = {
.copy_item = enic_fm_copy_item_tcp,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_SCTP] = {
.copy_item = enic_fm_copy_item_sctp,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_VXLAN] = {
.copy_item = enic_fm_copy_item_vxlan,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_GTP] = {
.copy_item = enic_fm_copy_item_gtp,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_GTPC] = {
.copy_item = enic_fm_copy_item_gtp,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_GTPU] = {
.copy_item = enic_fm_copy_item_gtp,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_GENEVE] = {
.copy_item = enic_fm_copy_item_geneve,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_GENEVE_OPT] = {
.copy_item = enic_fm_copy_item_geneve_opt,
.valid_start_item = 1,
/* Can match at most 1 option */
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_GENEVE,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_ECPRI] = {
.copy_item = enic_fm_copy_item_ecpri,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
},
},
};
static int
enic_fm_copy_item_eth(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
const struct rte_flow_item_eth *spec = item->spec;
const struct rte_flow_item_eth *mask = item->mask;
const uint8_t lvl = arg->header_level;
struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
struct fm_header_set *fm_data, *fm_mask;
ENICPMD_FUNC_TRACE();
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_eth_mask;
fm_data = &entry->ftm_data.fk_hdrset[lvl];
fm_mask = &entry->ftm_mask.fk_hdrset[lvl];
fm_data->fk_header_select |= FKH_ETHER;
fm_mask->fk_header_select |= FKH_ETHER;
memcpy(&fm_data->l2.eth, spec, sizeof(struct rte_ether_hdr));
memcpy(&fm_mask->l2.eth, mask, sizeof(struct rte_ether_hdr));
return 0;
}
static int
enic_fm_copy_item_vlan(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
const struct rte_flow_item_vlan *spec = item->spec;
const struct rte_flow_item_vlan *mask = item->mask;
const uint8_t lvl = arg->header_level;
struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
struct fm_header_set *fm_data, *fm_mask;
struct rte_ether_hdr *eth_mask;
struct rte_ether_hdr *eth_val;
uint32_t meta;
ENICPMD_FUNC_TRACE();
fm_data = &entry->ftm_data.fk_hdrset[lvl];
fm_mask = &entry->ftm_mask.fk_hdrset[lvl];
/* Outer and inner packet vlans need different flags */
meta = FKM_VLAN_PRES;
if (lvl > 0)
meta = FKM_QTAG;
fm_data->fk_metadata |= meta;
fm_mask->fk_metadata |= meta;
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_vlan_mask;
eth_mask = (void *)&fm_mask->l2.eth;
eth_val = (void *)&fm_data->l2.eth;
/*
* Outer TPID cannot be matched. If inner_type is 0, use what is
* in the eth header.
*/
if (eth_mask->ether_type && mask->inner_type)
return -ENOTSUP;
/*
* When packet matching, the VIC always compares vlan-stripped
* L2, regardless of vlan stripping settings. So, the inner type
* from vlan becomes the ether type of the eth header.
*/
if (mask->inner_type) {
eth_mask->ether_type = mask->inner_type;
eth_val->ether_type = spec->inner_type;
}
fm_data->fk_header_select |= FKH_ETHER | FKH_QTAG;
fm_mask->fk_header_select |= FKH_ETHER | FKH_QTAG;
fm_data->fk_vlan = rte_be_to_cpu_16(spec->tci);
fm_mask->fk_vlan = rte_be_to_cpu_16(mask->tci);
return 0;
}
static int
enic_fm_copy_item_ipv4(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
const struct rte_flow_item_ipv4 *spec = item->spec;
const struct rte_flow_item_ipv4 *mask = item->mask;
const uint8_t lvl = arg->header_level;
struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
struct fm_header_set *fm_data, *fm_mask;
ENICPMD_FUNC_TRACE();
fm_data = &entry->ftm_data.fk_hdrset[lvl];
fm_mask = &entry->ftm_mask.fk_hdrset[lvl];
fm_data->fk_metadata |= FKM_IPV4;
fm_mask->fk_metadata |= FKM_IPV4;
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_ipv4_mask;
fm_data->fk_header_select |= FKH_IPV4;
fm_mask->fk_header_select |= FKH_IPV4;
memcpy(&fm_data->l3.ip4, spec, sizeof(*spec));
memcpy(&fm_mask->l3.ip4, mask, sizeof(*mask));
return 0;
}
static int
enic_fm_copy_item_ipv6(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
const struct rte_flow_item_ipv6 *spec = item->spec;
const struct rte_flow_item_ipv6 *mask = item->mask;
const uint8_t lvl = arg->header_level;
struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
struct fm_header_set *fm_data, *fm_mask;
ENICPMD_FUNC_TRACE();
fm_data = &entry->ftm_data.fk_hdrset[lvl];
fm_mask = &entry->ftm_mask.fk_hdrset[lvl];
fm_data->fk_metadata |= FKM_IPV6;
fm_mask->fk_metadata |= FKM_IPV6;
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_ipv6_mask;
fm_data->fk_header_select |= FKH_IPV6;
fm_mask->fk_header_select |= FKH_IPV6;
memcpy(&fm_data->l3.ip6, spec, sizeof(struct rte_ipv6_hdr));
memcpy(&fm_mask->l3.ip6, mask, sizeof(struct rte_ipv6_hdr));
return 0;
}
static int
enic_fm_copy_item_udp(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
const struct rte_flow_item_udp *spec = item->spec;
const struct rte_flow_item_udp *mask = item->mask;
const uint8_t lvl = arg->header_level;
struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
struct fm_header_set *fm_data, *fm_mask;
ENICPMD_FUNC_TRACE();
fm_data = &entry->ftm_data.fk_hdrset[lvl];
fm_mask = &entry->ftm_mask.fk_hdrset[lvl];
fm_data->fk_metadata |= FKM_UDP;
fm_mask->fk_metadata |= FKM_UDP;
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_udp_mask;
fm_data->fk_header_select |= FKH_UDP;
fm_mask->fk_header_select |= FKH_UDP;
memcpy(&fm_data->l4.udp, spec, sizeof(*spec));
memcpy(&fm_mask->l4.udp, mask, sizeof(*mask));
return 0;
}
static int
enic_fm_copy_item_tcp(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
const struct rte_flow_item_tcp *spec = item->spec;
const struct rte_flow_item_tcp *mask = item->mask;
const uint8_t lvl = arg->header_level;
struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
struct fm_header_set *fm_data, *fm_mask;
ENICPMD_FUNC_TRACE();
fm_data = &entry->ftm_data.fk_hdrset[lvl];
fm_mask = &entry->ftm_mask.fk_hdrset[lvl];
fm_data->fk_metadata |= FKM_TCP;
fm_mask->fk_metadata |= FKM_TCP;
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_tcp_mask;
fm_data->fk_header_select |= FKH_TCP;
fm_mask->fk_header_select |= FKH_TCP;
memcpy(&fm_data->l4.tcp, spec, sizeof(*spec));
memcpy(&fm_mask->l4.tcp, mask, sizeof(*mask));
return 0;
}
static int
enic_fm_copy_item_sctp(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
const struct rte_flow_item_sctp *spec = item->spec;
const struct rte_flow_item_sctp *mask = item->mask;
const uint8_t lvl = arg->header_level;
struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
struct fm_header_set *fm_data, *fm_mask;
uint8_t *ip_proto_mask = NULL;
uint8_t *ip_proto = NULL;
uint32_t l3_fkh;
ENICPMD_FUNC_TRACE();
fm_data = &entry->ftm_data.fk_hdrset[lvl];
fm_mask = &entry->ftm_mask.fk_hdrset[lvl];
/*
* The NIC filter API has no flags for "match sctp", so explicitly
* set the protocol number in the IP pattern.
*/
if (fm_data->fk_metadata & FKM_IPV4) {
struct rte_ipv4_hdr *ip;
ip = (struct rte_ipv4_hdr *)&fm_mask->l3.ip4;
ip_proto_mask = &ip->next_proto_id;
ip = (struct rte_ipv4_hdr *)&fm_data->l3.ip4;
ip_proto = &ip->next_proto_id;
l3_fkh = FKH_IPV4;
} else if (fm_data->fk_metadata & FKM_IPV6) {
struct rte_ipv6_hdr *ip;
ip = (struct rte_ipv6_hdr *)&fm_mask->l3.ip6;
ip_proto_mask = &ip->proto;
ip = (struct rte_ipv6_hdr *)&fm_data->l3.ip6;
ip_proto = &ip->proto;
l3_fkh = FKH_IPV6;
} else {
/* Need IPv4/IPv6 pattern first */
return -EINVAL;
}
*ip_proto = IPPROTO_SCTP;
*ip_proto_mask = 0xff;
fm_data->fk_header_select |= l3_fkh;
fm_mask->fk_header_select |= l3_fkh;
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_sctp_mask;
fm_data->fk_header_select |= FKH_L4RAW;
fm_mask->fk_header_select |= FKH_L4RAW;
memcpy(fm_data->l4.rawdata, spec, sizeof(*spec));
memcpy(fm_mask->l4.rawdata, mask, sizeof(*mask));
return 0;
}
static int
enic_fm_copy_item_vxlan(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
const struct rte_flow_item_vxlan *spec = item->spec;
const struct rte_flow_item_vxlan *mask = item->mask;
struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
struct fm_header_set *fm_data, *fm_mask;
ENICPMD_FUNC_TRACE();
/* Only 2 header levels (outer and inner) allowed */
if (arg->header_level > 0)
return -EINVAL;
fm_data = &entry->ftm_data.fk_hdrset[0];
fm_mask = &entry->ftm_mask.fk_hdrset[0];
fm_data->fk_metadata |= FKM_VXLAN;
fm_mask->fk_metadata |= FKM_VXLAN;
/* items from here on out are inner header items */
arg->header_level = 1;
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_vxlan_mask;
fm_data->fk_header_select |= FKH_VXLAN;
fm_mask->fk_header_select |= FKH_VXLAN;
memcpy(&fm_data->vxlan, spec, sizeof(*spec));
memcpy(&fm_mask->vxlan, mask, sizeof(*mask));
return 0;
}
static int
enic_fm_copy_item_gtp(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
const struct rte_flow_item_gtp *spec = item->spec;
const struct rte_flow_item_gtp *mask = item->mask;
struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
struct fm_header_set *fm_data, *fm_mask;
int off;
uint16_t udp_gtp_uc_port_be = 0;
ENICPMD_FUNC_TRACE();
/* Only 2 header levels (outer and inner) allowed */
if (arg->header_level > 0)
return -EINVAL;
fm_data = &entry->ftm_data.fk_hdrset[0];
fm_mask = &entry->ftm_mask.fk_hdrset[0];
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_GTP:
{
/* For vanilla GTP, the UDP destination port must be specified
* but value of the port is not enforced here.
*/
if (!(fm_data->fk_metadata & FKM_UDP) ||
!(fm_data->fk_header_select & FKH_UDP) ||
fm_data->l4.udp.fk_dest == 0)
return -EINVAL;
if (!(fm_mask->fk_metadata & FKM_UDP) ||
!(fm_mask->fk_header_select & FKH_UDP) ||
fm_mask->l4.udp.fk_dest != 0xFFFF)
return -EINVAL;
break;
}
case RTE_FLOW_ITEM_TYPE_GTPC:
{
udp_gtp_uc_port_be = rte_cpu_to_be_16(RTE_GTPC_UDP_PORT);
break;
}
case RTE_FLOW_ITEM_TYPE_GTPU:
{
udp_gtp_uc_port_be = rte_cpu_to_be_16(RTE_GTPU_UDP_PORT);
break;
}
default:
RTE_ASSERT(0);
}
/* The GTP-C or GTP-U UDP destination port must be matched. */
if (udp_gtp_uc_port_be) {
if (fm_data->fk_metadata & FKM_UDP &&
fm_data->fk_header_select & FKH_UDP &&
fm_data->l4.udp.fk_dest != udp_gtp_uc_port_be)
return -EINVAL;
if (fm_mask->fk_metadata & FKM_UDP &&
fm_mask->fk_header_select & FKH_UDP &&
fm_mask->l4.udp.fk_dest != 0xFFFF)
return -EINVAL;
/* In any case, add match for GTP-C GTP-U UDP dst port */
fm_data->fk_metadata |= FKM_UDP;
fm_data->fk_header_select |= FKH_UDP;
fm_data->l4.udp.fk_dest = udp_gtp_uc_port_be;
fm_mask->fk_metadata |= FKM_UDP;
fm_mask->fk_header_select |= FKH_UDP;
fm_mask->l4.udp.fk_dest = 0xFFFF;
}
/* NIC does not support GTP tunnels. No Items are allowed after this.
* This prevents the specification of further items.
*/
arg->header_level = 0;
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_gtp_mask;
/*
* Use the raw L4 buffer to match GTP as fm_header_set does not have
* GTP header. UDP dst port must be specific. Using the raw buffer
* does not affect such UDP item, since we skip UDP in the raw buffer.
*/
fm_data->fk_header_select |= FKH_L4RAW;
fm_mask->fk_header_select |= FKH_L4RAW;
off = sizeof(fm_data->l4.udp);
memcpy(&fm_data->l4.rawdata[off], spec, sizeof(*spec));
memcpy(&fm_mask->l4.rawdata[off], mask, sizeof(*mask));
return 0;
}
static int
enic_fm_copy_item_geneve(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
const struct rte_flow_item_geneve *spec = item->spec;
const struct rte_flow_item_geneve *mask = item->mask;
struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
struct fm_header_set *fm_data, *fm_mask;
int off;
ENICPMD_FUNC_TRACE();
/* Only 2 header levels (outer and inner) allowed */
if (arg->header_level > 0)
return -EINVAL;
fm_data = &entry->ftm_data.fk_hdrset[0];
fm_mask = &entry->ftm_mask.fk_hdrset[0];
fm_data->fk_metadata |= FKM_GENEVE;
fm_mask->fk_metadata |= FKM_GENEVE;
/* items from here on out are inner header items, except options */
arg->header_level = 1;
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_geneve_mask;
/*
* Use the raw L4 buffer to match geneve as fm_header_set does
* not have geneve header. A UDP item may precede the geneve
* item. Using the raw buffer does not affect such UDP item,
* since we skip UDP in the raw buffer.
*/
fm_data->fk_header_select |= FKH_L4RAW;
fm_mask->fk_header_select |= FKH_L4RAW;
off = sizeof(fm_data->l4.udp);
memcpy(&fm_data->l4.rawdata[off], spec, sizeof(struct rte_geneve_hdr));
memcpy(&fm_mask->l4.rawdata[off], mask, sizeof(struct rte_geneve_hdr));
return 0;
}
static int
enic_fm_copy_item_geneve_opt(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
const struct rte_flow_item_geneve_opt *spec = item->spec;
const struct rte_flow_item_geneve_opt *mask = item->mask;
struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
struct fm_header_set *fm_data, *fm_mask;
struct rte_geneve_hdr *geneve;
int off, len;
ENICPMD_FUNC_TRACE();
fm_data = &entry->ftm_data.fk_hdrset[0];
fm_mask = &entry->ftm_mask.fk_hdrset[0];
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_geneve_opt_mask;
if (spec->option_len > 0 &&
(spec->data == NULL || mask->data == NULL)) {
return rte_flow_error_set(arg->error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "enic: geneve_opt unexpected null data");
}
/*
* Geneve item must already be in the raw buffer. Append the
* option pattern to it. There are two limitations.
* (1) Can match only the 1st option, the first one following Geneve
* (2) Geneve header must specify option length, as HW does not
* have "has Geneve option" flag.
*/
RTE_ASSERT((fm_data->fk_header_select & FKH_L4RAW) != 0);
RTE_ASSERT((fm_mask->fk_header_select & FKH_L4RAW) != 0);
off = sizeof(fm_data->l4.udp);
geneve = (struct rte_geneve_hdr *)&fm_data->l4.rawdata[off];
if (geneve->opt_len == 0) {
return rte_flow_error_set(arg->error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "enic: geneve_opt requires non-zero geneve option length");
}
geneve = (struct rte_geneve_hdr *)&fm_mask->l4.rawdata[off];
if (geneve->opt_len == 0) {
return rte_flow_error_set(arg->error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "enic: geneve_opt requires non-zero geneve option length mask");
}
off = sizeof(fm_data->l4.udp) + sizeof(struct rte_geneve_hdr);
if (off + (spec->option_len + 1) * 4 > FM_LAYER_SIZE) {
return rte_flow_error_set(arg->error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "enic: geneve_opt too large");
}
/* Copy option header */
memcpy(&fm_data->l4.rawdata[off], spec, 4);
memcpy(&fm_mask->l4.rawdata[off], mask, 4);
/* Copy option data */
if (spec->option_len > 0) {
off += 4;
len = spec->option_len * 4;
memcpy(&fm_data->l4.rawdata[off], spec->data, len);
memcpy(&fm_mask->l4.rawdata[off], mask->data, len);
}
return 0;
}
/* Match eCPRI combined message header */
static int
enic_fm_copy_item_ecpri(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
const struct rte_flow_item_ecpri *spec = item->spec;
const struct rte_flow_item_ecpri *mask = item->mask;
struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
struct fm_header_set *fm_data, *fm_mask;
uint8_t *fm_data_to, *fm_mask_to;
ENICPMD_FUNC_TRACE();
/* Tunneling not supported- only matching on inner eCPRI fields. */
if (arg->header_level > 0)
return -EINVAL;
/* Need both spec and mask */
if (!spec || !mask)
return -EINVAL;
fm_data = &entry->ftm_data.fk_hdrset[0];
fm_mask = &entry->ftm_mask.fk_hdrset[0];
/* eCPRI can only follow L2/VLAN layer if ethernet type is 0xAEFE. */
if (!(fm_data->fk_metadata & FKM_UDP) &&
(fm_mask->l2.eth.fk_ethtype != UINT16_MAX ||
rte_cpu_to_be_16(fm_data->l2.eth.fk_ethtype) !=
RTE_ETHER_TYPE_ECPRI))
return -EINVAL;
if (fm_data->fk_metadata & FKM_UDP) {
/* eCPRI on UDP */
fm_data->fk_header_select |= FKH_L4RAW;
fm_mask->fk_header_select |= FKH_L4RAW;
fm_data_to = &fm_data->l4.rawdata[sizeof(fm_data->l4.udp)];
fm_mask_to = &fm_mask->l4.rawdata[sizeof(fm_data->l4.udp)];
} else {
/* eCPRI directly after Etherent header */
fm_data->fk_header_select |= FKH_L3RAW;
fm_mask->fk_header_select |= FKH_L3RAW;
fm_data_to = &fm_data->l3.rawdata[0];
fm_mask_to = &fm_mask->l3.rawdata[0];
}
/*
* Use the raw L3 or L4 buffer to match eCPRI since fm_header_set does
* not have eCPRI header. Only 1st message header of PDU can be matched.
* "C" * bit ignored.
*/
memcpy(fm_data_to, spec, sizeof(*spec));
memcpy(fm_mask_to, mask, sizeof(*mask));
return 0;
}
/*
* Currently, raw pattern match is very limited. It is intended for matching
* UDP tunnel header (e.g. vxlan or geneve).
*/
static int
enic_fm_copy_item_raw(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
const struct rte_flow_item_raw *spec = item->spec;
const struct rte_flow_item_raw *mask = item->mask;
const uint8_t lvl = arg->header_level;
struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
struct fm_header_set *fm_data, *fm_mask;
ENICPMD_FUNC_TRACE();
/* Cannot be used for inner packet */
if (lvl > 0)
return -EINVAL;
/* Need both spec and mask */
if (!spec || !mask)
return -EINVAL;
/* Only supports relative with offset 0 */
if (!spec->relative || spec->offset != 0 || spec->search ||
spec->limit)
return -EINVAL;
/* Need non-null pattern that fits within the NIC's filter pattern */
if (spec->length == 0 ||
spec->length + sizeof(struct rte_udp_hdr) > FM_LAYER_SIZE ||
!spec->pattern || !mask->pattern)
return -EINVAL;
/*
* Mask fields, including length, are often set to zero. Assume that
* means "same as spec" to avoid breaking existing apps. If length
* is not zero, then it should be >= spec length.
*
* No more pattern follows this, so append to the L4 layer instead of
* L5 to work with both recent and older VICs.
*/
if (mask->length != 0 && mask->length < spec->length)
return -EINVAL;
fm_data = &entry->ftm_data.fk_hdrset[lvl];
fm_mask = &entry->ftm_mask.fk_hdrset[lvl];
fm_data->fk_header_select |= FKH_L4RAW;
fm_mask->fk_header_select |= FKH_L4RAW;
fm_data->fk_header_select &= ~FKH_UDP;
fm_mask->fk_header_select &= ~FKH_UDP;
memcpy(fm_data->l4.rawdata + sizeof(struct rte_udp_hdr),
spec->pattern, spec->length);
memcpy(fm_mask->l4.rawdata + sizeof(struct rte_udp_hdr),
mask->pattern, spec->length);
return 0;
}
static int
flowman_cmd(struct enic_flowman *fm, uint64_t *args, int nargs)
{
return vnic_dev_flowman_cmd(fm->owner_enic->vdev, args, nargs);
}
static int
enic_fet_alloc(struct enic_flowman *fm, uint8_t ingress,
struct fm_key_template *key, int entries,
struct enic_fm_fet **fet_out)
{
struct fm_exact_match_table *cmd;
struct fm_header_set *hdr;
struct enic_fm_fet *fet;
uint64_t args[3];
int ret;
ENICPMD_FUNC_TRACE();
fet = calloc(1, sizeof(struct enic_fm_fet));
if (fet == NULL)
return -ENOMEM;
cmd = &fm->cmd.va->fm_exact_match_table;
memset(cmd, 0, sizeof(*cmd));
cmd->fet_direction = ingress ? FM_INGRESS : FM_EGRESS;
cmd->fet_stage = FM_STAGE_LAST;
cmd->fet_max_entries = entries ? entries : FM_MAX_EXACT_TABLE_SIZE;
if (key == NULL) {
hdr = &cmd->fet_key.fk_hdrset[0];
memset(hdr, 0, sizeof(*hdr));
hdr->fk_header_select = FKH_IPV4 | FKH_UDP;
hdr->l3.ip4.fk_saddr = 0xFFFFFFFF;
hdr->l3.ip4.fk_daddr = 0xFFFFFFFF;
hdr->l4.udp.fk_source = 0xFFFF;
hdr->l4.udp.fk_dest = 0xFFFF;
fet->default_key = 1;
} else {
memcpy(&cmd->fet_key, key, sizeof(*key));
memcpy(&fet->key, key, sizeof(*key));
fet->default_key = 0;
}
cmd->fet_key.fk_packet_tag = 1;
args[0] = FM_EXACT_TABLE_ALLOC;
args[1] = fm->cmd.pa;
ret = flowman_cmd(fm, args, 2);
if (ret) {
ENICPMD_LOG(ERR, "cannot alloc exact match table: rc=%d", ret);
free(fet);
return ret;
}
fet->handle = args[0];
fet->ingress = ingress;
ENICPMD_LOG(DEBUG, "allocated exact match table: handle=0x%" PRIx64,
fet->handle);
*fet_out = fet;
return 0;
}
static void
enic_fet_free(struct enic_flowman *fm, struct enic_fm_fet *fet)
{
ENICPMD_FUNC_TRACE();
enic_fm_tbl_free(fm, fet->handle);
if (!fet->default_key)
TAILQ_REMOVE(&fm->fet_list, fet, list);
free(fet);
}
/*
* Get the exact match table for the given combination of
* <group, ingress, key>. Allocate one on the fly as necessary.
*/
static int
enic_fet_get(struct enic_flowman *fm,
uint32_t group,
uint8_t ingress,
struct fm_key_template *key,
struct enic_fm_fet **fet_out,
struct rte_flow_error *error)
{
struct enic_fm_fet *fet;
ENICPMD_FUNC_TRACE();
/* See if we already have this table open */
TAILQ_FOREACH(fet, &fm->fet_list, list) {
if (fet->group == group && fet->ingress == ingress)
break;
}
if (fet == NULL) {
/* Jumping to a non-existing group? Use the default table */
if (key == NULL) {
fet = ingress ? fm->default_ig_fet : fm->default_eg_fet;
} else if (enic_fet_alloc(fm, ingress, key, 0, &fet)) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, "enic: cannot get exact match table");
}
fet->group = group;
/* Default table is never on the open table list */
if (!fet->default_key)
TAILQ_INSERT_HEAD(&fm->fet_list, fet, list);
}
fet->ref++;
*fet_out = fet;
ENICPMD_LOG(DEBUG, "fet_get: %s %s group=%u ref=%u",
fet->default_key ? "default" : "",
fet->ingress ? "ingress" : "egress",
fet->group, fet->ref);
return 0;
}
static void
enic_fet_put(struct enic_flowman *fm, struct enic_fm_fet *fet)
{
ENICPMD_FUNC_TRACE();
RTE_ASSERT(fet->ref > 0);
fet->ref--;
ENICPMD_LOG(DEBUG, "fet_put: %s %s group=%u ref=%u",
fet->default_key ? "default" : "",
fet->ingress ? "ingress" : "egress",
fet->group, fet->ref);
if (fet->ref == 0)
enic_fet_free(fm, fet);
}
/* Return 1 if current item is valid on top of the previous one. */
static int
fm_item_stacking_valid(enum rte_flow_item_type prev_item,
const struct enic_fm_items *item_info,
uint8_t is_first_item)
{
enum rte_flow_item_type const *allowed_items = item_info->prev_items;
ENICPMD_FUNC_TRACE();
for (; *allowed_items != RTE_FLOW_ITEM_TYPE_END; allowed_items++) {
if (prev_item == *allowed_items)
return 1;
}
/* This is the first item in the stack. Check if that's cool */
if (is_first_item && item_info->valid_start_item)
return 1;
return 0;
}
/*
* Build the flow manager match entry structure from the provided pattern.
* The pattern is validated as the items are copied.
*/
static int
enic_fm_copy_entry(struct enic_flowman *fm,
const struct rte_flow_item pattern[],
struct rte_flow_error *error)
{
const struct enic_fm_items *item_info;
enum rte_flow_item_type prev_item;
const struct rte_flow_item *item;
struct copy_item_args args;
uint8_t prev_header_level;
uint8_t is_first_item;
int ret;
ENICPMD_FUNC_TRACE();
item = pattern;
is_first_item = 1;
prev_item = RTE_FLOW_ITEM_TYPE_END;
args.fm_tcam_entry = &fm->tcam_entry;
args.header_level = 0;
prev_header_level = 0;
for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
/*
* Get info about how to validate and copy the item. If NULL
* is returned the nic does not support the item.
*/
if (item->type == RTE_FLOW_ITEM_TYPE_VOID)
continue;
item_info = &enic_fm_items[item->type];
if (item->type >= RTE_DIM(enic_fm_items) ||
item_info->copy_item == NULL) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "enic: unsupported item");
}
/*
* Check vNIC feature dependencies. Geneve item needs
* Geneve offload feature
*/
if (item->type == RTE_FLOW_ITEM_TYPE_GENEVE &&
!fm->user_enic->geneve) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "enic: geneve not supported");
}
/* check to see if item stacking is valid */
if (!fm_item_stacking_valid(prev_item, item_info,
is_first_item))
goto stacking_error;
args.item = item;
args.error = error;
if (error)
error->type = RTE_FLOW_ERROR_TYPE_NONE;
ret = item_info->copy_item(&args);
if (ret) {
/* If copy_item set the error, return that */
if (error && error->type != RTE_FLOW_ERROR_TYPE_NONE)
return ret;
goto item_not_supported;
}
/* Going from outer to inner? Treat it as a new packet start */
if (prev_header_level != args.header_level) {
prev_item = RTE_FLOW_ITEM_TYPE_END;
is_first_item = 1;
} else {
prev_item = item->type;
is_first_item = 0;
}
prev_header_level = args.header_level;
}
return 0;
item_not_supported:
return rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "enic: unsupported item type");
stacking_error:
return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item, "enic: unsupported item stack");
}
static void
flow_item_skip_void(const struct rte_flow_item **item)
{
for ( ; ; (*item)++)
if ((*item)->type != RTE_FLOW_ITEM_TYPE_VOID)
return;
}
static void
append_template(void **template, uint8_t *off, const void *data, int len)
{
memcpy(*template, data, len);
*template = (char *)*template + len;
*off = *off + len;
}
static int
enic_fm_append_action_op(struct enic_flowman *fm,
struct fm_action_op *fm_op,
struct rte_flow_error *error)
{
int count;
count = fm->action_op_count;
ENICPMD_LOG(DEBUG, "append action op: idx=%d op=%u",
count, fm_op->fa_op);
if (count == FM_ACTION_OP_MAX) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"too many action operations");
}
fm->action.fma_action_ops[count] = *fm_op;
fm->action_op_count = count + 1;
return 0;
}
static struct fm_action_op *
find_prev_action_op(struct enic_flowman *fm, uint32_t opcode)
{
struct fm_action_op *op;
int i;
for (i = 0; i < fm->action_op_count; i++) {
op = &fm->action.fma_action_ops[i];
if (op->fa_op == opcode)
return op;
}
return NULL;
}
/* NIC requires that 1st steer appear before decap.
* Correct example: steer, decap, steer, steer, ...
*/
static void
enic_fm_reorder_action_op(struct enic_flowman *fm)
{
struct fm_action_op *op, *steer, *decap;
struct fm_action_op tmp_op;
ENICPMD_FUNC_TRACE();
/* Find 1st steer and decap */
op = fm->action.fma_action_ops;
steer = NULL;
decap = NULL;
while (op->fa_op != FMOP_END) {
if (!decap && (op->fa_op == FMOP_DECAP_NOSTRIP ||
op->fa_op == FMOP_DECAP_STRIP))
decap = op;
else if (!steer && op->fa_op == FMOP_RQ_STEER)
steer = op;
op++;
}
/* If decap is before steer, swap */
if (steer && decap && decap < steer) {
op = fm->action.fma_action_ops;
ENICPMD_LOG(DEBUG, "swap decap %ld <-> steer %ld",
(long)(decap - op), (long)(steer - op));
tmp_op = *decap;
*decap = *steer;
*steer = tmp_op;
}
}
/* VXLAN decap is done via flowman compound action */
static int
enic_fm_copy_vxlan_decap(struct enic_flowman *fm,
struct fm_tcam_match_entry *fmt,
const struct rte_flow_action *action,
struct rte_flow_error *error)
{
struct fm_header_set *fm_data;
struct fm_action_op fm_op;
ENICPMD_FUNC_TRACE();
fm_data = &fmt->ftm_data.fk_hdrset[0];
if (!(fm_data->fk_metadata & FKM_VXLAN)) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, action,
"vxlan-decap: vxlan must be in pattern");
}
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_DECAP_NOSTRIP;
return enic_fm_append_action_op(fm, &fm_op, error);
}
/* Generate a reasonable source port number */
static uint16_t
gen_src_port(void)
{
/* Min/max below are the default values in OVS-DPDK and Linux */
uint16_t p = rte_rand();
p = RTE_MAX(p, 32768);
p = RTE_MIN(p, 61000);
return rte_cpu_to_be_16(p);
}
/* VXLAN encap is done via flowman compound action */
static int
enic_fm_copy_vxlan_encap(struct enic_flowman *fm,
const struct rte_flow_item *item,
struct rte_flow_error *error)
{
struct fm_action_op fm_op;
struct rte_ether_hdr *eth;
struct rte_udp_hdr *udp;
uint16_t *ethertype;
void *template;
uint8_t off;
ENICPMD_FUNC_TRACE();
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_ENCAP;
template = fm->action.fma_data;
off = 0;
/*
* Copy flow items to the flowman template starting L2.
* L2 must be ethernet.
*/
flow_item_skip_void(&item);
if (item->type != RTE_FLOW_ITEM_TYPE_ETH)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"vxlan-encap: first item should be ethernet");
eth = (struct rte_ether_hdr *)template;
ethertype = &eth->ether_type;
append_template(&template, &off, item->spec,
sizeof(struct rte_ether_hdr));
item++;
flow_item_skip_void(&item);
/* Optional VLAN */
if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
const struct rte_flow_item_vlan *spec;
ENICPMD_LOG(DEBUG, "vxlan-encap: vlan");
spec = item->spec;
fm_op.encap.outer_vlan = rte_be_to_cpu_16(spec->tci);
item++;
flow_item_skip_void(&item);
}
/* L3 must be IPv4, IPv6 */
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_IPV4:
{
struct rte_ipv4_hdr *ip4;
ENICPMD_LOG(DEBUG, "vxlan-encap: ipv4");
*ethertype = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
ip4 = (struct rte_ipv4_hdr *)template;
/*
* Offset of IPv4 length field and its initial value
* (IP + UDP + VXLAN) are specified in the action. The NIC
* will add inner packet length.
*/
fm_op.encap.len1_offset = off +
offsetof(struct rte_ipv4_hdr, total_length);
fm_op.encap.len1_delta = sizeof(struct rte_ipv4_hdr) +
sizeof(struct rte_udp_hdr) +
sizeof(struct rte_vxlan_hdr);
append_template(&template, &off, item->spec,
sizeof(struct rte_ipv4_hdr));
ip4->version_ihl = RTE_IPV4_VHL_DEF;
if (ip4->time_to_live == 0)
ip4->time_to_live = IP_DEFTTL;
ip4->next_proto_id = IPPROTO_UDP;
break;
}
case RTE_FLOW_ITEM_TYPE_IPV6:
{
struct rte_ipv6_hdr *ip6;
ENICPMD_LOG(DEBUG, "vxlan-encap: ipv6");
*ethertype = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
ip6 = (struct rte_ipv6_hdr *)template;
fm_op.encap.len1_offset = off +
offsetof(struct rte_ipv6_hdr, payload_len);
fm_op.encap.len1_delta = sizeof(struct rte_udp_hdr) +
sizeof(struct rte_vxlan_hdr);
append_template(&template, &off, item->spec,
sizeof(struct rte_ipv6_hdr));
ip6->vtc_flow |= rte_cpu_to_be_32(IP6_VTC_FLOW);
if (ip6->hop_limits == 0)
ip6->hop_limits = IP_DEFTTL;
ip6->proto = IPPROTO_UDP;
break;
}
default:
return rte_flow_error_set(error,
EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item,
"vxlan-encap: L3 must be IPv4/IPv6");
}
item++;
flow_item_skip_void(&item);
/* L4 is UDP */
if (item->type != RTE_FLOW_ITEM_TYPE_UDP)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"vxlan-encap: UDP must follow IPv4/IPv6");
/* UDP length = UDP + VXLAN. NIC will add inner packet length. */
fm_op.encap.len2_offset =
off + offsetof(struct rte_udp_hdr, dgram_len);
fm_op.encap.len2_delta =
sizeof(struct rte_udp_hdr) + sizeof(struct rte_vxlan_hdr);
udp = (struct rte_udp_hdr *)template;
append_template(&template, &off, item->spec,
sizeof(struct rte_udp_hdr));
/*
* Firmware does not hash/fill source port yet. Generate a
* random port, as there is *usually* one rte_flow for the
* given inner packet stream (i.e. a single stream has one
* random port).
*/
if (udp->src_port == 0)
udp->src_port = gen_src_port();
item++;
flow_item_skip_void(&item);
/* Finally VXLAN */
if (item->type != RTE_FLOW_ITEM_TYPE_VXLAN)
return rte_flow_error_set(error,
EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item,
"vxlan-encap: VXLAN must follow UDP");
append_template(&template, &off, item->spec,
sizeof(struct rte_flow_item_vxlan));
/*
* Fill in the rest of the action structure.
* Indicate that we want to encap with vxlan at packet start.
*/
fm_op.encap.template_offset = 0;
fm_op.encap.template_len = off;
return enic_fm_append_action_op(fm, &fm_op, error);
}
static int
enic_fm_find_vnic(struct enic *enic, const struct rte_pci_addr *addr,
uint64_t *handle)
{
uint32_t bdf;
uint64_t args[2];
int rc;
ENICPMD_FUNC_TRACE();
ENICPMD_LOG(DEBUG, "bdf=%x:%x:%x", addr->bus, addr->devid,
addr->function);
bdf = addr->bus << 8 | addr->devid << 3 | addr->function;
args[0] = FM_VNIC_FIND;
args[1] = bdf;
rc = vnic_dev_flowman_cmd(enic->vdev, args, 2);
if (rc != 0) {
/* Expected to fail if BDF is not on the adapter */
ENICPMD_LOG(DEBUG, "cannot find vnic handle: rc=%d", rc);
return rc;
}
*handle = args[0];
ENICPMD_LOG(DEBUG, "found vnic: handle=0x%" PRIx64, *handle);
return 0;
}
/*
* Egress: target port should be either PF uplink or VF.
* Supported cases
* 1. VF egress -> PF uplink
* PF may be this VF's PF, or another PF, as long as they are on the same VIC.
* 2. VF egress -> VF
*
* Unsupported cases
* 1. PF egress -> VF
* App should be using representor to pass packets to VF
*/
static int
vf_egress_port_id_action(struct enic_flowman *fm,
struct rte_eth_dev *dst_dev,
uint64_t dst_vnic_h,
struct fm_action_op *fm_op,
struct rte_flow_error *error)
{
struct enic *src_enic, *dst_enic;
struct enic_vf_representor *vf;
uint8_t uif;
int ret;
ENICPMD_FUNC_TRACE();
src_enic = fm->user_enic;
dst_enic = pmd_priv(dst_dev);
if (!(src_enic->rte_dev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR)) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL, "source port is not VF representor");
}
/* VF -> PF uplink. dst is not VF representor */
if (!(dst_dev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR)) {
/* PF is the VF's PF? Then nothing to do */
vf = VF_ENIC_TO_VF_REP(src_enic);
if (vf->pf == dst_enic) {
ENICPMD_LOG(DEBUG, "destination port is VF's PF");
return 0;
}
/* If not, steer to the remote PF's uplink */
uif = dst_enic->fm_vnic_uif;
ENICPMD_LOG(DEBUG, "steer to uplink %u", uif);
memset(fm_op, 0, sizeof(*fm_op));
fm_op->fa_op = FMOP_SET_EGPORT;
fm_op->set_egport.egport = uif;
ret = enic_fm_append_action_op(fm, fm_op, error);
return ret;
}
/* VF -> VF loopback. Hairpin and steer to vnic */
memset(fm_op, 0, sizeof(*fm_op));
fm_op->fa_op = FMOP_EG_HAIRPIN;
ret = enic_fm_append_action_op(fm, fm_op, error);
if (ret)
return ret;
ENICPMD_LOG(DEBUG, "egress hairpin");
fm->hairpin_steer_vnic_h = dst_vnic_h;
fm->need_hairpin_steer = 1;
return 0;
}
static int
enic_fm_check_transfer_dst(struct enic *enic, uint16_t dst_port_id,
struct rte_eth_dev **dst_dev,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev;
ENICPMD_LOG(DEBUG, "port id %u", dst_port_id);
if (!rte_eth_dev_is_valid_port(dst_port_id)) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL, "invalid port_id");
}
dev = &rte_eth_devices[dst_port_id];
if (!dev_is_enic(dev)) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL, "port_id is not enic");
}
if (enic->switch_domain_id != pmd_priv(dev)->switch_domain_id) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL, "destination and source ports are not in the same switch domain");
}
*dst_dev = dev;
return 0;
}
/* Translate flow actions to flowman TCAM entry actions */
static int
enic_fm_copy_action(struct enic_flowman *fm,
const struct rte_flow_action actions[],
uint8_t ingress,
struct rte_flow_error *error)
{
enum {
FATE = 1 << 0,
DECAP = 1 << 1,
PASSTHRU = 1 << 2,
COUNT = 1 << 3,
ENCAP = 1 << 4,
PUSH_VLAN = 1 << 5,
PORT_ID = 1 << 6,
};
struct fm_tcam_match_entry *fmt;
struct fm_action_op fm_op;
bool need_ovlan_action;
struct enic *enic;
uint32_t overlap;
uint64_t vnic_h;
uint16_t ovlan;
bool first_rq;
bool steer;
int ret;
ENICPMD_FUNC_TRACE();
fmt = &fm->tcam_entry;
need_ovlan_action = false;
ovlan = 0;
first_rq = true;
steer = false;
enic = fm->user_enic;
overlap = 0;
vnic_h = enic->fm_vnic_handle;
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
continue;
case RTE_FLOW_ACTION_TYPE_PASSTHRU: {
if (overlap & PASSTHRU)
goto unsupported;
overlap |= PASSTHRU;
break;
}
case RTE_FLOW_ACTION_TYPE_JUMP: {
const struct rte_flow_action_jump *jump =
actions->conf;
struct enic_fm_fet *fet;
if (overlap & FATE)
goto unsupported;
ret = enic_fet_get(fm, jump->group, ingress, NULL,
&fet, error);
if (ret)
return ret;
overlap |= FATE;
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_EXACT_MATCH;
fm_op.exact.handle = fet->handle;
fm->fet = fet;
ret = enic_fm_append_action_op(fm, &fm_op, error);
if (ret)
return ret;
break;
}
case RTE_FLOW_ACTION_TYPE_MARK: {
const struct rte_flow_action_mark *mark =
actions->conf;
if (enic->use_noscatter_vec_rx_handler)
goto unsupported;
if (mark->id >= ENIC_MAGIC_FILTER_ID - 1)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL, "invalid mark id");
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_MARK;
fm_op.mark.mark = mark->id + 1;
ret = enic_fm_append_action_op(fm, &fm_op, error);
if (ret)
return ret;
break;
}
case RTE_FLOW_ACTION_TYPE_FLAG: {
if (enic->use_noscatter_vec_rx_handler)
goto unsupported;
/* ENIC_MAGIC_FILTER_ID is reserved for flagging */
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_MARK;
fm_op.mark.mark = ENIC_MAGIC_FILTER_ID;
ret = enic_fm_append_action_op(fm, &fm_op, error);
if (ret)
return ret;
break;
}
case RTE_FLOW_ACTION_TYPE_QUEUE: {
const struct rte_flow_action_queue *queue =
actions->conf;
/*
* If fate other than QUEUE or RSS, fail. Multiple
* rss and queue actions are ok.
*/
if ((overlap & FATE) && first_rq)
goto unsupported;
first_rq = false;
overlap |= FATE;
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_RQ_STEER;
fm_op.rq_steer.rq_index =
enic_rte_rq_idx_to_sop_idx(queue->index);
fm_op.rq_steer.rq_count = 1;
fm_op.rq_steer.vnic_handle = vnic_h;
ret = enic_fm_append_action_op(fm, &fm_op, error);
if (ret)
return ret;
ENICPMD_LOG(DEBUG, "create QUEUE action rq: %u",
fm_op.rq_steer.rq_index);
steer = true;
break;
}
case RTE_FLOW_ACTION_TYPE_DROP: {
if (overlap & FATE)
goto unsupported;
overlap |= FATE;
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_DROP;
ret = enic_fm_append_action_op(fm, &fm_op, error);
if (ret)
return ret;
ENICPMD_LOG(DEBUG, "create DROP action");
break;
}
case RTE_FLOW_ACTION_TYPE_COUNT: {
if (overlap & COUNT)
goto unsupported;
overlap |= COUNT;
/* Count is associated with entry not action on VIC. */
fmt->ftm_flags |= FMEF_COUNTER;
break;
}
case RTE_FLOW_ACTION_TYPE_RSS: {
const struct rte_flow_action_rss *rss = actions->conf;
bool allow;
uint16_t i;
/*
* If fate other than QUEUE or RSS, fail. Multiple
* rss and queue actions are ok.
*/
if ((overlap & FATE) && first_rq)
goto unsupported;
first_rq = false;
overlap |= FATE;
/*
* Hardware only supports RSS actions on outer level
* with default type and function. Queues must be
* sequential.
*/
allow = rss->func == RTE_ETH_HASH_FUNCTION_DEFAULT &&
rss->level == 0 && (rss->types == 0 ||
rss->types == enic->rss_hf) &&
rss->queue_num <= enic->rq_count &&
rss->queue[rss->queue_num - 1] < enic->rq_count;
/* Identity queue map needs to be sequential */
for (i = 1; i < rss->queue_num; i++)
allow = allow && (rss->queue[i] ==
rss->queue[i - 1] + 1);
if (!allow)
goto unsupported;
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_RQ_STEER;
fm_op.rq_steer.rq_index =
enic_rte_rq_idx_to_sop_idx(rss->queue[0]);
fm_op.rq_steer.rq_count = rss->queue_num;
fm_op.rq_steer.vnic_handle = vnic_h;
ret = enic_fm_append_action_op(fm, &fm_op, error);
if (ret)
return ret;
ENICPMD_LOG(DEBUG, "create QUEUE action rq: %u",
fm_op.rq_steer.rq_index);
steer = true;
break;
}
case RTE_FLOW_ACTION_TYPE_PORT_ID: {
const struct rte_flow_action_port_id *port;
struct rte_eth_dev *dev = NULL;
if (!ingress && (overlap & PORT_ID)) {
ENICPMD_LOG(DEBUG, "cannot have multiple egress PORT_ID actions");
goto unsupported;
}
port = actions->conf;
if (port->original) {
vnic_h = enic->fm_vnic_handle; /* This port */
break;
}
ret = enic_fm_check_transfer_dst(enic, port->id, &dev,
error);
if (ret)
return ret;
vnic_h = pmd_priv(dev)->fm_vnic_handle;
overlap |= PORT_ID;
/*
* Ingress. Nothing more to do. We add an implicit
* steer at the end if needed.
*/
if (ingress)
break;
/* Egress */
ret = vf_egress_port_id_action(fm, dev, vnic_h, &fm_op,
error);
if (ret)
return ret;
break;
}
case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP: {
if (overlap & DECAP)
goto unsupported;
overlap |= DECAP;
ret = enic_fm_copy_vxlan_decap(fm, fmt, actions,
error);
if (ret != 0)
return ret;
break;
}
case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: {
const struct rte_flow_action_vxlan_encap *encap;
encap = actions->conf;
if (overlap & ENCAP)
goto unsupported;
overlap |= ENCAP;
ret = enic_fm_copy_vxlan_encap(fm, encap->definition,
error);
if (ret != 0)
return ret;
break;
}
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN: {
struct fm_action_op *decap;
/*
* If decap-nostrip appears before pop vlan, this pop
* applies to the inner packet vlan. Turn it into
* decap-strip.
*/
decap = find_prev_action_op(fm, FMOP_DECAP_NOSTRIP);
if (decap) {
ENICPMD_LOG(DEBUG, "pop-vlan inner: decap-nostrip => decap-strip");
decap->fa_op = FMOP_DECAP_STRIP;
break;
}
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_POP_VLAN;
ret = enic_fm_append_action_op(fm, &fm_op, error);
if (ret)
return ret;
break;
}
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: {
const struct rte_flow_action_of_push_vlan *vlan;
if (overlap & PASSTHRU)
goto unsupported;
vlan = actions->conf;
if (vlan->ethertype != RTE_BE16(RTE_ETHER_TYPE_VLAN)) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL, "unexpected push_vlan ethertype");
}
overlap |= PUSH_VLAN;
need_ovlan_action = true;
break;
}
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP: {
const struct rte_flow_action_of_set_vlan_pcp *pcp;
pcp = actions->conf;
if (pcp->vlan_pcp > 7) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL, "invalid vlan_pcp");
}
need_ovlan_action = true;
ovlan |= ((uint16_t)pcp->vlan_pcp) << 13;
break;
}
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: {
const struct rte_flow_action_of_set_vlan_vid *vid;
vid = actions->conf;
need_ovlan_action = true;
ovlan |= rte_be_to_cpu_16(vid->vlan_vid);
break;
}
case RTE_FLOW_ACTION_TYPE_PORT_REPRESENTOR: {
const struct rte_flow_action_ethdev *ethdev;
struct rte_eth_dev *dev = NULL;
ethdev = actions->conf;
ret = enic_fm_check_transfer_dst(enic, ethdev->port_id,
&dev, error);
if (ret)
return ret;
vnic_h = pmd_priv(dev)->fm_vnic_handle;
overlap |= PORT_ID;
/*
* Action PORT_REPRESENTOR implies ingress destination.
* Noting to do. We add an implicit stree at the
* end if needed.
*/
ingress = 1;
break;
}
case RTE_FLOW_ACTION_TYPE_REPRESENTED_PORT: {
const struct rte_flow_action_ethdev *ethdev;
struct rte_eth_dev *dev = NULL;
if (overlap & PORT_ID) {
ENICPMD_LOG(DEBUG, "cannot have multiple egress PORT_ID actions");
goto unsupported;
}
ethdev = actions->conf;
ret = enic_fm_check_transfer_dst(enic, ethdev->port_id,
&dev, error);
if (ret)
return ret;
vnic_h = pmd_priv(dev)->fm_vnic_handle;
overlap |= PORT_ID;
/* Action REPRESENTED_PORT: always egress destination */
ingress = 0;
ret = vf_egress_port_id_action(fm, dev, vnic_h, &fm_op,
error);
if (ret)
return ret;
break;
}
default:
goto unsupported;
}
}
if (!(overlap & (FATE | PASSTHRU | COUNT | PORT_ID)))
goto unsupported;
/* Egress from VF: need implicit WQ match */
if (enic_is_vf_rep(enic) && !ingress) {
fmt->ftm_data.fk_wq_id = 0;
fmt->ftm_mask.fk_wq_id = 0xffff;
fmt->ftm_data.fk_wq_vnic = enic->fm_vnic_handle;
ENICPMD_LOG(DEBUG, "add implicit wq id match for vf %d",
VF_ENIC_TO_VF_REP(enic)->vf_id);
}
if (need_ovlan_action) {
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_SET_OVLAN;
fm_op.ovlan.vlan = ovlan;
ret = enic_fm_append_action_op(fm, &fm_op, error);
if (ret)
return ret;
}
/* Add steer op for PORT_ID without QUEUE */
if ((overlap & PORT_ID) && !steer && ingress) {
memset(&fm_op, 0, sizeof(fm_op));
/* Always to queue 0 for now as generic RSS is not available */
fm_op.fa_op = FMOP_RQ_STEER;
fm_op.rq_steer.rq_index = 0;
fm_op.rq_steer.vnic_handle = vnic_h;
ret = enic_fm_append_action_op(fm, &fm_op, error);
if (ret)
return ret;
ENICPMD_LOG(DEBUG, "add implicit steer op");
}
/* Add required END */
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_END;
ret = enic_fm_append_action_op(fm, &fm_op, error);
if (ret)
return ret;
enic_fm_reorder_action_op(fm);
return 0;
unsupported:
return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
NULL, "enic: unsupported action");
}
/** Check if the action is supported */
static int
enic_fm_match_action(const struct rte_flow_action *action,
const enum rte_flow_action_type *supported_actions)
{
for (; *supported_actions != RTE_FLOW_ACTION_TYPE_END;
supported_actions++) {
if (action->type == *supported_actions)
return 1;
}
return 0;
}
/* Debug function to dump internal NIC action structure. */
static void
enic_fm_dump_tcam_actions(const struct fm_action *fm_action)
{
/* Manually keep in sync with FMOP commands */
const char *fmop_str[FMOP_OP_MAX] = {
[FMOP_END] = "end",
[FMOP_DROP] = "drop",
[FMOP_RQ_STEER] = "steer",
[FMOP_EXACT_MATCH] = "exmatch",
[FMOP_MARK] = "mark",
[FMOP_EXT_MARK] = "ext_mark",
[FMOP_TAG] = "tag",
[FMOP_EG_HAIRPIN] = "eg_hairpin",
[FMOP_IG_HAIRPIN] = "ig_hairpin",
[FMOP_ENCAP_IVLAN] = "encap_ivlan",
[FMOP_ENCAP_NOIVLAN] = "encap_noivlan",
[FMOP_ENCAP] = "encap",
[FMOP_SET_OVLAN] = "set_ovlan",
[FMOP_DECAP_NOSTRIP] = "decap_nostrip",
[FMOP_DECAP_STRIP] = "decap_strip",
[FMOP_POP_VLAN] = "pop_vlan",
[FMOP_SET_EGPORT] = "set_egport",
[FMOP_RQ_STEER_ONLY] = "rq_steer_only",
[FMOP_SET_ENCAP_VLAN] = "set_encap_vlan",
[FMOP_EMIT] = "emit",
[FMOP_MODIFY] = "modify",
};
const struct fm_action_op *op = &fm_action->fma_action_ops[0];
char buf[128], *bp = buf;
const char *op_str;
int i, n, buf_len;
buf[0] = '\0';
buf_len = sizeof(buf);
for (i = 0; i < FM_ACTION_OP_MAX; i++) {
if (op->fa_op == FMOP_END)
break;
if (op->fa_op >= FMOP_OP_MAX)
op_str = "unknown";
else
op_str = fmop_str[op->fa_op];
n = snprintf(bp, buf_len, "%s,", op_str);
if (n > 0 && n < buf_len) {
bp += n;
buf_len -= n;
}
op++;
}
/* Remove trailing comma */
if (buf[0])
*(bp - 1) = '\0';
ENICPMD_LOG(DEBUG, " Actions: %s", buf);
}
static int
bits_to_str(uint32_t bits, const char *strings[], int max,
char *buf, int buf_len)
{
int i, n = 0, len = 0;
for (i = 0; i < max; i++) {
if (bits & (1 << i)) {
n = snprintf(buf, buf_len, "%s,", strings[i]);
if (n > 0 && n < buf_len) {
buf += n;
buf_len -= n;
len += n;
}
}
}
/* Remove trailing comma */
if (len) {
*(buf - 1) = '\0';
len--;
}
return len;
}
/* Debug function to dump internal NIC filter structure. */
static void
__enic_fm_dump_tcam_match(const struct fm_header_set *fk_hdrset, char *buf,
int buf_len)
{
/* Manually keep in sync with FKM_BITS */
const char *fm_fkm_str[FKM_BIT_COUNT] = {
[FKM_QTAG_BIT] = "qtag",
[FKM_CMD_BIT] = "cmd",
[FKM_IPV4_BIT] = "ip4",
[FKM_IPV6_BIT] = "ip6",
[FKM_ROCE_BIT] = "roce",
[FKM_UDP_BIT] = "udp",
[FKM_TCP_BIT] = "tcp",
[FKM_TCPORUDP_BIT] = "tcpportudp",
[FKM_IPFRAG_BIT] = "ipfrag",
[FKM_NVGRE_BIT] = "nvgre",
[FKM_VXLAN_BIT] = "vxlan",
[FKM_GENEVE_BIT] = "geneve",
[FKM_NSH_BIT] = "nsh",
[FKM_ROCEV2_BIT] = "rocev2",
[FKM_VLAN_PRES_BIT] = "vlan_pres",
[FKM_IPOK_BIT] = "ipok",
[FKM_L4OK_BIT] = "l4ok",
[FKM_ROCEOK_BIT] = "roceok",
[FKM_FCSOK_BIT] = "fcsok",
[FKM_EG_SPAN_BIT] = "eg_span",
[FKM_IG_SPAN_BIT] = "ig_span",
[FKM_EG_HAIRPINNED_BIT] = "eg_hairpinned",
};
/* Manually keep in sync with FKH_BITS */
const char *fm_fkh_str[FKH_BIT_COUNT] = {
[FKH_ETHER_BIT] = "eth",
[FKH_QTAG_BIT] = "qtag",
[FKH_L2RAW_BIT] = "l2raw",
[FKH_IPV4_BIT] = "ip4",
[FKH_IPV6_BIT] = "ip6",
[FKH_L3RAW_BIT] = "l3raw",
[FKH_UDP_BIT] = "udp",
[FKH_TCP_BIT] = "tcp",
[FKH_ICMP_BIT] = "icmp",
[FKH_VXLAN_BIT] = "vxlan",
[FKH_L4RAW_BIT] = "l4raw",
};
uint32_t fkh_bits = fk_hdrset->fk_header_select;
uint32_t fkm_bits = fk_hdrset->fk_metadata;
int n;
if (!fkm_bits && !fkh_bits)
return;
n = snprintf(buf, buf_len, "metadata(");
if (n > 0 && n < buf_len) {
buf += n;
buf_len -= n;
}
n = bits_to_str(fkm_bits, fm_fkm_str, FKM_BIT_COUNT, buf, buf_len);
if (n > 0 && n < buf_len) {
buf += n;
buf_len -= n;
}
n = snprintf(buf, buf_len, ") valid hdr fields(");
if (n > 0 && n < buf_len) {
buf += n;
buf_len -= n;
}
n = bits_to_str(fkh_bits, fm_fkh_str, FKH_BIT_COUNT, buf, buf_len);
if (n > 0 && n < buf_len) {
buf += n;
buf_len -= n;
}
snprintf(buf, buf_len, ")");
}
static void
enic_fm_dump_tcam_match(const struct fm_tcam_match_entry *match,
uint8_t ingress)
{
char buf[256];
memset(buf, 0, sizeof(buf));
__enic_fm_dump_tcam_match(&match->ftm_mask.fk_hdrset[0],
buf, sizeof(buf));
ENICPMD_LOG(DEBUG, " TCAM %s Outer: %s %scounter position %u",
(ingress) ? "IG" : "EG", buf,
(match->ftm_flags & FMEF_COUNTER) ? "" : "no ",
match->ftm_position);
memset(buf, 0, sizeof(buf));
__enic_fm_dump_tcam_match(&match->ftm_mask.fk_hdrset[1],
buf, sizeof(buf));
if (buf[0])
ENICPMD_LOG(DEBUG, " Inner: %s", buf);
}
/* Debug function to dump internal NIC flow structures. */
static void
enic_fm_dump_tcam_entry(const struct fm_tcam_match_entry *fm_match,
const struct fm_action *fm_action,
uint8_t ingress)
{
if (!rte_log_can_log(enic_pmd_logtype, RTE_LOG_DEBUG))
return;
enic_fm_dump_tcam_match(fm_match, ingress);
enic_fm_dump_tcam_actions(fm_action);
}
static int
enic_fm_flow_parse(struct enic_flowman *fm,
const struct rte_flow_attr *attrs,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
const struct rte_flow_action *action;
unsigned int ret;
static const enum rte_flow_action_type *sa;
ENICPMD_FUNC_TRACE();
ret = 0;
if (!pattern) {
rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "no pattern specified");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "no action specified");
return -rte_errno;
}
if (attrs) {
if (attrs->group != FM_TCAM_RTE_GROUP && attrs->priority) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
NULL,
"priorities are not supported for non-default (0) groups");
return -rte_errno;
} else if (!fm->owner_enic->switchdev_mode && attrs->transfer) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
NULL,
"transfer is not supported");
return -rte_errno;
} else if (attrs->ingress && attrs->egress) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
NULL,
"bidirectional rules not supported");
return -rte_errno;
}
} else {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "no attribute specified");
return -rte_errno;
}
/* Verify Actions. */
sa = (attrs->ingress) ? enic_fm_supported_ig_actions :
enic_fm_supported_eg_actions;
for (action = &actions[0]; action->type != RTE_FLOW_ACTION_TYPE_END;
action++) {
if (action->type == RTE_FLOW_ACTION_TYPE_VOID)
continue;
else if (!enic_fm_match_action(action, sa))
break;
}
if (action->type != RTE_FLOW_ACTION_TYPE_END) {
rte_flow_error_set(error, EPERM, RTE_FLOW_ERROR_TYPE_ACTION,
action, "invalid action");
return -rte_errno;
}
ret = enic_fm_copy_entry(fm, pattern, error);
if (ret)
return ret;
ret = enic_fm_copy_action(fm, actions, attrs->ingress, error);
return ret;
}
static void
enic_fm_counter_free(struct enic_flowman *fm, struct enic_fm_flow *fm_flow)
{
if (!fm_flow->counter_valid)
return;
SLIST_INSERT_HEAD(&fm->counters, fm_flow->counter, next);
fm_flow->counter_valid = false;
}
static int
enic_fm_more_counters(struct enic_flowman *fm)
{
struct enic_fm_counter *new_stack;
struct enic_fm_counter *ctrs;
int i, rc;
uint64_t args[2];
ENICPMD_FUNC_TRACE();
new_stack = rte_realloc(fm->counter_stack, (fm->counters_alloced +
FM_COUNTERS_EXPAND) *
sizeof(struct enic_fm_counter), 0);
if (new_stack == NULL) {
ENICPMD_LOG(ERR, "cannot alloc counter memory");
return -ENOMEM;
}
fm->counter_stack = new_stack;
args[0] = FM_COUNTER_BRK;
args[1] = fm->counters_alloced + FM_COUNTERS_EXPAND;
rc = flowman_cmd(fm, args, 2);
if (rc != 0) {
ENICPMD_LOG(ERR, "cannot alloc counters rc=%d", rc);
return rc;
}
ctrs = (struct enic_fm_counter *)fm->counter_stack +
fm->counters_alloced;
for (i = 0; i < FM_COUNTERS_EXPAND; i++, ctrs++) {
ctrs->handle = fm->counters_alloced + i;
SLIST_INSERT_HEAD(&fm->counters, ctrs, next);
}
fm->counters_alloced += FM_COUNTERS_EXPAND;
ENICPMD_LOG(DEBUG, "%u counters allocated, total: %u",
FM_COUNTERS_EXPAND, fm->counters_alloced);
return 0;
}
static int
enic_fm_counter_zero(struct enic_flowman *fm, struct enic_fm_counter *c)
{
uint64_t args[3];
int ret;
ENICPMD_FUNC_TRACE();
args[0] = FM_COUNTER_QUERY;
args[1] = c->handle;
args[2] = 1; /* clear */
ret = flowman_cmd(fm, args, 3);
if (ret) {
ENICPMD_LOG(ERR, "counter init: rc=%d handle=0x%x",
ret, c->handle);
return ret;
}
return 0;
}
static int
enic_fm_counter_alloc(struct enic_flowman *fm, struct rte_flow_error *error,
struct enic_fm_counter **ctr)
{
struct enic_fm_counter *c;
int ret;
ENICPMD_FUNC_TRACE();
*ctr = NULL;
if (SLIST_EMPTY(&fm->counters)) {
ret = enic_fm_more_counters(fm);
if (ret)
return rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, "enic: out of counters");
}
c = SLIST_FIRST(&fm->counters);
SLIST_REMOVE_HEAD(&fm->counters, next);
*ctr = c;
return 0;
}
static int
enic_fm_action_free(struct enic_flowman *fm, struct enic_fm_action *ah)
{
uint64_t args[2];
int ret = 0;
ENICPMD_FUNC_TRACE();
RTE_ASSERT(ah->ref > 0);
ah->ref--;
if (ah->ref == 0) {
args[0] = FM_ACTION_FREE;
args[1] = ah->handle;
ret = flowman_cmd(fm, args, 2);
if (ret)
/* This is a "should never happen" error. */
ENICPMD_LOG(ERR, "freeing action rc=%d handle=0x%"
PRIx64, ret, ah->handle);
rte_hash_del_key(fm->action_hash, (const void *)&ah->key);
free(ah);
}
return ret;
}
static int
enic_fm_entry_free(struct enic_flowman *fm, uint64_t handle)
{
uint64_t args[2];
int rc;
ENICPMD_FUNC_TRACE();
args[0] = FM_MATCH_ENTRY_REMOVE;
args[1] = handle;
rc = flowman_cmd(fm, args, 2);
if (rc)
ENICPMD_LOG(ERR, "cannot free match entry: rc=%d"
" handle=0x%" PRIx64, rc, handle);
return rc;
}
static struct enic_fm_jump_flow *
find_jump_flow(struct enic_flowman *fm, uint32_t group)
{
struct enic_fm_jump_flow *j;
ENICPMD_FUNC_TRACE();
TAILQ_FOREACH(j, &fm->jump_list, list) {
if (j->group == group)
return j;
}
return NULL;
}
static void
remove_jump_flow(struct enic_flowman *fm, struct rte_flow *flow)
{
struct enic_fm_jump_flow *j;
ENICPMD_FUNC_TRACE();
TAILQ_FOREACH(j, &fm->jump_list, list) {
if (j->flow == flow) {
TAILQ_REMOVE(&fm->jump_list, j, list);
free(j);
return;
}
}
}
static int
save_jump_flow(struct enic_flowman *fm,
struct rte_flow *flow,
uint32_t group,
struct fm_tcam_match_entry *match,
struct fm_action *action)
{
struct enic_fm_jump_flow *j;
ENICPMD_FUNC_TRACE();
j = calloc(1, sizeof(struct enic_fm_jump_flow));
if (j == NULL)
return -ENOMEM;
j->flow = flow;
j->group = group;
j->match = *match;
j->action = *action;
TAILQ_INSERT_HEAD(&fm->jump_list, j, list);
ENICPMD_LOG(DEBUG, "saved jump flow: flow=%p group=%u", flow, group);
return 0;
}
static void
__enic_fm_flow_free(struct enic_flowman *fm, struct enic_fm_flow *fm_flow)
{
if (fm_flow->entry_handle != FM_INVALID_HANDLE) {
enic_fm_entry_free(fm, fm_flow->entry_handle);
fm_flow->entry_handle = FM_INVALID_HANDLE;
}
if (fm_flow->action != NULL) {
enic_fm_action_free(fm, fm_flow->action);
fm_flow->action = NULL;
}
enic_fm_counter_free(fm, fm_flow);
if (fm_flow->fet) {
enic_fet_put(fm, fm_flow->fet);
fm_flow->fet = NULL;
}
}
static void
enic_fm_flow_free(struct enic_flowman *fm, struct rte_flow *flow)
{
struct enic_fm_flow *steer = flow->fm->hairpin_steer_flow;
if (flow->fm->fet && flow->fm->fet->default_key)
remove_jump_flow(fm, flow);
__enic_fm_flow_free(fm, flow->fm);
if (steer) {
__enic_fm_flow_free(fm, steer);
free(steer);
}
free(flow->fm);
free(flow);
}
static int
enic_fm_add_tcam_entry(struct enic_flowman *fm,
struct fm_tcam_match_entry *match_in,
uint64_t *entry_handle,
uint8_t ingress,
struct rte_flow_error *error)
{
struct fm_tcam_match_entry *ftm;
uint64_t args[3];
int ret;
ENICPMD_FUNC_TRACE();
/* Copy entry to the command buffer */
ftm = &fm->cmd.va->fm_tcam_match_entry;
memcpy(ftm, match_in, sizeof(*ftm));
/* Add TCAM entry */
args[0] = FM_TCAM_ENTRY_INSTALL;
args[1] = ingress ? fm->ig_tcam_hndl : fm->eg_tcam_hndl;
args[2] = fm->cmd.pa;
ret = flowman_cmd(fm, args, 3);
if (ret != 0) {
ENICPMD_LOG(ERR, "cannot add %s TCAM entry: rc=%d",
ingress ? "ingress" : "egress", ret);
rte_flow_error_set(error, ret, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, "enic: devcmd(tcam-entry-install)");
return ret;
}
ENICPMD_LOG(DEBUG, "installed %s TCAM entry: handle=0x%" PRIx64,
ingress ? "ingress" : "egress", (uint64_t)args[0]);
*entry_handle = args[0];
return 0;
}
static int
enic_fm_add_exact_entry(struct enic_flowman *fm,
struct fm_tcam_match_entry *match_in,
uint64_t *entry_handle,
struct enic_fm_fet *fet,
struct rte_flow_error *error)
{
struct fm_exact_match_entry *fem;
uint64_t args[3];
int ret;
ENICPMD_FUNC_TRACE();
/* The new entry must have the table's key */
if (memcmp(fet->key.fk_hdrset, match_in->ftm_mask.fk_hdrset,
sizeof(struct fm_header_set) * FM_HDRSET_MAX)) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
"enic: key does not match group's key");
}
/* Copy entry to the command buffer */
fem = &fm->cmd.va->fm_exact_match_entry;
/*
* Translate TCAM entry to exact entry. As is only need to drop
* position and mask. The mask is part of the exact match table.
* Position (aka priority) is not supported in the exact match table.
*/
fem->fem_data = match_in->ftm_data;
fem->fem_flags = match_in->ftm_flags;
fem->fem_action = match_in->ftm_action;
fem->fem_counter = match_in->ftm_counter;
/* Add exact entry */
args[0] = FM_EXACT_ENTRY_INSTALL;
args[1] = fet->handle;
args[2] = fm->cmd.pa;
ret = flowman_cmd(fm, args, 3);
if (ret != 0) {
ENICPMD_LOG(ERR, "cannot add %s exact entry: group=%u",
fet->ingress ? "ingress" : "egress", fet->group);
rte_flow_error_set(error, ret, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, "enic: devcmd(exact-entry-install)");
return ret;
}
ENICPMD_LOG(DEBUG, "installed %s exact entry: group=%u"
" handle=0x%" PRIx64,
fet->ingress ? "ingress" : "egress", fet->group,
(uint64_t)args[0]);
*entry_handle = args[0];
return 0;
}
static int
enic_action_handle_get(struct enic_flowman *fm, struct fm_action *action_in,
struct rte_flow_error *error,
struct enic_fm_action **ah_o)
{
struct enic_fm_action *ah;
struct fm_action *fma;
uint64_t args[2];
int ret = 0;
ret = rte_hash_lookup_data(fm->action_hash, action_in,
(void **)&ah);
if (ret < 0 && ret != -ENOENT)
return rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, "enic: rte_hash_lookup(action)");
if (ret == -ENOENT) {
/* Allocate a new action on the NIC. */
fma = &fm->cmd.va->fm_action;
memcpy(fma, action_in, sizeof(*fma));
ah = calloc(1, sizeof(*ah));
if (ah == NULL)
return rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "enic: calloc(fm-action)");
memcpy(&ah->key, action_in, sizeof(struct fm_action));
args[0] = FM_ACTION_ALLOC;
args[1] = fm->cmd.pa;
ret = flowman_cmd(fm, args, 2);
if (ret != 0) {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, "enic: devcmd(action-alloc)");
goto error_with_ah;
}
ah->handle = args[0];
ret = rte_hash_add_key_data(fm->action_hash,
(const void *)action_in,
(void *)ah);
if (ret != 0) {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL,
"enic: rte_hash_add_key_data(actn)");
goto error_with_action_handle;
}
ENICPMD_LOG(DEBUG, "action allocated: handle=0x%" PRIx64,
ah->handle);
}
/* Action handle struct is valid, increment reference count. */
ah->ref++;
*ah_o = ah;
return 0;
error_with_action_handle:
args[0] = FM_ACTION_FREE;
args[1] = ah->handle;
ret = flowman_cmd(fm, args, 2);
if (ret != 0)
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, "enic: devcmd(action-free)");
error_with_ah:
free(ah);
return ret;
}
/* Push match-action to the NIC. */
static int
__enic_fm_flow_add_entry(struct enic_flowman *fm,
struct enic_fm_flow *fm_flow,
struct fm_tcam_match_entry *match_in,
struct fm_action *action_in,
uint32_t group,
uint8_t ingress,
struct rte_flow_error *error)
{
struct enic_fm_counter *ctr;
struct enic_fm_action *ah = NULL;
uint64_t entry_h;
int ret;
ENICPMD_FUNC_TRACE();
/* Get or create an action handle. */
ret = enic_action_handle_get(fm, action_in, error, &ah);
if (ret)
return ret;
match_in->ftm_action = ah->handle;
fm_flow->action = ah;
/* Allocate counter if requested. */
if (match_in->ftm_flags & FMEF_COUNTER) {
ret = enic_fm_counter_alloc(fm, error, &ctr);
if (ret) /* error has been filled in */
return ret;
fm_flow->counter_valid = true;
fm_flow->counter = ctr;
match_in->ftm_counter = ctr->handle;
}
/*
* Get the group's table (either TCAM or exact match table) and
* add entry to it. If we use the exact match table, the handler
* will translate the TCAM entry (match_in) to the appropriate
* exact match entry and use that instead.
*/
entry_h = FM_INVALID_HANDLE;
if (group == FM_TCAM_RTE_GROUP) {
ret = enic_fm_add_tcam_entry(fm, match_in, &entry_h, ingress,
error);
if (ret)
return ret;
/* Jump action might have a ref to fet */
fm_flow->fet = fm->fet;
fm->fet = NULL;
} else {
struct enic_fm_fet *fet = NULL;
ret = enic_fet_get(fm, group, ingress,
&match_in->ftm_mask, &fet, error);
if (ret)
return ret;
fm_flow->fet = fet;
ret = enic_fm_add_exact_entry(fm, match_in, &entry_h, fet,
error);
if (ret)
return ret;
}
/* Clear counter after adding entry, as it requires in-use counter */
if (fm_flow->counter_valid) {
ret = enic_fm_counter_zero(fm, fm_flow->counter);
if (ret)
return ret;
}
fm_flow->entry_handle = entry_h;
return 0;
}
/* Push match-action to the NIC. */
static struct rte_flow *
enic_fm_flow_add_entry(struct enic_flowman *fm,
struct fm_tcam_match_entry *match_in,
struct fm_action *action_in,
const struct rte_flow_attr *attrs,
struct rte_flow_error *error)
{
struct enic_fm_flow *fm_flow;
struct rte_flow *flow;
ENICPMD_FUNC_TRACE();
match_in->ftm_position = attrs->priority;
enic_fm_dump_tcam_entry(match_in, action_in, attrs->ingress);
flow = calloc(1, sizeof(*flow));
fm_flow = calloc(1, sizeof(*fm_flow));
if (flow == NULL || fm_flow == NULL) {
rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "enic: cannot allocate rte_flow");
free(flow);
free(fm_flow);
return NULL;
}
flow->fm = fm_flow;
fm_flow->action = NULL;
fm_flow->entry_handle = FM_INVALID_HANDLE;
if (__enic_fm_flow_add_entry(fm, fm_flow, match_in, action_in,
attrs->group, attrs->ingress, error)) {
enic_fm_flow_free(fm, flow);
return NULL;
}
return flow;
}
static void
convert_jump_flows(struct enic_flowman *fm, struct enic_fm_fet *fet,
struct rte_flow_error *error)
{
struct enic_fm_flow *fm_flow;
struct enic_fm_jump_flow *j;
struct fm_action *fma;
uint32_t group;
ENICPMD_FUNC_TRACE();
/*
* Find the saved flows that should jump to the new table (fet).
* Then delete the old TCAM entry that jumps to the default table,
* and add a new one that jumps to the new table.
*/
group = fet->group;
j = find_jump_flow(fm, group);
while (j) {
ENICPMD_LOG(DEBUG, "convert jump flow: flow=%p group=%u",
j->flow, group);
/* Delete old entry */
fm_flow = j->flow->fm;
__enic_fm_flow_free(fm, fm_flow);
/* Add new entry */
fma = &j->action;
fma->fma_action_ops[0].exact.handle = fet->handle;
if (__enic_fm_flow_add_entry(fm, fm_flow, &j->match, fma,
FM_TCAM_RTE_GROUP, fet->ingress, error)) {
/* Cannot roll back changes at the moment */
ENICPMD_LOG(ERR, "cannot convert jump flow: flow=%p",
j->flow);
} else {
fm_flow->fet = fet;
fet->ref++;
ENICPMD_LOG(DEBUG, "convert ok: group=%u ref=%u",
fet->group, fet->ref);
}
TAILQ_REMOVE(&fm->jump_list, j, list);
free(j);
j = find_jump_flow(fm, group);
}
}
static int
add_hairpin_steer(struct enic_flowman *fm, struct rte_flow *flow,
struct rte_flow_error *error)
{
struct fm_tcam_match_entry *fm_tcam_entry;
struct enic_fm_flow *fm_flow;
struct fm_action *fm_action;
struct fm_action_op fm_op;
int ret;
ENICPMD_FUNC_TRACE();
fm_flow = calloc(1, sizeof(*fm_flow));
if (fm_flow == NULL) {
rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "enic: cannot allocate rte_flow");
return -ENOMEM;
}
/* Original egress hairpin flow */
fm_tcam_entry = &fm->tcam_entry;
fm_action = &fm->action;
/* Use the match pattern of the egress flow as is, without counters */
fm_tcam_entry->ftm_flags &= ~FMEF_COUNTER;
/* The only action is steer to vnic */
fm->action_op_count = 0;
memset(fm_action, 0, sizeof(*fm_action));
memset(&fm_op, 0, sizeof(fm_op));
/* Always to queue 0 for now */
fm_op.fa_op = FMOP_RQ_STEER;
fm_op.rq_steer.rq_index = 0;
fm_op.rq_steer.vnic_handle = fm->hairpin_steer_vnic_h;
ret = enic_fm_append_action_op(fm, &fm_op, error);
if (ret)
goto error_with_flow;
ENICPMD_LOG(DEBUG, "add steer op");
/* Add required END */
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_END;
ret = enic_fm_append_action_op(fm, &fm_op, error);
if (ret)
goto error_with_flow;
/* Add the ingress flow */
fm_flow->action = NULL;
fm_flow->entry_handle = FM_INVALID_HANDLE;
ret = __enic_fm_flow_add_entry(fm, fm_flow, fm_tcam_entry, fm_action,
FM_TCAM_RTE_GROUP, 1 /* ingress */, error);
if (ret) {
ENICPMD_LOG(ERR, "cannot add hairpin-steer flow");
goto error_with_flow;
}
/* The new flow is now the egress flow's paired flow */
flow->fm->hairpin_steer_flow = fm_flow;
return 0;
error_with_flow:
free(fm_flow);
return ret;
}
static void
enic_fm_open_scratch(struct enic_flowman *fm)
{
fm->action_op_count = 0;
fm->fet = NULL;
fm->need_hairpin_steer = 0;
fm->hairpin_steer_vnic_h = 0;
memset(&fm->tcam_entry, 0, sizeof(fm->tcam_entry));
memset(&fm->action, 0, sizeof(fm->action));
}
static void
enic_fm_close_scratch(struct enic_flowman *fm)
{
if (fm->fet) {
enic_fet_put(fm, fm->fet);
fm->fet = NULL;
}
fm->action_op_count = 0;
}
static int
enic_fm_flow_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attrs,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct fm_tcam_match_entry *fm_tcam_entry;
struct fm_action *fm_action;
struct enic_flowman *fm;
int ret;
ENICPMD_FUNC_TRACE();
fm = begin_fm(pmd_priv(dev));
if (fm == NULL)
return -ENOTSUP;
enic_fm_open_scratch(fm);
ret = enic_fm_flow_parse(fm, attrs, pattern, actions, error);
if (!ret) {
fm_tcam_entry = &fm->tcam_entry;
fm_action = &fm->action;
enic_fm_dump_tcam_entry(fm_tcam_entry, fm_action,
attrs->ingress);
}
enic_fm_close_scratch(fm);
end_fm(fm);
return ret;
}
static int
enic_fm_flow_query_count(struct rte_eth_dev *dev,
struct rte_flow *flow, void *data,
struct rte_flow_error *error)
{
struct rte_flow_query_count *query;
struct enic_fm_flow *fm_flow;
struct enic_flowman *fm;
uint64_t args[3];
int rc;
ENICPMD_FUNC_TRACE();
fm = begin_fm(pmd_priv(dev));
query = data;
fm_flow = flow->fm;
if (!fm_flow->counter_valid) {
rc = rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"enic: flow does not have counter");
goto exit;
}
args[0] = FM_COUNTER_QUERY;
args[1] = fm_flow->counter->handle;
args[2] = query->reset;
rc = flowman_cmd(fm, args, 3);
if (rc) {
ENICPMD_LOG(ERR, "cannot query counter: rc=%d handle=0x%x",
rc, fm_flow->counter->handle);
goto exit;
}
query->hits_set = 1;
query->hits = args[0];
query->bytes_set = 1;
query->bytes = args[1];
rc = 0;
exit:
end_fm(fm);
return rc;
}
static int
enic_fm_flow_query(struct rte_eth_dev *dev,
struct rte_flow *flow,
const struct rte_flow_action *actions,
void *data,
struct rte_flow_error *error)
{
int ret = 0;
ENICPMD_FUNC_TRACE();
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
ret = enic_fm_flow_query_count(dev, flow, data, error);
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"action not supported");
}
if (ret < 0)
return ret;
}
return 0;
}
static struct rte_flow *
enic_fm_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attrs,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct fm_tcam_match_entry *fm_tcam_entry;
struct fm_action *fm_action;
struct enic_flowman *fm;
struct enic_fm_fet *fet;
struct rte_flow *flow;
struct enic *enic;
int ret;
ENICPMD_FUNC_TRACE();
enic = pmd_priv(dev);
fm = begin_fm(enic);
if (fm == NULL) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"flowman is not initialized");
return NULL;
}
enic_fm_open_scratch(fm);
flow = NULL;
ret = enic_fm_flow_parse(fm, attrs, pattern, actions, error);
if (ret < 0)
goto error_with_scratch;
fm_tcam_entry = &fm->tcam_entry;
fm_action = &fm->action;
flow = enic_fm_flow_add_entry(fm, fm_tcam_entry, fm_action,
attrs, error);
if (flow) {
/* Add ingress rule that pairs with hairpin rule */
if (fm->need_hairpin_steer) {
ret = add_hairpin_steer(fm, flow, error);
if (ret) {
enic_fm_flow_free(fm, flow);
flow = NULL;
goto error_with_scratch;
}
}
LIST_INSERT_HEAD(&enic->flows, flow, next);
fet = flow->fm->fet;
if (fet && fet->default_key) {
/*
* Jump to non-existent group? Save the relevant info
* so we can convert this flow when that group
* materializes.
*/
save_jump_flow(fm, flow, fet->group,
fm_tcam_entry, fm_action);
} else if (fet && fet->ref == 1) {
/*
* A new table is created. Convert the saved flows
* that should jump to this group.
*/
convert_jump_flows(fm, fet, error);
}
}
error_with_scratch:
enic_fm_close_scratch(fm);
end_fm(fm);
return flow;
}
static int
enic_fm_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow,
__rte_unused struct rte_flow_error *error)
{
struct enic *enic = pmd_priv(dev);
struct enic_flowman *fm;
ENICPMD_FUNC_TRACE();
fm = begin_fm(enic);
if (fm == NULL)
return 0;
LIST_REMOVE(flow, next);
enic_fm_flow_free(fm, flow);
end_fm(fm);
return 0;
}
static int
enic_fm_flow_flush(struct rte_eth_dev *dev,
__rte_unused struct rte_flow_error *error)
{
LIST_HEAD(enic_flows, rte_flow) internal;
struct enic_fm_flow *fm_flow;
struct enic_flowman *fm;
struct rte_flow *flow;
struct enic *enic = pmd_priv(dev);
ENICPMD_FUNC_TRACE();
fm = begin_fm(enic);
if (fm == NULL)
return 0;
/* Destroy all non-internal flows */
LIST_INIT(&internal);
while (!LIST_EMPTY(&enic->flows)) {
flow = LIST_FIRST(&enic->flows);
fm_flow = flow->fm;
LIST_REMOVE(flow, next);
if (flow->internal) {
LIST_INSERT_HEAD(&internal, flow, next);
continue;
}
/*
* If tables are null, then vNIC is closing, and the firmware
* has already cleaned up flowman state. So do not try to free
* resources, as it only causes errors.
*/
if (fm->ig_tcam_hndl == FM_INVALID_HANDLE) {
fm_flow->entry_handle = FM_INVALID_HANDLE;
fm_flow->action = NULL;
fm_flow->fet = NULL;
}
enic_fm_flow_free(fm, flow);
}
while (!LIST_EMPTY(&internal)) {
flow = LIST_FIRST(&internal);
LIST_REMOVE(flow, next);
LIST_INSERT_HEAD(&enic->flows, flow, next);
}
end_fm(fm);
return 0;
}
static int
enic_fm_tbl_free(struct enic_flowman *fm, uint64_t handle)
{
uint64_t args[2];
int rc;
args[0] = FM_MATCH_TABLE_FREE;
args[1] = handle;
rc = flowman_cmd(fm, args, 2);
if (rc)
ENICPMD_LOG(ERR, "cannot free table: rc=%d handle=0x%" PRIx64,
rc, handle);
return rc;
}
static int
enic_fm_tcam_tbl_alloc(struct enic_flowman *fm, uint32_t direction,
uint32_t max_entries, uint64_t *handle)
{
struct fm_tcam_match_table *tcam_tbl;
uint64_t args[2];
int rc;
ENICPMD_FUNC_TRACE();
tcam_tbl = &fm->cmd.va->fm_tcam_match_table;
tcam_tbl->ftt_direction = direction;
tcam_tbl->ftt_stage = FM_STAGE_LAST;
tcam_tbl->ftt_max_entries = max_entries;
args[0] = FM_TCAM_TABLE_ALLOC;
args[1] = fm->cmd.pa;
rc = flowman_cmd(fm, args, 2);
if (rc) {
ENICPMD_LOG(ERR, "cannot alloc %s TCAM table: rc=%d",
(direction == FM_INGRESS) ? "IG" : "EG", rc);
return rc;
}
*handle = args[0];
ENICPMD_LOG(DEBUG, "%s TCAM table allocated, handle=0x%" PRIx64,
(direction == FM_INGRESS) ? "IG" : "EG", *handle);
return 0;
}
static int
enic_fm_init_actions(struct enic_flowman *fm)
{
struct rte_hash *a_hash;
char name[RTE_HASH_NAMESIZE];
struct rte_hash_parameters params = {
.entries = FM_MAX_ACTION_TABLE_SIZE,
.key_len = sizeof(struct fm_action),
.hash_func = rte_jhash,
.hash_func_init_val = 0,
.socket_id = rte_socket_id(),
};
ENICPMD_FUNC_TRACE();
snprintf((char *)name, sizeof(name), "fm-ah-%s",
fm->owner_enic->bdf_name);
params.name = name;
a_hash = rte_hash_create(&params);
if (a_hash == NULL)
return -rte_errno;
fm->action_hash = a_hash;
return 0;
}
static int
enic_fm_init_counters(struct enic_flowman *fm)
{
ENICPMD_FUNC_TRACE();
SLIST_INIT(&fm->counters);
return enic_fm_more_counters(fm);
}
static void
enic_fm_free_all_counters(struct enic_flowman *fm)
{
uint64_t args[2];
int rc;
args[0] = FM_COUNTER_BRK;
args[1] = 0;
rc = flowman_cmd(fm, args, 2);
if (rc != 0)
ENICPMD_LOG(ERR, "cannot free counters: rc=%d", rc);
rte_free(fm->counter_stack);
}
static int
enic_fm_alloc_tcam_tables(struct enic_flowman *fm)
{
int rc;
ENICPMD_FUNC_TRACE();
rc = enic_fm_tcam_tbl_alloc(fm, FM_INGRESS, FM_MAX_TCAM_TABLE_SIZE,
&fm->ig_tcam_hndl);
if (rc)
return rc;
rc = enic_fm_tcam_tbl_alloc(fm, FM_EGRESS, FM_MAX_TCAM_TABLE_SIZE,
&fm->eg_tcam_hndl);
return rc;
}
static void
enic_fm_free_tcam_tables(struct enic_flowman *fm)
{
ENICPMD_FUNC_TRACE();
if (fm->ig_tcam_hndl) {
ENICPMD_LOG(DEBUG, "free IG TCAM table handle=0x%" PRIx64,
fm->ig_tcam_hndl);
enic_fm_tbl_free(fm, fm->ig_tcam_hndl);
fm->ig_tcam_hndl = FM_INVALID_HANDLE;
}
if (fm->eg_tcam_hndl) {
ENICPMD_LOG(DEBUG, "free EG TCAM table handle=0x%" PRIx64,
fm->eg_tcam_hndl);
enic_fm_tbl_free(fm, fm->eg_tcam_hndl);
fm->eg_tcam_hndl = FM_INVALID_HANDLE;
}
}
int
enic_fm_init(struct enic *enic)
{
const struct rte_pci_addr *addr;
struct enic_flowman *fm;
uint8_t name[RTE_MEMZONE_NAMESIZE];
int rc;
if (enic->flow_filter_mode != FILTER_FLOWMAN)
return 0;
ENICPMD_FUNC_TRACE();
/* Get vnic handle and save for port-id action */
if (enic_is_vf_rep(enic))
addr = &VF_ENIC_TO_VF_REP(enic)->bdf;
else
addr = &RTE_ETH_DEV_TO_PCI(enic->rte_dev)->addr;
rc = enic_fm_find_vnic(enic, addr, &enic->fm_vnic_handle);
if (rc) {
ENICPMD_LOG(ERR, "cannot find vnic handle for %x:%x:%x",
addr->bus, addr->devid, addr->function);
return rc;
}
/* Save UIF for egport action */
enic->fm_vnic_uif = vnic_dev_uif(enic->vdev);
ENICPMD_LOG(DEBUG, "uif %u", enic->fm_vnic_uif);
/* Nothing else to do for representor. It will share the PF flowman */
if (enic_is_vf_rep(enic))
return 0;
fm = calloc(1, sizeof(*fm));
if (fm == NULL) {
ENICPMD_LOG(ERR, "cannot alloc flowman struct");
return -ENOMEM;
}
fm->owner_enic = enic;
rte_spinlock_init(&fm->lock);
TAILQ_INIT(&fm->fet_list);
TAILQ_INIT(&fm->jump_list);
/* Allocate host memory for flowman commands */
snprintf((char *)name, sizeof(name), "fm-cmd-%s", enic->bdf_name);
fm->cmd.va = enic_alloc_consistent(enic,
sizeof(union enic_flowman_cmd_mem), &fm->cmd.pa, name);
if (!fm->cmd.va) {
ENICPMD_LOG(ERR, "cannot allocate flowman command memory");
rc = -ENOMEM;
goto error_fm;
}
/* Allocate TCAM tables upfront as they are the main tables */
rc = enic_fm_alloc_tcam_tables(fm);
if (rc) {
ENICPMD_LOG(ERR, "cannot alloc TCAM tables");
goto error_cmd;
}
/* Then a number of counters */
rc = enic_fm_init_counters(fm);
if (rc) {
ENICPMD_LOG(ERR, "cannot alloc counters");
goto error_tables;
}
/* set up action handle hash */
rc = enic_fm_init_actions(fm);
if (rc) {
ENICPMD_LOG(ERR, "cannot create action hash, error:%d", rc);
goto error_counters;
}
/*
* One default exact match table for each direction. We hold onto
* it until close.
*/
rc = enic_fet_alloc(fm, 1, NULL, 128, &fm->default_ig_fet);
if (rc) {
ENICPMD_LOG(ERR, "cannot alloc default IG exact match table");
goto error_actions;
}
fm->default_ig_fet->ref = 1;
rc = enic_fet_alloc(fm, 0, NULL, 128, &fm->default_eg_fet);
if (rc) {
ENICPMD_LOG(ERR, "cannot alloc default EG exact match table");
goto error_ig_fet;
}
fm->default_eg_fet->ref = 1;
fm->vf_rep_tag = FM_VF_REP_TAG;
enic->fm = fm;
return 0;
error_ig_fet:
enic_fet_free(fm, fm->default_ig_fet);
error_actions:
rte_hash_free(fm->action_hash);
error_counters:
enic_fm_free_all_counters(fm);
error_tables:
enic_fm_free_tcam_tables(fm);
error_cmd:
enic_free_consistent(enic, sizeof(union enic_flowman_cmd_mem),
fm->cmd.va, fm->cmd.pa);
error_fm:
free(fm);
return rc;
}
void
enic_fm_destroy(struct enic *enic)
{
struct enic_flowman *fm;
struct enic_fm_fet *fet;
ENICPMD_FUNC_TRACE();
if (enic_is_vf_rep(enic)) {
delete_rep_flows(enic);
return;
}
if (enic->fm == NULL)
return;
fm = enic->fm;
enic_fm_flow_flush(enic->rte_dev, NULL);
enic_fet_free(fm, fm->default_eg_fet);
enic_fet_free(fm, fm->default_ig_fet);
/* Free all exact match tables still open */
while (!TAILQ_EMPTY(&fm->fet_list)) {
fet = TAILQ_FIRST(&fm->fet_list);
enic_fet_free(fm, fet);
}
enic_fm_free_tcam_tables(fm);
enic_fm_free_all_counters(fm);
rte_hash_free(fm->action_hash);
enic_free_consistent(enic, sizeof(union enic_flowman_cmd_mem),
fm->cmd.va, fm->cmd.pa);
fm->cmd.va = NULL;
free(fm);
enic->fm = NULL;
}
int
enic_fm_allocate_switch_domain(struct enic *pf)
{
const struct rte_pci_addr *cur_a, *prev_a;
struct rte_eth_dev *dev;
struct enic *cur, *prev;
uint16_t domain_id;
uint64_t vnic_h;
uint16_t pid;
int ret;
ENICPMD_FUNC_TRACE();
if (enic_is_vf_rep(pf))
return -EINVAL;
cur = pf;
cur_a = &RTE_ETH_DEV_TO_PCI(cur->rte_dev)->addr;
/* Go through ports and find another PF that is on the same adapter */
RTE_ETH_FOREACH_DEV(pid) {
dev = &rte_eth_devices[pid];
if (!dev_is_enic(dev))
continue;
if (dev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR)
continue;
if (dev == cur->rte_dev)
continue;
/* dev is another PF. Is it on the same adapter? */
prev = pmd_priv(dev);
prev_a = &RTE_ETH_DEV_TO_PCI(dev)->addr;
if (!enic_fm_find_vnic(cur, prev_a, &vnic_h)) {
ENICPMD_LOG(DEBUG, "Port %u (PF BDF %x:%x:%x) and port %u (PF BDF %x:%x:%x domain %u) are on the same VIC",
cur->rte_dev->data->port_id,
cur_a->bus, cur_a->devid, cur_a->function,
dev->data->port_id,
prev_a->bus, prev_a->devid, prev_a->function,
prev->switch_domain_id);
cur->switch_domain_id = prev->switch_domain_id;
return 0;
}
}
ret = rte_eth_switch_domain_alloc(&domain_id);
if (ret) {
ENICPMD_LOG(WARNING, "failed to allocate switch domain for device %d",
ret);
}
cur->switch_domain_id = domain_id;
ENICPMD_LOG(DEBUG, "Port %u (PF BDF %x:%x:%x) is the 1st PF on the VIC. Allocated switch domain id %u",
cur->rte_dev->data->port_id,
cur_a->bus, cur_a->devid, cur_a->function,
domain_id);
return ret;
}
const struct rte_flow_ops enic_fm_flow_ops = {
.validate = enic_fm_flow_validate,
.create = enic_fm_flow_create,
.destroy = enic_fm_flow_destroy,
.flush = enic_fm_flow_flush,
.query = enic_fm_flow_query,
};
/* Add a high priority flow that loops representor packets to VF */
int
enic_fm_add_rep2vf_flow(struct enic_vf_representor *vf)
{
struct fm_tcam_match_entry *fm_tcam_entry;
struct rte_flow *flow0, *flow1;
struct fm_action *fm_action;
struct rte_flow_error error;
struct rte_flow_attr attrs;
struct fm_action_op fm_op;
struct enic_flowman *fm;
struct enic *pf;
uint8_t tag;
pf = vf->pf;
fm = pf->fm;
tag = fm->vf_rep_tag;
enic_fm_open_scratch(fm);
fm_tcam_entry = &fm->tcam_entry;
fm_action = &fm->action;
/* Egress rule: match WQ ID and tag+hairpin */
fm_tcam_entry->ftm_data.fk_wq_id = vf->pf_wq_idx;
fm_tcam_entry->ftm_mask.fk_wq_id = 0xffff;
fm_tcam_entry->ftm_flags |= FMEF_COUNTER;
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_TAG;
fm_op.tag.tag = tag;
enic_fm_append_action_op(fm, &fm_op, &error);
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_EG_HAIRPIN;
enic_fm_append_action_op(fm, &fm_op, &error);
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_END;
enic_fm_append_action_op(fm, &fm_op, &error);
attrs.group = 0;
attrs.ingress = 0;
attrs.egress = 1;
attrs.priority = FM_HIGHEST_PRIORITY;
flow0 = enic_fm_flow_add_entry(fm, fm_tcam_entry, fm_action,
&attrs, &error);
enic_fm_close_scratch(fm);
if (flow0 == NULL) {
ENICPMD_LOG(ERR, "Cannot create flow 0 for representor->VF");
return -EINVAL;
}
LIST_INSERT_HEAD(&pf->flows, flow0, next);
/* Make this flow internal, so the user app cannot delete it */
flow0->internal = 1;
ENICPMD_LOG(DEBUG, "representor->VF %d flow created: wq %d -> tag %d hairpin",
vf->vf_id, vf->pf_wq_idx, tag);
/* Ingress: steer hairpinned to VF RQ 0 */
enic_fm_open_scratch(fm);
fm_tcam_entry->ftm_flags |= FMEF_COUNTER;
fm_tcam_entry->ftm_data.fk_hdrset[0].fk_metadata |= FKM_EG_HAIRPINNED;
fm_tcam_entry->ftm_mask.fk_hdrset[0].fk_metadata |= FKM_EG_HAIRPINNED;
fm_tcam_entry->ftm_data.fk_packet_tag = tag;
fm_tcam_entry->ftm_mask.fk_packet_tag = 0xff;
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_RQ_STEER;
fm_op.rq_steer.rq_index = 0;
fm_op.rq_steer.vnic_handle = vf->enic.fm_vnic_handle;
enic_fm_append_action_op(fm, &fm_op, &error);
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_END;
enic_fm_append_action_op(fm, &fm_op, &error);
attrs.group = 0;
attrs.ingress = 1;
attrs.egress = 0;
attrs.priority = FM_HIGHEST_PRIORITY;
flow1 = enic_fm_flow_add_entry(fm, fm_tcam_entry, fm_action,
&attrs, &error);
enic_fm_close_scratch(fm);
if (flow1 == NULL) {
ENICPMD_LOG(ERR, "Cannot create flow 1 for representor->VF");
enic_fm_flow_destroy(pf->rte_dev, flow0, &error);
return -EINVAL;
}
LIST_INSERT_HEAD(&pf->flows, flow1, next);
flow1->internal = 1;
ENICPMD_LOG(DEBUG, "representor->VF %d flow created: tag %d hairpinned -> VF RQ %d",
vf->vf_id, tag, fm_op.rq_steer.rq_index);
vf->rep2vf_flow[0] = flow0;
vf->rep2vf_flow[1] = flow1;
/* Done with this tag, use a different one next time */
fm->vf_rep_tag++;
return 0;
}
/*
* Add a low priority flow that matches all packets from VF and loops them
* back to the representor.
*/
int
enic_fm_add_vf2rep_flow(struct enic_vf_representor *vf)
{
struct fm_tcam_match_entry *fm_tcam_entry;
struct rte_flow *flow0, *flow1;
struct fm_action *fm_action;
struct rte_flow_error error;
struct rte_flow_attr attrs;
struct fm_action_op fm_op;
struct enic_flowman *fm;
struct enic *pf;
uint8_t tag;
pf = vf->pf;
fm = pf->fm;
tag = fm->vf_rep_tag;
enic_fm_open_scratch(fm);
fm_tcam_entry = &fm->tcam_entry;
fm_action = &fm->action;
/* Egress rule: match-any and tag+hairpin */
fm_tcam_entry->ftm_data.fk_wq_id = 0;
fm_tcam_entry->ftm_mask.fk_wq_id = 0xffff;
fm_tcam_entry->ftm_data.fk_wq_vnic = vf->enic.fm_vnic_handle;
fm_tcam_entry->ftm_flags |= FMEF_COUNTER;
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_TAG;
fm_op.tag.tag = tag;
enic_fm_append_action_op(fm, &fm_op, &error);
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_EG_HAIRPIN;
enic_fm_append_action_op(fm, &fm_op, &error);
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_END;
enic_fm_append_action_op(fm, &fm_op, &error);
attrs.group = 0;
attrs.ingress = 0;
attrs.egress = 1;
attrs.priority = FM_LOWEST_PRIORITY;
flow0 = enic_fm_flow_add_entry(fm, fm_tcam_entry, fm_action,
&attrs, &error);
enic_fm_close_scratch(fm);
if (flow0 == NULL) {
ENICPMD_LOG(ERR, "Cannot create flow 0 for VF->representor");
return -EINVAL;
}
LIST_INSERT_HEAD(&pf->flows, flow0, next);
/* Make this flow internal, so the user app cannot delete it */
flow0->internal = 1;
ENICPMD_LOG(DEBUG, "VF %d->representor flow created: wq %d (low prio) -> tag %d hairpin",
vf->vf_id, fm_tcam_entry->ftm_data.fk_wq_id, tag);
/* Ingress: steer hairpinned to VF rep RQ */
enic_fm_open_scratch(fm);
fm_tcam_entry->ftm_flags |= FMEF_COUNTER;
fm_tcam_entry->ftm_data.fk_hdrset[0].fk_metadata |= FKM_EG_HAIRPINNED;
fm_tcam_entry->ftm_mask.fk_hdrset[0].fk_metadata |= FKM_EG_HAIRPINNED;
fm_tcam_entry->ftm_data.fk_packet_tag = tag;
fm_tcam_entry->ftm_mask.fk_packet_tag = 0xff;
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_RQ_STEER;
fm_op.rq_steer.rq_index = vf->pf_rq_sop_idx;
fm_op.rq_steer.vnic_handle = pf->fm_vnic_handle;
enic_fm_append_action_op(fm, &fm_op, &error);
memset(&fm_op, 0, sizeof(fm_op));
fm_op.fa_op = FMOP_END;
enic_fm_append_action_op(fm, &fm_op, &error);
attrs.group = 0;
attrs.ingress = 1;
attrs.egress = 0;
attrs.priority = FM_HIGHEST_PRIORITY;
flow1 = enic_fm_flow_add_entry(fm, fm_tcam_entry, fm_action,
&attrs, &error);
enic_fm_close_scratch(fm);
if (flow1 == NULL) {
ENICPMD_LOG(ERR, "Cannot create flow 1 for VF->representor");
enic_fm_flow_destroy(pf->rte_dev, flow0, &error);
return -EINVAL;
}
LIST_INSERT_HEAD(&pf->flows, flow1, next);
flow1->internal = 1;
ENICPMD_LOG(DEBUG, "VF %d->representor flow created: tag %d hairpinned -> PF RQ %d",
vf->vf_id, tag, vf->pf_rq_sop_idx);
vf->vf2rep_flow[0] = flow0;
vf->vf2rep_flow[1] = flow1;
/* Done with this tag, use a different one next time */
fm->vf_rep_tag++;
return 0;
}
/* Destroy representor flows created by enic_fm_add_{rep2vf,vf2rep}_flow */
static void
delete_rep_flows(struct enic *enic)
{
struct enic_vf_representor *vf;
struct rte_flow_error error;
struct rte_eth_dev *dev;
uint32_t i;
RTE_ASSERT(enic_is_vf_rep(enic));
vf = VF_ENIC_TO_VF_REP(enic);
dev = vf->pf->rte_dev;
for (i = 0; i < ARRAY_SIZE(vf->vf2rep_flow); i++) {
if (vf->vf2rep_flow[i])
enic_fm_flow_destroy(dev, vf->vf2rep_flow[i], &error);
}
for (i = 0; i < ARRAY_SIZE(vf->rep2vf_flow); i++) {
if (vf->rep2vf_flow[i])
enic_fm_flow_destroy(dev, vf->rep2vf_flow[i], &error);
}
}
static struct enic_flowman *
begin_fm(struct enic *enic)
{
struct enic_vf_representor *vf;
struct enic_flowman *fm;
/* Representor uses PF flowman */
if (enic_is_vf_rep(enic)) {
vf = VF_ENIC_TO_VF_REP(enic);
fm = vf->pf->fm;
} else {
fm = enic->fm;
}
/* Save the API caller and lock if representors exist */
if (fm) {
if (fm->owner_enic->switchdev_mode)
rte_spinlock_lock(&fm->lock);
fm->user_enic = enic;
}
return fm;
}
static void
end_fm(struct enic_flowman *fm)
{
fm->user_enic = NULL;
if (fm->owner_enic->switchdev_mode)
rte_spinlock_unlock(&fm->lock);
}