f-stack/dpdk/app/test/test_ipfrag.c

526 lines
13 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Red Hat, Inc.
*/
#include "test.h"
#include <time.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_hexdump.h>
#include <rte_ip.h>
#ifdef RTE_EXEC_ENV_WINDOWS
static int
test_ipfrag(void)
{
printf("ipfrag not supported on Windows, skipping test\n");
return TEST_SKIPPED;
}
#else
#include <rte_ip_frag.h>
#include <rte_mbuf.h>
#include <rte_random.h>
#define NUM_MBUFS 128
#define BURST 32
uint8_t expected_first_frag_ipv4_opts_copied[] = {
0x07, 0x0b, 0x04, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x83,
0x07, 0x04, 0xc0, 0xa8,
0xe3, 0x96, 0x00, 0x00,
};
uint8_t expected_sub_frag_ipv4_opts_copied[] = {
0x83, 0x07, 0x04, 0xc0,
0xa8, 0xe3, 0x96, 0x00,
};
uint8_t expected_first_frag_ipv4_opts_nocopied[] = {
0x07, 0x0b, 0x04, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
};
uint8_t expected_sub_frag_ipv4_opts_nocopied[0];
struct test_opt_data {
bool is_first_frag; /**< offset is 0 */
bool opt_copied; /**< ip option copied flag */
uint16_t len; /**< option data len */
uint8_t data[RTE_IPV4_HDR_OPT_MAX_LEN]; /**< option data */
};
static struct rte_mempool *pkt_pool,
*direct_pool,
*indirect_pool;
static inline void
hex_to_str(uint8_t *hex, uint16_t len, char *str)
{
int i;
for (i = 0; i < len; i++) {
sprintf(str, "%02x", hex[i]);
str += 2;
}
*str = 0;
}
static int
setup_buf_pool(void)
{
pkt_pool = rte_pktmbuf_pool_create("FRAG_MBUF_POOL",
NUM_MBUFS, BURST, 0,
RTE_MBUF_DEFAULT_BUF_SIZE,
SOCKET_ID_ANY);
if (pkt_pool == NULL) {
printf("%s: Error creating pkt mempool\n", __func__);
goto bad_setup;
}
direct_pool = rte_pktmbuf_pool_create("FRAG_D_MBUF_POOL",
NUM_MBUFS, BURST, 0,
RTE_MBUF_DEFAULT_BUF_SIZE,
SOCKET_ID_ANY);
if (direct_pool == NULL) {
printf("%s: Error creating direct mempool\n", __func__);
goto bad_setup;
}
indirect_pool = rte_pktmbuf_pool_create("FRAG_I_MBUF_POOL",
NUM_MBUFS, BURST, 0,
0, SOCKET_ID_ANY);
if (indirect_pool == NULL) {
printf("%s: Error creating indirect mempool\n", __func__);
goto bad_setup;
}
return TEST_SUCCESS;
bad_setup:
rte_mempool_free(pkt_pool);
pkt_pool = NULL;
rte_mempool_free(direct_pool);
direct_pool = NULL;
return TEST_FAILED;
}
static int testsuite_setup(void)
{
return setup_buf_pool();
}
static void testsuite_teardown(void)
{
rte_mempool_free(pkt_pool);
rte_mempool_free(direct_pool);
rte_mempool_free(indirect_pool);
pkt_pool = NULL;
direct_pool = NULL;
indirect_pool = NULL;
}
static int ut_setup(void)
{
return TEST_SUCCESS;
}
static void ut_teardown(void)
{
}
static inline void
test_get_ipv4_opt(bool is_first_frag, bool opt_copied,
struct test_opt_data *expected_opt)
{
if (is_first_frag) {
if (opt_copied) {
expected_opt->len =
sizeof(expected_first_frag_ipv4_opts_copied);
memcpy(expected_opt->data,
expected_first_frag_ipv4_opts_copied,
sizeof(expected_first_frag_ipv4_opts_copied));
} else {
expected_opt->len =
sizeof(expected_first_frag_ipv4_opts_nocopied);
memcpy(expected_opt->data,
expected_first_frag_ipv4_opts_nocopied,
sizeof(expected_first_frag_ipv4_opts_nocopied));
}
} else {
if (opt_copied) {
expected_opt->len =
sizeof(expected_sub_frag_ipv4_opts_copied);
memcpy(expected_opt->data,
expected_sub_frag_ipv4_opts_copied,
sizeof(expected_sub_frag_ipv4_opts_copied));
} else {
expected_opt->len =
sizeof(expected_sub_frag_ipv4_opts_nocopied);
memcpy(expected_opt->data,
expected_sub_frag_ipv4_opts_nocopied,
sizeof(expected_sub_frag_ipv4_opts_nocopied));
}
}
}
static void
v4_allocate_packet_of(struct rte_mbuf *b, int fill, size_t s,
int df, uint8_t mf, uint16_t off, uint8_t ttl, uint8_t proto,
uint16_t pktid, bool have_opt, bool is_first_frag, bool opt_copied)
{
/* Create a packet, 2k bytes long */
b->data_off = 0;
char *data = rte_pktmbuf_mtod(b, char *);
rte_be16_t fragment_offset = 0; /* fragmentation offset */
uint16_t iph_len;
struct test_opt_data opt;
opt.len = 0;
if (have_opt)
test_get_ipv4_opt(is_first_frag, opt_copied, &opt);
iph_len = sizeof(struct rte_ipv4_hdr) + opt.len;
memset(data, fill, iph_len + s);
struct rte_ipv4_hdr *hdr = (struct rte_ipv4_hdr *)data;
hdr->version_ihl = 0x40; /* ipv4 */
hdr->version_ihl += (iph_len / 4);
hdr->type_of_service = 0;
b->pkt_len = s + iph_len;
b->data_len = b->pkt_len;
hdr->total_length = rte_cpu_to_be_16(b->pkt_len);
hdr->packet_id = rte_cpu_to_be_16(pktid);
if (df)
fragment_offset |= 0x4000;
if (mf)
fragment_offset |= 0x2000;
if (off)
fragment_offset |= off;
hdr->fragment_offset = rte_cpu_to_be_16(fragment_offset);
if (!ttl)
ttl = 64; /* default to 64 */
if (!proto)
proto = 1; /* icmp */
hdr->time_to_live = ttl;
hdr->next_proto_id = proto;
hdr->hdr_checksum = 0;
hdr->src_addr = rte_cpu_to_be_32(0x8080808);
hdr->dst_addr = rte_cpu_to_be_32(0x8080404);
memcpy(hdr + 1, opt.data, opt.len);
}
static void
v6_allocate_packet_of(struct rte_mbuf *b, int fill, size_t s, uint8_t ttl,
uint8_t proto, uint16_t pktid)
{
/* Create a packet, 2k bytes long */
b->data_off = 0;
char *data = rte_pktmbuf_mtod(b, char *);
memset(data, fill, sizeof(struct rte_ipv6_hdr) + s);
struct rte_ipv6_hdr *hdr = (struct rte_ipv6_hdr *)data;
b->pkt_len = s + sizeof(struct rte_ipv6_hdr);
b->data_len = b->pkt_len;
/* basic v6 header */
hdr->vtc_flow = rte_cpu_to_be_32(0x60 << 24 | pktid);
hdr->payload_len = rte_cpu_to_be_16(b->pkt_len);
hdr->proto = proto;
hdr->hop_limits = ttl;
memset(hdr->src_addr, 0x08, sizeof(hdr->src_addr));
memset(hdr->dst_addr, 0x04, sizeof(hdr->src_addr));
}
static inline void
test_free_fragments(struct rte_mbuf *mb[], uint32_t num)
{
uint32_t i;
for (i = 0; i < num; i++)
rte_pktmbuf_free(mb[i]);
}
static inline void
test_get_offset(struct rte_mbuf **mb, int32_t len,
uint16_t *offset, int ipv)
{
int32_t i;
for (i = 0; i < len; i++) {
if (ipv == 4) {
struct rte_ipv4_hdr *iph =
rte_pktmbuf_mtod(mb[i], struct rte_ipv4_hdr *);
offset[i] = iph->fragment_offset;
} else if (ipv == 6) {
struct ipv6_extension_fragment *fh =
rte_pktmbuf_mtod_offset(
mb[i],
struct ipv6_extension_fragment *,
sizeof(struct rte_ipv6_hdr));
offset[i] = fh->frag_data;
}
}
}
static inline void
test_get_frag_opt(struct rte_mbuf **mb, int32_t num,
struct test_opt_data *opt, int ipv, bool opt_copied)
{
int32_t i;
for (i = 0; i < num; i++) {
if (ipv == 4) {
struct rte_ipv4_hdr *iph =
rte_pktmbuf_mtod(mb[i], struct rte_ipv4_hdr *);
uint16_t header_len = (iph->version_ihl &
RTE_IPV4_HDR_IHL_MASK) *
RTE_IPV4_IHL_MULTIPLIER;
uint16_t opt_len = header_len -
sizeof(struct rte_ipv4_hdr);
opt->opt_copied = opt_copied;
if ((rte_be_to_cpu_16(iph->fragment_offset) &
RTE_IPV4_HDR_OFFSET_MASK) == 0)
opt->is_first_frag = true;
else
opt->is_first_frag = false;
if (likely(opt_len <= RTE_IPV4_HDR_OPT_MAX_LEN)) {
char *iph_opt = rte_pktmbuf_mtod_offset(mb[i],
char *, sizeof(struct rte_ipv4_hdr));
opt->len = opt_len;
memcpy(opt->data, iph_opt, opt_len);
} else {
opt->len = RTE_IPV4_HDR_OPT_MAX_LEN;
memset(opt->data, RTE_IPV4_HDR_OPT_EOL,
sizeof(opt->data));
}
opt++;
}
}
}
static int
test_ip_frag(void)
{
static const uint16_t RND_ID = UINT16_MAX;
int result = TEST_SUCCESS;
size_t i, j;
struct test_ip_frags {
int ipv;
size_t mtu_size;
size_t pkt_size;
int set_df;
uint8_t set_mf;
uint16_t set_of;
uint8_t ttl;
uint8_t proto;
uint16_t pkt_id;
int expected_frags;
uint16_t expected_fragment_offset[BURST];
bool have_opt;
bool is_first_frag;
bool opt_copied;
} tests[] = {
{4, 1280, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID, 2,
{0x2000, 0x009D}, false},
{4, 1280, 1400, 0, 0, 0, 64, IPPROTO_ICMP, 0, 2,
{0x2000, 0x009D}, false},
{4, 600, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID, 3,
{0x2000, 0x2048, 0x0090}, false},
{4, 4, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID, -EINVAL},
{4, 600, 1400, 1, 0, 0, 64, IPPROTO_ICMP, RND_ID, -ENOTSUP},
{4, 600, 1400, 0, 0, 0, 0, IPPROTO_ICMP, RND_ID, 3,
{0x2000, 0x2046, 0x008C}, true, true, true},
/* The first fragment */
{4, 68, 104, 0, 1, 0, 0, IPPROTO_ICMP, RND_ID, 5,
{0x2000, 0x2003, 0x2006, 0x2009, 0x200C}, true, true, true},
/* The middle fragment */
{4, 68, 104, 0, 1, 13, 0, IPPROTO_ICMP, RND_ID, 3,
{0x200D, 0x2012, 0x2017}, true, false, true},
/* The last fragment */
{4, 68, 104, 0, 0, 26, 0, IPPROTO_ICMP, RND_ID, 3,
{0x201A, 0x201F, 0x0024}, true, false, true},
/* The first fragment */
{4, 68, 104, 0, 1, 0, 0, IPPROTO_ICMP, RND_ID, 4,
{0x2000, 0x2004, 0x2008, 0x200C}, true, true, false},
/* The middle fragment */
{4, 68, 104, 0, 1, 13, 0, IPPROTO_ICMP, RND_ID, 3,
{0x200D, 0x2013, 0x2019}, true, false, false},
/* The last fragment */
{4, 68, 104, 0, 0, 26, 0, IPPROTO_ICMP, RND_ID, 3,
{0x201A, 0x2020, 0x0026}, true, false, false},
{6, 1280, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID, 2,
{0x0001, 0x04D0}, false},
{6, 1300, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID, 2,
{0x0001, 0x04E0}, false},
{6, 4, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID, -EINVAL},
{6, 1300, 1400, 0, 0, 0, 0, IPPROTO_ICMP, RND_ID, 2,
{0x0001, 0x04E0}, false},
};
for (i = 0; i < RTE_DIM(tests); i++) {
int32_t len = 0;
uint16_t fragment_offset[BURST];
struct test_opt_data opt_res[BURST];
struct test_opt_data opt_exp;
uint16_t pktid = tests[i].pkt_id;
struct rte_mbuf *pkts_out[BURST];
struct rte_mbuf *b = rte_pktmbuf_alloc(pkt_pool);
RTE_TEST_ASSERT_NOT_EQUAL(b, NULL,
"Failed to allocate pkt.");
if (tests[i].pkt_id == RND_ID)
pktid = rte_rand_max(UINT16_MAX);
if (tests[i].ipv == 4) {
v4_allocate_packet_of(b, 0x41414141,
tests[i].pkt_size,
tests[i].set_df,
tests[i].set_mf,
tests[i].set_of,
tests[i].ttl,
tests[i].proto,
pktid,
tests[i].have_opt,
tests[i].is_first_frag,
tests[i].opt_copied);
} else if (tests[i].ipv == 6) {
v6_allocate_packet_of(b, 0x41414141,
tests[i].pkt_size,
tests[i].ttl,
tests[i].proto,
pktid);
}
if (tests[i].ipv == 4)
if (i % 2)
len = rte_ipv4_fragment_packet(b, pkts_out, BURST,
tests[i].mtu_size,
direct_pool,
indirect_pool);
else
len = rte_ipv4_fragment_copy_nonseg_packet(b,
pkts_out,
BURST,
tests[i].mtu_size,
direct_pool);
else if (tests[i].ipv == 6)
len = rte_ipv6_fragment_packet(b, pkts_out, BURST,
tests[i].mtu_size,
direct_pool,
indirect_pool);
rte_pktmbuf_free(b);
if (len > 0) {
test_get_offset(pkts_out, len,
fragment_offset, tests[i].ipv);
if (tests[i].have_opt)
test_get_frag_opt(pkts_out, len, opt_res,
tests[i].ipv, tests[i].opt_copied);
test_free_fragments(pkts_out, len);
}
printf("[check frag number]%zd: checking %d with %d\n", i, len,
tests[i].expected_frags);
RTE_TEST_ASSERT_EQUAL(len, tests[i].expected_frags,
"Failed case %zd.\n", i);
if (len > 0) {
for (j = 0; j < (size_t)len; j++) {
printf("[check offset]%zd-%zd: checking %d with %d\n",
i, j, fragment_offset[j],
rte_cpu_to_be_16(
tests[i].expected_fragment_offset[j]));
RTE_TEST_ASSERT_EQUAL(fragment_offset[j],
rte_cpu_to_be_16(
tests[i].expected_fragment_offset[j]),
"Failed case %zd.\n", i);
}
if (tests[i].have_opt && (tests[i].ipv == 4)) {
for (j = 0; j < (size_t)len; j++) {
char opt_res_str[2 *
RTE_IPV4_HDR_OPT_MAX_LEN + 1];
char opt_exp_str[2 *
RTE_IPV4_HDR_OPT_MAX_LEN + 1];
test_get_ipv4_opt(
opt_res[j].is_first_frag,
opt_res[j].opt_copied,
&opt_exp);
hex_to_str(opt_res[j].data,
opt_res[j].len,
opt_res_str);
hex_to_str(opt_exp.data,
opt_exp.len,
opt_exp_str);
printf(
"[check ipv4 option]%zd-%zd: checking (len:%u)%s with (len:%u)%s\n",
i, j,
opt_res[j].len, opt_res_str,
opt_exp.len, opt_exp_str);
RTE_TEST_ASSERT_SUCCESS(
strcmp(opt_res_str,
opt_exp_str),
"Failed case %zd.\n", i);
}
}
}
}
return result;
}
static struct unit_test_suite ipfrag_testsuite = {
.suite_name = "IP Frag Unit Test Suite",
.setup = testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(ut_setup, ut_teardown,
test_ip_frag),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
static int
test_ipfrag(void)
{
rte_log_set_global_level(RTE_LOG_DEBUG);
rte_log_set_level(RTE_LOGTYPE_EAL, RTE_LOG_DEBUG);
return unit_test_suite_runner(&ipfrag_testsuite);
}
#endif /* !RTE_EXEC_ENV_WINDOWS */
REGISTER_TEST_COMMAND(ipfrag_autotest, test_ipfrag);