f-stack/dpdk/drivers/net/mlx5/mlx5_rxq.c

2656 lines
71 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2015 6WIND S.A.
* Copyright 2015 Mellanox Technologies, Ltd
*/
#include <stddef.h>
#include <errno.h>
#include <string.h>
#include <stdint.h>
#include <fcntl.h>
#include <sys/queue.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_ethdev_driver.h>
#include <rte_common.h>
#include <rte_interrupts.h>
#include <rte_debug.h>
#include <rte_io.h>
#include <rte_eal_paging.h>
#include <mlx5_glue.h>
#include <mlx5_malloc.h>
#include "mlx5_defs.h"
#include "mlx5.h"
#include "mlx5_rxtx.h"
#include "mlx5_utils.h"
#include "mlx5_autoconf.h"
/* Default RSS hash key also used for ConnectX-3. */
uint8_t rss_hash_default_key[] = {
0x2c, 0xc6, 0x81, 0xd1,
0x5b, 0xdb, 0xf4, 0xf7,
0xfc, 0xa2, 0x83, 0x19,
0xdb, 0x1a, 0x3e, 0x94,
0x6b, 0x9e, 0x38, 0xd9,
0x2c, 0x9c, 0x03, 0xd1,
0xad, 0x99, 0x44, 0xa7,
0xd9, 0x56, 0x3d, 0x59,
0x06, 0x3c, 0x25, 0xf3,
0xfc, 0x1f, 0xdc, 0x2a,
};
/* Length of the default RSS hash key. */
static_assert(MLX5_RSS_HASH_KEY_LEN ==
(unsigned int)sizeof(rss_hash_default_key),
"wrong RSS default key size.");
/**
* Check whether Multi-Packet RQ can be enabled for the device.
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* 1 if supported, negative errno value if not.
*/
inline int
mlx5_check_mprq_support(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
if (priv->config.mprq.enabled &&
priv->rxqs_n >= priv->config.mprq.min_rxqs_num)
return 1;
return -ENOTSUP;
}
/**
* Check whether Multi-Packet RQ is enabled for the Rx queue.
*
* @param rxq
* Pointer to receive queue structure.
*
* @return
* 0 if disabled, otherwise enabled.
*/
inline int
mlx5_rxq_mprq_enabled(struct mlx5_rxq_data *rxq)
{
return rxq->log_strd_num > 0;
}
/**
* Check whether Multi-Packet RQ is enabled for the device.
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* 0 if disabled, otherwise enabled.
*/
inline int
mlx5_mprq_enabled(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
uint32_t i;
uint16_t n = 0;
uint16_t n_ibv = 0;
if (mlx5_check_mprq_support(dev) < 0)
return 0;
/* All the configured queues should be enabled. */
for (i = 0; i < priv->rxqs_n; ++i) {
struct mlx5_rxq_data *rxq = (*priv->rxqs)[i];
struct mlx5_rxq_ctrl *rxq_ctrl = container_of
(rxq, struct mlx5_rxq_ctrl, rxq);
if (rxq == NULL || rxq_ctrl->type != MLX5_RXQ_TYPE_STANDARD)
continue;
n_ibv++;
if (mlx5_rxq_mprq_enabled(rxq))
++n;
}
/* Multi-Packet RQ can't be partially configured. */
MLX5_ASSERT(n == 0 || n == n_ibv);
return n == n_ibv;
}
/**
* Calculate the number of CQEs in CQ for the Rx queue.
*
* @param rxq_data
* Pointer to receive queue structure.
*
* @return
* Number of CQEs in CQ.
*/
unsigned int
mlx5_rxq_cqe_num(struct mlx5_rxq_data *rxq_data)
{
unsigned int cqe_n;
unsigned int wqe_n = 1 << rxq_data->elts_n;
if (mlx5_rxq_mprq_enabled(rxq_data))
cqe_n = wqe_n * RTE_BIT32(rxq_data->log_strd_num) - 1;
else
cqe_n = wqe_n - 1;
return cqe_n;
}
/**
* Allocate RX queue elements for Multi-Packet RQ.
*
* @param rxq_ctrl
* Pointer to RX queue structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
rxq_alloc_elts_mprq(struct mlx5_rxq_ctrl *rxq_ctrl)
{
struct mlx5_rxq_data *rxq = &rxq_ctrl->rxq;
unsigned int wqe_n = 1 << rxq->elts_n;
unsigned int i;
int err;
/* Iterate on segments. */
for (i = 0; i <= wqe_n; ++i) {
struct mlx5_mprq_buf *buf;
if (rte_mempool_get(rxq->mprq_mp, (void **)&buf) < 0) {
DRV_LOG(ERR, "port %u empty mbuf pool", rxq->port_id);
rte_errno = ENOMEM;
goto error;
}
if (i < wqe_n)
(*rxq->mprq_bufs)[i] = buf;
else
rxq->mprq_repl = buf;
}
DRV_LOG(DEBUG,
"port %u MPRQ queue %u allocated and configured %u segments",
rxq->port_id, rxq->idx, wqe_n);
return 0;
error:
err = rte_errno; /* Save rte_errno before cleanup. */
wqe_n = i;
for (i = 0; (i != wqe_n); ++i) {
if ((*rxq->mprq_bufs)[i] != NULL)
rte_mempool_put(rxq->mprq_mp,
(*rxq->mprq_bufs)[i]);
(*rxq->mprq_bufs)[i] = NULL;
}
DRV_LOG(DEBUG, "port %u MPRQ queue %u failed, freed everything",
rxq->port_id, rxq->idx);
rte_errno = err; /* Restore rte_errno. */
return -rte_errno;
}
/**
* Allocate RX queue elements for Single-Packet RQ.
*
* @param rxq_ctrl
* Pointer to RX queue structure.
*
* @return
* 0 on success, negative errno value on failure.
*/
static int
rxq_alloc_elts_sprq(struct mlx5_rxq_ctrl *rxq_ctrl)
{
const unsigned int sges_n = 1 << rxq_ctrl->rxq.sges_n;
unsigned int elts_n = mlx5_rxq_mprq_enabled(&rxq_ctrl->rxq) ?
RTE_BIT32(rxq_ctrl->rxq.elts_n) *
RTE_BIT32(rxq_ctrl->rxq.log_strd_num) :
RTE_BIT32(rxq_ctrl->rxq.elts_n);
bool has_vec_support = mlx5_rxq_check_vec_support(&rxq_ctrl->rxq) > 0;
unsigned int i;
int err;
/* Iterate on segments. */
for (i = 0; (i != elts_n); ++i) {
struct mlx5_eth_rxseg *seg = &rxq_ctrl->rxq.rxseg[i % sges_n];
struct rte_mbuf *buf;
buf = rte_pktmbuf_alloc(seg->mp);
if (buf == NULL) {
DRV_LOG(ERR, "port %u empty mbuf pool",
PORT_ID(rxq_ctrl->priv));
rte_errno = ENOMEM;
goto error;
}
/* Only vectored Rx routines rely on headroom size. */
MLX5_ASSERT(!has_vec_support ||
DATA_OFF(buf) >= RTE_PKTMBUF_HEADROOM);
/* Buffer is supposed to be empty. */
MLX5_ASSERT(rte_pktmbuf_data_len(buf) == 0);
MLX5_ASSERT(rte_pktmbuf_pkt_len(buf) == 0);
MLX5_ASSERT(!buf->next);
SET_DATA_OFF(buf, seg->offset);
PORT(buf) = rxq_ctrl->rxq.port_id;
DATA_LEN(buf) = seg->length;
PKT_LEN(buf) = seg->length;
NB_SEGS(buf) = 1;
(*rxq_ctrl->rxq.elts)[i] = buf;
}
/* If Rx vector is activated. */
if (has_vec_support) {
struct mlx5_rxq_data *rxq = &rxq_ctrl->rxq;
struct rte_mbuf *mbuf_init = &rxq->fake_mbuf;
struct rte_pktmbuf_pool_private *priv =
(struct rte_pktmbuf_pool_private *)
rte_mempool_get_priv(rxq_ctrl->rxq.mp);
int j;
/* Initialize default rearm_data for vPMD. */
mbuf_init->data_off = RTE_PKTMBUF_HEADROOM;
rte_mbuf_refcnt_set(mbuf_init, 1);
mbuf_init->nb_segs = 1;
mbuf_init->port = rxq->port_id;
if (priv->flags & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF)
mbuf_init->ol_flags = EXT_ATTACHED_MBUF;
/*
* prevent compiler reordering:
* rearm_data covers previous fields.
*/
rte_compiler_barrier();
rxq->mbuf_initializer =
*(rte_xmm_t *)&mbuf_init->rearm_data;
/* Padding with a fake mbuf for vectorized Rx. */
for (j = 0; j < MLX5_VPMD_DESCS_PER_LOOP; ++j)
(*rxq->elts)[elts_n + j] = &rxq->fake_mbuf;
}
DRV_LOG(DEBUG,
"port %u SPRQ queue %u allocated and configured %u segments"
" (max %u packets)",
PORT_ID(rxq_ctrl->priv), rxq_ctrl->rxq.idx, elts_n,
elts_n / (1 << rxq_ctrl->rxq.sges_n));
return 0;
error:
err = rte_errno; /* Save rte_errno before cleanup. */
elts_n = i;
for (i = 0; (i != elts_n); ++i) {
if ((*rxq_ctrl->rxq.elts)[i] != NULL)
rte_pktmbuf_free_seg((*rxq_ctrl->rxq.elts)[i]);
(*rxq_ctrl->rxq.elts)[i] = NULL;
}
DRV_LOG(DEBUG, "port %u SPRQ queue %u failed, freed everything",
PORT_ID(rxq_ctrl->priv), rxq_ctrl->rxq.idx);
rte_errno = err; /* Restore rte_errno. */
return -rte_errno;
}
/**
* Allocate RX queue elements.
*
* @param rxq_ctrl
* Pointer to RX queue structure.
*
* @return
* 0 on success, negative errno value on failure.
*/
int
rxq_alloc_elts(struct mlx5_rxq_ctrl *rxq_ctrl)
{
int ret = 0;
/**
* For MPRQ we need to allocate both MPRQ buffers
* for WQEs and simple mbufs for vector processing.
*/
if (mlx5_rxq_mprq_enabled(&rxq_ctrl->rxq))
ret = rxq_alloc_elts_mprq(rxq_ctrl);
if (ret == 0)
ret = rxq_alloc_elts_sprq(rxq_ctrl);
return ret;
}
/**
* Free RX queue elements for Multi-Packet RQ.
*
* @param rxq_ctrl
* Pointer to RX queue structure.
*/
static void
rxq_free_elts_mprq(struct mlx5_rxq_ctrl *rxq_ctrl)
{
struct mlx5_rxq_data *rxq = &rxq_ctrl->rxq;
uint16_t i;
DRV_LOG(DEBUG, "port %u Multi-Packet Rx queue %u freeing %d WRs",
rxq->port_id, rxq->idx, (1u << rxq->elts_n));
if (rxq->mprq_bufs == NULL)
return;
for (i = 0; (i != (1u << rxq->elts_n)); ++i) {
if ((*rxq->mprq_bufs)[i] != NULL)
mlx5_mprq_buf_free((*rxq->mprq_bufs)[i]);
(*rxq->mprq_bufs)[i] = NULL;
}
if (rxq->mprq_repl != NULL) {
mlx5_mprq_buf_free(rxq->mprq_repl);
rxq->mprq_repl = NULL;
}
}
/**
* Free RX queue elements for Single-Packet RQ.
*
* @param rxq_ctrl
* Pointer to RX queue structure.
*/
static void
rxq_free_elts_sprq(struct mlx5_rxq_ctrl *rxq_ctrl)
{
struct mlx5_rxq_data *rxq = &rxq_ctrl->rxq;
const uint16_t q_n = mlx5_rxq_mprq_enabled(&rxq_ctrl->rxq) ?
RTE_BIT32(rxq->elts_n) * RTE_BIT32(rxq->log_strd_num) :
RTE_BIT32(rxq->elts_n);
const uint16_t q_mask = q_n - 1;
uint16_t elts_ci = mlx5_rxq_mprq_enabled(&rxq_ctrl->rxq) ?
rxq->elts_ci : rxq->rq_ci;
uint16_t used = q_n - (elts_ci - rxq->rq_pi);
uint16_t i;
DRV_LOG(DEBUG, "port %u Rx queue %u freeing %d WRs",
PORT_ID(rxq_ctrl->priv), rxq->idx, q_n);
if (rxq->elts == NULL)
return;
/**
* Some mbuf in the Ring belongs to the application.
* They cannot be freed.
*/
if (mlx5_rxq_check_vec_support(rxq) > 0) {
for (i = 0; i < used; ++i)
(*rxq->elts)[(elts_ci + i) & q_mask] = NULL;
rxq->rq_pi = elts_ci;
}
for (i = 0; i != q_n; ++i) {
if ((*rxq->elts)[i] != NULL)
rte_pktmbuf_free_seg((*rxq->elts)[i]);
(*rxq->elts)[i] = NULL;
}
}
/**
* Free RX queue elements.
*
* @param rxq_ctrl
* Pointer to RX queue structure.
*/
static void
rxq_free_elts(struct mlx5_rxq_ctrl *rxq_ctrl)
{
/*
* For MPRQ we need to allocate both MPRQ buffers
* for WQEs and simple mbufs for vector processing.
*/
if (mlx5_rxq_mprq_enabled(&rxq_ctrl->rxq))
rxq_free_elts_mprq(rxq_ctrl);
rxq_free_elts_sprq(rxq_ctrl);
}
/**
* Returns the per-queue supported offloads.
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* Supported Rx offloads.
*/
uint64_t
mlx5_get_rx_queue_offloads(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_dev_config *config = &priv->config;
uint64_t offloads = (DEV_RX_OFFLOAD_SCATTER |
DEV_RX_OFFLOAD_TIMESTAMP |
DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_RSS_HASH);
if (!config->mprq.enabled)
offloads |= RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT;
if (config->hw_fcs_strip)
offloads |= DEV_RX_OFFLOAD_KEEP_CRC;
if (config->hw_csum)
offloads |= (DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM);
if (config->hw_vlan_strip)
offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
if (MLX5_LRO_SUPPORTED(dev))
offloads |= DEV_RX_OFFLOAD_TCP_LRO;
return offloads;
}
/**
* Returns the per-port supported offloads.
*
* @return
* Supported Rx offloads.
*/
uint64_t
mlx5_get_rx_port_offloads(void)
{
uint64_t offloads = DEV_RX_OFFLOAD_VLAN_FILTER;
return offloads;
}
/**
* Verify if the queue can be released.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* RX queue index.
*
* @return
* 1 if the queue can be released
* 0 if the queue can not be released, there are references to it.
* Negative errno and rte_errno is set if queue doesn't exist.
*/
static int
mlx5_rxq_releasable(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_rxq_ctrl *rxq_ctrl;
if (!(*priv->rxqs)[idx]) {
rte_errno = EINVAL;
return -rte_errno;
}
rxq_ctrl = container_of((*priv->rxqs)[idx], struct mlx5_rxq_ctrl, rxq);
return (__atomic_load_n(&rxq_ctrl->refcnt, __ATOMIC_RELAXED) == 1);
}
/* Fetches and drops all SW-owned and error CQEs to synchronize CQ. */
static void
rxq_sync_cq(struct mlx5_rxq_data *rxq)
{
const uint16_t cqe_n = 1 << rxq->cqe_n;
const uint16_t cqe_mask = cqe_n - 1;
volatile struct mlx5_cqe *cqe;
int ret, i;
i = cqe_n;
do {
cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_mask];
ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
if (ret == MLX5_CQE_STATUS_HW_OWN)
break;
if (ret == MLX5_CQE_STATUS_ERR) {
rxq->cq_ci++;
continue;
}
MLX5_ASSERT(ret == MLX5_CQE_STATUS_SW_OWN);
if (MLX5_CQE_FORMAT(cqe->op_own) != MLX5_COMPRESSED) {
rxq->cq_ci++;
continue;
}
/* Compute the next non compressed CQE. */
rxq->cq_ci += rte_be_to_cpu_32(cqe->byte_cnt);
} while (--i);
/* Move all CQEs to HW ownership, including possible MiniCQEs. */
for (i = 0; i < cqe_n; i++) {
cqe = &(*rxq->cqes)[i];
cqe->op_own = MLX5_CQE_INVALIDATE;
}
/* Resync CQE and WQE (WQ in RESET state). */
rte_io_wmb();
*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
rte_io_wmb();
*rxq->rq_db = rte_cpu_to_be_32(0);
rte_io_wmb();
}
/**
* Rx queue stop. Device queue goes to the RESET state,
* all involved mbufs are freed from WQ.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_rx_queue_stop_primary(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_rxq_data *rxq = (*priv->rxqs)[idx];
struct mlx5_rxq_ctrl *rxq_ctrl =
container_of(rxq, struct mlx5_rxq_ctrl, rxq);
int ret;
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
ret = priv->obj_ops.rxq_obj_modify(rxq_ctrl->obj, MLX5_RXQ_MOD_RDY2RST);
if (ret) {
DRV_LOG(ERR, "Cannot change Rx WQ state to RESET: %s",
strerror(errno));
rte_errno = errno;
return ret;
}
/* Remove all processes CQEs. */
rxq_sync_cq(rxq);
/* Free all involved mbufs. */
rxq_free_elts(rxq_ctrl);
/* Set the actual queue state. */
dev->data->rx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
/**
* Rx queue stop. Device queue goes to the RESET state,
* all involved mbufs are freed from WQ.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_rx_queue_stop(struct rte_eth_dev *dev, uint16_t idx)
{
eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
int ret;
if (rte_eth_dev_is_rx_hairpin_queue(dev, idx)) {
DRV_LOG(ERR, "Hairpin queue can't be stopped");
rte_errno = EINVAL;
return -EINVAL;
}
if (dev->data->rx_queue_state[idx] == RTE_ETH_QUEUE_STATE_STOPPED)
return 0;
/*
* Vectorized Rx burst requires the CQ and RQ indices
* synchronized, that might be broken on RQ restart
* and cause Rx malfunction, so queue stopping is
* not supported if vectorized Rx burst is engaged.
* The routine pointer depends on the process
* type, should perform check there.
*/
if (pkt_burst == mlx5_rx_burst_vec) {
DRV_LOG(ERR, "Rx queue stop is not supported "
"for vectorized Rx");
rte_errno = EINVAL;
return -EINVAL;
}
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
ret = mlx5_mp_os_req_queue_control(dev, idx,
MLX5_MP_REQ_QUEUE_RX_STOP);
} else {
ret = mlx5_rx_queue_stop_primary(dev, idx);
}
return ret;
}
/**
* Rx queue start. Device queue goes to the ready state,
* all required mbufs are allocated and WQ is replenished.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_rx_queue_start_primary(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_rxq_data *rxq = (*priv->rxqs)[idx];
struct mlx5_rxq_ctrl *rxq_ctrl =
container_of(rxq, struct mlx5_rxq_ctrl, rxq);
int ret;
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
/* Allocate needed buffers. */
ret = rxq_alloc_elts(rxq_ctrl);
if (ret) {
DRV_LOG(ERR, "Cannot reallocate buffers for Rx WQ");
rte_errno = errno;
return ret;
}
rte_io_wmb();
*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
rte_io_wmb();
/* Reset RQ consumer before moving queue to READY state. */
*rxq->rq_db = rte_cpu_to_be_32(0);
rte_io_wmb();
ret = priv->obj_ops.rxq_obj_modify(rxq_ctrl->obj, MLX5_RXQ_MOD_RST2RDY);
if (ret) {
DRV_LOG(ERR, "Cannot change Rx WQ state to READY: %s",
strerror(errno));
rte_errno = errno;
return ret;
}
/* Reinitialize RQ - set WQEs. */
mlx5_rxq_initialize(rxq);
rxq->err_state = MLX5_RXQ_ERR_STATE_NO_ERROR;
/* Set actual queue state. */
dev->data->rx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
/**
* Rx queue start. Device queue goes to the ready state,
* all required mbufs are allocated and WQ is replenished.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_rx_queue_start(struct rte_eth_dev *dev, uint16_t idx)
{
int ret;
if (rte_eth_dev_is_rx_hairpin_queue(dev, idx)) {
DRV_LOG(ERR, "Hairpin queue can't be started");
rte_errno = EINVAL;
return -EINVAL;
}
if (dev->data->rx_queue_state[idx] == RTE_ETH_QUEUE_STATE_STARTED)
return 0;
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
ret = mlx5_mp_os_req_queue_control(dev, idx,
MLX5_MP_REQ_QUEUE_RX_START);
} else {
ret = mlx5_rx_queue_start_primary(dev, idx);
}
return ret;
}
/**
* Rx queue presetup checks.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
* @param desc
* Number of descriptors to configure in queue.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_rx_queue_pre_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t *desc)
{
struct mlx5_priv *priv = dev->data->dev_private;
if (!rte_is_power_of_2(*desc)) {
*desc = 1 << log2above(*desc);
DRV_LOG(WARNING,
"port %u increased number of descriptors in Rx queue %u"
" to the next power of two (%d)",
dev->data->port_id, idx, *desc);
}
DRV_LOG(DEBUG, "port %u configuring Rx queue %u for %u descriptors",
dev->data->port_id, idx, *desc);
if (idx >= priv->rxqs_n) {
DRV_LOG(ERR, "port %u Rx queue index out of range (%u >= %u)",
dev->data->port_id, idx, priv->rxqs_n);
rte_errno = EOVERFLOW;
return -rte_errno;
}
if (!mlx5_rxq_releasable(dev, idx)) {
DRV_LOG(ERR, "port %u unable to release queue index %u",
dev->data->port_id, idx);
rte_errno = EBUSY;
return -rte_errno;
}
mlx5_rxq_release(dev, idx);
return 0;
}
/**
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
* @param mp
* Memory pool for buffer allocations.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_rxconf *conf,
struct rte_mempool *mp)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_rxq_data *rxq = (*priv->rxqs)[idx];
struct mlx5_rxq_ctrl *rxq_ctrl =
container_of(rxq, struct mlx5_rxq_ctrl, rxq);
struct rte_eth_rxseg_split *rx_seg =
(struct rte_eth_rxseg_split *)conf->rx_seg;
struct rte_eth_rxseg_split rx_single = {.mp = mp};
uint16_t n_seg = conf->rx_nseg;
bool is_extmem = false;
uint64_t offloads = conf->offloads |
dev->data->dev_conf.rxmode.offloads;
int res;
if ((offloads & DEV_RX_OFFLOAD_TCP_LRO) &&
!priv->config.lro.supported) {
DRV_LOG(ERR,
"Port %u queue %u LRO is configured but not supported.",
dev->data->port_id, idx);
rte_errno = EINVAL;
return -rte_errno;
}
if (mp) {
/*
* The parameters should be checked on rte_eth_dev layer.
* If mp is specified it means the compatible configuration
* without buffer split feature tuning.
*/
rx_seg = &rx_single;
n_seg = 1;
is_extmem = rte_pktmbuf_priv_flags(mp) &
RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF;
}
if (n_seg > 1) {
/* The offloads should be checked on rte_eth_dev layer. */
MLX5_ASSERT(offloads & DEV_RX_OFFLOAD_SCATTER);
if (!(offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
DRV_LOG(ERR, "port %u queue index %u split "
"offload not configured",
dev->data->port_id, idx);
rte_errno = ENOSPC;
return -rte_errno;
}
MLX5_ASSERT(n_seg < MLX5_MAX_RXQ_NSEG);
}
res = mlx5_rx_queue_pre_setup(dev, idx, &desc);
if (res)
return res;
rxq_ctrl = mlx5_rxq_new(dev, idx, desc, socket,
conf, rx_seg, n_seg, is_extmem);
if (!rxq_ctrl) {
DRV_LOG(ERR, "port %u unable to allocate queue index %u",
dev->data->port_id, idx);
rte_errno = ENOMEM;
return -rte_errno;
}
DRV_LOG(DEBUG, "port %u adding Rx queue %u to list",
dev->data->port_id, idx);
(*priv->rxqs)[idx] = &rxq_ctrl->rxq;
return 0;
}
/**
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param hairpin_conf
* Hairpin configuration parameters.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_rx_hairpin_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
uint16_t desc,
const struct rte_eth_hairpin_conf *hairpin_conf)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_rxq_data *rxq = (*priv->rxqs)[idx];
struct mlx5_rxq_ctrl *rxq_ctrl =
container_of(rxq, struct mlx5_rxq_ctrl, rxq);
int res;
res = mlx5_rx_queue_pre_setup(dev, idx, &desc);
if (res)
return res;
if (hairpin_conf->peer_count != 1) {
rte_errno = EINVAL;
DRV_LOG(ERR, "port %u unable to setup Rx hairpin queue index %u"
" peer count is %u", dev->data->port_id,
idx, hairpin_conf->peer_count);
return -rte_errno;
}
if (hairpin_conf->peers[0].port == dev->data->port_id) {
if (hairpin_conf->peers[0].queue >= priv->txqs_n) {
rte_errno = EINVAL;
DRV_LOG(ERR, "port %u unable to setup Rx hairpin queue"
" index %u, Tx %u is larger than %u",
dev->data->port_id, idx,
hairpin_conf->peers[0].queue, priv->txqs_n);
return -rte_errno;
}
} else {
if (hairpin_conf->manual_bind == 0 ||
hairpin_conf->tx_explicit == 0) {
rte_errno = EINVAL;
DRV_LOG(ERR, "port %u unable to setup Rx hairpin queue"
" index %u peer port %u with attributes %u %u",
dev->data->port_id, idx,
hairpin_conf->peers[0].port,
hairpin_conf->manual_bind,
hairpin_conf->tx_explicit);
return -rte_errno;
}
}
rxq_ctrl = mlx5_rxq_hairpin_new(dev, idx, desc, hairpin_conf);
if (!rxq_ctrl) {
DRV_LOG(ERR, "port %u unable to allocate queue index %u",
dev->data->port_id, idx);
rte_errno = ENOMEM;
return -rte_errno;
}
DRV_LOG(DEBUG, "port %u adding Rx queue %u to list",
dev->data->port_id, idx);
(*priv->rxqs)[idx] = &rxq_ctrl->rxq;
return 0;
}
/**
* DPDK callback to release a RX queue.
*
* @param dpdk_rxq
* Generic RX queue pointer.
*/
void
mlx5_rx_queue_release(void *dpdk_rxq)
{
struct mlx5_rxq_data *rxq = (struct mlx5_rxq_data *)dpdk_rxq;
struct mlx5_rxq_ctrl *rxq_ctrl;
struct mlx5_priv *priv;
if (rxq == NULL)
return;
rxq_ctrl = container_of(rxq, struct mlx5_rxq_ctrl, rxq);
priv = rxq_ctrl->priv;
if (!mlx5_rxq_releasable(ETH_DEV(priv), rxq_ctrl->rxq.idx))
rte_panic("port %u Rx queue %u is still used by a flow and"
" cannot be removed\n",
PORT_ID(priv), rxq->idx);
mlx5_rxq_release(ETH_DEV(priv), rxq_ctrl->rxq.idx);
}
/**
* Allocate queue vector and fill epoll fd list for Rx interrupts.
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_rx_intr_vec_enable(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
unsigned int i;
unsigned int rxqs_n = priv->rxqs_n;
unsigned int n = RTE_MIN(rxqs_n, (uint32_t)RTE_MAX_RXTX_INTR_VEC_ID);
unsigned int count = 0;
struct rte_intr_handle *intr_handle = dev->intr_handle;
if (!dev->data->dev_conf.intr_conf.rxq)
return 0;
mlx5_rx_intr_vec_disable(dev);
intr_handle->intr_vec = mlx5_malloc(0,
n * sizeof(intr_handle->intr_vec[0]),
0, SOCKET_ID_ANY);
if (intr_handle->intr_vec == NULL) {
DRV_LOG(ERR,
"port %u failed to allocate memory for interrupt"
" vector, Rx interrupts will not be supported",
dev->data->port_id);
rte_errno = ENOMEM;
return -rte_errno;
}
intr_handle->type = RTE_INTR_HANDLE_EXT;
for (i = 0; i != n; ++i) {
/* This rxq obj must not be released in this function. */
struct mlx5_rxq_ctrl *rxq_ctrl = mlx5_rxq_get(dev, i);
struct mlx5_rxq_obj *rxq_obj = rxq_ctrl ? rxq_ctrl->obj : NULL;
int rc;
/* Skip queues that cannot request interrupts. */
if (!rxq_obj || (!rxq_obj->ibv_channel &&
!rxq_obj->devx_channel)) {
/* Use invalid intr_vec[] index to disable entry. */
intr_handle->intr_vec[i] =
RTE_INTR_VEC_RXTX_OFFSET +
RTE_MAX_RXTX_INTR_VEC_ID;
/* Decrease the rxq_ctrl's refcnt */
if (rxq_ctrl)
mlx5_rxq_release(dev, i);
continue;
}
if (count >= RTE_MAX_RXTX_INTR_VEC_ID) {
DRV_LOG(ERR,
"port %u too many Rx queues for interrupt"
" vector size (%d), Rx interrupts cannot be"
" enabled",
dev->data->port_id, RTE_MAX_RXTX_INTR_VEC_ID);
mlx5_rx_intr_vec_disable(dev);
rte_errno = ENOMEM;
return -rte_errno;
}
rc = mlx5_os_set_nonblock_channel_fd(rxq_obj->fd);
if (rc < 0) {
rte_errno = errno;
DRV_LOG(ERR,
"port %u failed to make Rx interrupt file"
" descriptor %d non-blocking for queue index"
" %d",
dev->data->port_id, rxq_obj->fd, i);
mlx5_rx_intr_vec_disable(dev);
return -rte_errno;
}
intr_handle->intr_vec[i] = RTE_INTR_VEC_RXTX_OFFSET + count;
intr_handle->efds[count] = rxq_obj->fd;
count++;
}
if (!count)
mlx5_rx_intr_vec_disable(dev);
else
intr_handle->nb_efd = count;
return 0;
}
/**
* Clean up Rx interrupts handler.
*
* @param dev
* Pointer to Ethernet device.
*/
void
mlx5_rx_intr_vec_disable(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct rte_intr_handle *intr_handle = dev->intr_handle;
unsigned int i;
unsigned int rxqs_n = priv->rxqs_n;
unsigned int n = RTE_MIN(rxqs_n, (uint32_t)RTE_MAX_RXTX_INTR_VEC_ID);
if (!dev->data->dev_conf.intr_conf.rxq)
return;
if (!intr_handle->intr_vec)
goto free;
for (i = 0; i != n; ++i) {
if (intr_handle->intr_vec[i] == RTE_INTR_VEC_RXTX_OFFSET +
RTE_MAX_RXTX_INTR_VEC_ID)
continue;
/**
* Need to access directly the queue to release the reference
* kept in mlx5_rx_intr_vec_enable().
*/
mlx5_rxq_release(dev, i);
}
free:
rte_intr_free_epoll_fd(intr_handle);
if (intr_handle->intr_vec)
mlx5_free(intr_handle->intr_vec);
intr_handle->nb_efd = 0;
intr_handle->intr_vec = NULL;
}
/**
* MLX5 CQ notification .
*
* @param rxq
* Pointer to receive queue structure.
* @param sq_n_rxq
* Sequence number per receive queue .
*/
static inline void
mlx5_arm_cq(struct mlx5_rxq_data *rxq, int sq_n_rxq)
{
int sq_n = 0;
uint32_t doorbell_hi;
uint64_t doorbell;
void *cq_db_reg = (char *)rxq->cq_uar + MLX5_CQ_DOORBELL;
sq_n = sq_n_rxq & MLX5_CQ_SQN_MASK;
doorbell_hi = sq_n << MLX5_CQ_SQN_OFFSET | (rxq->cq_ci & MLX5_CI_MASK);
doorbell = (uint64_t)doorbell_hi << 32;
doorbell |= rxq->cqn;
rxq->cq_db[MLX5_CQ_ARM_DB] = rte_cpu_to_be_32(doorbell_hi);
mlx5_uar_write64(rte_cpu_to_be_64(doorbell),
cq_db_reg, rxq->uar_lock_cq);
}
/**
* DPDK callback for Rx queue interrupt enable.
*
* @param dev
* Pointer to Ethernet device structure.
* @param rx_queue_id
* Rx queue number.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_rx_intr_enable(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct mlx5_rxq_ctrl *rxq_ctrl;
rxq_ctrl = mlx5_rxq_get(dev, rx_queue_id);
if (!rxq_ctrl)
goto error;
if (rxq_ctrl->irq) {
if (!rxq_ctrl->obj) {
mlx5_rxq_release(dev, rx_queue_id);
goto error;
}
mlx5_arm_cq(&rxq_ctrl->rxq, rxq_ctrl->rxq.cq_arm_sn);
}
mlx5_rxq_release(dev, rx_queue_id);
return 0;
error:
rte_errno = EINVAL;
return -rte_errno;
}
/**
* DPDK callback for Rx queue interrupt disable.
*
* @param dev
* Pointer to Ethernet device structure.
* @param rx_queue_id
* Rx queue number.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_rx_intr_disable(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_rxq_ctrl *rxq_ctrl;
int ret = 0;
rxq_ctrl = mlx5_rxq_get(dev, rx_queue_id);
if (!rxq_ctrl) {
rte_errno = EINVAL;
return -rte_errno;
}
if (!rxq_ctrl->obj)
goto error;
if (rxq_ctrl->irq) {
ret = priv->obj_ops.rxq_event_get(rxq_ctrl->obj);
if (ret < 0)
goto error;
rxq_ctrl->rxq.cq_arm_sn++;
}
mlx5_rxq_release(dev, rx_queue_id);
return 0;
error:
/**
* The ret variable may be EAGAIN which means the get_event function was
* called before receiving one.
*/
if (ret < 0)
rte_errno = errno;
else
rte_errno = EINVAL;
ret = rte_errno; /* Save rte_errno before cleanup. */
mlx5_rxq_release(dev, rx_queue_id);
if (ret != EAGAIN)
DRV_LOG(WARNING, "port %u unable to disable interrupt on Rx queue %d",
dev->data->port_id, rx_queue_id);
rte_errno = ret; /* Restore rte_errno. */
return -rte_errno;
}
/**
* Verify the Rx queue objects list is empty
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* The number of objects not released.
*/
int
mlx5_rxq_obj_verify(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
int ret = 0;
struct mlx5_rxq_obj *rxq_obj;
LIST_FOREACH(rxq_obj, &priv->rxqsobj, next) {
DRV_LOG(DEBUG, "port %u Rx queue %u still referenced",
dev->data->port_id, rxq_obj->rxq_ctrl->rxq.idx);
++ret;
}
return ret;
}
/**
* Callback function to initialize mbufs for Multi-Packet RQ.
*/
static inline void
mlx5_mprq_buf_init(struct rte_mempool *mp, void *opaque_arg,
void *_m, unsigned int i __rte_unused)
{
struct mlx5_mprq_buf *buf = _m;
struct rte_mbuf_ext_shared_info *shinfo;
unsigned int strd_n = (unsigned int)(uintptr_t)opaque_arg;
unsigned int j;
memset(_m, 0, sizeof(*buf));
buf->mp = mp;
__atomic_store_n(&buf->refcnt, 1, __ATOMIC_RELAXED);
for (j = 0; j != strd_n; ++j) {
shinfo = &buf->shinfos[j];
shinfo->free_cb = mlx5_mprq_buf_free_cb;
shinfo->fcb_opaque = buf;
}
}
/**
* Free mempool of Multi-Packet RQ.
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* 0 on success, negative errno value on failure.
*/
int
mlx5_mprq_free_mp(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct rte_mempool *mp = priv->mprq_mp;
unsigned int i;
if (mp == NULL)
return 0;
DRV_LOG(DEBUG, "port %u freeing mempool (%s) for Multi-Packet RQ",
dev->data->port_id, mp->name);
/*
* If a buffer in the pool has been externally attached to a mbuf and it
* is still in use by application, destroying the Rx queue can spoil
* the packet. It is unlikely to happen but if application dynamically
* creates and destroys with holding Rx packets, this can happen.
*
* TODO: It is unavoidable for now because the mempool for Multi-Packet
* RQ isn't provided by application but managed by PMD.
*/
if (!rte_mempool_full(mp)) {
DRV_LOG(ERR,
"port %u mempool for Multi-Packet RQ is still in use",
dev->data->port_id);
rte_errno = EBUSY;
return -rte_errno;
}
rte_mempool_free(mp);
/* Unset mempool for each Rx queue. */
for (i = 0; i != priv->rxqs_n; ++i) {
struct mlx5_rxq_data *rxq = (*priv->rxqs)[i];
if (rxq == NULL)
continue;
rxq->mprq_mp = NULL;
}
priv->mprq_mp = NULL;
return 0;
}
/**
* Allocate a mempool for Multi-Packet RQ. All configured Rx queues share the
* mempool. If already allocated, reuse it if there're enough elements.
* Otherwise, resize it.
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* 0 on success, negative errno value on failure.
*/
int
mlx5_mprq_alloc_mp(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct rte_mempool *mp = priv->mprq_mp;
char name[RTE_MEMPOOL_NAMESIZE];
unsigned int desc = 0;
unsigned int buf_len;
unsigned int obj_num;
unsigned int obj_size;
unsigned int log_strd_num = 0;
unsigned int log_strd_sz = 0;
unsigned int i;
unsigned int n_ibv = 0;
if (!mlx5_mprq_enabled(dev))
return 0;
/* Count the total number of descriptors configured. */
for (i = 0; i != priv->rxqs_n; ++i) {
struct mlx5_rxq_data *rxq = (*priv->rxqs)[i];
struct mlx5_rxq_ctrl *rxq_ctrl = container_of
(rxq, struct mlx5_rxq_ctrl, rxq);
if (rxq == NULL || rxq_ctrl->type != MLX5_RXQ_TYPE_STANDARD)
continue;
n_ibv++;
desc += 1 << rxq->elts_n;
/* Get the max number of strides. */
if (log_strd_num < rxq->log_strd_num)
log_strd_num = rxq->log_strd_num;
/* Get the max size of a stride. */
if (log_strd_sz < rxq->log_strd_sz)
log_strd_sz = rxq->log_strd_sz;
}
MLX5_ASSERT(log_strd_num && log_strd_sz);
buf_len = RTE_BIT32(log_strd_num) * RTE_BIT32(log_strd_sz);
obj_size = sizeof(struct mlx5_mprq_buf) + buf_len +
RTE_BIT32(log_strd_num) *
sizeof(struct rte_mbuf_ext_shared_info) +
RTE_PKTMBUF_HEADROOM;
/*
* Received packets can be either memcpy'd or externally referenced. In
* case that the packet is attached to an mbuf as an external buffer, as
* it isn't possible to predict how the buffers will be queued by
* application, there's no option to exactly pre-allocate needed buffers
* in advance but to speculatively prepares enough buffers.
*
* In the data path, if this Mempool is depleted, PMD will try to memcpy
* received packets to buffers provided by application (rxq->mp) until
* this Mempool gets available again.
*/
desc *= 4;
obj_num = desc + MLX5_MPRQ_MP_CACHE_SZ * n_ibv;
/*
* rte_mempool_create_empty() has sanity check to refuse large cache
* size compared to the number of elements.
* CACHE_FLUSHTHRESH_MULTIPLIER is defined in a C file, so using a
* constant number 2 instead.
*/
obj_num = RTE_MAX(obj_num, MLX5_MPRQ_MP_CACHE_SZ * 2);
/* Check a mempool is already allocated and if it can be resued. */
if (mp != NULL && mp->elt_size >= obj_size && mp->size >= obj_num) {
DRV_LOG(DEBUG, "port %u mempool %s is being reused",
dev->data->port_id, mp->name);
/* Reuse. */
goto exit;
} else if (mp != NULL) {
DRV_LOG(DEBUG, "port %u mempool %s should be resized, freeing it",
dev->data->port_id, mp->name);
/*
* If failed to free, which means it may be still in use, no way
* but to keep using the existing one. On buffer underrun,
* packets will be memcpy'd instead of external buffer
* attachment.
*/
if (mlx5_mprq_free_mp(dev)) {
if (mp->elt_size >= obj_size)
goto exit;
else
return -rte_errno;
}
}
snprintf(name, sizeof(name), "port-%u-mprq", dev->data->port_id);
mp = rte_mempool_create(name, obj_num, obj_size, MLX5_MPRQ_MP_CACHE_SZ,
0, NULL, NULL, mlx5_mprq_buf_init,
(void *)((uintptr_t)1 << log_strd_num),
dev->device->numa_node, 0);
if (mp == NULL) {
DRV_LOG(ERR,
"port %u failed to allocate a mempool for"
" Multi-Packet RQ, count=%u, size=%u",
dev->data->port_id, obj_num, obj_size);
rte_errno = ENOMEM;
return -rte_errno;
}
priv->mprq_mp = mp;
exit:
/* Set mempool for each Rx queue. */
for (i = 0; i != priv->rxqs_n; ++i) {
struct mlx5_rxq_data *rxq = (*priv->rxqs)[i];
struct mlx5_rxq_ctrl *rxq_ctrl = container_of
(rxq, struct mlx5_rxq_ctrl, rxq);
if (rxq == NULL || rxq_ctrl->type != MLX5_RXQ_TYPE_STANDARD)
continue;
rxq->mprq_mp = mp;
}
DRV_LOG(INFO, "port %u Multi-Packet RQ is configured",
dev->data->port_id);
return 0;
}
#define MLX5_MAX_TCP_HDR_OFFSET ((unsigned int)(sizeof(struct rte_ether_hdr) + \
sizeof(struct rte_vlan_hdr) * 2 + \
sizeof(struct rte_ipv6_hdr)))
#define MAX_TCP_OPTION_SIZE 40u
#define MLX5_MAX_LRO_HEADER_FIX ((unsigned int)(MLX5_MAX_TCP_HDR_OFFSET + \
sizeof(struct rte_tcp_hdr) + \
MAX_TCP_OPTION_SIZE))
/**
* Adjust the maximum LRO massage size.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* RX queue index.
* @param max_lro_size
* The maximum size for LRO packet.
*/
static void
mlx5_max_lro_msg_size_adjust(struct rte_eth_dev *dev, uint16_t idx,
uint32_t max_lro_size)
{
struct mlx5_priv *priv = dev->data->dev_private;
if (priv->config.hca_attr.lro_max_msg_sz_mode ==
MLX5_LRO_MAX_MSG_SIZE_START_FROM_L4 && max_lro_size >
MLX5_MAX_TCP_HDR_OFFSET)
max_lro_size -= MLX5_MAX_TCP_HDR_OFFSET;
max_lro_size = RTE_MIN(max_lro_size, MLX5_MAX_LRO_SIZE);
MLX5_ASSERT(max_lro_size >= MLX5_LRO_SEG_CHUNK_SIZE);
max_lro_size /= MLX5_LRO_SEG_CHUNK_SIZE;
if (priv->max_lro_msg_size)
priv->max_lro_msg_size =
RTE_MIN((uint32_t)priv->max_lro_msg_size, max_lro_size);
else
priv->max_lro_msg_size = max_lro_size;
DRV_LOG(DEBUG,
"port %u Rx Queue %u max LRO message size adjusted to %u bytes",
dev->data->port_id, idx,
priv->max_lro_msg_size * MLX5_LRO_SEG_CHUNK_SIZE);
}
/**
* Prepare both size and number of stride for Multi-Packet RQ.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* RX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param rx_seg_en
* Indicator if Rx segment enables, if so Multi-Packet RQ doesn't enable.
* @param min_mbuf_size
* Non scatter min mbuf size, max_rx_pktlen plus overhead.
* @param actual_log_stride_num
* Log number of strides to configure for this queue.
* @param actual_log_stride_size
* Log stride size to configure for this queue.
* @param is_extmem
* Is external pinned memory pool used.
*
* @return
* 0 if Multi-Packet RQ is supported, otherwise -1.
*/
static int
mlx5_mprq_prepare(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
bool rx_seg_en, uint32_t min_mbuf_size,
uint32_t *actual_log_stride_num,
uint32_t *actual_log_stride_size,
bool is_extmem)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_dev_config *config = &priv->config;
uint32_t log_min_stride_num = config->mprq.log_min_stride_num;
uint32_t log_max_stride_num = config->mprq.log_max_stride_num;
uint32_t log_def_stride_num =
RTE_MIN(RTE_MAX(MLX5_MPRQ_DEFAULT_LOG_STRIDE_NUM,
log_min_stride_num),
log_max_stride_num);
uint32_t log_min_stride_size = config->mprq.log_min_stride_size;
uint32_t log_max_stride_size = config->mprq.log_max_stride_size;
uint32_t log_def_stride_size =
RTE_MIN(RTE_MAX(MLX5_MPRQ_DEFAULT_LOG_STRIDE_SIZE,
log_min_stride_size),
log_max_stride_size);
uint32_t log_stride_wqe_size;
if (mlx5_check_mprq_support(dev) != 1 || rx_seg_en || is_extmem)
goto unsupport;
/* Checks if chosen number of strides is in supported range. */
if (config->mprq.log_stride_num > log_max_stride_num ||
config->mprq.log_stride_num < log_min_stride_num) {
*actual_log_stride_num = log_def_stride_num;
DRV_LOG(WARNING,
"Port %u Rx queue %u number of strides for Multi-Packet RQ is out of range, setting default value (%u)",
dev->data->port_id, idx, RTE_BIT32(log_def_stride_num));
} else {
*actual_log_stride_num = config->mprq.log_stride_num;
}
if (config->mprq.log_stride_size) {
/* Checks if chosen size of stride is in supported range. */
if (config->mprq.log_stride_size > log_max_stride_size ||
config->mprq.log_stride_size < log_min_stride_size) {
*actual_log_stride_size = log_def_stride_size;
DRV_LOG(WARNING,
"Port %u Rx queue %u size of a stride for Multi-Packet RQ is out of range, setting default value (%u)",
dev->data->port_id, idx,
RTE_BIT32(log_def_stride_size));
} else {
*actual_log_stride_size = config->mprq.log_stride_size;
}
} else {
if (min_mbuf_size <= RTE_BIT32(log_max_stride_size))
*actual_log_stride_size = log2above(min_mbuf_size);
else
goto unsupport;
}
log_stride_wqe_size = *actual_log_stride_num + *actual_log_stride_size;
/* Check if WQE buffer size is supported by hardware. */
if (log_stride_wqe_size < config->mprq.log_min_stride_wqe_size) {
*actual_log_stride_num = log_def_stride_num;
*actual_log_stride_size = log_def_stride_size;
DRV_LOG(WARNING,
"Port %u Rx queue %u size of WQE buffer for Multi-Packet RQ is too small, setting default values (stride_num_n=%u, stride_size_n=%u)",
dev->data->port_id, idx, RTE_BIT32(log_def_stride_num),
RTE_BIT32(log_def_stride_size));
log_stride_wqe_size = log_def_stride_num + log_def_stride_size;
}
MLX5_ASSERT(log_stride_wqe_size >=
config->mprq.log_min_stride_wqe_size);
if (desc <= RTE_BIT32(*actual_log_stride_num))
goto unsupport;
if (min_mbuf_size > RTE_BIT32(log_stride_wqe_size)) {
DRV_LOG(WARNING, "Port %u Rx queue %u "
"Multi-Packet RQ is unsupported, WQE buffer size (%u) "
"is smaller than min mbuf size (%u)",
dev->data->port_id, idx, RTE_BIT32(log_stride_wqe_size),
min_mbuf_size);
goto unsupport;
}
DRV_LOG(DEBUG, "Port %u Rx queue %u "
"Multi-Packet RQ is enabled strd_num_n = %u, strd_sz_n = %u",
dev->data->port_id, idx, RTE_BIT32(*actual_log_stride_num),
RTE_BIT32(*actual_log_stride_size));
return 0;
unsupport:
if (config->mprq.enabled)
DRV_LOG(WARNING,
"Port %u MPRQ is requested but cannot be enabled\n"
" (requested: pkt_sz = %u, desc_num = %u,"
" rxq_num = %u, stride_sz = %u, stride_num = %u\n"
" supported: min_rxqs_num = %u, min_buf_wqe_sz = %u"
" min_stride_sz = %u, max_stride_sz = %u).\n"
"Rx segment is %senabled. External mempool is %sused.",
dev->data->port_id, min_mbuf_size, desc, priv->rxqs_n,
RTE_BIT32(config->mprq.log_stride_size),
RTE_BIT32(config->mprq.log_stride_num),
config->mprq.min_rxqs_num,
RTE_BIT32(config->mprq.log_min_stride_wqe_size),
RTE_BIT32(config->mprq.log_min_stride_size),
RTE_BIT32(config->mprq.log_max_stride_size),
rx_seg_en ? "" : "not ", is_extmem ? "" : "not ");
return -1;
}
/**
* Create a DPDK Rx queue.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* RX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
*
* @return
* A DPDK queue object on success, NULL otherwise and rte_errno is set.
*/
struct mlx5_rxq_ctrl *
mlx5_rxq_new(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_rxconf *conf,
const struct rte_eth_rxseg_split *rx_seg, uint16_t n_seg,
bool is_extmem)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_rxq_ctrl *tmpl;
unsigned int mb_len = rte_pktmbuf_data_room_size(rx_seg[0].mp);
struct mlx5_dev_config *config = &priv->config;
uint64_t offloads = conf->offloads |
dev->data->dev_conf.rxmode.offloads;
unsigned int lro_on_queue = !!(offloads & DEV_RX_OFFLOAD_TCP_LRO);
unsigned int max_rx_pkt_len = lro_on_queue ?
dev->data->dev_conf.rxmode.max_lro_pkt_size :
dev->data->dev_conf.rxmode.max_rx_pkt_len;
unsigned int non_scatter_min_mbuf_size = max_rx_pkt_len +
RTE_PKTMBUF_HEADROOM;
unsigned int max_lro_size = 0;
unsigned int first_mb_free_size = mb_len - RTE_PKTMBUF_HEADROOM;
uint32_t mprq_log_actual_stride_num = 0;
uint32_t mprq_log_actual_stride_size = 0;
bool rx_seg_en = n_seg != 1 || rx_seg[0].offset || rx_seg[0].length;
const int mprq_en = !mlx5_mprq_prepare(dev, idx, desc, rx_seg_en,
non_scatter_min_mbuf_size,
&mprq_log_actual_stride_num,
&mprq_log_actual_stride_size,
is_extmem);
/*
* Always allocate extra slots, even if eventually
* the vector Rx will not be used.
*/
uint16_t desc_n = desc + config->rx_vec_en * MLX5_VPMD_DESCS_PER_LOOP;
size_t alloc_size = sizeof(*tmpl) + desc_n * sizeof(struct rte_mbuf *);
const struct rte_eth_rxseg_split *qs_seg = rx_seg;
unsigned int tail_len;
if (mprq_en) {
/* Trim the number of descs needed. */
desc >>= mprq_log_actual_stride_num;
alloc_size += desc * sizeof(struct mlx5_mprq_buf *);
}
tmpl = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, alloc_size, 0, socket);
if (!tmpl) {
rte_errno = ENOMEM;
return NULL;
}
MLX5_ASSERT(n_seg && n_seg <= MLX5_MAX_RXQ_NSEG);
/*
* Build the array of actual buffer offsets and lengths.
* Pad with the buffers from the last memory pool if
* needed to handle max size packets, replace zero length
* with the buffer length from the pool.
*/
tail_len = max_rx_pkt_len;
do {
struct mlx5_eth_rxseg *hw_seg =
&tmpl->rxq.rxseg[tmpl->rxq.rxseg_n];
uint32_t buf_len, offset, seg_len;
/*
* For the buffers beyond descriptions offset is zero,
* the first buffer contains head room.
*/
buf_len = rte_pktmbuf_data_room_size(qs_seg->mp);
offset = (tmpl->rxq.rxseg_n >= n_seg ? 0 : qs_seg->offset) +
(tmpl->rxq.rxseg_n ? 0 : RTE_PKTMBUF_HEADROOM);
/*
* For the buffers beyond descriptions the length is
* pool buffer length, zero lengths are replaced with
* pool buffer length either.
*/
seg_len = tmpl->rxq.rxseg_n >= n_seg ? buf_len :
qs_seg->length ?
qs_seg->length :
(buf_len - offset);
/* Check is done in long int, now overflows. */
if (buf_len < seg_len + offset) {
DRV_LOG(ERR, "port %u Rx queue %u: Split offset/length "
"%u/%u can't be satisfied",
dev->data->port_id, idx,
qs_seg->length, qs_seg->offset);
rte_errno = EINVAL;
goto error;
}
if (seg_len > tail_len)
seg_len = buf_len - offset;
if (++tmpl->rxq.rxseg_n > MLX5_MAX_RXQ_NSEG) {
DRV_LOG(ERR,
"port %u too many SGEs (%u) needed to handle"
" requested maximum packet size %u, the maximum"
" supported are %u", dev->data->port_id,
tmpl->rxq.rxseg_n, max_rx_pkt_len,
MLX5_MAX_RXQ_NSEG);
rte_errno = ENOTSUP;
goto error;
}
/* Build the actual scattering element in the queue object. */
hw_seg->mp = qs_seg->mp;
MLX5_ASSERT(offset <= UINT16_MAX);
MLX5_ASSERT(seg_len <= UINT16_MAX);
hw_seg->offset = (uint16_t)offset;
hw_seg->length = (uint16_t)seg_len;
/*
* Advance the segment descriptor, the padding is the based
* on the attributes of the last descriptor.
*/
if (tmpl->rxq.rxseg_n < n_seg)
qs_seg++;
tail_len -= RTE_MIN(tail_len, seg_len);
} while (tail_len || !rte_is_power_of_2(tmpl->rxq.rxseg_n));
MLX5_ASSERT(tmpl->rxq.rxseg_n &&
tmpl->rxq.rxseg_n <= MLX5_MAX_RXQ_NSEG);
if (tmpl->rxq.rxseg_n > 1 && !(offloads & DEV_RX_OFFLOAD_SCATTER)) {
DRV_LOG(ERR, "port %u Rx queue %u: Scatter offload is not"
" configured and no enough mbuf space(%u) to contain "
"the maximum RX packet length(%u) with head-room(%u)",
dev->data->port_id, idx, mb_len, max_rx_pkt_len,
RTE_PKTMBUF_HEADROOM);
rte_errno = ENOSPC;
goto error;
}
tmpl->type = MLX5_RXQ_TYPE_STANDARD;
if (mlx5_mr_btree_init(&tmpl->rxq.mr_ctrl.cache_bh,
MLX5_MR_BTREE_CACHE_N, socket)) {
/* rte_errno is already set. */
goto error;
}
tmpl->socket = socket;
if (dev->data->dev_conf.intr_conf.rxq)
tmpl->irq = 1;
if (mprq_en) {
/* TODO: Rx scatter isn't supported yet. */
tmpl->rxq.sges_n = 0;
tmpl->rxq.log_strd_num = mprq_log_actual_stride_num;
tmpl->rxq.log_strd_sz = mprq_log_actual_stride_size;
tmpl->rxq.strd_shift_en = MLX5_MPRQ_TWO_BYTE_SHIFT;
tmpl->rxq.strd_scatter_en =
!!(offloads & DEV_RX_OFFLOAD_SCATTER);
tmpl->rxq.mprq_max_memcpy_len = RTE_MIN(first_mb_free_size,
config->mprq.max_memcpy_len);
max_lro_size = RTE_MIN(max_rx_pkt_len,
RTE_BIT32(tmpl->rxq.log_strd_num) *
RTE_BIT32(tmpl->rxq.log_strd_sz));
} else if (tmpl->rxq.rxseg_n == 1) {
MLX5_ASSERT(max_rx_pkt_len <= first_mb_free_size);
tmpl->rxq.sges_n = 0;
max_lro_size = max_rx_pkt_len;
} else if (offloads & DEV_RX_OFFLOAD_SCATTER) {
unsigned int sges_n;
if (lro_on_queue && first_mb_free_size <
MLX5_MAX_LRO_HEADER_FIX) {
DRV_LOG(ERR, "Not enough space in the first segment(%u)"
" to include the max header size(%u) for LRO",
first_mb_free_size, MLX5_MAX_LRO_HEADER_FIX);
rte_errno = ENOTSUP;
goto error;
}
/*
* Determine the number of SGEs needed for a full packet
* and round it to the next power of two.
*/
sges_n = log2above(tmpl->rxq.rxseg_n);
if (sges_n > MLX5_MAX_LOG_RQ_SEGS) {
DRV_LOG(ERR,
"port %u too many SGEs (%u) needed to handle"
" requested maximum packet size %u, the maximum"
" supported are %u", dev->data->port_id,
1 << sges_n, max_rx_pkt_len,
1u << MLX5_MAX_LOG_RQ_SEGS);
rte_errno = ENOTSUP;
goto error;
}
tmpl->rxq.sges_n = sges_n;
max_lro_size = max_rx_pkt_len;
}
DRV_LOG(DEBUG, "port %u maximum number of segments per packet: %u",
dev->data->port_id, 1 << tmpl->rxq.sges_n);
if (desc % (1 << tmpl->rxq.sges_n)) {
DRV_LOG(ERR,
"port %u number of Rx queue descriptors (%u) is not a"
" multiple of SGEs per packet (%u)",
dev->data->port_id,
desc,
1 << tmpl->rxq.sges_n);
rte_errno = EINVAL;
goto error;
}
mlx5_max_lro_msg_size_adjust(dev, idx, max_lro_size);
/* Toggle RX checksum offload if hardware supports it. */
tmpl->rxq.csum = !!(offloads & DEV_RX_OFFLOAD_CHECKSUM);
/* Configure Rx timestamp. */
tmpl->rxq.hw_timestamp = !!(offloads & DEV_RX_OFFLOAD_TIMESTAMP);
tmpl->rxq.timestamp_rx_flag = 0;
if (tmpl->rxq.hw_timestamp && rte_mbuf_dyn_rx_timestamp_register(
&tmpl->rxq.timestamp_offset,
&tmpl->rxq.timestamp_rx_flag) != 0) {
DRV_LOG(ERR, "Cannot register Rx timestamp field/flag");
goto error;
}
/* Configure VLAN stripping. */
tmpl->rxq.vlan_strip = !!(offloads & DEV_RX_OFFLOAD_VLAN_STRIP);
/* By default, FCS (CRC) is stripped by hardware. */
tmpl->rxq.crc_present = 0;
tmpl->rxq.lro = lro_on_queue;
if (offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
if (config->hw_fcs_strip) {
/*
* RQs used for LRO-enabled TIRs should not be
* configured to scatter the FCS.
*/
if (lro_on_queue)
DRV_LOG(WARNING,
"port %u CRC stripping has been "
"disabled but will still be performed "
"by hardware, because LRO is enabled",
dev->data->port_id);
else
tmpl->rxq.crc_present = 1;
} else {
DRV_LOG(WARNING,
"port %u CRC stripping has been disabled but will"
" still be performed by hardware, make sure MLNX_OFED"
" and firmware are up to date",
dev->data->port_id);
}
}
DRV_LOG(DEBUG,
"port %u CRC stripping is %s, %u bytes will be subtracted from"
" incoming frames to hide it",
dev->data->port_id,
tmpl->rxq.crc_present ? "disabled" : "enabled",
tmpl->rxq.crc_present << 2);
tmpl->rxq.rss_hash = !!priv->rss_conf.rss_hf &&
(!!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS));
tmpl->rxq.port_id = dev->data->port_id;
tmpl->priv = priv;
tmpl->rxq.mp = rx_seg[0].mp;
tmpl->rxq.elts_n = log2above(desc);
tmpl->rxq.rq_repl_thresh = MLX5_VPMD_RXQ_RPLNSH_THRESH(desc_n);
tmpl->rxq.elts = (struct rte_mbuf *(*)[desc_n])(tmpl + 1);
tmpl->rxq.mprq_bufs =
(struct mlx5_mprq_buf *(*)[desc])(*tmpl->rxq.elts + desc_n);
#ifndef RTE_ARCH_64
tmpl->rxq.uar_lock_cq = &priv->sh->uar_lock_cq;
#endif
tmpl->rxq.idx = idx;
__atomic_fetch_add(&tmpl->refcnt, 1, __ATOMIC_RELAXED);
LIST_INSERT_HEAD(&priv->rxqsctrl, tmpl, next);
return tmpl;
error:
mlx5_mr_btree_free(&tmpl->rxq.mr_ctrl.cache_bh);
mlx5_free(tmpl);
return NULL;
}
/**
* Create a DPDK Rx hairpin queue.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* RX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param hairpin_conf
* The hairpin binding configuration.
*
* @return
* A DPDK queue object on success, NULL otherwise and rte_errno is set.
*/
struct mlx5_rxq_ctrl *
mlx5_rxq_hairpin_new(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
const struct rte_eth_hairpin_conf *hairpin_conf)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_rxq_ctrl *tmpl;
tmpl = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, sizeof(*tmpl), 0,
SOCKET_ID_ANY);
if (!tmpl) {
rte_errno = ENOMEM;
return NULL;
}
tmpl->type = MLX5_RXQ_TYPE_HAIRPIN;
tmpl->socket = SOCKET_ID_ANY;
tmpl->rxq.rss_hash = 0;
tmpl->rxq.port_id = dev->data->port_id;
tmpl->priv = priv;
tmpl->rxq.mp = NULL;
tmpl->rxq.elts_n = log2above(desc);
tmpl->rxq.elts = NULL;
tmpl->rxq.mr_ctrl.cache_bh = (struct mlx5_mr_btree) { 0 };
tmpl->hairpin_conf = *hairpin_conf;
tmpl->rxq.idx = idx;
__atomic_fetch_add(&tmpl->refcnt, 1, __ATOMIC_RELAXED);
LIST_INSERT_HEAD(&priv->rxqsctrl, tmpl, next);
return tmpl;
}
/**
* Get a Rx queue.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* RX queue index.
*
* @return
* A pointer to the queue if it exists, NULL otherwise.
*/
struct mlx5_rxq_ctrl *
mlx5_rxq_get(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_rxq_data *rxq_data = (*priv->rxqs)[idx];
struct mlx5_rxq_ctrl *rxq_ctrl = NULL;
if (rxq_data) {
rxq_ctrl = container_of(rxq_data, struct mlx5_rxq_ctrl, rxq);
__atomic_fetch_add(&rxq_ctrl->refcnt, 1, __ATOMIC_RELAXED);
}
return rxq_ctrl;
}
/**
* Release a Rx queue.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* RX queue index.
*
* @return
* 1 while a reference on it exists, 0 when freed.
*/
int
mlx5_rxq_release(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_rxq_ctrl *rxq_ctrl;
if (priv->rxqs == NULL || (*priv->rxqs)[idx] == NULL)
return 0;
rxq_ctrl = container_of((*priv->rxqs)[idx], struct mlx5_rxq_ctrl, rxq);
if (__atomic_sub_fetch(&rxq_ctrl->refcnt, 1, __ATOMIC_RELAXED) > 1)
return 1;
if (rxq_ctrl->obj) {
priv->obj_ops.rxq_obj_release(rxq_ctrl->obj);
LIST_REMOVE(rxq_ctrl->obj, next);
mlx5_free(rxq_ctrl->obj);
rxq_ctrl->obj = NULL;
}
if (rxq_ctrl->type == MLX5_RXQ_TYPE_STANDARD) {
rxq_free_elts(rxq_ctrl);
dev->data->rx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STOPPED;
}
if (!__atomic_load_n(&rxq_ctrl->refcnt, __ATOMIC_RELAXED)) {
if (rxq_ctrl->type == MLX5_RXQ_TYPE_STANDARD)
mlx5_mr_btree_free(&rxq_ctrl->rxq.mr_ctrl.cache_bh);
LIST_REMOVE(rxq_ctrl, next);
mlx5_free(rxq_ctrl);
(*priv->rxqs)[idx] = NULL;
}
return 0;
}
/**
* Verify the Rx Queue list is empty
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* The number of object not released.
*/
int
mlx5_rxq_verify(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_rxq_ctrl *rxq_ctrl;
int ret = 0;
LIST_FOREACH(rxq_ctrl, &priv->rxqsctrl, next) {
DRV_LOG(DEBUG, "port %u Rx Queue %u still referenced",
dev->data->port_id, rxq_ctrl->rxq.idx);
++ret;
}
return ret;
}
/**
* Get a Rx queue type.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* Rx queue index.
*
* @return
* The Rx queue type.
*/
enum mlx5_rxq_type
mlx5_rxq_get_type(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_rxq_ctrl *rxq_ctrl = NULL;
if (idx < priv->rxqs_n && (*priv->rxqs)[idx]) {
rxq_ctrl = container_of((*priv->rxqs)[idx],
struct mlx5_rxq_ctrl,
rxq);
return rxq_ctrl->type;
}
return MLX5_RXQ_TYPE_UNDEFINED;
}
/*
* Get a Rx hairpin queue configuration.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* Rx queue index.
*
* @return
* Pointer to the configuration if a hairpin RX queue, otherwise NULL.
*/
const struct rte_eth_hairpin_conf *
mlx5_rxq_get_hairpin_conf(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_rxq_ctrl *rxq_ctrl = NULL;
if (idx < priv->rxqs_n && (*priv->rxqs)[idx]) {
rxq_ctrl = container_of((*priv->rxqs)[idx],
struct mlx5_rxq_ctrl,
rxq);
if (rxq_ctrl->type == MLX5_RXQ_TYPE_HAIRPIN)
return &rxq_ctrl->hairpin_conf;
}
return NULL;
}
/**
* Match queues listed in arguments to queues contained in indirection table
* object.
*
* @param ind_tbl
* Pointer to indirection table to match.
* @param queues
* Queues to match to ques in indirection table.
* @param queues_n
* Number of queues in the array.
*
* @return
* 1 if all queues in indirection table match 0 otherwise.
*/
static int
mlx5_ind_table_obj_match_queues(const struct mlx5_ind_table_obj *ind_tbl,
const uint16_t *queues, uint32_t queues_n)
{
return (ind_tbl->queues_n == queues_n) &&
(!memcmp(ind_tbl->queues, queues,
ind_tbl->queues_n * sizeof(ind_tbl->queues[0])));
}
/**
* Get an indirection table.
*
* @param dev
* Pointer to Ethernet device.
* @param queues
* Queues entering in the indirection table.
* @param queues_n
* Number of queues in the array.
*
* @return
* An indirection table if found.
*/
struct mlx5_ind_table_obj *
mlx5_ind_table_obj_get(struct rte_eth_dev *dev, const uint16_t *queues,
uint32_t queues_n)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_ind_table_obj *ind_tbl;
LIST_FOREACH(ind_tbl, &priv->ind_tbls, next) {
if ((ind_tbl->queues_n == queues_n) &&
(memcmp(ind_tbl->queues, queues,
ind_tbl->queues_n * sizeof(ind_tbl->queues[0]))
== 0))
break;
}
if (ind_tbl) {
unsigned int i;
__atomic_fetch_add(&ind_tbl->refcnt, 1, __ATOMIC_RELAXED);
for (i = 0; i != ind_tbl->queues_n; ++i)
mlx5_rxq_get(dev, ind_tbl->queues[i]);
}
return ind_tbl;
}
/**
* Release an indirection table.
*
* @param dev
* Pointer to Ethernet device.
* @param ind_table
* Indirection table to release.
* @param standalone
* Indirection table for Standalone queue.
*
* @return
* 1 while a reference on it exists, 0 when freed.
*/
int
mlx5_ind_table_obj_release(struct rte_eth_dev *dev,
struct mlx5_ind_table_obj *ind_tbl,
bool standalone)
{
struct mlx5_priv *priv = dev->data->dev_private;
unsigned int i;
if (__atomic_sub_fetch(&ind_tbl->refcnt, 1, __ATOMIC_RELAXED) == 0)
priv->obj_ops.ind_table_destroy(ind_tbl);
for (i = 0; i != ind_tbl->queues_n; ++i)
claim_nonzero(mlx5_rxq_release(dev, ind_tbl->queues[i]));
if (__atomic_load_n(&ind_tbl->refcnt, __ATOMIC_RELAXED) == 0) {
if (!standalone)
LIST_REMOVE(ind_tbl, next);
mlx5_free(ind_tbl);
return 0;
}
return 1;
}
/**
* Verify the Rx Queue list is empty
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* The number of object not released.
*/
int
mlx5_ind_table_obj_verify(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_ind_table_obj *ind_tbl;
int ret = 0;
LIST_FOREACH(ind_tbl, &priv->ind_tbls, next) {
DRV_LOG(DEBUG,
"port %u indirection table obj %p still referenced",
dev->data->port_id, (void *)ind_tbl);
++ret;
}
return ret;
}
/**
* Setup an indirection table structure fields.
*
* @param dev
* Pointer to Ethernet device.
* @param ind_table
* Indirection table to modify.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_ind_table_obj_setup(struct rte_eth_dev *dev,
struct mlx5_ind_table_obj *ind_tbl)
{
struct mlx5_priv *priv = dev->data->dev_private;
uint32_t queues_n = ind_tbl->queues_n;
uint16_t *queues = ind_tbl->queues;
unsigned int i, j;
int ret = 0, err;
const unsigned int n = rte_is_power_of_2(queues_n) ?
log2above(queues_n) :
log2above(priv->config.ind_table_max_size);
for (i = 0; i != queues_n; ++i) {
if (!mlx5_rxq_get(dev, queues[i])) {
ret = -rte_errno;
goto error;
}
}
ret = priv->obj_ops.ind_table_new(dev, n, ind_tbl);
if (ret)
goto error;
__atomic_fetch_add(&ind_tbl->refcnt, 1, __ATOMIC_RELAXED);
return 0;
error:
err = rte_errno;
for (j = 0; j < i; j++)
mlx5_rxq_release(dev, ind_tbl->queues[j]);
rte_errno = err;
DEBUG("Port %u cannot setup indirection table.", dev->data->port_id);
return ret;
}
/**
* Create an indirection table.
*
* @param dev
* Pointer to Ethernet device.
* @param queues
* Queues entering in the indirection table.
* @param queues_n
* Number of queues in the array.
* @param standalone
* Indirection table for Standalone queue.
*
* @return
* The Verbs/DevX object initialized, NULL otherwise and rte_errno is set.
*/
static struct mlx5_ind_table_obj *
mlx5_ind_table_obj_new(struct rte_eth_dev *dev, const uint16_t *queues,
uint32_t queues_n, bool standalone)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_ind_table_obj *ind_tbl;
int ret;
ind_tbl = mlx5_malloc(MLX5_MEM_ZERO, sizeof(*ind_tbl) +
queues_n * sizeof(uint16_t), 0, SOCKET_ID_ANY);
if (!ind_tbl) {
rte_errno = ENOMEM;
return NULL;
}
ind_tbl->queues_n = queues_n;
ind_tbl->queues = (uint16_t *)(ind_tbl + 1);
memcpy(ind_tbl->queues, queues, queues_n * sizeof(*queues));
ret = mlx5_ind_table_obj_setup(dev, ind_tbl);
if (ret < 0) {
mlx5_free(ind_tbl);
return NULL;
}
if (!standalone)
LIST_INSERT_HEAD(&priv->ind_tbls, ind_tbl, next);
return ind_tbl;
}
/**
* Modify an indirection table.
*
* @param dev
* Pointer to Ethernet device.
* @param ind_table
* Indirection table to modify.
* @param queues
* Queues replacement for the indirection table.
* @param queues_n
* Number of queues in the array.
* @param standalone
* Indirection table for Standalone queue.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_ind_table_obj_modify(struct rte_eth_dev *dev,
struct mlx5_ind_table_obj *ind_tbl,
uint16_t *queues, const uint32_t queues_n,
bool standalone)
{
struct mlx5_priv *priv = dev->data->dev_private;
unsigned int i, j;
int ret = 0, err;
const unsigned int n = rte_is_power_of_2(queues_n) ?
log2above(queues_n) :
log2above(priv->config.ind_table_max_size);
MLX5_ASSERT(standalone);
RTE_SET_USED(standalone);
if (__atomic_load_n(&ind_tbl->refcnt, __ATOMIC_RELAXED) > 1) {
/*
* Modification of indirection ntables having more than 1
* reference unsupported. Intended for standalone indirection
* tables only.
*/
DEBUG("Port %u cannot modify indirection table (refcnt> 1).",
dev->data->port_id);
rte_errno = EINVAL;
return -rte_errno;
}
for (i = 0; i != queues_n; ++i) {
if (!mlx5_rxq_get(dev, queues[i])) {
ret = -rte_errno;
goto error;
}
}
MLX5_ASSERT(priv->obj_ops.ind_table_modify);
ret = priv->obj_ops.ind_table_modify(dev, n, queues, queues_n, ind_tbl);
if (ret)
goto error;
for (j = 0; j < ind_tbl->queues_n; j++)
mlx5_rxq_release(dev, ind_tbl->queues[j]);
ind_tbl->queues_n = queues_n;
ind_tbl->queues = queues;
return 0;
error:
err = rte_errno;
for (j = 0; j < i; j++)
mlx5_rxq_release(dev, queues[j]);
rte_errno = err;
DEBUG("Port %u cannot setup indirection table.", dev->data->port_id);
return ret;
}
/**
* Match an Rx Hash queue.
*
* @param list
* Cache list pointer.
* @param entry
* Hash queue entry pointer.
* @param cb_ctx
* Context of the callback function.
*
* @return
* 0 if match, none zero if not match.
*/
int
mlx5_hrxq_match_cb(struct mlx5_cache_list *list,
struct mlx5_cache_entry *entry,
void *cb_ctx)
{
struct rte_eth_dev *dev = list->ctx;
struct mlx5_flow_cb_ctx *ctx = cb_ctx;
struct mlx5_flow_rss_desc *rss_desc = ctx->data;
struct mlx5_hrxq *hrxq = container_of(entry, typeof(*hrxq), entry);
struct mlx5_ind_table_obj *ind_tbl;
if (hrxq->rss_key_len != rss_desc->key_len ||
memcmp(hrxq->rss_key, rss_desc->key, rss_desc->key_len) ||
hrxq->hash_fields != rss_desc->hash_fields)
return 1;
ind_tbl = mlx5_ind_table_obj_get(dev, rss_desc->queue,
rss_desc->queue_num);
if (ind_tbl)
mlx5_ind_table_obj_release(dev, ind_tbl, hrxq->standalone);
return ind_tbl != hrxq->ind_table;
}
/**
* Modify an Rx Hash queue configuration.
*
* @param dev
* Pointer to Ethernet device.
* @param hrxq
* Index to Hash Rx queue to modify.
* @param rss_key
* RSS key for the Rx hash queue.
* @param rss_key_len
* RSS key length.
* @param hash_fields
* Verbs protocol hash field to make the RSS on.
* @param queues
* Queues entering in hash queue. In case of empty hash_fields only the
* first queue index will be taken for the indirection table.
* @param queues_n
* Number of queues.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_hrxq_modify(struct rte_eth_dev *dev, uint32_t hrxq_idx,
const uint8_t *rss_key, uint32_t rss_key_len,
uint64_t hash_fields,
const uint16_t *queues, uint32_t queues_n)
{
int err;
struct mlx5_ind_table_obj *ind_tbl = NULL;
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_hrxq *hrxq =
mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ], hrxq_idx);
int ret;
if (!hrxq) {
rte_errno = EINVAL;
return -rte_errno;
}
/* validations */
if (hrxq->rss_key_len != rss_key_len) {
/* rss_key_len is fixed size 40 byte & not supposed to change */
rte_errno = EINVAL;
return -rte_errno;
}
queues_n = hash_fields ? queues_n : 1;
if (mlx5_ind_table_obj_match_queues(hrxq->ind_table,
queues, queues_n)) {
ind_tbl = hrxq->ind_table;
} else {
if (hrxq->standalone) {
/*
* Replacement of indirection table unsupported for
* standalone hrxq objects (used by shared RSS).
*/
rte_errno = ENOTSUP;
return -rte_errno;
}
ind_tbl = mlx5_ind_table_obj_get(dev, queues, queues_n);
if (!ind_tbl)
ind_tbl = mlx5_ind_table_obj_new(dev, queues, queues_n,
hrxq->standalone);
}
if (!ind_tbl) {
rte_errno = ENOMEM;
return -rte_errno;
}
MLX5_ASSERT(priv->obj_ops.hrxq_modify);
ret = priv->obj_ops.hrxq_modify(dev, hrxq, rss_key,
hash_fields, ind_tbl);
if (ret) {
rte_errno = errno;
goto error;
}
if (ind_tbl != hrxq->ind_table) {
MLX5_ASSERT(!hrxq->standalone);
mlx5_ind_table_obj_release(dev, hrxq->ind_table,
hrxq->standalone);
hrxq->ind_table = ind_tbl;
}
hrxq->hash_fields = hash_fields;
memcpy(hrxq->rss_key, rss_key, rss_key_len);
return 0;
error:
err = rte_errno;
if (ind_tbl != hrxq->ind_table) {
MLX5_ASSERT(!hrxq->standalone);
mlx5_ind_table_obj_release(dev, ind_tbl, hrxq->standalone);
}
rte_errno = err;
return -rte_errno;
}
static void
__mlx5_hrxq_remove(struct rte_eth_dev *dev, struct mlx5_hrxq *hrxq)
{
struct mlx5_priv *priv = dev->data->dev_private;
#ifdef HAVE_IBV_FLOW_DV_SUPPORT
mlx5_glue->destroy_flow_action(hrxq->action);
#endif
priv->obj_ops.hrxq_destroy(hrxq);
if (!hrxq->standalone) {
mlx5_ind_table_obj_release(dev, hrxq->ind_table,
hrxq->standalone);
}
mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_HRXQ], hrxq->idx);
}
/**
* Release the hash Rx queue.
*
* @param dev
* Pointer to Ethernet device.
* @param hrxq
* Index to Hash Rx queue to release.
*
* @param list
* Cache list pointer.
* @param entry
* Hash queue entry pointer.
*/
void
mlx5_hrxq_remove_cb(struct mlx5_cache_list *list,
struct mlx5_cache_entry *entry)
{
struct rte_eth_dev *dev = list->ctx;
struct mlx5_hrxq *hrxq = container_of(entry, typeof(*hrxq), entry);
__mlx5_hrxq_remove(dev, hrxq);
}
static struct mlx5_hrxq *
__mlx5_hrxq_create(struct rte_eth_dev *dev,
struct mlx5_flow_rss_desc *rss_desc)
{
struct mlx5_priv *priv = dev->data->dev_private;
const uint8_t *rss_key = rss_desc->key;
uint32_t rss_key_len = rss_desc->key_len;
bool standalone = !!rss_desc->shared_rss;
const uint16_t *queues =
standalone ? rss_desc->const_q : rss_desc->queue;
uint32_t queues_n = rss_desc->queue_num;
struct mlx5_hrxq *hrxq = NULL;
uint32_t hrxq_idx = 0;
struct mlx5_ind_table_obj *ind_tbl = rss_desc->ind_tbl;
int ret;
queues_n = rss_desc->hash_fields ? queues_n : 1;
if (!ind_tbl)
ind_tbl = mlx5_ind_table_obj_get(dev, queues, queues_n);
if (!ind_tbl)
ind_tbl = mlx5_ind_table_obj_new(dev, queues, queues_n,
standalone);
if (!ind_tbl)
return NULL;
hrxq = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_HRXQ], &hrxq_idx);
if (!hrxq)
goto error;
hrxq->standalone = standalone;
hrxq->idx = hrxq_idx;
hrxq->ind_table = ind_tbl;
hrxq->rss_key_len = rss_key_len;
hrxq->hash_fields = rss_desc->hash_fields;
memcpy(hrxq->rss_key, rss_key, rss_key_len);
ret = priv->obj_ops.hrxq_new(dev, hrxq, rss_desc->tunnel);
if (ret < 0)
goto error;
return hrxq;
error:
if (!rss_desc->ind_tbl)
mlx5_ind_table_obj_release(dev, ind_tbl, standalone);
if (hrxq)
mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_HRXQ], hrxq_idx);
return NULL;
}
/**
* Create an Rx Hash queue.
*
* @param list
* Cache list pointer.
* @param entry
* Hash queue entry pointer.
* @param cb_ctx
* Context of the callback function.
*
* @return
* queue entry on success, NULL otherwise.
*/
struct mlx5_cache_entry *
mlx5_hrxq_create_cb(struct mlx5_cache_list *list,
struct mlx5_cache_entry *entry __rte_unused,
void *cb_ctx)
{
struct rte_eth_dev *dev = list->ctx;
struct mlx5_flow_cb_ctx *ctx = cb_ctx;
struct mlx5_flow_rss_desc *rss_desc = ctx->data;
struct mlx5_hrxq *hrxq;
hrxq = __mlx5_hrxq_create(dev, rss_desc);
return hrxq ? &hrxq->entry : NULL;
}
/**
* Get an Rx Hash queue.
*
* @param dev
* Pointer to Ethernet device.
* @param rss_desc
* RSS configuration for the Rx hash queue.
*
* @return
* An hash Rx queue index on success.
*/
uint32_t mlx5_hrxq_get(struct rte_eth_dev *dev,
struct mlx5_flow_rss_desc *rss_desc)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_hrxq *hrxq;
struct mlx5_cache_entry *entry;
struct mlx5_flow_cb_ctx ctx = {
.data = rss_desc,
};
if (rss_desc->shared_rss) {
hrxq = __mlx5_hrxq_create(dev, rss_desc);
} else {
entry = mlx5_cache_register(&priv->hrxqs, &ctx);
if (!entry)
return 0;
hrxq = container_of(entry, typeof(*hrxq), entry);
}
if (hrxq)
return hrxq->idx;
return 0;
}
/**
* Release the hash Rx queue.
*
* @param dev
* Pointer to Ethernet device.
* @param hrxq_idx
* Index to Hash Rx queue to release.
*
* @return
* 1 while a reference on it exists, 0 when freed.
*/
int mlx5_hrxq_release(struct rte_eth_dev *dev, uint32_t hrxq_idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_hrxq *hrxq;
hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ], hrxq_idx);
if (!hrxq)
return 0;
if (!hrxq->standalone)
return mlx5_cache_unregister(&priv->hrxqs, &hrxq->entry);
__mlx5_hrxq_remove(dev, hrxq);
return 0;
}
/**
* Create a drop Rx Hash queue.
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* The Verbs/DevX object initialized, NULL otherwise and rte_errno is set.
*/
struct mlx5_hrxq *
mlx5_drop_action_create(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_hrxq *hrxq = NULL;
int ret;
if (priv->drop_queue.hrxq)
return priv->drop_queue.hrxq;
hrxq = mlx5_malloc(MLX5_MEM_ZERO, sizeof(*hrxq) + MLX5_RSS_HASH_KEY_LEN, 0, SOCKET_ID_ANY);
if (!hrxq) {
DRV_LOG(WARNING,
"Port %u cannot allocate memory for drop queue.",
dev->data->port_id);
rte_errno = ENOMEM;
goto error;
}
priv->drop_queue.hrxq = hrxq;
hrxq->ind_table = mlx5_malloc(MLX5_MEM_ZERO, sizeof(*hrxq->ind_table),
0, SOCKET_ID_ANY);
if (!hrxq->ind_table) {
rte_errno = ENOMEM;
goto error;
}
ret = priv->obj_ops.drop_action_create(dev);
if (ret < 0)
goto error;
return hrxq;
error:
if (hrxq) {
if (hrxq->ind_table)
mlx5_free(hrxq->ind_table);
priv->drop_queue.hrxq = NULL;
mlx5_free(hrxq);
}
return NULL;
}
/**
* Release a drop hash Rx queue.
*
* @param dev
* Pointer to Ethernet device.
*/
void
mlx5_drop_action_destroy(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_hrxq *hrxq = priv->drop_queue.hrxq;
if (!priv->drop_queue.hrxq)
return;
priv->obj_ops.drop_action_destroy(dev);
mlx5_free(priv->drop_queue.rxq);
mlx5_free(hrxq->ind_table);
mlx5_free(hrxq);
priv->drop_queue.rxq = NULL;
priv->drop_queue.hrxq = NULL;
}
/**
* Verify the Rx Queue list is empty
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* The number of object not released.
*/
uint32_t
mlx5_hrxq_verify(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
return mlx5_cache_list_get_entry_num(&priv->hrxqs);
}
/**
* Set the Rx queue timestamp conversion parameters
*
* @param[in] dev
* Pointer to the Ethernet device structure.
*/
void
mlx5_rxq_timestamp_set(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_dev_ctx_shared *sh = priv->sh;
struct mlx5_rxq_data *data;
unsigned int i;
for (i = 0; i != priv->rxqs_n; ++i) {
if (!(*priv->rxqs)[i])
continue;
data = (*priv->rxqs)[i];
data->sh = sh;
data->rt_timestamp = priv->config.rt_timestamp;
}
}