f-stack/dpdk/drivers/vdpa/mlx5/mlx5_vdpa_mem.c

295 lines
9.5 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2019 Mellanox Technologies, Ltd
*/
#include <stdlib.h>
#include <rte_malloc.h>
#include <rte_errno.h>
#include <rte_common.h>
#include <rte_sched_common.h>
#include <mlx5_prm.h>
#include <mlx5_common.h>
#include "mlx5_vdpa_utils.h"
#include "mlx5_vdpa.h"
void
mlx5_vdpa_mem_dereg(struct mlx5_vdpa_priv *priv)
{
struct mlx5_vdpa_query_mr *entry;
struct mlx5_vdpa_query_mr *next;
entry = SLIST_FIRST(&priv->mr_list);
while (entry) {
next = SLIST_NEXT(entry, next);
if (entry->is_indirect)
claim_zero(mlx5_devx_cmd_destroy(entry->mkey));
else
claim_zero(mlx5_glue->dereg_mr(entry->mr));
SLIST_REMOVE(&priv->mr_list, entry, mlx5_vdpa_query_mr, next);
rte_free(entry);
entry = next;
}
SLIST_INIT(&priv->mr_list);
if (priv->lm_mr.addr)
mlx5_os_wrapped_mkey_destroy(&priv->lm_mr);
if (priv->null_mr) {
claim_zero(mlx5_glue->dereg_mr(priv->null_mr));
priv->null_mr = NULL;
}
if (priv->vmem) {
free(priv->vmem);
priv->vmem = NULL;
}
}
static int
mlx5_vdpa_regions_addr_cmp(const void *a, const void *b)
{
const struct rte_vhost_mem_region *region_a = a;
const struct rte_vhost_mem_region *region_b = b;
if (region_a->guest_phys_addr < region_b->guest_phys_addr)
return -1;
if (region_a->guest_phys_addr > region_b->guest_phys_addr)
return 1;
return 0;
}
#define KLM_NUM_MAX_ALIGN(sz) (RTE_ALIGN_CEIL(sz, MLX5_MAX_KLM_BYTE_COUNT) / \
MLX5_MAX_KLM_BYTE_COUNT)
/*
* Allocate and sort the region list and choose indirect mkey mode:
* 1. Calculate GCD, guest memory size and indirect mkey entries num per mode.
* 2. Align GCD to the maximum allowed size(2G) and to be power of 2.
* 2. Decide the indirect mkey mode according to the next rules:
* a. If both KLM_FBS entries number and KLM entries number are bigger
* than the maximum allowed(MLX5_DEVX_MAX_KLM_ENTRIES) - error.
* b. KLM mode if KLM_FBS entries number is bigger than the maximum
* allowed(MLX5_DEVX_MAX_KLM_ENTRIES).
* c. KLM mode if GCD is smaller than the minimum allowed(4K).
* d. KLM mode if the total size of KLM entries is in one cache line
* and the total size of KLM_FBS entries is not in one cache line.
* e. Otherwise, KLM_FBS mode.
*/
static struct rte_vhost_memory *
mlx5_vdpa_vhost_mem_regions_prepare(int vid, uint8_t *mode, uint64_t *mem_size,
uint64_t *gcd, uint32_t *entries_num)
{
struct rte_vhost_memory *mem;
uint64_t size;
uint64_t klm_entries_num = 0;
uint64_t klm_fbs_entries_num;
uint32_t i;
int ret = rte_vhost_get_mem_table(vid, &mem);
if (ret < 0) {
DRV_LOG(ERR, "Failed to get VM memory layout vid =%d.", vid);
rte_errno = EINVAL;
return NULL;
}
qsort(mem->regions, mem->nregions, sizeof(mem->regions[0]),
mlx5_vdpa_regions_addr_cmp);
*mem_size = (mem->regions[(mem->nregions - 1)].guest_phys_addr) +
(mem->regions[(mem->nregions - 1)].size) -
(mem->regions[0].guest_phys_addr);
*gcd = 0;
for (i = 0; i < mem->nregions; ++i) {
DRV_LOG(INFO, "Region %u: HVA 0x%" PRIx64 ", GPA 0x%" PRIx64
", size 0x%" PRIx64 ".", i,
mem->regions[i].host_user_addr,
mem->regions[i].guest_phys_addr, mem->regions[i].size);
if (i > 0) {
/* Hole handle. */
size = mem->regions[i].guest_phys_addr -
(mem->regions[i - 1].guest_phys_addr +
mem->regions[i - 1].size);
*gcd = rte_get_gcd64(*gcd, size);
klm_entries_num += KLM_NUM_MAX_ALIGN(size);
}
size = mem->regions[i].size;
*gcd = rte_get_gcd64(*gcd, size);
klm_entries_num += KLM_NUM_MAX_ALIGN(size);
}
if (*gcd > MLX5_MAX_KLM_BYTE_COUNT)
*gcd = rte_get_gcd64(*gcd, MLX5_MAX_KLM_BYTE_COUNT);
if (!RTE_IS_POWER_OF_2(*gcd)) {
uint64_t candidate_gcd = rte_align64prevpow2(*gcd);
while (candidate_gcd > 1 && (*gcd % candidate_gcd))
candidate_gcd /= 2;
DRV_LOG(DEBUG, "GCD 0x%" PRIx64 " is not power of 2. Adjusted "
"GCD is 0x%" PRIx64 ".", *gcd, candidate_gcd);
*gcd = candidate_gcd;
}
klm_fbs_entries_num = *mem_size / *gcd;
if (*gcd < MLX5_MIN_KLM_FIXED_BUFFER_SIZE || klm_fbs_entries_num >
MLX5_DEVX_MAX_KLM_ENTRIES ||
((klm_entries_num * sizeof(struct mlx5_klm)) <=
RTE_CACHE_LINE_SIZE && (klm_fbs_entries_num *
sizeof(struct mlx5_klm)) >
RTE_CACHE_LINE_SIZE)) {
*mode = MLX5_MKC_ACCESS_MODE_KLM;
*entries_num = klm_entries_num;
DRV_LOG(INFO, "Indirect mkey mode is KLM.");
} else {
*mode = MLX5_MKC_ACCESS_MODE_KLM_FBS;
*entries_num = klm_fbs_entries_num;
DRV_LOG(INFO, "Indirect mkey mode is KLM Fixed Buffer Size.");
}
DRV_LOG(DEBUG, "Memory registration information: nregions = %u, "
"mem_size = 0x%" PRIx64 ", GCD = 0x%" PRIx64
", klm_fbs_entries_num = 0x%" PRIx64 ", klm_entries_num = 0x%"
PRIx64 ".", mem->nregions, *mem_size, *gcd, klm_fbs_entries_num,
klm_entries_num);
if (*entries_num > MLX5_DEVX_MAX_KLM_ENTRIES) {
DRV_LOG(ERR, "Failed to prepare memory of vid %d - memory is "
"too fragmented.", vid);
free(mem);
return NULL;
}
return mem;
}
#define KLM_SIZE_MAX_ALIGN(sz) ((sz) > MLX5_MAX_KLM_BYTE_COUNT ? \
MLX5_MAX_KLM_BYTE_COUNT : (sz))
/*
* The target here is to group all the physical memory regions of the
* virtio device in one indirect mkey.
* For KLM Fixed Buffer Size mode (HW find the translation entry in one
* read according to the guest physical address):
* All the sub-direct mkeys of it must be in the same size, hence, each
* one of them should be in the GCD size of all the virtio memory
* regions and the holes between them.
* For KLM mode (each entry may be in different size so HW must iterate
* the entries):
* Each virtio memory region and each hole between them have one entry,
* just need to cover the maximum allowed size(2G) by splitting entries
* which their associated memory regions are bigger than 2G.
* It means that each virtio memory region may be mapped to more than
* one direct mkey in the 2 modes.
* All the holes of invalid memory between the virtio memory regions
* will be mapped to the null memory region for security.
*/
int
mlx5_vdpa_mem_register(struct mlx5_vdpa_priv *priv)
{
struct mlx5_devx_mkey_attr mkey_attr;
struct mlx5_vdpa_query_mr *entry = NULL;
struct rte_vhost_mem_region *reg = NULL;
uint8_t mode;
uint32_t entries_num = 0;
uint32_t i;
uint64_t gcd;
uint64_t klm_size;
uint64_t mem_size;
uint64_t k;
int klm_index = 0;
int ret;
struct rte_vhost_memory *mem = mlx5_vdpa_vhost_mem_regions_prepare
(priv->vid, &mode, &mem_size, &gcd, &entries_num);
struct mlx5_klm klm_array[entries_num];
if (!mem)
return -rte_errno;
priv->vmem = mem;
priv->null_mr = mlx5_glue->alloc_null_mr(priv->pd);
if (!priv->null_mr) {
DRV_LOG(ERR, "Failed to allocate null MR.");
ret = -errno;
goto error;
}
DRV_LOG(DEBUG, "Dump fill Mkey = %u.", priv->null_mr->lkey);
for (i = 0; i < mem->nregions; i++) {
reg = &mem->regions[i];
entry = rte_zmalloc(__func__, sizeof(*entry), 0);
if (!entry) {
ret = -ENOMEM;
DRV_LOG(ERR, "Failed to allocate mem entry memory.");
goto error;
}
entry->mr = mlx5_glue->reg_mr_iova(priv->pd,
(void *)(uintptr_t)(reg->host_user_addr),
reg->size, reg->guest_phys_addr,
IBV_ACCESS_LOCAL_WRITE);
if (!entry->mr) {
mkey_attr.relaxed_ordering_read = 0;
mkey_attr.relaxed_ordering_write = 0;
entry->mkey = mlx5_devx_cmd_mkey_create(priv->ctx, &mkey_attr);
DRV_LOG(ERR, "Failed to create direct Mkey.");
ret = -rte_errno;
goto error;
}
entry->is_indirect = 0;
if (i > 0) {
uint64_t sadd;
uint64_t empty_region_sz = reg->guest_phys_addr -
(mem->regions[i - 1].guest_phys_addr +
mem->regions[i - 1].size);
if (empty_region_sz > 0) {
sadd = mem->regions[i - 1].guest_phys_addr +
mem->regions[i - 1].size;
klm_size = mode == MLX5_MKC_ACCESS_MODE_KLM ?
KLM_SIZE_MAX_ALIGN(empty_region_sz) : gcd;
for (k = 0; k < empty_region_sz;
k += klm_size) {
klm_array[klm_index].byte_count =
k + klm_size > empty_region_sz ?
empty_region_sz - k : klm_size;
klm_array[klm_index].mkey =
priv->null_mr->lkey;
klm_array[klm_index].address = sadd + k;
klm_index++;
}
}
}
klm_size = mode == MLX5_MKC_ACCESS_MODE_KLM ?
KLM_SIZE_MAX_ALIGN(reg->size) : gcd;
for (k = 0; k < reg->size; k += klm_size) {
klm_array[klm_index].byte_count = k + klm_size >
reg->size ? reg->size - k : klm_size;
klm_array[klm_index].mkey = entry->mr->lkey;
klm_array[klm_index].address = reg->guest_phys_addr + k;
klm_index++;
}
SLIST_INSERT_HEAD(&priv->mr_list, entry, next);
}
memset(&mkey_attr, 0, sizeof(mkey_attr));
mkey_attr.addr = (uintptr_t)(mem->regions[0].guest_phys_addr);
mkey_attr.size = mem_size;
mkey_attr.pd = priv->pdn;
mkey_attr.umem_id = 0;
/* Must be zero for KLM mode. */
mkey_attr.log_entity_size = mode == MLX5_MKC_ACCESS_MODE_KLM_FBS ?
rte_log2_u64(gcd) : 0;
mkey_attr.pg_access = 0;
mkey_attr.klm_array = klm_array;
mkey_attr.klm_num = klm_index;
entry = rte_zmalloc(__func__, sizeof(*entry), 0);
if (!entry) {
DRV_LOG(ERR, "Failed to allocate memory for indirect entry.");
ret = -ENOMEM;
goto error;
}
entry->mkey = mlx5_devx_cmd_mkey_create(priv->ctx, &mkey_attr);
if (!entry->mkey) {
DRV_LOG(ERR, "Failed to create indirect Mkey.");
ret = -rte_errno;
goto error;
}
entry->is_indirect = 1;
SLIST_INSERT_HEAD(&priv->mr_list, entry, next);
priv->gpa_mkey_index = entry->mkey->id;
return 0;
error:
if (entry)
rte_free(entry);
mlx5_vdpa_mem_dereg(priv);
rte_errno = -ret;
return ret;
}