mirror of https://github.com/F-Stack/f-stack.git
203 lines
7.9 KiB
ReStructuredText
203 lines
7.9 KiB
ReStructuredText
.. SPDX-License-Identifier: BSD-3-Clause
|
|
Copyright(c) 2016-2017 Intel Corporation.
|
|
|
|
Server-Node EFD Sample Application
|
|
==================================
|
|
|
|
This sample application demonstrates the use of EFD library as a flow-level
|
|
load balancer, for more information about the EFD Library please refer to the
|
|
DPDK programmer's guide.
|
|
|
|
This sample application is a variant of the
|
|
:ref:`client-server sample application <multi_process_app>`
|
|
where a specific target node is specified for every and each flow
|
|
(not in a round-robin fashion as the original load balancing sample application).
|
|
|
|
Overview
|
|
--------
|
|
|
|
The architecture of the EFD flow-based load balancer sample application is
|
|
presented in the following figure.
|
|
|
|
.. _figure_efd_sample_app_overview:
|
|
|
|
.. figure:: img/server_node_efd.*
|
|
|
|
Using EFD as a Flow-Level Load Balancer
|
|
|
|
As shown in :numref:`figure_efd_sample_app_overview`,
|
|
the sample application consists of a front-end node (server)
|
|
using the EFD library to create a load-balancing table for flows,
|
|
for each flow a target backend worker node is specified. The EFD table does not
|
|
store the flow key (unlike a regular hash table), and hence, it can
|
|
individually load-balance millions of flows (number of targets * maximum number
|
|
of flows fit in a flow table per target) while still fitting in CPU cache.
|
|
|
|
It should be noted that although they are referred to as nodes, the frontend
|
|
server and worker nodes are processes running on the same platform.
|
|
|
|
Front-end Server
|
|
~~~~~~~~~~~~~~~~
|
|
|
|
Upon initializing, the frontend server node (process) creates a flow
|
|
distributor table (based on the EFD library) which is populated with flow
|
|
information and its intended target node.
|
|
|
|
The sample application assigns a specific target node_id (process) for each of
|
|
the IP destination addresses as follows:
|
|
|
|
.. code-block:: c
|
|
|
|
node_id = i % num_nodes; /* Target node id is generated */
|
|
ip_dst = rte_cpu_to_be_32(i); /* Specific ip destination address is
|
|
assigned to this target node */
|
|
|
|
then the pair of <key,target> is inserted into the flow distribution table.
|
|
|
|
The main loop of the server process receives a burst of packets, then for
|
|
each packet, a flow key (IP destination address) is extracted. The flow
|
|
distributor table is looked up and the target node id is returned. Packets are
|
|
then enqueued to the specified target node id.
|
|
|
|
It should be noted that flow distributor table is not a membership test table.
|
|
I.e. if the key has already been inserted the target node id will be correct,
|
|
but for new keys the flow distributor table will return a value (which can be
|
|
valid).
|
|
|
|
Backend Worker Nodes
|
|
~~~~~~~~~~~~~~~~~~~~
|
|
|
|
Upon initializing, the worker node (process) creates a flow table (a regular
|
|
hash table that stores the key default size 1M flows) which is populated with
|
|
only the flow information that is serviced at this node. This flow key is
|
|
essential to point out new keys that have not been inserted before.
|
|
|
|
The worker node's main loop is simply receiving packets then doing a hash table
|
|
lookup. If a match occurs then statistics are updated for flows serviced by
|
|
this node. If no match is found in the local hash table then this indicates
|
|
that this is a new flow, which is dropped.
|
|
|
|
|
|
Compiling the Application
|
|
-------------------------
|
|
|
|
To compile the sample application see :doc:`compiling`.
|
|
|
|
The application is located in the ``server_node_efd`` sub-directory.
|
|
|
|
Running the Application
|
|
-----------------------
|
|
|
|
The application has two binaries to be run: the front-end server
|
|
and the back-end node.
|
|
|
|
The frontend server (server) has the following command line options::
|
|
|
|
./<build_dir>/examples/dpdk-server [EAL options] -- -p PORTMASK -n NUM_NODES -f NUM_FLOWS
|
|
|
|
Where,
|
|
|
|
* ``-p PORTMASK:`` Hexadecimal bitmask of ports to configure
|
|
* ``-n NUM_NODES:`` Number of back-end nodes that will be used
|
|
* ``-f NUM_FLOWS:`` Number of flows to be added in the EFD table (1 million, by default)
|
|
|
|
The back-end node (node) has the following command line options::
|
|
|
|
./node [EAL options] -- -n NODE_ID
|
|
|
|
Where,
|
|
|
|
* ``-n NODE_ID:`` Node ID, which cannot be equal or higher than NUM_MODES
|
|
|
|
|
|
First, the server app must be launched, with the number of nodes that will be run.
|
|
Once it has been started, the node instances can be run, with different NODE_ID.
|
|
These instances have to be run as secondary processes, with ``--proc-type=secondary``
|
|
in the EAL options, which will attach to the primary process memory, and therefore,
|
|
they can access the queues created by the primary process to distribute packets.
|
|
|
|
To successfully run the application, the command line used to start the
|
|
application has to be in sync with the traffic flows configured on the traffic
|
|
generator side.
|
|
|
|
For examples of application command lines and traffic generator flows, please
|
|
refer to the DPDK Test Report. For more details on how to set up and run the
|
|
sample applications provided with DPDK package, please refer to the
|
|
:ref:`DPDK Getting Started Guide for Linux <linux_gsg>` and
|
|
:ref:`DPDK Getting Started Guide for FreeBSD <freebsd_gsg>`.
|
|
|
|
|
|
Explanation
|
|
-----------
|
|
|
|
As described in previous sections, there are two processes in this example.
|
|
|
|
The first process, the front-end server, creates and populates the EFD table,
|
|
which is used to distribute packets to nodes, which the number of flows
|
|
specified in the command line (1 million, by default).
|
|
|
|
|
|
.. literalinclude:: ../../../examples/server_node_efd/server/init.c
|
|
:language: c
|
|
:start-after: Create EFD table. 8<
|
|
:end-before: >8 End of creation EFD table.
|
|
|
|
After initialization, packets are received from the enabled ports, and the IPv4
|
|
address from the packets is used as a key to look up in the EFD table,
|
|
which tells the node where the packet has to be distributed.
|
|
|
|
.. literalinclude:: ../../../examples/server_node_efd/server/main.c
|
|
:language: c
|
|
:start-after: Processing packets. 8<
|
|
:end-before: >8 End of process_packets.
|
|
|
|
The burst of packets received is enqueued in temporary buffers (per node),
|
|
and enqueued in the shared ring between the server and the node.
|
|
After this, a new burst of packets is received and this process is
|
|
repeated infinitely.
|
|
|
|
.. literalinclude:: ../../../examples/server_node_efd/server/main.c
|
|
:language: c
|
|
:start-after: Flush rx queue. 8<
|
|
:end-before: >8 End of sending a burst of traffic to a node.
|
|
|
|
The second process, the back-end node, receives the packets from the shared
|
|
ring with the server and send them out, if they belong to the node.
|
|
|
|
At initialization, it attaches to the server process memory, to have
|
|
access to the shared ring, parameters and statistics.
|
|
|
|
.. literalinclude:: ../../../examples/server_node_efd/node/node.c
|
|
:language: c
|
|
:start-after: Attaching to the server process memory. 8<
|
|
:end-before: >8 End of attaching to the server process memory.
|
|
:dedent: 1
|
|
|
|
Then, the hash table that contains the flows that will be handled
|
|
by the node is created and populated.
|
|
|
|
.. literalinclude:: ../../../examples/server_node_efd/node/node.c
|
|
:language: c
|
|
:start-after: Creation of hash table. 8<
|
|
:end-before: >8 End of creation of hash table.
|
|
|
|
After initialization, packets are dequeued from the shared ring
|
|
(from the server) and, like in the server process,
|
|
the IPv4 address from the packets is used as a key to look up in the hash table.
|
|
If there is a hit, packet is stored in a buffer, to be eventually transmitted
|
|
in one of the enabled ports. If key is not there, packet is dropped, since the
|
|
flow is not handled by the node.
|
|
|
|
.. literalinclude:: ../../../examples/server_node_efd/node/node.c
|
|
:language: c
|
|
:start-after: Packets dequeued from the shared ring. 8<
|
|
:end-before: >8 End of packets dequeuing.
|
|
|
|
Finally, note that both processes updates statistics, such as transmitted, received
|
|
and dropped packets, which are shown and refreshed by the server app.
|
|
|
|
.. literalinclude:: ../../../examples/server_node_efd/server/main.c
|
|
:language: c
|
|
:start-after: Display recorded statistics. 8<
|
|
:end-before: >8 End of displaying the recorded statistics.
|