f-stack/dpdk/app/test-flow-perf/actions_gen.c

1150 lines
28 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2020 Mellanox Technologies, Ltd
*
* The file contains the implementations of actions generators.
* Each generator is responsible for preparing it's action instance
* and initializing it with needed data.
*/
#include <stdlib.h>
#include <sys/types.h>
#include <rte_malloc.h>
#include <rte_flow.h>
#include <rte_ethdev.h>
#include <rte_vxlan.h>
#include <rte_gtp.h>
#include <rte_gre.h>
#include <rte_geneve.h>
#include "actions_gen.h"
#include "flow_gen.h"
#include "config.h"
/* Storage for additional parameters for actions */
struct additional_para {
uint16_t queue;
uint16_t next_table;
uint16_t *queues;
uint16_t queues_number;
uint32_t counter;
uint64_t encap_data;
uint64_t decap_data;
uint16_t dst_port;
uint8_t core_idx;
bool unique_data;
};
/* Storage for struct rte_flow_action_raw_encap including external data. */
struct action_raw_encap_data {
struct rte_flow_action_raw_encap conf;
uint8_t data[128];
uint8_t preserve[128];
uint16_t idx;
};
/* Storage for struct rte_flow_action_raw_decap including external data. */
struct action_raw_decap_data {
struct rte_flow_action_raw_decap conf;
uint8_t data[128];
uint16_t idx;
};
/* Storage for struct rte_flow_action_rss including external data. */
struct action_rss_data {
struct rte_flow_action_rss conf;
uint8_t key[40];
uint16_t queue[128];
};
static void
add_mark(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct rte_flow_action_mark mark_actions[RTE_MAX_LCORE] __rte_cache_aligned;
uint32_t counter = para.counter;
do {
/* Random values from 1 to 256 */
mark_actions[para.core_idx].id = (counter % 255) + 1;
} while (0);
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_MARK;
actions[actions_counter].conf = &mark_actions[para.core_idx];
}
static void
add_queue(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct rte_flow_action_queue queue_actions[RTE_MAX_LCORE] __rte_cache_aligned;
do {
queue_actions[para.core_idx].index = para.queue;
} while (0);
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_QUEUE;
actions[actions_counter].conf = &queue_actions[para.core_idx];
}
static void
add_jump(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct rte_flow_action_jump jump_action;
do {
jump_action.group = para.next_table;
} while (0);
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_JUMP;
actions[actions_counter].conf = &jump_action;
}
static void
add_rss(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct action_rss_data *rss_data[RTE_MAX_LCORE] __rte_cache_aligned;
uint16_t queue;
if (rss_data[para.core_idx] == NULL)
rss_data[para.core_idx] = rte_malloc("rss_data",
sizeof(struct action_rss_data), 0);
if (rss_data[para.core_idx] == NULL)
rte_exit(EXIT_FAILURE, "No Memory available!");
*rss_data[para.core_idx] = (struct action_rss_data){
.conf = (struct rte_flow_action_rss){
.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
.level = 0,
.types = GET_RSS_HF(),
.key_len = sizeof(rss_data[para.core_idx]->key),
.queue_num = para.queues_number,
.key = rss_data[para.core_idx]->key,
.queue = rss_data[para.core_idx]->queue,
},
.key = { 1 },
.queue = { 0 },
};
for (queue = 0; queue < para.queues_number; queue++)
rss_data[para.core_idx]->queue[queue] = para.queues[queue];
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_RSS;
actions[actions_counter].conf = &rss_data[para.core_idx]->conf;
}
static void
add_set_meta(struct rte_flow_action *actions,
uint8_t actions_counter,
__rte_unused struct additional_para para)
{
static struct rte_flow_action_set_meta meta_action = {
.data = RTE_BE32(META_DATA),
.mask = RTE_BE32(0xffffffff),
};
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_SET_META;
actions[actions_counter].conf = &meta_action;
}
static void
add_set_tag(struct rte_flow_action *actions,
uint8_t actions_counter,
__rte_unused struct additional_para para)
{
static struct rte_flow_action_set_tag tag_action = {
.data = RTE_BE32(META_DATA),
.mask = RTE_BE32(0xffffffff),
.index = TAG_INDEX,
};
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_SET_TAG;
actions[actions_counter].conf = &tag_action;
}
static void
add_port_id(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct rte_flow_action_port_id port_id = {
.id = PORT_ID_DST,
};
port_id.id = para.dst_port;
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_PORT_ID;
actions[actions_counter].conf = &port_id;
}
static void
add_drop(struct rte_flow_action *actions,
uint8_t actions_counter,
__rte_unused struct additional_para para)
{
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_DROP;
}
static void
add_count(struct rte_flow_action *actions,
uint8_t actions_counter,
__rte_unused struct additional_para para)
{
static struct rte_flow_action_count count_action;
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_COUNT;
actions[actions_counter].conf = &count_action;
}
static void
add_set_src_mac(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct rte_flow_action_set_mac set_macs[RTE_MAX_LCORE] __rte_cache_aligned;
uint32_t mac = para.counter;
uint16_t i;
/* Fixed value */
if (!para.unique_data)
mac = 1;
/* Mac address to be set is random each time */
for (i = 0; i < RTE_ETHER_ADDR_LEN; i++) {
set_macs[para.core_idx].mac_addr[i] = mac & 0xff;
mac = mac >> 8;
}
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_SET_MAC_SRC;
actions[actions_counter].conf = &set_macs[para.core_idx];
}
static void
add_set_dst_mac(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct rte_flow_action_set_mac set_macs[RTE_MAX_LCORE] __rte_cache_aligned;
uint32_t mac = para.counter;
uint16_t i;
/* Fixed value */
if (!para.unique_data)
mac = 1;
/* Mac address to be set is random each time */
for (i = 0; i < RTE_ETHER_ADDR_LEN; i++) {
set_macs[para.core_idx].mac_addr[i] = mac & 0xff;
mac = mac >> 8;
}
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_SET_MAC_DST;
actions[actions_counter].conf = &set_macs[para.core_idx];
}
static void
add_set_src_ipv4(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct rte_flow_action_set_ipv4 set_ipv4[RTE_MAX_LCORE] __rte_cache_aligned;
uint32_t ip = para.counter;
/* Fixed value */
if (!para.unique_data)
ip = 1;
/* IPv4 value to be set is random each time */
set_ipv4[para.core_idx].ipv4_addr = RTE_BE32(ip + 1);
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC;
actions[actions_counter].conf = &set_ipv4[para.core_idx];
}
static void
add_set_dst_ipv4(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct rte_flow_action_set_ipv4 set_ipv4[RTE_MAX_LCORE] __rte_cache_aligned;
uint32_t ip = para.counter;
/* Fixed value */
if (!para.unique_data)
ip = 1;
/* IPv4 value to be set is random each time */
set_ipv4[para.core_idx].ipv4_addr = RTE_BE32(ip + 1);
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_SET_IPV4_DST;
actions[actions_counter].conf = &set_ipv4[para.core_idx];
}
static void
add_set_src_ipv6(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct rte_flow_action_set_ipv6 set_ipv6[RTE_MAX_LCORE] __rte_cache_aligned;
uint32_t ipv6 = para.counter;
uint8_t i;
/* Fixed value */
if (!para.unique_data)
ipv6 = 1;
/* IPv6 value to set is random each time */
for (i = 0; i < 16; i++) {
set_ipv6[para.core_idx].ipv6_addr[i] = ipv6 & 0xff;
ipv6 = ipv6 >> 8;
}
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC;
actions[actions_counter].conf = &set_ipv6[para.core_idx];
}
static void
add_set_dst_ipv6(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct rte_flow_action_set_ipv6 set_ipv6[RTE_MAX_LCORE] __rte_cache_aligned;
uint32_t ipv6 = para.counter;
uint8_t i;
/* Fixed value */
if (!para.unique_data)
ipv6 = 1;
/* IPv6 value to set is random each time */
for (i = 0; i < 16; i++) {
set_ipv6[para.core_idx].ipv6_addr[i] = ipv6 & 0xff;
ipv6 = ipv6 >> 8;
}
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_SET_IPV6_DST;
actions[actions_counter].conf = &set_ipv6[para.core_idx];
}
static void
add_set_src_tp(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct rte_flow_action_set_tp set_tp[RTE_MAX_LCORE] __rte_cache_aligned;
uint32_t tp = para.counter;
/* Fixed value */
if (!para.unique_data)
tp = 100;
/* TP src port is random each time */
tp = tp % 0xffff;
set_tp[para.core_idx].port = RTE_BE16(tp & 0xffff);
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_SET_TP_SRC;
actions[actions_counter].conf = &set_tp[para.core_idx];
}
static void
add_set_dst_tp(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct rte_flow_action_set_tp set_tp[RTE_MAX_LCORE] __rte_cache_aligned;
uint32_t tp = para.counter;
/* Fixed value */
if (!para.unique_data)
tp = 100;
/* TP src port is random each time */
if (tp > 0xffff)
tp = tp >> 16;
set_tp[para.core_idx].port = RTE_BE16(tp & 0xffff);
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_SET_TP_DST;
actions[actions_counter].conf = &set_tp[para.core_idx];
}
static void
add_inc_tcp_ack(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static rte_be32_t value[RTE_MAX_LCORE] __rte_cache_aligned;
uint32_t ack_value = para.counter;
/* Fixed value */
if (!para.unique_data)
ack_value = 1;
value[para.core_idx] = RTE_BE32(ack_value);
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_INC_TCP_ACK;
actions[actions_counter].conf = &value[para.core_idx];
}
static void
add_dec_tcp_ack(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static rte_be32_t value[RTE_MAX_LCORE] __rte_cache_aligned;
uint32_t ack_value = para.counter;
/* Fixed value */
if (!para.unique_data)
ack_value = 1;
value[para.core_idx] = RTE_BE32(ack_value);
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK;
actions[actions_counter].conf = &value[para.core_idx];
}
static void
add_inc_tcp_seq(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static rte_be32_t value[RTE_MAX_LCORE] __rte_cache_aligned;
uint32_t seq_value = para.counter;
/* Fixed value */
if (!para.unique_data)
seq_value = 1;
value[para.core_idx] = RTE_BE32(seq_value);
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ;
actions[actions_counter].conf = &value[para.core_idx];
}
static void
add_dec_tcp_seq(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static rte_be32_t value[RTE_MAX_LCORE] __rte_cache_aligned;
uint32_t seq_value = para.counter;
/* Fixed value */
if (!para.unique_data)
seq_value = 1;
value[para.core_idx] = RTE_BE32(seq_value);
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ;
actions[actions_counter].conf = &value[para.core_idx];
}
static void
add_set_ttl(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct rte_flow_action_set_ttl set_ttl[RTE_MAX_LCORE] __rte_cache_aligned;
uint32_t ttl_value = para.counter;
/* Fixed value */
if (!para.unique_data)
ttl_value = 1;
/* Set ttl to random value each time */
ttl_value = ttl_value % 0xff;
set_ttl[para.core_idx].ttl_value = ttl_value;
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_SET_TTL;
actions[actions_counter].conf = &set_ttl[para.core_idx];
}
static void
add_dec_ttl(struct rte_flow_action *actions,
uint8_t actions_counter,
__rte_unused struct additional_para para)
{
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_DEC_TTL;
}
static void
add_set_ipv4_dscp(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct rte_flow_action_set_dscp set_dscp[RTE_MAX_LCORE] __rte_cache_aligned;
uint32_t dscp_value = para.counter;
/* Fixed value */
if (!para.unique_data)
dscp_value = 1;
/* Set dscp to random value each time */
dscp_value = dscp_value % 0xff;
set_dscp[para.core_idx].dscp = dscp_value;
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP;
actions[actions_counter].conf = &set_dscp[para.core_idx];
}
static void
add_set_ipv6_dscp(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct rte_flow_action_set_dscp set_dscp[RTE_MAX_LCORE] __rte_cache_aligned;
uint32_t dscp_value = para.counter;
/* Fixed value */
if (!para.unique_data)
dscp_value = 1;
/* Set dscp to random value each time */
dscp_value = dscp_value % 0xff;
set_dscp[para.core_idx].dscp = dscp_value;
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP;
actions[actions_counter].conf = &set_dscp[para.core_idx];
}
static void
add_flag(struct rte_flow_action *actions,
uint8_t actions_counter,
__rte_unused struct additional_para para)
{
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_FLAG;
}
static void
add_ether_header(uint8_t **header, uint64_t data,
__rte_unused struct additional_para para)
{
struct rte_ether_hdr eth_hdr;
if (!(data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ETH)))
return;
memset(&eth_hdr, 0, sizeof(struct rte_ether_hdr));
if (data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VLAN))
eth_hdr.ether_type = RTE_BE16(RTE_ETHER_TYPE_VLAN);
else if (data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_IPV4))
eth_hdr.ether_type = RTE_BE16(RTE_ETHER_TYPE_IPV4);
else if (data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_IPV6))
eth_hdr.ether_type = RTE_BE16(RTE_ETHER_TYPE_IPV6);
memcpy(*header, &eth_hdr, sizeof(eth_hdr));
*header += sizeof(eth_hdr);
}
static void
add_vlan_header(uint8_t **header, uint64_t data,
__rte_unused struct additional_para para)
{
struct rte_vlan_hdr vlan_hdr;
uint16_t vlan_value;
if (!(data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VLAN)))
return;
vlan_value = VLAN_VALUE;
memset(&vlan_hdr, 0, sizeof(struct rte_vlan_hdr));
vlan_hdr.vlan_tci = RTE_BE16(vlan_value);
if (data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_IPV4))
vlan_hdr.eth_proto = RTE_BE16(RTE_ETHER_TYPE_IPV4);
if (data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_IPV6))
vlan_hdr.eth_proto = RTE_BE16(RTE_ETHER_TYPE_IPV6);
memcpy(*header, &vlan_hdr, sizeof(vlan_hdr));
*header += sizeof(vlan_hdr);
}
static void
add_ipv4_header(uint8_t **header, uint64_t data,
struct additional_para para)
{
struct rte_ipv4_hdr ipv4_hdr;
uint32_t ip_dst = para.counter;
if (!(data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_IPV4)))
return;
/* Fixed value */
if (!para.unique_data)
ip_dst = 1;
memset(&ipv4_hdr, 0, sizeof(struct rte_ipv4_hdr));
ipv4_hdr.src_addr = RTE_IPV4(127, 0, 0, 1);
ipv4_hdr.dst_addr = RTE_BE32(ip_dst);
ipv4_hdr.version_ihl = RTE_IPV4_VHL_DEF;
if (data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_UDP))
ipv4_hdr.next_proto_id = RTE_IP_TYPE_UDP;
if (data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GRE))
ipv4_hdr.next_proto_id = RTE_IP_TYPE_GRE;
memcpy(*header, &ipv4_hdr, sizeof(ipv4_hdr));
*header += sizeof(ipv4_hdr);
}
static void
add_ipv6_header(uint8_t **header, uint64_t data,
__rte_unused struct additional_para para)
{
struct rte_ipv6_hdr ipv6_hdr;
if (!(data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_IPV6)))
return;
memset(&ipv6_hdr, 0, sizeof(struct rte_ipv6_hdr));
if (data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_UDP))
ipv6_hdr.proto = RTE_IP_TYPE_UDP;
if (data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GRE))
ipv6_hdr.proto = RTE_IP_TYPE_GRE;
memcpy(*header, &ipv6_hdr, sizeof(ipv6_hdr));
*header += sizeof(ipv6_hdr);
}
static void
add_udp_header(uint8_t **header, uint64_t data,
__rte_unused struct additional_para para)
{
struct rte_udp_hdr udp_hdr;
if (!(data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_UDP)))
return;
memset(&udp_hdr, 0, sizeof(struct rte_flow_item_udp));
if (data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VXLAN))
udp_hdr.dst_port = RTE_BE16(RTE_VXLAN_DEFAULT_PORT);
if (data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VXLAN_GPE))
udp_hdr.dst_port = RTE_BE16(RTE_VXLAN_GPE_UDP_PORT);
if (data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GENEVE))
udp_hdr.dst_port = RTE_BE16(RTE_GENEVE_UDP_PORT);
if (data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GTP))
udp_hdr.dst_port = RTE_BE16(RTE_GTPU_UDP_PORT);
memcpy(*header, &udp_hdr, sizeof(udp_hdr));
*header += sizeof(udp_hdr);
}
static void
add_vxlan_header(uint8_t **header, uint64_t data,
struct additional_para para)
{
struct rte_vxlan_hdr vxlan_hdr;
uint32_t vni_value = para.counter;
if (!(data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VXLAN)))
return;
/* Fixed value */
if (!para.unique_data)
vni_value = 1;
memset(&vxlan_hdr, 0, sizeof(struct rte_vxlan_hdr));
vxlan_hdr.vx_vni = (RTE_BE32(vni_value)) >> 16;
vxlan_hdr.vx_flags = 0x8;
memcpy(*header, &vxlan_hdr, sizeof(vxlan_hdr));
*header += sizeof(vxlan_hdr);
}
static void
add_vxlan_gpe_header(uint8_t **header, uint64_t data,
struct additional_para para)
{
struct rte_vxlan_gpe_hdr vxlan_gpe_hdr;
uint32_t vni_value = para.counter;
if (!(data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VXLAN_GPE)))
return;
/* Fixed value */
if (!para.unique_data)
vni_value = 1;
memset(&vxlan_gpe_hdr, 0, sizeof(struct rte_vxlan_gpe_hdr));
vxlan_gpe_hdr.vx_vni = (RTE_BE32(vni_value)) >> 16;
vxlan_gpe_hdr.vx_flags = 0x0c;
memcpy(*header, &vxlan_gpe_hdr, sizeof(vxlan_gpe_hdr));
*header += sizeof(vxlan_gpe_hdr);
}
static void
add_gre_header(uint8_t **header, uint64_t data,
__rte_unused struct additional_para para)
{
struct rte_gre_hdr gre_hdr;
if (!(data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GRE)))
return;
memset(&gre_hdr, 0, sizeof(struct rte_gre_hdr));
gre_hdr.proto = RTE_BE16(RTE_ETHER_TYPE_TEB);
memcpy(*header, &gre_hdr, sizeof(gre_hdr));
*header += sizeof(gre_hdr);
}
static void
add_geneve_header(uint8_t **header, uint64_t data,
struct additional_para para)
{
struct rte_geneve_hdr geneve_hdr;
uint32_t vni_value = para.counter;
uint8_t i;
if (!(data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GENEVE)))
return;
/* Fixed value */
if (!para.unique_data)
vni_value = 1;
memset(&geneve_hdr, 0, sizeof(struct rte_geneve_hdr));
for (i = 0; i < 3; i++)
geneve_hdr.vni[2 - i] = vni_value >> (i * 8);
memcpy(*header, &geneve_hdr, sizeof(geneve_hdr));
*header += sizeof(geneve_hdr);
}
static void
add_gtp_header(uint8_t **header, uint64_t data,
struct additional_para para)
{
struct rte_gtp_hdr gtp_hdr;
uint32_t teid_value = para.counter;
if (!(data & FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GTP)))
return;
/* Fixed value */
if (!para.unique_data)
teid_value = 1;
memset(&gtp_hdr, 0, sizeof(struct rte_flow_item_gtp));
gtp_hdr.teid = RTE_BE32(teid_value);
gtp_hdr.msg_type = 255;
memcpy(*header, &gtp_hdr, sizeof(gtp_hdr));
*header += sizeof(gtp_hdr);
}
static const struct encap_decap_headers {
void (*funct)(
uint8_t **header,
uint64_t data,
struct additional_para para
);
} headers[] = {
{.funct = add_ether_header},
{.funct = add_vlan_header},
{.funct = add_ipv4_header},
{.funct = add_ipv6_header},
{.funct = add_udp_header},
{.funct = add_vxlan_header},
{.funct = add_vxlan_gpe_header},
{.funct = add_gre_header},
{.funct = add_geneve_header},
{.funct = add_gtp_header},
};
static void
add_raw_encap(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct action_raw_encap_data *action_encap_data[RTE_MAX_LCORE] __rte_cache_aligned;
uint64_t encap_data = para.encap_data;
uint8_t *header;
uint8_t i;
/* Avoid double allocation. */
if (action_encap_data[para.core_idx] == NULL)
action_encap_data[para.core_idx] = rte_malloc("encap_data",
sizeof(struct action_raw_encap_data), 0);
/* Check if allocation failed. */
if (action_encap_data[para.core_idx] == NULL)
rte_exit(EXIT_FAILURE, "No Memory available!");
*action_encap_data[para.core_idx] = (struct action_raw_encap_data) {
.conf = (struct rte_flow_action_raw_encap) {
.data = action_encap_data[para.core_idx]->data,
},
.data = {},
};
header = action_encap_data[para.core_idx]->data;
for (i = 0; i < RTE_DIM(headers); i++)
headers[i].funct(&header, encap_data, para);
action_encap_data[para.core_idx]->conf.size = header -
action_encap_data[para.core_idx]->data;
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_RAW_ENCAP;
actions[actions_counter].conf = &action_encap_data[para.core_idx]->conf;
}
static void
add_raw_decap(struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para)
{
static struct action_raw_decap_data *action_decap_data[RTE_MAX_LCORE] __rte_cache_aligned;
uint64_t decap_data = para.decap_data;
uint8_t *header;
uint8_t i;
/* Avoid double allocation. */
if (action_decap_data[para.core_idx] == NULL)
action_decap_data[para.core_idx] = rte_malloc("decap_data",
sizeof(struct action_raw_decap_data), 0);
/* Check if allocation failed. */
if (action_decap_data[para.core_idx] == NULL)
rte_exit(EXIT_FAILURE, "No Memory available!");
*action_decap_data[para.core_idx] = (struct action_raw_decap_data) {
.conf = (struct rte_flow_action_raw_decap) {
.data = action_decap_data[para.core_idx]->data,
},
.data = {},
};
header = action_decap_data[para.core_idx]->data;
for (i = 0; i < RTE_DIM(headers); i++)
headers[i].funct(&header, decap_data, para);
action_decap_data[para.core_idx]->conf.size = header -
action_decap_data[para.core_idx]->data;
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_RAW_DECAP;
actions[actions_counter].conf = &action_decap_data[para.core_idx]->conf;
}
static void
add_vxlan_encap(struct rte_flow_action *actions,
uint8_t actions_counter,
__rte_unused struct additional_para para)
{
static struct rte_flow_action_vxlan_encap vxlan_encap[RTE_MAX_LCORE] __rte_cache_aligned;
static struct rte_flow_item items[5];
static struct rte_flow_item_eth item_eth;
static struct rte_flow_item_ipv4 item_ipv4;
static struct rte_flow_item_udp item_udp;
static struct rte_flow_item_vxlan item_vxlan;
uint32_t ip_dst = para.counter;
/* Fixed value */
if (!para.unique_data)
ip_dst = 1;
items[0].spec = &item_eth;
items[0].mask = &item_eth;
items[0].type = RTE_FLOW_ITEM_TYPE_ETH;
item_ipv4.hdr.src_addr = RTE_IPV4(127, 0, 0, 1);
item_ipv4.hdr.dst_addr = RTE_BE32(ip_dst);
item_ipv4.hdr.version_ihl = RTE_IPV4_VHL_DEF;
items[1].spec = &item_ipv4;
items[1].mask = &item_ipv4;
items[1].type = RTE_FLOW_ITEM_TYPE_IPV4;
item_udp.hdr.dst_port = RTE_BE16(RTE_VXLAN_DEFAULT_PORT);
items[2].spec = &item_udp;
items[2].mask = &item_udp;
items[2].type = RTE_FLOW_ITEM_TYPE_UDP;
item_vxlan.vni[2] = 1;
items[3].spec = &item_vxlan;
items[3].mask = &item_vxlan;
items[3].type = RTE_FLOW_ITEM_TYPE_VXLAN;
items[4].type = RTE_FLOW_ITEM_TYPE_END;
vxlan_encap[para.core_idx].definition = items;
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP;
actions[actions_counter].conf = &vxlan_encap[para.core_idx];
}
static void
add_vxlan_decap(struct rte_flow_action *actions,
uint8_t actions_counter,
__rte_unused struct additional_para para)
{
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_VXLAN_DECAP;
}
static void
add_meter(struct rte_flow_action *actions,
uint8_t actions_counter,
__rte_unused struct additional_para para)
{
static struct rte_flow_action_meter
meters[RTE_MAX_LCORE] __rte_cache_aligned;
meters[para.core_idx].mtr_id = para.counter;
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_METER;
actions[actions_counter].conf = &meters[para.core_idx];
}
void
fill_actions(struct rte_flow_action *actions, uint64_t *flow_actions,
uint32_t counter, uint16_t next_table, uint16_t hairpinq,
uint64_t encap_data, uint64_t decap_data, uint8_t core_idx,
bool unique_data, uint8_t rx_queues_count, uint16_t dst_port)
{
struct additional_para additional_para_data;
uint8_t actions_counter = 0;
uint16_t hairpin_queues[hairpinq];
uint16_t queues[rx_queues_count];
uint16_t i, j;
for (i = 0; i < rx_queues_count; i++)
queues[i] = i;
for (i = 0; i < hairpinq; i++)
hairpin_queues[i] = i + rx_queues_count;
additional_para_data = (struct additional_para){
.queue = counter % rx_queues_count,
.next_table = next_table,
.queues = queues,
.queues_number = rx_queues_count,
.counter = counter,
.encap_data = encap_data,
.decap_data = decap_data,
.core_idx = core_idx,
.unique_data = unique_data,
.dst_port = dst_port,
};
if (hairpinq != 0) {
additional_para_data.queues = hairpin_queues;
additional_para_data.queues_number = hairpinq;
additional_para_data.queue = (counter % hairpinq) + rx_queues_count;
}
static const struct actions_dict {
uint64_t mask;
void (*funct)(
struct rte_flow_action *actions,
uint8_t actions_counter,
struct additional_para para
);
} actions_list[] = {
{
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_MARK),
.funct = add_mark,
},
{
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_COUNT),
.funct = add_count,
},
{
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_SET_META),
.funct = add_set_meta,
},
{
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_SET_TAG),
.funct = add_set_tag,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_FLAG
),
.funct = add_flag,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_MAC_SRC
),
.funct = add_set_src_mac,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_MAC_DST
),
.funct = add_set_dst_mac,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC
),
.funct = add_set_src_ipv4,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_IPV4_DST
),
.funct = add_set_dst_ipv4,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC
),
.funct = add_set_src_ipv6,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_IPV6_DST
),
.funct = add_set_dst_ipv6,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_TP_SRC
),
.funct = add_set_src_tp,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_TP_DST
),
.funct = add_set_dst_tp,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_INC_TCP_ACK
),
.funct = add_inc_tcp_ack,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK
),
.funct = add_dec_tcp_ack,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ
),
.funct = add_inc_tcp_seq,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ
),
.funct = add_dec_tcp_seq,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_TTL
),
.funct = add_set_ttl,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_DEC_TTL
),
.funct = add_dec_ttl,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP
),
.funct = add_set_ipv4_dscp,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP
),
.funct = add_set_ipv6_dscp,
},
{
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_QUEUE),
.funct = add_queue,
},
{
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_RSS),
.funct = add_rss,
},
{
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_JUMP),
.funct = add_jump,
},
{
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_PORT_ID),
.funct = add_port_id
},
{
.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_DROP),
.funct = add_drop,
},
{
.mask = HAIRPIN_QUEUE_ACTION,
.funct = add_queue,
},
{
.mask = HAIRPIN_RSS_ACTION,
.funct = add_rss,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_RAW_ENCAP
),
.funct = add_raw_encap,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_RAW_DECAP
),
.funct = add_raw_decap,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP
),
.funct = add_vxlan_encap,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_VXLAN_DECAP
),
.funct = add_vxlan_decap,
},
{
.mask = FLOW_ACTION_MASK(
RTE_FLOW_ACTION_TYPE_METER
),
.funct = add_meter,
},
};
for (j = 0; j < MAX_ACTIONS_NUM; j++) {
if (flow_actions[j] == 0)
break;
for (i = 0; i < RTE_DIM(actions_list); i++) {
if ((flow_actions[j] &
actions_list[i].mask) == 0)
continue;
actions_list[i].funct(
actions, actions_counter++,
additional_para_data
);
break;
}
}
actions[actions_counter].type = RTE_FLOW_ACTION_TYPE_END;
}