f-stack/dpdk/drivers/net/ice/base/ice_switch.c

8704 lines
249 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2001-2020 Intel Corporation
*/
#include "ice_switch.h"
#include "ice_flex_type.h"
#include "ice_flow.h"
#define ICE_ETH_DA_OFFSET 0
#define ICE_ETH_ETHTYPE_OFFSET 12
#define ICE_ETH_VLAN_TCI_OFFSET 14
#define ICE_MAX_VLAN_ID 0xFFF
#define ICE_IPV4_NVGRE_PROTO_ID 0x002F
#define ICE_PPP_IPV6_PROTO_ID 0x0057
#define ICE_IPV6_ETHER_ID 0x86DD
#define ICE_TCP_PROTO_ID 0x06
/* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
* struct to configure any switch filter rules.
* {DA (6 bytes), SA(6 bytes),
* Ether type (2 bytes for header without VLAN tag) OR
* VLAN tag (4 bytes for header with VLAN tag) }
*
* Word on Hardcoded values
* byte 0 = 0x2: to identify it as locally administered DA MAC
* byte 6 = 0x2: to identify it as locally administered SA MAC
* byte 12 = 0x81 & byte 13 = 0x00:
* In case of VLAN filter first two bytes defines ether type (0x8100)
* and remaining two bytes are placeholder for programming a given VLAN ID
* In case of Ether type filter it is treated as header without VLAN tag
* and byte 12 and 13 is used to program a given Ether type instead
*/
static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
0x2, 0, 0, 0, 0, 0,
0x81, 0, 0, 0};
struct ice_dummy_pkt_offsets {
enum ice_protocol_type type;
u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
};
static const struct ice_dummy_pkt_offsets dummy_gre_tcp_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_IPV4_OFOS, 14 },
{ ICE_NVGRE, 34 },
{ ICE_MAC_IL, 42 },
{ ICE_IPV4_IL, 56 },
{ ICE_TCP_IL, 76 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_gre_tcp_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00, /* ICE_ETYPE_OL 12 */
0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x2F, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00,
0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x06, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 76 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x50, 0x02, 0x20, 0x00,
0x00, 0x00, 0x00, 0x00
};
static const struct ice_dummy_pkt_offsets dummy_gre_udp_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_IPV4_OFOS, 14 },
{ ICE_NVGRE, 34 },
{ ICE_MAC_IL, 42 },
{ ICE_IPV4_IL, 56 },
{ ICE_UDP_ILOS, 76 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_gre_udp_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00, /* ICE_ETYPE_OL 12 */
0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x2F, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00,
0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x11, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 76 */
0x00, 0x08, 0x00, 0x00,
};
static const struct ice_dummy_pkt_offsets dummy_udp_tun_tcp_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_IPV4_OFOS, 14 },
{ ICE_UDP_OF, 34 },
{ ICE_VXLAN, 42 },
{ ICE_GENEVE, 42 },
{ ICE_VXLAN_GPE, 42 },
{ ICE_MAC_IL, 50 },
{ ICE_IPV4_IL, 64 },
{ ICE_TCP_IL, 84 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_udp_tun_tcp_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00, /* ICE_ETYPE_OL 12 */
0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
0x00, 0x01, 0x00, 0x00,
0x40, 0x11, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
0x00, 0x46, 0x00, 0x00,
0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00,
0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
0x00, 0x01, 0x00, 0x00,
0x40, 0x06, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x50, 0x02, 0x20, 0x00,
0x00, 0x00, 0x00, 0x00
};
static const struct ice_dummy_pkt_offsets dummy_udp_tun_udp_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_IPV4_OFOS, 14 },
{ ICE_UDP_OF, 34 },
{ ICE_VXLAN, 42 },
{ ICE_GENEVE, 42 },
{ ICE_VXLAN_GPE, 42 },
{ ICE_MAC_IL, 50 },
{ ICE_IPV4_IL, 64 },
{ ICE_UDP_ILOS, 84 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_udp_tun_udp_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00, /* ICE_ETYPE_OL 12 */
0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
0x00, 0x01, 0x00, 0x00,
0x00, 0x11, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
0x00, 0x3a, 0x00, 0x00,
0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00,
0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
0x00, 0x01, 0x00, 0x00,
0x00, 0x11, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
0x00, 0x08, 0x00, 0x00,
};
/* offset info for MAC + IPv4 + UDP dummy packet */
static const struct ice_dummy_pkt_offsets dummy_udp_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_IPV4_OFOS, 14 },
{ ICE_UDP_ILOS, 34 },
{ ICE_PROTOCOL_LAST, 0 },
};
/* Dummy packet for MAC + IPv4 + UDP */
static const u8 dummy_udp_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00, /* ICE_ETYPE_OL 12 */
0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
0x00, 0x01, 0x00, 0x00,
0x00, 0x11, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
0x00, 0x08, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 byte alignment */
};
/* offset info for MAC + VLAN + IPv4 + UDP dummy packet */
static const struct ice_dummy_pkt_offsets dummy_vlan_udp_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_VLAN_OFOS, 14 },
{ ICE_IPV4_OFOS, 18 },
{ ICE_UDP_ILOS, 38 },
{ ICE_PROTOCOL_LAST, 0 },
};
/* C-tag (801.1Q), IPv4:UDP dummy packet */
static const u8 dummy_vlan_udp_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x81, 0x00, /* ICE_ETYPE_OL 12 */
0x00, 0x00, 0x08, 0x00, /* ICE_VLAN_OFOS 14 */
0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 18 */
0x00, 0x01, 0x00, 0x00,
0x00, 0x11, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 38 */
0x00, 0x08, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 byte alignment */
};
/* offset info for MAC + IPv4 + TCP dummy packet */
static const struct ice_dummy_pkt_offsets dummy_tcp_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_IPV4_OFOS, 14 },
{ ICE_TCP_IL, 34 },
{ ICE_PROTOCOL_LAST, 0 },
};
/* Dummy packet for MAC + IPv4 + TCP */
static const u8 dummy_tcp_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00, /* ICE_ETYPE_OL 12 */
0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
0x00, 0x01, 0x00, 0x00,
0x00, 0x06, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x50, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 byte alignment */
};
/* offset info for MAC + VLAN (C-tag, 802.1Q) + IPv4 + TCP dummy packet */
static const struct ice_dummy_pkt_offsets dummy_vlan_tcp_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_VLAN_OFOS, 14 },
{ ICE_IPV4_OFOS, 18 },
{ ICE_TCP_IL, 38 },
{ ICE_PROTOCOL_LAST, 0 },
};
/* C-tag (801.1Q), IPv4:TCP dummy packet */
static const u8 dummy_vlan_tcp_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x81, 0x00, /* ICE_ETYPE_OL 12 */
0x00, 0x00, 0x08, 0x00, /* ICE_VLAN_OFOS 14 */
0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 18 */
0x00, 0x01, 0x00, 0x00,
0x00, 0x06, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 38 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x50, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 byte alignment */
};
static const struct ice_dummy_pkt_offsets dummy_tcp_ipv6_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_IPV6_OFOS, 14 },
{ ICE_TCP_IL, 54 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_tcp_ipv6_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x86, 0xDD, /* ICE_ETYPE_OL 12 */
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x50, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 byte alignment */
};
/* C-tag (802.1Q): IPv6 + TCP */
static const struct ice_dummy_pkt_offsets
dummy_vlan_tcp_ipv6_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_VLAN_OFOS, 14 },
{ ICE_IPV6_OFOS, 18 },
{ ICE_TCP_IL, 58 },
{ ICE_PROTOCOL_LAST, 0 },
};
/* C-tag (802.1Q), IPv6 + TCP dummy packet */
static const u8 dummy_vlan_tcp_ipv6_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x81, 0x00, /* ICE_ETYPE_OL 12 */
0x00, 0x00, 0x86, 0xDD, /* ICE_VLAN_OFOS 14 */
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 18 */
0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 58 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x50, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 byte alignment */
};
/* IPv6 + UDP */
static const struct ice_dummy_pkt_offsets dummy_udp_ipv6_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_IPV6_OFOS, 14 },
{ ICE_UDP_ILOS, 54 },
{ ICE_PROTOCOL_LAST, 0 },
};
/* IPv6 + UDP dummy packet */
static const u8 dummy_udp_ipv6_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x86, 0xDD, /* ICE_ETYPE_OL 12 */
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
0x00, 0x10, 0x11, 0x00, /* Next header UDP */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
0x00, 0x10, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 byte alignment */
};
/* C-tag (802.1Q): IPv6 + UDP */
static const struct ice_dummy_pkt_offsets
dummy_vlan_udp_ipv6_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_VLAN_OFOS, 14 },
{ ICE_IPV6_OFOS, 18 },
{ ICE_UDP_ILOS, 58 },
{ ICE_PROTOCOL_LAST, 0 },
};
/* C-tag (802.1Q), IPv6 + UDP dummy packet */
static const u8 dummy_vlan_udp_ipv6_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x81, 0x00, /* ICE_ETYPE_OL 12 */
0x00, 0x00, 0x86, 0xDD, /* ICE_VLAN_OFOS 14 */
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 18 */
0x00, 0x08, 0x11, 0x00, /* Next header UDP */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 58 */
0x00, 0x08, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 byte alignment */
};
static const struct ice_dummy_pkt_offsets dummy_udp_gtp_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_IPV4_OFOS, 14 },
{ ICE_UDP_OF, 34 },
{ ICE_GTP, 42 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_udp_gtp_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00,
0x45, 0x00, 0x00, 0x30, /* ICE_IPV4_OFOS 14 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x11, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x08, 0x68, /* ICE_UDP_OF 34 */
0x00, 0x1c, 0x00, 0x00,
0x34, 0xff, 0x00, 0x0c, /* ICE_GTP 42 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x85,
0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
0x00, 0x00, 0x00, 0x00,
};
static const
struct ice_dummy_pkt_offsets dummy_ipv4_gtpu_ipv4_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_IPV4_OFOS, 14 },
{ ICE_UDP_OF, 34 },
{ ICE_GTP, 42 },
{ ICE_IPV4_IL, 62 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_ipv4_gtpu_ipv4_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00,
0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
0x00, 0x00, 0x40, 0x00,
0x40, 0x11, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
0x00, 0x00, 0x00, 0x00,
0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x85,
0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
0x00, 0x00, 0x00, 0x00,
0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
0x00, 0x00, 0x40, 0x00,
0x40, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00,
};
static const
struct ice_dummy_pkt_offsets dummy_ipv4_gtpu_ipv6_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_IPV4_OFOS, 14 },
{ ICE_UDP_OF, 34 },
{ ICE_GTP, 42 },
{ ICE_IPV6_IL, 62 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_ipv4_gtpu_ipv6_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00,
0x45, 0x00, 0x00, 0x58, /* ICE_IPV4_OFOS 14 */
0x00, 0x00, 0x40, 0x00,
0x40, 0x11, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
0x00, 0x00, 0x00, 0x00,
0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x85,
0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
0x00, 0x00, 0x00, 0x00,
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 62 */
0x00, 0x00, 0x3b, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00,
};
static const
struct ice_dummy_pkt_offsets dummy_ipv6_gtpu_ipv4_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_IPV6_OFOS, 14 },
{ ICE_UDP_OF, 54 },
{ ICE_GTP, 62 },
{ ICE_IPV4_IL, 82 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_ipv6_gtpu_ipv4_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x86, 0xdd,
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
0x00, 0x58, 0x11, 0x00, /* Next header UDP*/
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
0x00, 0x00, 0x00, 0x00,
0x34, 0xff, 0x00, 0x28, /* ICE_GTP 62 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x85,
0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
0x00, 0x00, 0x00, 0x00,
0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 82 */
0x00, 0x00, 0x40, 0x00,
0x40, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00,
};
static const
struct ice_dummy_pkt_offsets dummy_ipv6_gtpu_ipv6_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_IPV6_OFOS, 14 },
{ ICE_UDP_OF, 54 },
{ ICE_GTP, 62 },
{ ICE_IPV6_IL, 82 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_ipv6_gtpu_ipv6_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x86, 0xdd,
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
0x00, 0x00, 0x00, 0x00,
0x34, 0xff, 0x00, 0x28, /* ICE_GTP 62 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x85,
0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
0x00, 0x00, 0x00, 0x00,
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFIL 82 */
0x00, 0x00, 0x3b, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00,
};
static const
struct ice_dummy_pkt_offsets dummy_ipv4_gtp_no_pay_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_IPV4_OFOS, 14 },
{ ICE_UDP_OF, 34 },
{ ICE_GTP_NO_PAY, 42 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const
struct ice_dummy_pkt_offsets dummy_ipv6_gtp_no_pay_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_IPV6_OFOS, 14 },
{ ICE_UDP_OF, 54 },
{ ICE_GTP_NO_PAY, 62 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const struct ice_dummy_pkt_offsets dummy_pppoe_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_VLAN_OFOS, 14},
{ ICE_PPPOE, 18 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const struct ice_dummy_pkt_offsets dummy_pppoe_packet_ipv4_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_VLAN_OFOS, 14},
{ ICE_PPPOE, 18 },
{ ICE_IPV4_OFOS, 26 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_pppoe_ipv4_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x81, 0x00, /* ICE_ETYPE_OL 12 */
0x00, 0x00, 0x88, 0x64, /* ICE_VLAN_OFOS 14 */
0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 18 */
0x00, 0x16,
0x00, 0x21, /* PPP Link Layer 24 */
0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 26 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 bytes alignment */
};
static const
struct ice_dummy_pkt_offsets dummy_pppoe_ipv4_tcp_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_VLAN_OFOS, 14},
{ ICE_PPPOE, 18 },
{ ICE_IPV4_OFOS, 26 },
{ ICE_TCP_IL, 46 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_pppoe_ipv4_tcp_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x81, 0x00, /* ICE_ETYPE_OL 12 */
0x00, 0x00, 0x88, 0x64, /* ICE_VLAN_OFOS 14 */
0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 18 */
0x00, 0x16,
0x00, 0x21, /* PPP Link Layer 24 */
0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 26 */
0x00, 0x01, 0x00, 0x00,
0x00, 0x06, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 46 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x50, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 bytes alignment */
};
static const
struct ice_dummy_pkt_offsets dummy_pppoe_ipv4_udp_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_VLAN_OFOS, 14},
{ ICE_PPPOE, 18 },
{ ICE_IPV4_OFOS, 26 },
{ ICE_UDP_ILOS, 46 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_pppoe_ipv4_udp_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x81, 0x00, /* ICE_ETYPE_OL 12 */
0x00, 0x00, 0x88, 0x64, /* ICE_VLAN_OFOS 14 */
0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 18 */
0x00, 0x16,
0x00, 0x21, /* PPP Link Layer 24 */
0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 26 */
0x00, 0x01, 0x00, 0x00,
0x00, 0x11, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 46 */
0x00, 0x08, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 bytes alignment */
};
static const struct ice_dummy_pkt_offsets dummy_pppoe_packet_ipv6_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_VLAN_OFOS, 14},
{ ICE_PPPOE, 18 },
{ ICE_IPV6_OFOS, 26 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_pppoe_ipv6_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x81, 0x00, /* ICE_ETYPE_OL 12 */
0x00, 0x00, 0x88, 0x64, /* ICE_VLAN_OFOS 14 */
0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 18 */
0x00, 0x2a,
0x00, 0x57, /* PPP Link Layer 24 */
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 26 */
0x00, 0x00, 0x3b, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 bytes alignment */
};
static const
struct ice_dummy_pkt_offsets dummy_pppoe_packet_ipv6_tcp_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_VLAN_OFOS, 14},
{ ICE_PPPOE, 18 },
{ ICE_IPV6_OFOS, 26 },
{ ICE_TCP_IL, 66 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_pppoe_ipv6_tcp_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x81, 0x00, /* ICE_ETYPE_OL 12 */
0x00, 0x00, 0x88, 0x64, /* ICE_VLAN_OFOS 14 */
0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 18 */
0x00, 0x2a,
0x00, 0x57, /* PPP Link Layer 24 */
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 26 */
0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 66 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x50, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 bytes alignment */
};
static const
struct ice_dummy_pkt_offsets dummy_pppoe_packet_ipv6_udp_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_VLAN_OFOS, 14},
{ ICE_PPPOE, 18 },
{ ICE_IPV6_OFOS, 26 },
{ ICE_UDP_ILOS, 66 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_pppoe_ipv6_udp_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x81, 0x00, /* ICE_ETYPE_OL 12 */
0x00, 0x00, 0x88, 0x64, /* ICE_VLAN_OFOS 14 */
0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 18 */
0x00, 0x2a,
0x00, 0x57, /* PPP Link Layer 24 */
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 26 */
0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 66 */
0x00, 0x08, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 bytes alignment */
};
static const struct ice_dummy_pkt_offsets dummy_ipv4_esp_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_IPV4_OFOS, 14 },
{ ICE_ESP, 34 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_ipv4_esp_pkt[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00,
0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 14 */
0x00, 0x00, 0x40, 0x00,
0x40, 0x32, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_ESP 34 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 bytes alignment */
};
static const struct ice_dummy_pkt_offsets dummy_ipv6_esp_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_IPV6_OFOS, 14 },
{ ICE_ESP, 54 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_ipv6_esp_pkt[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x86, 0xDD,
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
0x00, 0x08, 0x32, 0x00, /* Next header ESP */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_ESP 54 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 bytes alignment */
};
static const struct ice_dummy_pkt_offsets dummy_ipv4_ah_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_IPV4_OFOS, 14 },
{ ICE_AH, 34 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_ipv4_ah_pkt[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00,
0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
0x00, 0x00, 0x40, 0x00,
0x40, 0x33, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_AH 34 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 bytes alignment */
};
static const struct ice_dummy_pkt_offsets dummy_ipv6_ah_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_IPV6_OFOS, 14 },
{ ICE_AH, 54 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_ipv6_ah_pkt[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x86, 0xDD,
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
0x00, 0x0c, 0x33, 0x00, /* Next header AH */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_AH 54 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 bytes alignment */
};
static const struct ice_dummy_pkt_offsets dummy_ipv4_nat_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_IPV4_OFOS, 14 },
{ ICE_UDP_ILOS, 34 },
{ ICE_NAT_T, 42 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_ipv4_nat_pkt[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00,
0x45, 0x00, 0x00, 0x24, /* ICE_IPV4_IL 14 */
0x00, 0x00, 0x40, 0x00,
0x40, 0x11, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x11, 0x94, /* ICE_NAT_T 34 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 bytes alignment */
};
static const struct ice_dummy_pkt_offsets dummy_ipv6_nat_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_IPV6_OFOS, 14 },
{ ICE_UDP_ILOS, 54 },
{ ICE_NAT_T, 62 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_ipv6_nat_pkt[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x86, 0xDD,
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
0x00, 0x10, 0x11, 0x00, /* Next header NAT_T */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x11, 0x94, /* ICE_NAT_T 54 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 bytes alignment */
};
static const struct ice_dummy_pkt_offsets dummy_ipv4_l2tpv3_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_IPV4_OFOS, 14 },
{ ICE_L2TPV3, 34 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_ipv4_l2tpv3_pkt[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x08, 0x00,
0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
0x00, 0x00, 0x40, 0x00,
0x40, 0x73, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 bytes alignment */
};
static const struct ice_dummy_pkt_offsets dummy_ipv6_l2tpv3_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_IPV6_OFOS, 14 },
{ ICE_L2TPV3, 54 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_ipv6_l2tpv3_pkt[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x86, 0xDD,
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
0x00, 0x0c, 0x73, 0x40,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 bytes alignment */
};
static const struct ice_dummy_pkt_offsets dummy_qinq_ipv4_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_VLAN_EX, 14 },
{ ICE_VLAN_OFOS, 18 },
{ ICE_IPV4_OFOS, 22 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_qinq_ipv4_pkt[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x91, 0x00,
0x00, 0x00, 0x81, 0x00, /* ICE_VLAN_EX 14 */
0x00, 0x00, 0x08, 0x00, /* ICE_VLAN_OFOS 18 */
0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
0x00, 0x01, 0x00, 0x00,
0x00, 0x11, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
0x00, 0x08, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 byte alignment */
};
static const struct ice_dummy_pkt_offsets dummy_qinq_ipv6_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_VLAN_EX, 14 },
{ ICE_VLAN_OFOS, 18 },
{ ICE_IPV6_OFOS, 22 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_qinq_ipv6_pkt[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x91, 0x00,
0x00, 0x00, 0x81, 0x00, /* ICE_VLAN_EX 14 */
0x00, 0x00, 0x86, 0xDD, /* ICE_VLAN_OFOS 18 */
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
0x00, 0x10, 0x11, 0x00, /* Next header UDP */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
0x00, 0x10, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 byte alignment */
};
static const struct ice_dummy_pkt_offsets dummy_qinq_pppoe_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_VLAN_EX, 14 },
{ ICE_VLAN_OFOS, 18 },
{ ICE_PPPOE, 22 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const
struct ice_dummy_pkt_offsets dummy_qinq_pppoe_ipv4_packet_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_VLAN_EX, 14 },
{ ICE_VLAN_OFOS, 18 },
{ ICE_PPPOE, 22 },
{ ICE_IPV4_OFOS, 30 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_qinq_pppoe_ipv4_pkt[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x91, 0x00,
0x00, 0x00, 0x81, 0x00, /* ICE_VLAN_EX 14 */
0x00, 0x00, 0x88, 0x64, /* ICE_VLAN_OFOS 18 */
0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 22 */
0x00, 0x16,
0x00, 0x21, /* PPP Link Layer 28 */
0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 30 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 byte alignment */
};
static const
struct ice_dummy_pkt_offsets dummy_qinq_pppoe_packet_ipv6_offsets[] = {
{ ICE_MAC_OFOS, 0 },
{ ICE_ETYPE_OL, 12 },
{ ICE_VLAN_EX, 14},
{ ICE_VLAN_OFOS, 18 },
{ ICE_PPPOE, 22 },
{ ICE_IPV6_OFOS, 30 },
{ ICE_PROTOCOL_LAST, 0 },
};
static const u8 dummy_qinq_pppoe_ipv6_packet[] = {
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x91, 0x00, /* ICE_ETYPE_OL 12 */
0x00, 0x00, 0x81, 0x00, /* ICE_VLAN_EX 14 */
0x00, 0x00, 0x88, 0x64, /* ICE_VLAN_OFOS 18 */
0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 22 */
0x00, 0x2a,
0x00, 0x57, /* PPP Link Layer 28*/
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 30 */
0x00, 0x00, 0x3b, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, /* 2 bytes for 4 bytes alignment */
};
/* this is a recipe to profile association bitmap */
static ice_declare_bitmap(recipe_to_profile[ICE_MAX_NUM_RECIPES],
ICE_MAX_NUM_PROFILES);
/* this is a profile to recipe association bitmap */
static ice_declare_bitmap(profile_to_recipe[ICE_MAX_NUM_PROFILES],
ICE_MAX_NUM_RECIPES);
static void ice_get_recp_to_prof_map(struct ice_hw *hw);
/**
* ice_collect_result_idx - copy result index values
* @buf: buffer that contains the result index
* @recp: the recipe struct to copy data into
*/
static void ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
struct ice_sw_recipe *recp)
{
if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
ice_set_bit(buf->content.result_indx &
~ICE_AQ_RECIPE_RESULT_EN, recp->res_idxs);
}
/**
* ice_get_tun_type_for_recipe - get tunnel type for the recipe
* @rid: recipe ID that we are populating
*/
static enum ice_sw_tunnel_type ice_get_tun_type_for_recipe(u8 rid, bool vlan)
{
u8 vxlan_profile[12] = {10, 11, 12, 16, 17, 18, 22, 23, 24, 25, 26, 27};
u8 gre_profile[12] = {13, 14, 15, 19, 20, 21, 28, 29, 30, 31, 32, 33};
u8 pppoe_profile[7] = {34, 35, 36, 37, 38, 39, 40};
u8 non_tun_profile[6] = {4, 5, 6, 7, 8, 9};
enum ice_sw_tunnel_type tun_type;
u16 i, j, profile_num = 0;
bool non_tun_valid = false;
bool pppoe_valid = false;
bool vxlan_valid = false;
bool gre_valid = false;
bool gtp_valid = false;
bool flag_valid = false;
for (j = 0; j < ICE_MAX_NUM_PROFILES; j++) {
if (!ice_is_bit_set(recipe_to_profile[rid], j))
continue;
else
profile_num++;
for (i = 0; i < 12; i++) {
if (gre_profile[i] == j)
gre_valid = true;
}
for (i = 0; i < 12; i++) {
if (vxlan_profile[i] == j)
vxlan_valid = true;
}
for (i = 0; i < 7; i++) {
if (pppoe_profile[i] == j)
pppoe_valid = true;
}
for (i = 0; i < 6; i++) {
if (non_tun_profile[i] == j)
non_tun_valid = true;
}
if (j >= ICE_PROFID_IPV4_GTPU_EH_IPV4_OTHER &&
j <= ICE_PROFID_IPV6_GTPU_IPV6_TCP)
gtp_valid = true;
if ((j >= ICE_PROFID_IPV4_ESP &&
j <= ICE_PROFID_IPV6_PFCP_SESSION) ||
(j >= ICE_PROFID_IPV4_GTPC_TEID &&
j <= ICE_PROFID_IPV6_GTPU_TEID))
flag_valid = true;
}
if (!non_tun_valid && vxlan_valid)
tun_type = ICE_SW_TUN_VXLAN;
else if (!non_tun_valid && gre_valid)
tun_type = ICE_SW_TUN_NVGRE;
else if (!non_tun_valid && pppoe_valid)
tun_type = ICE_SW_TUN_PPPOE;
else if (!non_tun_valid && gtp_valid)
tun_type = ICE_SW_TUN_GTP;
else if (non_tun_valid &&
(vxlan_valid || gre_valid || gtp_valid || pppoe_valid))
tun_type = ICE_SW_TUN_AND_NON_TUN;
else if (non_tun_valid && !vxlan_valid && !gre_valid && !gtp_valid &&
!pppoe_valid)
tun_type = ICE_NON_TUN;
else
tun_type = ICE_NON_TUN;
if (profile_num > 1 && tun_type == ICE_SW_TUN_PPPOE) {
i = ice_is_bit_set(recipe_to_profile[rid],
ICE_PROFID_PPPOE_IPV4_OTHER);
j = ice_is_bit_set(recipe_to_profile[rid],
ICE_PROFID_PPPOE_IPV6_OTHER);
if (i && !j)
tun_type = ICE_SW_TUN_PPPOE_IPV4;
else if (!i && j)
tun_type = ICE_SW_TUN_PPPOE_IPV6;
}
if (tun_type == ICE_SW_TUN_GTP) {
if (ice_is_bit_set(recipe_to_profile[rid],
ICE_PROFID_IPV4_GTPU_IPV4_OTHER))
tun_type = ICE_SW_TUN_IPV4_GTPU_IPV4;
else if (ice_is_bit_set(recipe_to_profile[rid],
ICE_PROFID_IPV4_GTPU_IPV6_OTHER))
tun_type = ICE_SW_TUN_IPV4_GTPU_IPV6;
else if (ice_is_bit_set(recipe_to_profile[rid],
ICE_PROFID_IPV6_GTPU_IPV4_OTHER))
tun_type = ICE_SW_TUN_IPV6_GTPU_IPV4;
else if (ice_is_bit_set(recipe_to_profile[rid],
ICE_PROFID_IPV6_GTPU_IPV6_OTHER))
tun_type = ICE_SW_TUN_IPV6_GTPU_IPV6;
}
if (profile_num == 1 && (flag_valid || non_tun_valid || pppoe_valid)) {
for (j = 0; j < ICE_MAX_NUM_PROFILES; j++) {
if (ice_is_bit_set(recipe_to_profile[rid], j)) {
switch (j) {
case ICE_PROFID_IPV4_TCP:
tun_type = ICE_SW_IPV4_TCP;
break;
case ICE_PROFID_IPV4_UDP:
tun_type = ICE_SW_IPV4_UDP;
break;
case ICE_PROFID_IPV6_TCP:
tun_type = ICE_SW_IPV6_TCP;
break;
case ICE_PROFID_IPV6_UDP:
tun_type = ICE_SW_IPV6_UDP;
break;
case ICE_PROFID_PPPOE_PAY:
tun_type = ICE_SW_TUN_PPPOE_PAY;
break;
case ICE_PROFID_PPPOE_IPV4_TCP:
tun_type = ICE_SW_TUN_PPPOE_IPV4_TCP;
break;
case ICE_PROFID_PPPOE_IPV4_UDP:
tun_type = ICE_SW_TUN_PPPOE_IPV4_UDP;
break;
case ICE_PROFID_PPPOE_IPV4_OTHER:
tun_type = ICE_SW_TUN_PPPOE_IPV4;
break;
case ICE_PROFID_PPPOE_IPV6_TCP:
tun_type = ICE_SW_TUN_PPPOE_IPV6_TCP;
break;
case ICE_PROFID_PPPOE_IPV6_UDP:
tun_type = ICE_SW_TUN_PPPOE_IPV6_UDP;
break;
case ICE_PROFID_PPPOE_IPV6_OTHER:
tun_type = ICE_SW_TUN_PPPOE_IPV6;
break;
case ICE_PROFID_IPV4_ESP:
tun_type = ICE_SW_TUN_IPV4_ESP;
break;
case ICE_PROFID_IPV6_ESP:
tun_type = ICE_SW_TUN_IPV6_ESP;
break;
case ICE_PROFID_IPV4_AH:
tun_type = ICE_SW_TUN_IPV4_AH;
break;
case ICE_PROFID_IPV6_AH:
tun_type = ICE_SW_TUN_IPV6_AH;
break;
case ICE_PROFID_IPV4_NAT_T:
tun_type = ICE_SW_TUN_IPV4_NAT_T;
break;
case ICE_PROFID_IPV6_NAT_T:
tun_type = ICE_SW_TUN_IPV6_NAT_T;
break;
case ICE_PROFID_IPV4_PFCP_NODE:
tun_type =
ICE_SW_TUN_PROFID_IPV4_PFCP_NODE;
break;
case ICE_PROFID_IPV6_PFCP_NODE:
tun_type =
ICE_SW_TUN_PROFID_IPV6_PFCP_NODE;
break;
case ICE_PROFID_IPV4_PFCP_SESSION:
tun_type =
ICE_SW_TUN_PROFID_IPV4_PFCP_SESSION;
break;
case ICE_PROFID_IPV6_PFCP_SESSION:
tun_type =
ICE_SW_TUN_PROFID_IPV6_PFCP_SESSION;
break;
case ICE_PROFID_MAC_IPV4_L2TPV3:
tun_type = ICE_SW_TUN_IPV4_L2TPV3;
break;
case ICE_PROFID_MAC_IPV6_L2TPV3:
tun_type = ICE_SW_TUN_IPV6_L2TPV3;
break;
case ICE_PROFID_IPV4_GTPU_TEID:
tun_type = ICE_SW_TUN_IPV4_GTPU_NO_PAY;
break;
case ICE_PROFID_IPV6_GTPU_TEID:
tun_type = ICE_SW_TUN_IPV6_GTPU_NO_PAY;
break;
default:
break;
}
return tun_type;
}
}
}
if (vlan && tun_type == ICE_SW_TUN_PPPOE)
tun_type = ICE_SW_TUN_PPPOE_QINQ;
else if (vlan && tun_type == ICE_SW_TUN_PPPOE_IPV6)
tun_type = ICE_SW_TUN_PPPOE_IPV6_QINQ;
else if (vlan && tun_type == ICE_SW_TUN_PPPOE_IPV4)
tun_type = ICE_SW_TUN_PPPOE_IPV4_QINQ;
else if (vlan && tun_type == ICE_SW_TUN_PPPOE_PAY)
tun_type = ICE_SW_TUN_PPPOE_PAY_QINQ;
else if (vlan && tun_type == ICE_SW_TUN_AND_NON_TUN)
tun_type = ICE_SW_TUN_AND_NON_TUN_QINQ;
else if (vlan && tun_type == ICE_NON_TUN)
tun_type = ICE_NON_TUN_QINQ;
return tun_type;
}
/**
* ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
* @hw: pointer to hardware structure
* @recps: struct that we need to populate
* @rid: recipe ID that we are populating
* @refresh_required: true if we should get recipe to profile mapping from FW
*
* This function is used to populate all the necessary entries into our
* bookkeeping so that we have a current list of all the recipes that are
* programmed in the firmware.
*/
static enum ice_status
ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
bool *refresh_required)
{
ice_declare_bitmap(result_bm, ICE_MAX_FV_WORDS);
struct ice_aqc_recipe_data_elem *tmp;
u16 num_recps = ICE_MAX_NUM_RECIPES;
struct ice_prot_lkup_ext *lkup_exts;
enum ice_status status;
u8 fv_word_idx = 0;
bool vlan = false;
u16 sub_recps;
ice_zero_bitmap(result_bm, ICE_MAX_FV_WORDS);
/* we need a buffer big enough to accommodate all the recipes */
tmp = (struct ice_aqc_recipe_data_elem *)ice_calloc(hw,
ICE_MAX_NUM_RECIPES, sizeof(*tmp));
if (!tmp)
return ICE_ERR_NO_MEMORY;
tmp[0].recipe_indx = rid;
status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
/* non-zero status meaning recipe doesn't exist */
if (status)
goto err_unroll;
/* Get recipe to profile map so that we can get the fv from lkups that
* we read for a recipe from FW. Since we want to minimize the number of
* times we make this FW call, just make one call and cache the copy
* until a new recipe is added. This operation is only required the
* first time to get the changes from FW. Then to search existing
* entries we don't need to update the cache again until another recipe
* gets added.
*/
if (*refresh_required) {
ice_get_recp_to_prof_map(hw);
*refresh_required = false;
}
/* Start populating all the entries for recps[rid] based on lkups from
* firmware. Note that we are only creating the root recipe in our
* database.
*/
lkup_exts = &recps[rid].lkup_exts;
for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
struct ice_recp_grp_entry *rg_entry;
u8 i, prof, idx, prot = 0;
bool is_root;
u16 off = 0;
rg_entry = (struct ice_recp_grp_entry *)
ice_malloc(hw, sizeof(*rg_entry));
if (!rg_entry) {
status = ICE_ERR_NO_MEMORY;
goto err_unroll;
}
idx = root_bufs.recipe_indx;
is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
/* Mark all result indices in this chain */
if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
ice_set_bit(root_bufs.content.result_indx &
~ICE_AQ_RECIPE_RESULT_EN, result_bm);
/* get the first profile that is associated with rid */
prof = ice_find_first_bit(recipe_to_profile[idx],
ICE_MAX_NUM_PROFILES);
for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
rg_entry->fv_idx[i] = lkup_indx;
rg_entry->fv_mask[i] =
LE16_TO_CPU(root_bufs.content.mask[i + 1]);
/* If the recipe is a chained recipe then all its
* child recipe's result will have a result index.
* To fill fv_words we should not use those result
* index, we only need the protocol ids and offsets.
* We will skip all the fv_idx which stores result
* index in them. We also need to skip any fv_idx which
* has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
* valid offset value.
*/
if (ice_is_bit_set(hw->switch_info->prof_res_bm[prof],
rg_entry->fv_idx[i]) ||
rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
rg_entry->fv_idx[i] == 0)
continue;
ice_find_prot_off(hw, ICE_BLK_SW, prof,
rg_entry->fv_idx[i], &prot, &off);
lkup_exts->fv_words[fv_word_idx].prot_id = prot;
lkup_exts->fv_words[fv_word_idx].off = off;
lkup_exts->field_mask[fv_word_idx] =
rg_entry->fv_mask[i];
if (prot == ICE_META_DATA_ID_HW &&
off == ICE_TUN_FLAG_MDID_OFF)
vlan = true;
fv_word_idx++;
}
/* populate rg_list with the data from the child entry of this
* recipe
*/
LIST_ADD(&rg_entry->l_entry, &recps[rid].rg_list);
/* Propagate some data to the recipe database */
recps[idx].is_root = !!is_root;
recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
ice_zero_bitmap(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
recps[idx].chain_idx = root_bufs.content.result_indx &
~ICE_AQ_RECIPE_RESULT_EN;
ice_set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
} else {
recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
}
if (!is_root)
continue;
/* Only do the following for root recipes entries */
ice_memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
sizeof(recps[idx].r_bitmap), ICE_NONDMA_TO_NONDMA);
recps[idx].root_rid = root_bufs.content.rid &
~ICE_AQ_RECIPE_ID_IS_ROOT;
recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
}
/* Complete initialization of the root recipe entry */
lkup_exts->n_val_words = fv_word_idx;
recps[rid].big_recp = (num_recps > 1);
recps[rid].n_grp_count = (u8)num_recps;
recps[rid].tun_type = ice_get_tun_type_for_recipe(rid, vlan);
recps[rid].root_buf = (struct ice_aqc_recipe_data_elem *)
ice_memdup(hw, tmp, recps[rid].n_grp_count *
sizeof(*recps[rid].root_buf), ICE_NONDMA_TO_NONDMA);
if (!recps[rid].root_buf)
goto err_unroll;
/* Copy result indexes */
ice_cp_bitmap(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
recps[rid].recp_created = true;
err_unroll:
ice_free(hw, tmp);
return status;
}
/**
* ice_get_recp_to_prof_map - updates recipe to profile mapping
* @hw: pointer to hardware structure
*
* This function is used to populate recipe_to_profile matrix where index to
* this array is the recipe ID and the element is the mapping of which profiles
* is this recipe mapped to.
*/
static void ice_get_recp_to_prof_map(struct ice_hw *hw)
{
ice_declare_bitmap(r_bitmap, ICE_MAX_NUM_RECIPES);
u16 i;
for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
u16 j;
ice_zero_bitmap(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
ice_zero_bitmap(r_bitmap, ICE_MAX_NUM_RECIPES);
if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL))
continue;
ice_cp_bitmap(profile_to_recipe[i], r_bitmap,
ICE_MAX_NUM_RECIPES);
ice_for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
ice_set_bit(i, recipe_to_profile[j]);
}
}
/**
* ice_init_def_sw_recp - initialize the recipe book keeping tables
* @hw: pointer to the HW struct
* @recp_list: pointer to sw recipe list
*
* Allocate memory for the entire recipe table and initialize the structures/
* entries corresponding to basic recipes.
*/
enum ice_status
ice_init_def_sw_recp(struct ice_hw *hw, struct ice_sw_recipe **recp_list)
{
struct ice_sw_recipe *recps;
u8 i;
recps = (struct ice_sw_recipe *)
ice_calloc(hw, ICE_MAX_NUM_RECIPES, sizeof(*recps));
if (!recps)
return ICE_ERR_NO_MEMORY;
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
recps[i].root_rid = i;
INIT_LIST_HEAD(&recps[i].filt_rules);
INIT_LIST_HEAD(&recps[i].filt_replay_rules);
INIT_LIST_HEAD(&recps[i].rg_list);
ice_init_lock(&recps[i].filt_rule_lock);
}
*recp_list = recps;
return ICE_SUCCESS;
}
/**
* ice_aq_get_sw_cfg - get switch configuration
* @hw: pointer to the hardware structure
* @buf: pointer to the result buffer
* @buf_size: length of the buffer available for response
* @req_desc: pointer to requested descriptor
* @num_elems: pointer to number of elements
* @cd: pointer to command details structure or NULL
*
* Get switch configuration (0x0200) to be placed in buf.
* This admin command returns information such as initial VSI/port number
* and switch ID it belongs to.
*
* NOTE: *req_desc is both an input/output parameter.
* The caller of this function first calls this function with *request_desc set
* to 0. If the response from f/w has *req_desc set to 0, all the switch
* configuration information has been returned; if non-zero (meaning not all
* the information was returned), the caller should call this function again
* with *req_desc set to the previous value returned by f/w to get the
* next block of switch configuration information.
*
* *num_elems is output only parameter. This reflects the number of elements
* in response buffer. The caller of this function to use *num_elems while
* parsing the response buffer.
*/
static enum ice_status
ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
u16 buf_size, u16 *req_desc, u16 *num_elems,
struct ice_sq_cd *cd)
{
struct ice_aqc_get_sw_cfg *cmd;
struct ice_aq_desc desc;
enum ice_status status;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
cmd = &desc.params.get_sw_conf;
cmd->element = CPU_TO_LE16(*req_desc);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (!status) {
*req_desc = LE16_TO_CPU(cmd->element);
*num_elems = LE16_TO_CPU(cmd->num_elems);
}
return status;
}
/**
* ice_alloc_rss_global_lut - allocate a RSS global LUT
* @hw: pointer to the HW struct
* @shared_res: true to allocate as a shared resource and false to allocate as a dedicated resource
* @global_lut_id: output parameter for the RSS global LUT's ID
*/
enum ice_status ice_alloc_rss_global_lut(struct ice_hw *hw, bool shared_res, u16 *global_lut_id)
{
struct ice_aqc_alloc_free_res_elem *sw_buf;
enum ice_status status;
u16 buf_len;
buf_len = ice_struct_size(sw_buf, elem, 1);
sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
if (!sw_buf)
return ICE_ERR_NO_MEMORY;
sw_buf->num_elems = CPU_TO_LE16(1);
sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_GLOBAL_RSS_HASH |
(shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED :
ICE_AQC_RES_TYPE_FLAG_DEDICATED));
status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, ice_aqc_opc_alloc_res, NULL);
if (status) {
ice_debug(hw, ICE_DBG_RES, "Failed to allocate %s RSS global LUT, status %d\n",
shared_res ? "shared" : "dedicated", status);
goto ice_alloc_global_lut_exit;
}
*global_lut_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
ice_alloc_global_lut_exit:
ice_free(hw, sw_buf);
return status;
}
/**
* ice_free_global_lut - free a RSS global LUT
* @hw: pointer to the HW struct
* @global_lut_id: ID of the RSS global LUT to free
*/
enum ice_status ice_free_rss_global_lut(struct ice_hw *hw, u16 global_lut_id)
{
struct ice_aqc_alloc_free_res_elem *sw_buf;
u16 buf_len, num_elems = 1;
enum ice_status status;
buf_len = ice_struct_size(sw_buf, elem, num_elems);
sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
if (!sw_buf)
return ICE_ERR_NO_MEMORY;
sw_buf->num_elems = CPU_TO_LE16(num_elems);
sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_GLOBAL_RSS_HASH);
sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(global_lut_id);
status = ice_aq_alloc_free_res(hw, num_elems, sw_buf, buf_len, ice_aqc_opc_free_res, NULL);
if (status)
ice_debug(hw, ICE_DBG_RES, "Failed to free RSS global LUT %d, status %d\n",
global_lut_id, status);
ice_free(hw, sw_buf);
return status;
}
/**
* ice_alloc_sw - allocate resources specific to switch
* @hw: pointer to the HW struct
* @ena_stats: true to turn on VEB stats
* @shared_res: true for shared resource, false for dedicated resource
* @sw_id: switch ID returned
* @counter_id: VEB counter ID returned
*
* allocates switch resources (SWID and VEB counter) (0x0208)
*/
enum ice_status
ice_alloc_sw(struct ice_hw *hw, bool ena_stats, bool shared_res, u16 *sw_id,
u16 *counter_id)
{
struct ice_aqc_alloc_free_res_elem *sw_buf;
struct ice_aqc_res_elem *sw_ele;
enum ice_status status;
u16 buf_len;
buf_len = ice_struct_size(sw_buf, elem, 1);
sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
if (!sw_buf)
return ICE_ERR_NO_MEMORY;
/* Prepare buffer for switch ID.
* The number of resource entries in buffer is passed as 1 since only a
* single switch/VEB instance is allocated, and hence a single sw_id
* is requested.
*/
sw_buf->num_elems = CPU_TO_LE16(1);
sw_buf->res_type =
CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID |
(shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED :
ICE_AQC_RES_TYPE_FLAG_DEDICATED));
status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
ice_aqc_opc_alloc_res, NULL);
if (status)
goto ice_alloc_sw_exit;
sw_ele = &sw_buf->elem[0];
*sw_id = LE16_TO_CPU(sw_ele->e.sw_resp);
if (ena_stats) {
/* Prepare buffer for VEB Counter */
enum ice_adminq_opc opc = ice_aqc_opc_alloc_res;
struct ice_aqc_alloc_free_res_elem *counter_buf;
struct ice_aqc_res_elem *counter_ele;
counter_buf = (struct ice_aqc_alloc_free_res_elem *)
ice_malloc(hw, buf_len);
if (!counter_buf) {
status = ICE_ERR_NO_MEMORY;
goto ice_alloc_sw_exit;
}
/* The number of resource entries in buffer is passed as 1 since
* only a single switch/VEB instance is allocated, and hence a
* single VEB counter is requested.
*/
counter_buf->num_elems = CPU_TO_LE16(1);
counter_buf->res_type =
CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER |
ICE_AQC_RES_TYPE_FLAG_DEDICATED);
status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
opc, NULL);
if (status) {
ice_free(hw, counter_buf);
goto ice_alloc_sw_exit;
}
counter_ele = &counter_buf->elem[0];
*counter_id = LE16_TO_CPU(counter_ele->e.sw_resp);
ice_free(hw, counter_buf);
}
ice_alloc_sw_exit:
ice_free(hw, sw_buf);
return status;
}
/**
* ice_free_sw - free resources specific to switch
* @hw: pointer to the HW struct
* @sw_id: switch ID returned
* @counter_id: VEB counter ID returned
*
* free switch resources (SWID and VEB counter) (0x0209)
*
* NOTE: This function frees multiple resources. It continues
* releasing other resources even after it encounters error.
* The error code returned is the last error it encountered.
*/
enum ice_status ice_free_sw(struct ice_hw *hw, u16 sw_id, u16 counter_id)
{
struct ice_aqc_alloc_free_res_elem *sw_buf, *counter_buf;
enum ice_status status, ret_status;
u16 buf_len;
buf_len = ice_struct_size(sw_buf, elem, 1);
sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
if (!sw_buf)
return ICE_ERR_NO_MEMORY;
/* Prepare buffer to free for switch ID res.
* The number of resource entries in buffer is passed as 1 since only a
* single switch/VEB instance is freed, and hence a single sw_id
* is released.
*/
sw_buf->num_elems = CPU_TO_LE16(1);
sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID);
sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(sw_id);
ret_status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
ice_aqc_opc_free_res, NULL);
if (ret_status)
ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
/* Prepare buffer to free for VEB Counter resource */
counter_buf = (struct ice_aqc_alloc_free_res_elem *)
ice_malloc(hw, buf_len);
if (!counter_buf) {
ice_free(hw, sw_buf);
return ICE_ERR_NO_MEMORY;
}
/* The number of resource entries in buffer is passed as 1 since only a
* single switch/VEB instance is freed, and hence a single VEB counter
* is released
*/
counter_buf->num_elems = CPU_TO_LE16(1);
counter_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER);
counter_buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
ice_aqc_opc_free_res, NULL);
if (status) {
ice_debug(hw, ICE_DBG_SW, "VEB counter resource could not be freed\n");
ret_status = status;
}
ice_free(hw, counter_buf);
ice_free(hw, sw_buf);
return ret_status;
}
/**
* ice_aq_add_vsi
* @hw: pointer to the HW struct
* @vsi_ctx: pointer to a VSI context struct
* @cd: pointer to command details structure or NULL
*
* Add a VSI context to the hardware (0x0210)
*/
enum ice_status
ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
struct ice_sq_cd *cd)
{
struct ice_aqc_add_update_free_vsi_resp *res;
struct ice_aqc_add_get_update_free_vsi *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.vsi_cmd;
res = &desc.params.add_update_free_vsi_res;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
if (!vsi_ctx->alloc_from_pool)
cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num |
ICE_AQ_VSI_IS_VALID);
cmd->vsi_flags = CPU_TO_LE16(vsi_ctx->flags);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
sizeof(vsi_ctx->info), cd);
if (!status) {
vsi_ctx->vsi_num = LE16_TO_CPU(res->vsi_num) & ICE_AQ_VSI_NUM_M;
vsi_ctx->vsis_allocd = LE16_TO_CPU(res->vsi_used);
vsi_ctx->vsis_unallocated = LE16_TO_CPU(res->vsi_free);
}
return status;
}
/**
* ice_aq_free_vsi
* @hw: pointer to the HW struct
* @vsi_ctx: pointer to a VSI context struct
* @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
* @cd: pointer to command details structure or NULL
*
* Free VSI context info from hardware (0x0213)
*/
enum ice_status
ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
bool keep_vsi_alloc, struct ice_sq_cd *cd)
{
struct ice_aqc_add_update_free_vsi_resp *resp;
struct ice_aqc_add_get_update_free_vsi *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.vsi_cmd;
resp = &desc.params.add_update_free_vsi_res;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
if (keep_vsi_alloc)
cmd->cmd_flags = CPU_TO_LE16(ICE_AQ_VSI_KEEP_ALLOC);
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
if (!status) {
vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
}
return status;
}
/**
* ice_aq_update_vsi
* @hw: pointer to the HW struct
* @vsi_ctx: pointer to a VSI context struct
* @cd: pointer to command details structure or NULL
*
* Update VSI context in the hardware (0x0211)
*/
enum ice_status
ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
struct ice_sq_cd *cd)
{
struct ice_aqc_add_update_free_vsi_resp *resp;
struct ice_aqc_add_get_update_free_vsi *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.vsi_cmd;
resp = &desc.params.add_update_free_vsi_res;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
sizeof(vsi_ctx->info), cd);
if (!status) {
vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
}
return status;
}
/**
* ice_is_vsi_valid - check whether the VSI is valid or not
* @hw: pointer to the HW struct
* @vsi_handle: VSI handle
*
* check whether the VSI is valid or not
*/
bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
{
return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
}
/**
* ice_get_hw_vsi_num - return the HW VSI number
* @hw: pointer to the HW struct
* @vsi_handle: VSI handle
*
* return the HW VSI number
* Caution: call this function only if VSI is valid (ice_is_vsi_valid)
*/
u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
{
return hw->vsi_ctx[vsi_handle]->vsi_num;
}
/**
* ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
* @hw: pointer to the HW struct
* @vsi_handle: VSI handle
*
* return the VSI context entry for a given VSI handle
*/
struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
{
return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
}
/**
* ice_save_vsi_ctx - save the VSI context for a given VSI handle
* @hw: pointer to the HW struct
* @vsi_handle: VSI handle
* @vsi: VSI context pointer
*
* save the VSI context entry for a given VSI handle
*/
static void
ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
{
hw->vsi_ctx[vsi_handle] = vsi;
}
/**
* ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
* @hw: pointer to the HW struct
* @vsi_handle: VSI handle
*/
static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
{
struct ice_vsi_ctx *vsi;
u8 i;
vsi = ice_get_vsi_ctx(hw, vsi_handle);
if (!vsi)
return;
ice_for_each_traffic_class(i) {
if (vsi->lan_q_ctx[i]) {
ice_free(hw, vsi->lan_q_ctx[i]);
vsi->lan_q_ctx[i] = NULL;
}
}
}
/**
* ice_clear_vsi_ctx - clear the VSI context entry
* @hw: pointer to the HW struct
* @vsi_handle: VSI handle
*
* clear the VSI context entry
*/
static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
{
struct ice_vsi_ctx *vsi;
vsi = ice_get_vsi_ctx(hw, vsi_handle);
if (vsi) {
ice_clear_vsi_q_ctx(hw, vsi_handle);
ice_free(hw, vsi);
hw->vsi_ctx[vsi_handle] = NULL;
}
}
/**
* ice_clear_all_vsi_ctx - clear all the VSI context entries
* @hw: pointer to the HW struct
*/
void ice_clear_all_vsi_ctx(struct ice_hw *hw)
{
u16 i;
for (i = 0; i < ICE_MAX_VSI; i++)
ice_clear_vsi_ctx(hw, i);
}
/**
* ice_add_vsi - add VSI context to the hardware and VSI handle list
* @hw: pointer to the HW struct
* @vsi_handle: unique VSI handle provided by drivers
* @vsi_ctx: pointer to a VSI context struct
* @cd: pointer to command details structure or NULL
*
* Add a VSI context to the hardware also add it into the VSI handle list.
* If this function gets called after reset for existing VSIs then update
* with the new HW VSI number in the corresponding VSI handle list entry.
*/
enum ice_status
ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
struct ice_sq_cd *cd)
{
struct ice_vsi_ctx *tmp_vsi_ctx;
enum ice_status status;
if (vsi_handle >= ICE_MAX_VSI)
return ICE_ERR_PARAM;
status = ice_aq_add_vsi(hw, vsi_ctx, cd);
if (status)
return status;
tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
if (!tmp_vsi_ctx) {
/* Create a new VSI context */
tmp_vsi_ctx = (struct ice_vsi_ctx *)
ice_malloc(hw, sizeof(*tmp_vsi_ctx));
if (!tmp_vsi_ctx) {
ice_aq_free_vsi(hw, vsi_ctx, false, cd);
return ICE_ERR_NO_MEMORY;
}
*tmp_vsi_ctx = *vsi_ctx;
ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
} else {
/* update with new HW VSI num */
tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
}
return ICE_SUCCESS;
}
/**
* ice_free_vsi- free VSI context from hardware and VSI handle list
* @hw: pointer to the HW struct
* @vsi_handle: unique VSI handle
* @vsi_ctx: pointer to a VSI context struct
* @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
* @cd: pointer to command details structure or NULL
*
* Free VSI context info from hardware as well as from VSI handle list
*/
enum ice_status
ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
bool keep_vsi_alloc, struct ice_sq_cd *cd)
{
enum ice_status status;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
if (!status)
ice_clear_vsi_ctx(hw, vsi_handle);
return status;
}
/**
* ice_update_vsi
* @hw: pointer to the HW struct
* @vsi_handle: unique VSI handle
* @vsi_ctx: pointer to a VSI context struct
* @cd: pointer to command details structure or NULL
*
* Update VSI context in the hardware
*/
enum ice_status
ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
struct ice_sq_cd *cd)
{
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
return ice_aq_update_vsi(hw, vsi_ctx, cd);
}
/**
* ice_aq_get_vsi_params
* @hw: pointer to the HW struct
* @vsi_ctx: pointer to a VSI context struct
* @cd: pointer to command details structure or NULL
*
* Get VSI context info from hardware (0x0212)
*/
enum ice_status
ice_aq_get_vsi_params(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
struct ice_sq_cd *cd)
{
struct ice_aqc_add_get_update_free_vsi *cmd;
struct ice_aqc_get_vsi_resp *resp;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.vsi_cmd;
resp = &desc.params.get_vsi_resp;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_vsi_params);
cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
sizeof(vsi_ctx->info), cd);
if (!status) {
vsi_ctx->vsi_num = LE16_TO_CPU(resp->vsi_num) &
ICE_AQ_VSI_NUM_M;
vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
}
return status;
}
/**
* ice_aq_add_update_mir_rule - add/update a mirror rule
* @hw: pointer to the HW struct
* @rule_type: Rule Type
* @dest_vsi: VSI number to which packets will be mirrored
* @count: length of the list
* @mr_buf: buffer for list of mirrored VSI numbers
* @cd: pointer to command details structure or NULL
* @rule_id: Rule ID
*
* Add/Update Mirror Rule (0x260).
*/
enum ice_status
ice_aq_add_update_mir_rule(struct ice_hw *hw, u16 rule_type, u16 dest_vsi,
u16 count, struct ice_mir_rule_buf *mr_buf,
struct ice_sq_cd *cd, u16 *rule_id)
{
struct ice_aqc_add_update_mir_rule *cmd;
struct ice_aq_desc desc;
enum ice_status status;
__le16 *mr_list = NULL;
u16 buf_size = 0;
switch (rule_type) {
case ICE_AQC_RULE_TYPE_VPORT_INGRESS:
case ICE_AQC_RULE_TYPE_VPORT_EGRESS:
/* Make sure count and mr_buf are set for these rule_types */
if (!(count && mr_buf))
return ICE_ERR_PARAM;
buf_size = count * sizeof(__le16);
mr_list = (_FORCE_ __le16 *)ice_malloc(hw, buf_size);
if (!mr_list)
return ICE_ERR_NO_MEMORY;
break;
case ICE_AQC_RULE_TYPE_PPORT_INGRESS:
case ICE_AQC_RULE_TYPE_PPORT_EGRESS:
/* Make sure count and mr_buf are not set for these
* rule_types
*/
if (count || mr_buf)
return ICE_ERR_PARAM;
break;
default:
ice_debug(hw, ICE_DBG_SW, "Error due to unsupported rule_type %u\n", rule_type);
return ICE_ERR_OUT_OF_RANGE;
}
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_update_mir_rule);
/* Pre-process 'mr_buf' items for add/update of virtual port
* ingress/egress mirroring (but not physical port ingress/egress
* mirroring)
*/
if (mr_buf) {
int i;
for (i = 0; i < count; i++) {
u16 id;
id = mr_buf[i].vsi_idx & ICE_AQC_RULE_MIRRORED_VSI_M;
/* Validate specified VSI number, make sure it is less
* than ICE_MAX_VSI, if not return with error.
*/
if (id >= ICE_MAX_VSI) {
ice_debug(hw, ICE_DBG_SW, "Error VSI index (%u) out-of-range\n",
id);
ice_free(hw, mr_list);
return ICE_ERR_OUT_OF_RANGE;
}
/* add VSI to mirror rule */
if (mr_buf[i].add)
mr_list[i] =
CPU_TO_LE16(id | ICE_AQC_RULE_ACT_M);
else /* remove VSI from mirror rule */
mr_list[i] = CPU_TO_LE16(id);
}
}
cmd = &desc.params.add_update_rule;
if ((*rule_id) != ICE_INVAL_MIRROR_RULE_ID)
cmd->rule_id = CPU_TO_LE16(((*rule_id) & ICE_AQC_RULE_ID_M) |
ICE_AQC_RULE_ID_VALID_M);
cmd->rule_type = CPU_TO_LE16(rule_type & ICE_AQC_RULE_TYPE_M);
cmd->num_entries = CPU_TO_LE16(count);
cmd->dest = CPU_TO_LE16(dest_vsi);
status = ice_aq_send_cmd(hw, &desc, mr_list, buf_size, cd);
if (!status)
*rule_id = LE16_TO_CPU(cmd->rule_id) & ICE_AQC_RULE_ID_M;
ice_free(hw, mr_list);
return status;
}
/**
* ice_aq_delete_mir_rule - delete a mirror rule
* @hw: pointer to the HW struct
* @rule_id: Mirror rule ID (to be deleted)
* @keep_allocd: if set, the VSI stays part of the PF allocated res,
* otherwise it is returned to the shared pool
* @cd: pointer to command details structure or NULL
*
* Delete Mirror Rule (0x261).
*/
enum ice_status
ice_aq_delete_mir_rule(struct ice_hw *hw, u16 rule_id, bool keep_allocd,
struct ice_sq_cd *cd)
{
struct ice_aqc_delete_mir_rule *cmd;
struct ice_aq_desc desc;
/* rule_id should be in the range 0...63 */
if (rule_id >= ICE_MAX_NUM_MIRROR_RULES)
return ICE_ERR_OUT_OF_RANGE;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_del_mir_rule);
cmd = &desc.params.del_rule;
rule_id |= ICE_AQC_RULE_ID_VALID_M;
cmd->rule_id = CPU_TO_LE16(rule_id);
if (keep_allocd)
cmd->flags = CPU_TO_LE16(ICE_AQC_FLAG_KEEP_ALLOCD_M);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_alloc_free_vsi_list
* @hw: pointer to the HW struct
* @vsi_list_id: VSI list ID returned or used for lookup
* @lkup_type: switch rule filter lookup type
* @opc: switch rules population command type - pass in the command opcode
*
* allocates or free a VSI list resource
*/
static enum ice_status
ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
enum ice_sw_lkup_type lkup_type,
enum ice_adminq_opc opc)
{
struct ice_aqc_alloc_free_res_elem *sw_buf;
struct ice_aqc_res_elem *vsi_ele;
enum ice_status status;
u16 buf_len;
buf_len = ice_struct_size(sw_buf, elem, 1);
sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
if (!sw_buf)
return ICE_ERR_NO_MEMORY;
sw_buf->num_elems = CPU_TO_LE16(1);
if (lkup_type == ICE_SW_LKUP_MAC ||
lkup_type == ICE_SW_LKUP_MAC_VLAN ||
lkup_type == ICE_SW_LKUP_ETHERTYPE ||
lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
lkup_type == ICE_SW_LKUP_PROMISC ||
lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
lkup_type == ICE_SW_LKUP_LAST) {
sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
} else if (lkup_type == ICE_SW_LKUP_VLAN) {
sw_buf->res_type =
CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
} else {
status = ICE_ERR_PARAM;
goto ice_aq_alloc_free_vsi_list_exit;
}
if (opc == ice_aqc_opc_free_res)
sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(*vsi_list_id);
status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
if (status)
goto ice_aq_alloc_free_vsi_list_exit;
if (opc == ice_aqc_opc_alloc_res) {
vsi_ele = &sw_buf->elem[0];
*vsi_list_id = LE16_TO_CPU(vsi_ele->e.sw_resp);
}
ice_aq_alloc_free_vsi_list_exit:
ice_free(hw, sw_buf);
return status;
}
/**
* ice_aq_set_storm_ctrl - Sets storm control configuration
* @hw: pointer to the HW struct
* @bcast_thresh: represents the upper threshold for broadcast storm control
* @mcast_thresh: represents the upper threshold for multicast storm control
* @ctl_bitmask: storm control knobs
*
* Sets the storm control configuration (0x0280)
*/
enum ice_status
ice_aq_set_storm_ctrl(struct ice_hw *hw, u32 bcast_thresh, u32 mcast_thresh,
u32 ctl_bitmask)
{
struct ice_aqc_storm_cfg *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.storm_conf;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_storm_cfg);
cmd->bcast_thresh_size = CPU_TO_LE32(bcast_thresh & ICE_AQ_THRESHOLD_M);
cmd->mcast_thresh_size = CPU_TO_LE32(mcast_thresh & ICE_AQ_THRESHOLD_M);
cmd->storm_ctrl_ctrl = CPU_TO_LE32(ctl_bitmask);
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_aq_get_storm_ctrl - gets storm control configuration
* @hw: pointer to the HW struct
* @bcast_thresh: represents the upper threshold for broadcast storm control
* @mcast_thresh: represents the upper threshold for multicast storm control
* @ctl_bitmask: storm control knobs
*
* Gets the storm control configuration (0x0281)
*/
enum ice_status
ice_aq_get_storm_ctrl(struct ice_hw *hw, u32 *bcast_thresh, u32 *mcast_thresh,
u32 *ctl_bitmask)
{
enum ice_status status;
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_storm_cfg);
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
if (!status) {
struct ice_aqc_storm_cfg *resp = &desc.params.storm_conf;
if (bcast_thresh)
*bcast_thresh = LE32_TO_CPU(resp->bcast_thresh_size) &
ICE_AQ_THRESHOLD_M;
if (mcast_thresh)
*mcast_thresh = LE32_TO_CPU(resp->mcast_thresh_size) &
ICE_AQ_THRESHOLD_M;
if (ctl_bitmask)
*ctl_bitmask = LE32_TO_CPU(resp->storm_ctrl_ctrl);
}
return status;
}
/**
* ice_aq_sw_rules - add/update/remove switch rules
* @hw: pointer to the HW struct
* @rule_list: pointer to switch rule population list
* @rule_list_sz: total size of the rule list in bytes
* @num_rules: number of switch rules in the rule_list
* @opc: switch rules population command type - pass in the command opcode
* @cd: pointer to command details structure or NULL
*
* Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
*/
static enum ice_status
ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
if (opc != ice_aqc_opc_add_sw_rules &&
opc != ice_aqc_opc_update_sw_rules &&
opc != ice_aqc_opc_remove_sw_rules)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, opc);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
desc.params.sw_rules.num_rules_fltr_entry_index =
CPU_TO_LE16(num_rules);
status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
if (opc != ice_aqc_opc_add_sw_rules &&
hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
status = ICE_ERR_DOES_NOT_EXIST;
return status;
}
/**
* ice_aq_add_recipe - add switch recipe
* @hw: pointer to the HW struct
* @s_recipe_list: pointer to switch rule population list
* @num_recipes: number of switch recipes in the list
* @cd: pointer to command details structure or NULL
*
* Add(0x0290)
*/
enum ice_status
ice_aq_add_recipe(struct ice_hw *hw,
struct ice_aqc_recipe_data_elem *s_recipe_list,
u16 num_recipes, struct ice_sq_cd *cd)
{
struct ice_aqc_add_get_recipe *cmd;
struct ice_aq_desc desc;
u16 buf_size;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.add_get_recipe;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
cmd->num_sub_recipes = CPU_TO_LE16(num_recipes);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
buf_size = num_recipes * sizeof(*s_recipe_list);
return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
}
/**
* ice_aq_get_recipe - get switch recipe
* @hw: pointer to the HW struct
* @s_recipe_list: pointer to switch rule population list
* @num_recipes: pointer to the number of recipes (input and output)
* @recipe_root: root recipe number of recipe(s) to retrieve
* @cd: pointer to command details structure or NULL
*
* Get(0x0292)
*
* On input, *num_recipes should equal the number of entries in s_recipe_list.
* On output, *num_recipes will equal the number of entries returned in
* s_recipe_list.
*
* The caller must supply enough space in s_recipe_list to hold all possible
* recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
*/
enum ice_status
ice_aq_get_recipe(struct ice_hw *hw,
struct ice_aqc_recipe_data_elem *s_recipe_list,
u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
{
struct ice_aqc_add_get_recipe *cmd;
struct ice_aq_desc desc;
enum ice_status status;
u16 buf_size;
if (*num_recipes != ICE_MAX_NUM_RECIPES)
return ICE_ERR_PARAM;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.add_get_recipe;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
cmd->return_index = CPU_TO_LE16(recipe_root);
cmd->num_sub_recipes = 0;
buf_size = *num_recipes * sizeof(*s_recipe_list);
status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
/* cppcheck-suppress constArgument */
*num_recipes = LE16_TO_CPU(cmd->num_sub_recipes);
return status;
}
/**
* ice_aq_map_recipe_to_profile - Map recipe to packet profile
* @hw: pointer to the HW struct
* @profile_id: package profile ID to associate the recipe with
* @r_bitmap: Recipe bitmap filled in and need to be returned as response
* @cd: pointer to command details structure or NULL
* Recipe to profile association (0x0291)
*/
enum ice_status
ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
struct ice_sq_cd *cd)
{
struct ice_aqc_recipe_to_profile *cmd;
struct ice_aq_desc desc;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.recipe_to_profile;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
cmd->profile_id = CPU_TO_LE16(profile_id);
/* Set the recipe ID bit in the bitmask to let the device know which
* profile we are associating the recipe to
*/
ice_memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc),
ICE_NONDMA_TO_NONDMA);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_get_recipe_to_profile - Map recipe to packet profile
* @hw: pointer to the HW struct
* @profile_id: package profile ID to associate the recipe with
* @r_bitmap: Recipe bitmap filled in and need to be returned as response
* @cd: pointer to command details structure or NULL
* Associate profile ID with given recipe (0x0293)
*/
enum ice_status
ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
struct ice_sq_cd *cd)
{
struct ice_aqc_recipe_to_profile *cmd;
struct ice_aq_desc desc;
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.recipe_to_profile;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
cmd->profile_id = CPU_TO_LE16(profile_id);
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
if (!status)
ice_memcpy(r_bitmap, cmd->recipe_assoc,
sizeof(cmd->recipe_assoc), ICE_NONDMA_TO_NONDMA);
return status;
}
/**
* ice_alloc_recipe - add recipe resource
* @hw: pointer to the hardware structure
* @rid: recipe ID returned as response to AQ call
*/
enum ice_status ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
{
struct ice_aqc_alloc_free_res_elem *sw_buf;
enum ice_status status;
u16 buf_len;
buf_len = ice_struct_size(sw_buf, elem, 1);
sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
if (!sw_buf)
return ICE_ERR_NO_MEMORY;
sw_buf->num_elems = CPU_TO_LE16(1);
sw_buf->res_type = CPU_TO_LE16((ICE_AQC_RES_TYPE_RECIPE <<
ICE_AQC_RES_TYPE_S) |
ICE_AQC_RES_TYPE_FLAG_SHARED);
status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
ice_aqc_opc_alloc_res, NULL);
if (!status)
*rid = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
ice_free(hw, sw_buf);
return status;
}
/* ice_init_port_info - Initialize port_info with switch configuration data
* @pi: pointer to port_info
* @vsi_port_num: VSI number or port number
* @type: Type of switch element (port or VSI)
* @swid: switch ID of the switch the element is attached to
* @pf_vf_num: PF or VF number
* @is_vf: true if the element is a VF, false otherwise
*/
static void
ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
u16 swid, u16 pf_vf_num, bool is_vf)
{
switch (type) {
case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
pi->sw_id = swid;
pi->pf_vf_num = pf_vf_num;
pi->is_vf = is_vf;
pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL;
pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL;
break;
default:
ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
break;
}
}
/* ice_get_initial_sw_cfg - Get initial port and default VSI data
* @hw: pointer to the hardware structure
*/
enum ice_status ice_get_initial_sw_cfg(struct ice_hw *hw)
{
struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
enum ice_status status;
u8 num_total_ports;
u16 req_desc = 0;
u16 num_elems;
u8 j = 0;
u16 i;
num_total_ports = 1;
rbuf = (struct ice_aqc_get_sw_cfg_resp_elem *)
ice_malloc(hw, ICE_SW_CFG_MAX_BUF_LEN);
if (!rbuf)
return ICE_ERR_NO_MEMORY;
/* Multiple calls to ice_aq_get_sw_cfg may be required
* to get all the switch configuration information. The need
* for additional calls is indicated by ice_aq_get_sw_cfg
* writing a non-zero value in req_desc
*/
do {
struct ice_aqc_get_sw_cfg_resp_elem *ele;
status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
&req_desc, &num_elems, NULL);
if (status)
break;
for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
u16 pf_vf_num, swid, vsi_port_num;
bool is_vf = false;
u8 res_type;
vsi_port_num = LE16_TO_CPU(ele->vsi_port_num) &
ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
pf_vf_num = LE16_TO_CPU(ele->pf_vf_num) &
ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
swid = LE16_TO_CPU(ele->swid);
if (LE16_TO_CPU(ele->pf_vf_num) &
ICE_AQC_GET_SW_CONF_RESP_IS_VF)
is_vf = true;
res_type = (u8)(LE16_TO_CPU(ele->vsi_port_num) >>
ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
switch (res_type) {
case ICE_AQC_GET_SW_CONF_RESP_VSI:
if (hw->dcf_enabled && !is_vf)
hw->pf_id = pf_vf_num;
break;
case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
case ICE_AQC_GET_SW_CONF_RESP_VIRT_PORT:
if (j == num_total_ports) {
ice_debug(hw, ICE_DBG_SW, "more ports than expected\n");
status = ICE_ERR_CFG;
goto out;
}
ice_init_port_info(hw->port_info,
vsi_port_num, res_type, swid,
pf_vf_num, is_vf);
j++;
break;
default:
break;
}
}
} while (req_desc && !status);
out:
ice_free(hw, rbuf);
return status;
}
/**
* ice_fill_sw_info - Helper function to populate lb_en and lan_en
* @hw: pointer to the hardware structure
* @fi: filter info structure to fill/update
*
* This helper function populates the lb_en and lan_en elements of the provided
* ice_fltr_info struct using the switch's type and characteristics of the
* switch rule being configured.
*/
static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
{
if ((fi->flag & ICE_FLTR_RX) &&
(fi->fltr_act == ICE_FWD_TO_VSI ||
fi->fltr_act == ICE_FWD_TO_VSI_LIST) &&
fi->lkup_type == ICE_SW_LKUP_LAST)
fi->lan_en = true;
fi->lb_en = false;
fi->lan_en = false;
if ((fi->flag & ICE_FLTR_TX) &&
(fi->fltr_act == ICE_FWD_TO_VSI ||
fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
fi->fltr_act == ICE_FWD_TO_Q ||
fi->fltr_act == ICE_FWD_TO_QGRP)) {
/* Setting LB for prune actions will result in replicated
* packets to the internal switch that will be dropped.
*/
if (fi->lkup_type != ICE_SW_LKUP_VLAN)
fi->lb_en = true;
/* Set lan_en to TRUE if
* 1. The switch is a VEB AND
* 2
* 2.1 The lookup is a directional lookup like ethertype,
* promiscuous, ethertype-MAC, promiscuous-VLAN
* and default-port OR
* 2.2 The lookup is VLAN, OR
* 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
* 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
*
* OR
*
* The switch is a VEPA.
*
* In all other cases, the LAN enable has to be set to false.
*/
if (hw->evb_veb) {
if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
fi->lkup_type == ICE_SW_LKUP_PROMISC ||
fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
fi->lkup_type == ICE_SW_LKUP_DFLT ||
fi->lkup_type == ICE_SW_LKUP_VLAN ||
(fi->lkup_type == ICE_SW_LKUP_MAC &&
!IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)) ||
(fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
!IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)))
fi->lan_en = true;
} else {
fi->lan_en = true;
}
}
}
/**
* ice_fill_sw_rule - Helper function to fill switch rule structure
* @hw: pointer to the hardware structure
* @f_info: entry containing packet forwarding information
* @s_rule: switch rule structure to be filled in based on mac_entry
* @opc: switch rules population command type - pass in the command opcode
*/
static void
ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
struct ice_aqc_sw_rules_elem *s_rule, enum ice_adminq_opc opc)
{
u16 vlan_id = ICE_MAX_VLAN_ID + 1;
void *daddr = NULL;
u16 eth_hdr_sz;
u8 *eth_hdr;
u32 act = 0;
__be16 *off;
u8 q_rgn;
if (opc == ice_aqc_opc_remove_sw_rules) {
s_rule->pdata.lkup_tx_rx.act = 0;
s_rule->pdata.lkup_tx_rx.index =
CPU_TO_LE16(f_info->fltr_rule_id);
s_rule->pdata.lkup_tx_rx.hdr_len = 0;
return;
}
eth_hdr_sz = sizeof(dummy_eth_header);
eth_hdr = s_rule->pdata.lkup_tx_rx.hdr;
/* initialize the ether header with a dummy header */
ice_memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz, ICE_NONDMA_TO_NONDMA);
ice_fill_sw_info(hw, f_info);
switch (f_info->fltr_act) {
case ICE_FWD_TO_VSI:
act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
ICE_SINGLE_ACT_VSI_ID_M;
if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
act |= ICE_SINGLE_ACT_VSI_FORWARDING |
ICE_SINGLE_ACT_VALID_BIT;
break;
case ICE_FWD_TO_VSI_LIST:
act |= ICE_SINGLE_ACT_VSI_LIST;
act |= (f_info->fwd_id.vsi_list_id <<
ICE_SINGLE_ACT_VSI_LIST_ID_S) &
ICE_SINGLE_ACT_VSI_LIST_ID_M;
if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
act |= ICE_SINGLE_ACT_VSI_FORWARDING |
ICE_SINGLE_ACT_VALID_BIT;
break;
case ICE_FWD_TO_Q:
act |= ICE_SINGLE_ACT_TO_Q;
act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
ICE_SINGLE_ACT_Q_INDEX_M;
break;
case ICE_DROP_PACKET:
act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
ICE_SINGLE_ACT_VALID_BIT;
break;
case ICE_FWD_TO_QGRP:
q_rgn = f_info->qgrp_size > 0 ?
(u8)ice_ilog2(f_info->qgrp_size) : 0;
act |= ICE_SINGLE_ACT_TO_Q;
act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
ICE_SINGLE_ACT_Q_INDEX_M;
act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
ICE_SINGLE_ACT_Q_REGION_M;
break;
default:
return;
}
if (f_info->lb_en)
act |= ICE_SINGLE_ACT_LB_ENABLE;
if (f_info->lan_en)
act |= ICE_SINGLE_ACT_LAN_ENABLE;
switch (f_info->lkup_type) {
case ICE_SW_LKUP_MAC:
daddr = f_info->l_data.mac.mac_addr;
break;
case ICE_SW_LKUP_VLAN:
vlan_id = f_info->l_data.vlan.vlan_id;
if (f_info->fltr_act == ICE_FWD_TO_VSI ||
f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
act |= ICE_SINGLE_ACT_PRUNE;
act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
}
break;
case ICE_SW_LKUP_ETHERTYPE_MAC:
daddr = f_info->l_data.ethertype_mac.mac_addr;
/* fall-through */
case ICE_SW_LKUP_ETHERTYPE:
off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
*off = CPU_TO_BE16(f_info->l_data.ethertype_mac.ethertype);
break;
case ICE_SW_LKUP_MAC_VLAN:
daddr = f_info->l_data.mac_vlan.mac_addr;
vlan_id = f_info->l_data.mac_vlan.vlan_id;
break;
case ICE_SW_LKUP_PROMISC_VLAN:
vlan_id = f_info->l_data.mac_vlan.vlan_id;
/* fall-through */
case ICE_SW_LKUP_PROMISC:
daddr = f_info->l_data.mac_vlan.mac_addr;
break;
default:
break;
}
s_rule->type = (f_info->flag & ICE_FLTR_RX) ?
CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_RX) :
CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_TX);
/* Recipe set depending on lookup type */
s_rule->pdata.lkup_tx_rx.recipe_id = CPU_TO_LE16(f_info->lkup_type);
s_rule->pdata.lkup_tx_rx.src = CPU_TO_LE16(f_info->src);
s_rule->pdata.lkup_tx_rx.act = CPU_TO_LE32(act);
if (daddr)
ice_memcpy(eth_hdr + ICE_ETH_DA_OFFSET, daddr, ETH_ALEN,
ICE_NONDMA_TO_NONDMA);
if (!(vlan_id > ICE_MAX_VLAN_ID)) {
off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
*off = CPU_TO_BE16(vlan_id);
}
/* Create the switch rule with the final dummy Ethernet header */
if (opc != ice_aqc_opc_update_sw_rules)
s_rule->pdata.lkup_tx_rx.hdr_len = CPU_TO_LE16(eth_hdr_sz);
}
/**
* ice_add_marker_act
* @hw: pointer to the hardware structure
* @m_ent: the management entry for which sw marker needs to be added
* @sw_marker: sw marker to tag the Rx descriptor with
* @l_id: large action resource ID
*
* Create a large action to hold software marker and update the switch rule
* entry pointed by m_ent with newly created large action
*/
static enum ice_status
ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
u16 sw_marker, u16 l_id)
{
struct ice_aqc_sw_rules_elem *lg_act, *rx_tx;
/* For software marker we need 3 large actions
* 1. FWD action: FWD TO VSI or VSI LIST
* 2. GENERIC VALUE action to hold the profile ID
* 3. GENERIC VALUE action to hold the software marker ID
*/
const u16 num_lg_acts = 3;
enum ice_status status;
u16 lg_act_size;
u16 rules_size;
u32 act;
u16 id;
if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
return ICE_ERR_PARAM;
/* Create two back-to-back switch rules and submit them to the HW using
* one memory buffer:
* 1. Large Action
* 2. Look up Tx Rx
*/
lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_lg_acts);
rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
lg_act = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rules_size);
if (!lg_act)
return ICE_ERR_NO_MEMORY;
rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size);
/* Fill in the first switch rule i.e. large action */
lg_act->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
lg_act->pdata.lg_act.index = CPU_TO_LE16(l_id);
lg_act->pdata.lg_act.size = CPU_TO_LE16(num_lg_acts);
/* First action VSI forwarding or VSI list forwarding depending on how
* many VSIs
*/
id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
m_ent->fltr_info.fwd_id.hw_vsi_id;
act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M;
if (m_ent->vsi_count > 1)
act |= ICE_LG_ACT_VSI_LIST;
lg_act->pdata.lg_act.act[0] = CPU_TO_LE32(act);
/* Second action descriptor type */
act = ICE_LG_ACT_GENERIC;
act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
lg_act->pdata.lg_act.act[1] = CPU_TO_LE32(act);
act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
/* Third action Marker value */
act |= ICE_LG_ACT_GENERIC;
act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
ICE_LG_ACT_GENERIC_VALUE_M;
lg_act->pdata.lg_act.act[2] = CPU_TO_LE32(act);
/* call the fill switch rule to fill the lookup Tx Rx structure */
ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
ice_aqc_opc_update_sw_rules);
/* Update the action to point to the large action ID */
rx_tx->pdata.lkup_tx_rx.act =
CPU_TO_LE32(ICE_SINGLE_ACT_PTR |
((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
ICE_SINGLE_ACT_PTR_VAL_M));
/* Use the filter rule ID of the previously created rule with single
* act. Once the update happens, hardware will treat this as large
* action
*/
rx_tx->pdata.lkup_tx_rx.index =
CPU_TO_LE16(m_ent->fltr_info.fltr_rule_id);
status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
ice_aqc_opc_update_sw_rules, NULL);
if (!status) {
m_ent->lg_act_idx = l_id;
m_ent->sw_marker_id = sw_marker;
}
ice_free(hw, lg_act);
return status;
}
/**
* ice_add_counter_act - add/update filter rule with counter action
* @hw: pointer to the hardware structure
* @m_ent: the management entry for which counter needs to be added
* @counter_id: VLAN counter ID returned as part of allocate resource
* @l_id: large action resource ID
*/
static enum ice_status
ice_add_counter_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
u16 counter_id, u16 l_id)
{
struct ice_aqc_sw_rules_elem *lg_act;
struct ice_aqc_sw_rules_elem *rx_tx;
enum ice_status status;
/* 2 actions will be added while adding a large action counter */
const int num_acts = 2;
u16 lg_act_size;
u16 rules_size;
u16 f_rule_id;
u32 act;
u16 id;
if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
return ICE_ERR_PARAM;
/* Create two back-to-back switch rules and submit them to the HW using
* one memory buffer:
* 1. Large Action
* 2. Look up Tx Rx
*/
lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_acts);
rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
lg_act = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rules_size);
if (!lg_act)
return ICE_ERR_NO_MEMORY;
rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size);
/* Fill in the first switch rule i.e. large action */
lg_act->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
lg_act->pdata.lg_act.index = CPU_TO_LE16(l_id);
lg_act->pdata.lg_act.size = CPU_TO_LE16(num_acts);
/* First action VSI forwarding or VSI list forwarding depending on how
* many VSIs
*/
id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
m_ent->fltr_info.fwd_id.hw_vsi_id;
act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) &
ICE_LG_ACT_VSI_LIST_ID_M;
if (m_ent->vsi_count > 1)
act |= ICE_LG_ACT_VSI_LIST;
lg_act->pdata.lg_act.act[0] = CPU_TO_LE32(act);
/* Second action counter ID */
act = ICE_LG_ACT_STAT_COUNT;
act |= (counter_id << ICE_LG_ACT_STAT_COUNT_S) &
ICE_LG_ACT_STAT_COUNT_M;
lg_act->pdata.lg_act.act[1] = CPU_TO_LE32(act);
/* call the fill switch rule to fill the lookup Tx Rx structure */
ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
ice_aqc_opc_update_sw_rules);
act = ICE_SINGLE_ACT_PTR;
act |= (l_id << ICE_SINGLE_ACT_PTR_VAL_S) & ICE_SINGLE_ACT_PTR_VAL_M;
rx_tx->pdata.lkup_tx_rx.act = CPU_TO_LE32(act);
/* Use the filter rule ID of the previously created rule with single
* act. Once the update happens, hardware will treat this as large
* action
*/
f_rule_id = m_ent->fltr_info.fltr_rule_id;
rx_tx->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_rule_id);
status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
ice_aqc_opc_update_sw_rules, NULL);
if (!status) {
m_ent->lg_act_idx = l_id;
m_ent->counter_index = counter_id;
}
ice_free(hw, lg_act);
return status;
}
/**
* ice_create_vsi_list_map
* @hw: pointer to the hardware structure
* @vsi_handle_arr: array of VSI handles to set in the VSI mapping
* @num_vsi: number of VSI handles in the array
* @vsi_list_id: VSI list ID generated as part of allocate resource
*
* Helper function to create a new entry of VSI list ID to VSI mapping
* using the given VSI list ID
*/
static struct ice_vsi_list_map_info *
ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
u16 vsi_list_id)
{
struct ice_switch_info *sw = hw->switch_info;
struct ice_vsi_list_map_info *v_map;
int i;
v_map = (struct ice_vsi_list_map_info *)ice_malloc(hw, sizeof(*v_map));
if (!v_map)
return NULL;
v_map->vsi_list_id = vsi_list_id;
v_map->ref_cnt = 1;
for (i = 0; i < num_vsi; i++)
ice_set_bit(vsi_handle_arr[i], v_map->vsi_map);
LIST_ADD(&v_map->list_entry, &sw->vsi_list_map_head);
return v_map;
}
/**
* ice_update_vsi_list_rule
* @hw: pointer to the hardware structure
* @vsi_handle_arr: array of VSI handles to form a VSI list
* @num_vsi: number of VSI handles in the array
* @vsi_list_id: VSI list ID generated as part of allocate resource
* @remove: Boolean value to indicate if this is a remove action
* @opc: switch rules population command type - pass in the command opcode
* @lkup_type: lookup type of the filter
*
* Call AQ command to add a new switch rule or update existing switch rule
* using the given VSI list ID
*/
static enum ice_status
ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
enum ice_sw_lkup_type lkup_type)
{
struct ice_aqc_sw_rules_elem *s_rule;
enum ice_status status;
u16 s_rule_size;
u16 rule_type;
int i;
if (!num_vsi)
return ICE_ERR_PARAM;
if (lkup_type == ICE_SW_LKUP_MAC ||
lkup_type == ICE_SW_LKUP_MAC_VLAN ||
lkup_type == ICE_SW_LKUP_ETHERTYPE ||
lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
lkup_type == ICE_SW_LKUP_PROMISC ||
lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
lkup_type == ICE_SW_LKUP_LAST)
rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
ICE_AQC_SW_RULES_T_VSI_LIST_SET;
else if (lkup_type == ICE_SW_LKUP_VLAN)
rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
else
return ICE_ERR_PARAM;
s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(num_vsi);
s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size);
if (!s_rule)
return ICE_ERR_NO_MEMORY;
for (i = 0; i < num_vsi; i++) {
if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
status = ICE_ERR_PARAM;
goto exit;
}
/* AQ call requires hw_vsi_id(s) */
s_rule->pdata.vsi_list.vsi[i] =
CPU_TO_LE16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
}
s_rule->type = CPU_TO_LE16(rule_type);
s_rule->pdata.vsi_list.number_vsi = CPU_TO_LE16(num_vsi);
s_rule->pdata.vsi_list.index = CPU_TO_LE16(vsi_list_id);
status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
exit:
ice_free(hw, s_rule);
return status;
}
/**
* ice_create_vsi_list_rule - Creates and populates a VSI list rule
* @hw: pointer to the HW struct
* @vsi_handle_arr: array of VSI handles to form a VSI list
* @num_vsi: number of VSI handles in the array
* @vsi_list_id: stores the ID of the VSI list to be created
* @lkup_type: switch rule filter's lookup type
*/
static enum ice_status
ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
{
enum ice_status status;
status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
ice_aqc_opc_alloc_res);
if (status)
return status;
/* Update the newly created VSI list to include the specified VSIs */
return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
*vsi_list_id, false,
ice_aqc_opc_add_sw_rules, lkup_type);
}
/**
* ice_create_pkt_fwd_rule
* @hw: pointer to the hardware structure
* @recp_list: corresponding filter management list
* @f_entry: entry containing packet forwarding information
*
* Create switch rule with given filter information and add an entry
* to the corresponding filter management list to track this switch rule
* and VSI mapping
*/
static enum ice_status
ice_create_pkt_fwd_rule(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
struct ice_fltr_list_entry *f_entry)
{
struct ice_fltr_mgmt_list_entry *fm_entry;
struct ice_aqc_sw_rules_elem *s_rule;
enum ice_status status;
s_rule = (struct ice_aqc_sw_rules_elem *)
ice_malloc(hw, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE);
if (!s_rule)
return ICE_ERR_NO_MEMORY;
fm_entry = (struct ice_fltr_mgmt_list_entry *)
ice_malloc(hw, sizeof(*fm_entry));
if (!fm_entry) {
status = ICE_ERR_NO_MEMORY;
goto ice_create_pkt_fwd_rule_exit;
}
fm_entry->fltr_info = f_entry->fltr_info;
/* Initialize all the fields for the management entry */
fm_entry->vsi_count = 1;
fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
ice_aqc_opc_add_sw_rules);
status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1,
ice_aqc_opc_add_sw_rules, NULL);
if (status) {
ice_free(hw, fm_entry);
goto ice_create_pkt_fwd_rule_exit;
}
f_entry->fltr_info.fltr_rule_id =
LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
fm_entry->fltr_info.fltr_rule_id =
LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
/* The book keeping entries will get removed when base driver
* calls remove filter AQ command
*/
LIST_ADD(&fm_entry->list_entry, &recp_list->filt_rules);
ice_create_pkt_fwd_rule_exit:
ice_free(hw, s_rule);
return status;
}
/**
* ice_update_pkt_fwd_rule
* @hw: pointer to the hardware structure
* @f_info: filter information for switch rule
*
* Call AQ command to update a previously created switch rule with a
* VSI list ID
*/
static enum ice_status
ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
{
struct ice_aqc_sw_rules_elem *s_rule;
enum ice_status status;
s_rule = (struct ice_aqc_sw_rules_elem *)
ice_malloc(hw, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE);
if (!s_rule)
return ICE_ERR_NO_MEMORY;
ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
s_rule->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_info->fltr_rule_id);
/* Update switch rule with new rule set to forward VSI list */
status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1,
ice_aqc_opc_update_sw_rules, NULL);
ice_free(hw, s_rule);
return status;
}
/**
* ice_update_sw_rule_bridge_mode
* @hw: pointer to the HW struct
*
* Updates unicast switch filter rules based on VEB/VEPA mode
*/
enum ice_status ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
{
struct ice_switch_info *sw = hw->switch_info;
struct ice_fltr_mgmt_list_entry *fm_entry;
enum ice_status status = ICE_SUCCESS;
struct LIST_HEAD_TYPE *rule_head;
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
ice_acquire_lock(rule_lock);
LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry,
list_entry) {
struct ice_fltr_info *fi = &fm_entry->fltr_info;
u8 *addr = fi->l_data.mac.mac_addr;
/* Update unicast Tx rules to reflect the selected
* VEB/VEPA mode
*/
if ((fi->flag & ICE_FLTR_TX) && IS_UNICAST_ETHER_ADDR(addr) &&
(fi->fltr_act == ICE_FWD_TO_VSI ||
fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
fi->fltr_act == ICE_FWD_TO_Q ||
fi->fltr_act == ICE_FWD_TO_QGRP)) {
status = ice_update_pkt_fwd_rule(hw, fi);
if (status)
break;
}
}
ice_release_lock(rule_lock);
return status;
}
/**
* ice_add_update_vsi_list
* @hw: pointer to the hardware structure
* @m_entry: pointer to current filter management list entry
* @cur_fltr: filter information from the book keeping entry
* @new_fltr: filter information with the new VSI to be added
*
* Call AQ command to add or update previously created VSI list with new VSI.
*
* Helper function to do book keeping associated with adding filter information
* The algorithm to do the book keeping is described below :
* When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
* if only one VSI has been added till now
* Allocate a new VSI list and add two VSIs
* to this list using switch rule command
* Update the previously created switch rule with the
* newly created VSI list ID
* if a VSI list was previously created
* Add the new VSI to the previously created VSI list set
* using the update switch rule command
*/
static enum ice_status
ice_add_update_vsi_list(struct ice_hw *hw,
struct ice_fltr_mgmt_list_entry *m_entry,
struct ice_fltr_info *cur_fltr,
struct ice_fltr_info *new_fltr)
{
enum ice_status status = ICE_SUCCESS;
u16 vsi_list_id = 0;
if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
return ICE_ERR_NOT_IMPL;
if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
(cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
return ICE_ERR_NOT_IMPL;
if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
/* Only one entry existed in the mapping and it was not already
* a part of a VSI list. So, create a VSI list with the old and
* new VSIs.
*/
struct ice_fltr_info tmp_fltr;
u16 vsi_handle_arr[2];
/* A rule already exists with the new VSI being added */
if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
return ICE_ERR_ALREADY_EXISTS;
vsi_handle_arr[0] = cur_fltr->vsi_handle;
vsi_handle_arr[1] = new_fltr->vsi_handle;
status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
&vsi_list_id,
new_fltr->lkup_type);
if (status)
return status;
tmp_fltr = *new_fltr;
tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
/* Update the previous switch rule of "MAC forward to VSI" to
* "MAC fwd to VSI list"
*/
status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
if (status)
return status;
cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
m_entry->vsi_list_info =
ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
vsi_list_id);
if (!m_entry->vsi_list_info)
return ICE_ERR_NO_MEMORY;
/* If this entry was large action then the large action needs
* to be updated to point to FWD to VSI list
*/
if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
status =
ice_add_marker_act(hw, m_entry,
m_entry->sw_marker_id,
m_entry->lg_act_idx);
} else {
u16 vsi_handle = new_fltr->vsi_handle;
enum ice_adminq_opc opcode;
if (!m_entry->vsi_list_info)
return ICE_ERR_CFG;
/* A rule already exists with the new VSI being added */
if (ice_is_bit_set(m_entry->vsi_list_info->vsi_map, vsi_handle))
return ICE_SUCCESS;
/* Update the previously created VSI list set with
* the new VSI ID passed in
*/
vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
opcode = ice_aqc_opc_update_sw_rules;
status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
vsi_list_id, false, opcode,
new_fltr->lkup_type);
/* update VSI list mapping info with new VSI ID */
if (!status)
ice_set_bit(vsi_handle,
m_entry->vsi_list_info->vsi_map);
}
if (!status)
m_entry->vsi_count++;
return status;
}
/**
* ice_find_rule_entry - Search a rule entry
* @list_head: head of rule list
* @f_info: rule information
*
* Helper function to search for a given rule entry
* Returns pointer to entry storing the rule if found
*/
static struct ice_fltr_mgmt_list_entry *
ice_find_rule_entry(struct LIST_HEAD_TYPE *list_head,
struct ice_fltr_info *f_info)
{
struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
list_entry) {
if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
sizeof(f_info->l_data)) &&
f_info->flag == list_itr->fltr_info.flag) {
ret = list_itr;
break;
}
}
return ret;
}
/**
* ice_find_vsi_list_entry - Search VSI list map with VSI count 1
* @recp_list: VSI lists needs to be searched
* @vsi_handle: VSI handle to be found in VSI list
* @vsi_list_id: VSI list ID found containing vsi_handle
*
* Helper function to search a VSI list with single entry containing given VSI
* handle element. This can be extended further to search VSI list with more
* than 1 vsi_count. Returns pointer to VSI list entry if found.
*/
static struct ice_vsi_list_map_info *
ice_find_vsi_list_entry(struct ice_sw_recipe *recp_list, u16 vsi_handle,
u16 *vsi_list_id)
{
struct ice_vsi_list_map_info *map_info = NULL;
struct LIST_HEAD_TYPE *list_head;
list_head = &recp_list->filt_rules;
if (recp_list->adv_rule) {
struct ice_adv_fltr_mgmt_list_entry *list_itr;
LIST_FOR_EACH_ENTRY(list_itr, list_head,
ice_adv_fltr_mgmt_list_entry,
list_entry) {
if (list_itr->vsi_list_info) {
map_info = list_itr->vsi_list_info;
if (ice_is_bit_set(map_info->vsi_map,
vsi_handle)) {
*vsi_list_id = map_info->vsi_list_id;
return map_info;
}
}
}
} else {
struct ice_fltr_mgmt_list_entry *list_itr;
LIST_FOR_EACH_ENTRY(list_itr, list_head,
ice_fltr_mgmt_list_entry,
list_entry) {
if (list_itr->vsi_count == 1 &&
list_itr->vsi_list_info) {
map_info = list_itr->vsi_list_info;
if (ice_is_bit_set(map_info->vsi_map,
vsi_handle)) {
*vsi_list_id = map_info->vsi_list_id;
return map_info;
}
}
}
}
return NULL;
}
/**
* ice_add_rule_internal - add rule for a given lookup type
* @hw: pointer to the hardware structure
* @recp_list: recipe list for which rule has to be added
* @lport: logic port number on which function add rule
* @f_entry: structure containing MAC forwarding information
*
* Adds or updates the rule lists for a given recipe
*/
static enum ice_status
ice_add_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
u8 lport, struct ice_fltr_list_entry *f_entry)
{
struct ice_fltr_info *new_fltr, *cur_fltr;
struct ice_fltr_mgmt_list_entry *m_entry;
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
enum ice_status status = ICE_SUCCESS;
if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
return ICE_ERR_PARAM;
/* Load the hw_vsi_id only if the fwd action is fwd to VSI */
if (f_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI)
f_entry->fltr_info.fwd_id.hw_vsi_id =
ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
rule_lock = &recp_list->filt_rule_lock;
ice_acquire_lock(rule_lock);
new_fltr = &f_entry->fltr_info;
if (new_fltr->flag & ICE_FLTR_RX)
new_fltr->src = lport;
else if (new_fltr->flag & ICE_FLTR_TX)
new_fltr->src =
ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
m_entry = ice_find_rule_entry(&recp_list->filt_rules, new_fltr);
if (!m_entry) {
status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry);
goto exit_add_rule_internal;
}
cur_fltr = &m_entry->fltr_info;
status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
exit_add_rule_internal:
ice_release_lock(rule_lock);
return status;
}
/**
* ice_remove_vsi_list_rule
* @hw: pointer to the hardware structure
* @vsi_list_id: VSI list ID generated as part of allocate resource
* @lkup_type: switch rule filter lookup type
*
* The VSI list should be emptied before this function is called to remove the
* VSI list.
*/
static enum ice_status
ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
enum ice_sw_lkup_type lkup_type)
{
/* Free the vsi_list resource that we allocated. It is assumed that the
* list is empty at this point.
*/
return ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
ice_aqc_opc_free_res);
}
/**
* ice_rem_update_vsi_list
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle of the VSI to remove
* @fm_list: filter management entry for which the VSI list management needs to
* be done
*/
static enum ice_status
ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
struct ice_fltr_mgmt_list_entry *fm_list)
{
enum ice_sw_lkup_type lkup_type;
enum ice_status status = ICE_SUCCESS;
u16 vsi_list_id;
if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
fm_list->vsi_count == 0)
return ICE_ERR_PARAM;
/* A rule with the VSI being removed does not exist */
if (!ice_is_bit_set(fm_list->vsi_list_info->vsi_map, vsi_handle))
return ICE_ERR_DOES_NOT_EXIST;
lkup_type = fm_list->fltr_info.lkup_type;
vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
ice_aqc_opc_update_sw_rules,
lkup_type);
if (status)
return status;
fm_list->vsi_count--;
ice_clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
struct ice_vsi_list_map_info *vsi_list_info =
fm_list->vsi_list_info;
u16 rem_vsi_handle;
rem_vsi_handle = ice_find_first_bit(vsi_list_info->vsi_map,
ICE_MAX_VSI);
if (!ice_is_vsi_valid(hw, rem_vsi_handle))
return ICE_ERR_OUT_OF_RANGE;
/* Make sure VSI list is empty before removing it below */
status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
vsi_list_id, true,
ice_aqc_opc_update_sw_rules,
lkup_type);
if (status)
return status;
tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
tmp_fltr_info.fwd_id.hw_vsi_id =
ice_get_hw_vsi_num(hw, rem_vsi_handle);
tmp_fltr_info.vsi_handle = rem_vsi_handle;
status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
if (status) {
ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
tmp_fltr_info.fwd_id.hw_vsi_id, status);
return status;
}
fm_list->fltr_info = tmp_fltr_info;
}
if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
(fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
struct ice_vsi_list_map_info *vsi_list_info =
fm_list->vsi_list_info;
/* Remove the VSI list since it is no longer used */
status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
if (status) {
ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
vsi_list_id, status);
return status;
}
LIST_DEL(&vsi_list_info->list_entry);
ice_free(hw, vsi_list_info);
fm_list->vsi_list_info = NULL;
}
return status;
}
/**
* ice_remove_rule_internal - Remove a filter rule of a given type
*
* @hw: pointer to the hardware structure
* @recp_list: recipe list for which the rule needs to removed
* @f_entry: rule entry containing filter information
*/
static enum ice_status
ice_remove_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
struct ice_fltr_list_entry *f_entry)
{
struct ice_fltr_mgmt_list_entry *list_elem;
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
enum ice_status status = ICE_SUCCESS;
bool remove_rule = false;
u16 vsi_handle;
if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
return ICE_ERR_PARAM;
f_entry->fltr_info.fwd_id.hw_vsi_id =
ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
rule_lock = &recp_list->filt_rule_lock;
ice_acquire_lock(rule_lock);
list_elem = ice_find_rule_entry(&recp_list->filt_rules,
&f_entry->fltr_info);
if (!list_elem) {
status = ICE_ERR_DOES_NOT_EXIST;
goto exit;
}
if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
remove_rule = true;
} else if (!list_elem->vsi_list_info) {
status = ICE_ERR_DOES_NOT_EXIST;
goto exit;
} else if (list_elem->vsi_list_info->ref_cnt > 1) {
/* a ref_cnt > 1 indicates that the vsi_list is being
* shared by multiple rules. Decrement the ref_cnt and
* remove this rule, but do not modify the list, as it
* is in-use by other rules.
*/
list_elem->vsi_list_info->ref_cnt--;
remove_rule = true;
} else {
/* a ref_cnt of 1 indicates the vsi_list is only used
* by one rule. However, the original removal request is only
* for a single VSI. Update the vsi_list first, and only
* remove the rule if there are no further VSIs in this list.
*/
vsi_handle = f_entry->fltr_info.vsi_handle;
status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
if (status)
goto exit;
/* if VSI count goes to zero after updating the VSI list */
if (list_elem->vsi_count == 0)
remove_rule = true;
}
if (remove_rule) {
/* Remove the lookup rule */
struct ice_aqc_sw_rules_elem *s_rule;
s_rule = (struct ice_aqc_sw_rules_elem *)
ice_malloc(hw, ICE_SW_RULE_RX_TX_NO_HDR_SIZE);
if (!s_rule) {
status = ICE_ERR_NO_MEMORY;
goto exit;
}
ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
ice_aqc_opc_remove_sw_rules);
status = ice_aq_sw_rules(hw, s_rule,
ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1,
ice_aqc_opc_remove_sw_rules, NULL);
/* Remove a book keeping from the list */
ice_free(hw, s_rule);
if (status)
goto exit;
LIST_DEL(&list_elem->list_entry);
ice_free(hw, list_elem);
}
exit:
ice_release_lock(rule_lock);
return status;
}
/**
* ice_aq_get_res_alloc - get allocated resources
* @hw: pointer to the HW struct
* @num_entries: pointer to u16 to store the number of resource entries returned
* @buf: pointer to buffer
* @buf_size: size of buf
* @cd: pointer to command details structure or NULL
*
* The caller-supplied buffer must be large enough to store the resource
* information for all resource types. Each resource type is an
* ice_aqc_get_res_resp_elem structure.
*/
enum ice_status
ice_aq_get_res_alloc(struct ice_hw *hw, u16 *num_entries,
struct ice_aqc_get_res_resp_elem *buf, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_aqc_get_res_alloc *resp;
enum ice_status status;
struct ice_aq_desc desc;
if (!buf)
return ICE_ERR_BAD_PTR;
if (buf_size < ICE_AQ_GET_RES_ALLOC_BUF_LEN)
return ICE_ERR_INVAL_SIZE;
resp = &desc.params.get_res;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_res_alloc);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (!status && num_entries)
*num_entries = LE16_TO_CPU(resp->resp_elem_num);
return status;
}
/**
* ice_aq_get_res_descs - get allocated resource descriptors
* @hw: pointer to the hardware structure
* @num_entries: number of resource entries in buffer
* @buf: structure to hold response data buffer
* @buf_size: size of buffer
* @res_type: resource type
* @res_shared: is resource shared
* @desc_id: input - first desc ID to start; output - next desc ID
* @cd: pointer to command details structure or NULL
*/
enum ice_status
ice_aq_get_res_descs(struct ice_hw *hw, u16 num_entries,
struct ice_aqc_res_elem *buf, u16 buf_size, u16 res_type,
bool res_shared, u16 *desc_id, struct ice_sq_cd *cd)
{
struct ice_aqc_get_allocd_res_desc *cmd;
struct ice_aq_desc desc;
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.get_res_desc;
if (!buf)
return ICE_ERR_PARAM;
if (buf_size != (num_entries * sizeof(*buf)))
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_allocd_res_desc);
cmd->ops.cmd.res = CPU_TO_LE16(((res_type << ICE_AQC_RES_TYPE_S) &
ICE_AQC_RES_TYPE_M) | (res_shared ?
ICE_AQC_RES_TYPE_FLAG_SHARED : 0));
cmd->ops.cmd.first_desc = CPU_TO_LE16(*desc_id);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (!status)
*desc_id = LE16_TO_CPU(cmd->ops.resp.next_desc);
return status;
}
/**
* ice_add_mac_rule - Add a MAC address based filter rule
* @hw: pointer to the hardware structure
* @m_list: list of MAC addresses and forwarding information
* @sw: pointer to switch info struct for which function add rule
* @lport: logic port number on which function add rule
*
* IMPORTANT: When the ucast_shared flag is set to false and m_list has
* multiple unicast addresses, the function assumes that all the
* addresses are unique in a given add_mac call. It doesn't
* check for duplicates in this case, removing duplicates from a given
* list should be taken care of in the caller of this function.
*/
static enum ice_status
ice_add_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list,
struct ice_switch_info *sw, u8 lport)
{
struct ice_sw_recipe *recp_list = &sw->recp_list[ICE_SW_LKUP_MAC];
struct ice_aqc_sw_rules_elem *s_rule, *r_iter;
struct ice_fltr_list_entry *m_list_itr;
struct LIST_HEAD_TYPE *rule_head;
u16 total_elem_left, s_rule_size;
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
enum ice_status status = ICE_SUCCESS;
u16 num_unicast = 0;
u8 elem_sent;
s_rule = NULL;
rule_lock = &recp_list->filt_rule_lock;
rule_head = &recp_list->filt_rules;
LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
list_entry) {
u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
u16 vsi_handle;
u16 hw_vsi_id;
m_list_itr->fltr_info.flag = ICE_FLTR_TX;
vsi_handle = m_list_itr->fltr_info.vsi_handle;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
/* update the src in case it is VSI num */
if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
return ICE_ERR_PARAM;
m_list_itr->fltr_info.src = hw_vsi_id;
if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
IS_ZERO_ETHER_ADDR(add))
return ICE_ERR_PARAM;
if (IS_UNICAST_ETHER_ADDR(add) && !hw->ucast_shared) {
/* Don't overwrite the unicast address */
ice_acquire_lock(rule_lock);
if (ice_find_rule_entry(rule_head,
&m_list_itr->fltr_info)) {
ice_release_lock(rule_lock);
return ICE_ERR_ALREADY_EXISTS;
}
ice_release_lock(rule_lock);
num_unicast++;
} else if (IS_MULTICAST_ETHER_ADDR(add) ||
(IS_UNICAST_ETHER_ADDR(add) && hw->ucast_shared)) {
m_list_itr->status =
ice_add_rule_internal(hw, recp_list, lport,
m_list_itr);
if (m_list_itr->status)
return m_list_itr->status;
}
}
ice_acquire_lock(rule_lock);
/* Exit if no suitable entries were found for adding bulk switch rule */
if (!num_unicast) {
status = ICE_SUCCESS;
goto ice_add_mac_exit;
}
/* Allocate switch rule buffer for the bulk update for unicast */
s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
s_rule = (struct ice_aqc_sw_rules_elem *)
ice_calloc(hw, num_unicast, s_rule_size);
if (!s_rule) {
status = ICE_ERR_NO_MEMORY;
goto ice_add_mac_exit;
}
r_iter = s_rule;
LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
list_entry) {
struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter,
ice_aqc_opc_add_sw_rules);
r_iter = (struct ice_aqc_sw_rules_elem *)
((u8 *)r_iter + s_rule_size);
}
}
/* Call AQ bulk switch rule update for all unicast addresses */
r_iter = s_rule;
/* Call AQ switch rule in AQ_MAX chunk */
for (total_elem_left = num_unicast; total_elem_left > 0;
total_elem_left -= elem_sent) {
struct ice_aqc_sw_rules_elem *entry = r_iter;
elem_sent = MIN_T(u8, total_elem_left,
(ICE_AQ_MAX_BUF_LEN / s_rule_size));
status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size,
elem_sent, ice_aqc_opc_add_sw_rules,
NULL);
if (status)
goto ice_add_mac_exit;
r_iter = (struct ice_aqc_sw_rules_elem *)
((u8 *)r_iter + (elem_sent * s_rule_size));
}
/* Fill up rule ID based on the value returned from FW */
r_iter = s_rule;
LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
list_entry) {
struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
struct ice_fltr_mgmt_list_entry *fm_entry;
if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
f_info->fltr_rule_id =
LE16_TO_CPU(r_iter->pdata.lkup_tx_rx.index);
f_info->fltr_act = ICE_FWD_TO_VSI;
/* Create an entry to track this MAC address */
fm_entry = (struct ice_fltr_mgmt_list_entry *)
ice_malloc(hw, sizeof(*fm_entry));
if (!fm_entry) {
status = ICE_ERR_NO_MEMORY;
goto ice_add_mac_exit;
}
fm_entry->fltr_info = *f_info;
fm_entry->vsi_count = 1;
/* The book keeping entries will get removed when
* base driver calls remove filter AQ command
*/
LIST_ADD(&fm_entry->list_entry, rule_head);
r_iter = (struct ice_aqc_sw_rules_elem *)
((u8 *)r_iter + s_rule_size);
}
}
ice_add_mac_exit:
ice_release_lock(rule_lock);
if (s_rule)
ice_free(hw, s_rule);
return status;
}
/**
* ice_add_mac - Add a MAC address based filter rule
* @hw: pointer to the hardware structure
* @m_list: list of MAC addresses and forwarding information
*
* Function add MAC rule for logical port from HW struct
*/
enum ice_status ice_add_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
{
if (!m_list || !hw)
return ICE_ERR_PARAM;
return ice_add_mac_rule(hw, m_list, hw->switch_info,
hw->port_info->lport);
}
/**
* ice_add_vlan_internal - Add one VLAN based filter rule
* @hw: pointer to the hardware structure
* @recp_list: recipe list for which rule has to be added
* @f_entry: filter entry containing one VLAN information
*/
static enum ice_status
ice_add_vlan_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
struct ice_fltr_list_entry *f_entry)
{
struct ice_fltr_mgmt_list_entry *v_list_itr;
struct ice_fltr_info *new_fltr, *cur_fltr;
enum ice_sw_lkup_type lkup_type;
u16 vsi_list_id = 0, vsi_handle;
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
enum ice_status status = ICE_SUCCESS;
if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
return ICE_ERR_PARAM;
f_entry->fltr_info.fwd_id.hw_vsi_id =
ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
new_fltr = &f_entry->fltr_info;
/* VLAN ID should only be 12 bits */
if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
return ICE_ERR_PARAM;
if (new_fltr->src_id != ICE_SRC_ID_VSI)
return ICE_ERR_PARAM;
new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
lkup_type = new_fltr->lkup_type;
vsi_handle = new_fltr->vsi_handle;
rule_lock = &recp_list->filt_rule_lock;
ice_acquire_lock(rule_lock);
v_list_itr = ice_find_rule_entry(&recp_list->filt_rules, new_fltr);
if (!v_list_itr) {
struct ice_vsi_list_map_info *map_info = NULL;
if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
/* All VLAN pruning rules use a VSI list. Check if
* there is already a VSI list containing VSI that we
* want to add. If found, use the same vsi_list_id for
* this new VLAN rule or else create a new list.
*/
map_info = ice_find_vsi_list_entry(recp_list,
vsi_handle,
&vsi_list_id);
if (!map_info) {
status = ice_create_vsi_list_rule(hw,
&vsi_handle,
1,
&vsi_list_id,
lkup_type);
if (status)
goto exit;
}
/* Convert the action to forwarding to a VSI list. */
new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
new_fltr->fwd_id.vsi_list_id = vsi_list_id;
}
status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry);
if (!status) {
v_list_itr = ice_find_rule_entry(&recp_list->filt_rules,
new_fltr);
if (!v_list_itr) {
status = ICE_ERR_DOES_NOT_EXIST;
goto exit;
}
/* reuse VSI list for new rule and increment ref_cnt */
if (map_info) {
v_list_itr->vsi_list_info = map_info;
map_info->ref_cnt++;
} else {
v_list_itr->vsi_list_info =
ice_create_vsi_list_map(hw, &vsi_handle,
1, vsi_list_id);
}
}
} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
/* Update existing VSI list to add new VSI ID only if it used
* by one VLAN rule.
*/
cur_fltr = &v_list_itr->fltr_info;
status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
new_fltr);
} else {
/* If VLAN rule exists and VSI list being used by this rule is
* referenced by more than 1 VLAN rule. Then create a new VSI
* list appending previous VSI with new VSI and update existing
* VLAN rule to point to new VSI list ID
*/
struct ice_fltr_info tmp_fltr;
u16 vsi_handle_arr[2];
u16 cur_handle;
/* Current implementation only supports reusing VSI list with
* one VSI count. We should never hit below condition
*/
if (v_list_itr->vsi_count > 1 &&
v_list_itr->vsi_list_info->ref_cnt > 1) {
ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
status = ICE_ERR_CFG;
goto exit;
}
cur_handle =
ice_find_first_bit(v_list_itr->vsi_list_info->vsi_map,
ICE_MAX_VSI);
/* A rule already exists with the new VSI being added */
if (cur_handle == vsi_handle) {
status = ICE_ERR_ALREADY_EXISTS;
goto exit;
}
vsi_handle_arr[0] = cur_handle;
vsi_handle_arr[1] = vsi_handle;
status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
&vsi_list_id, lkup_type);
if (status)
goto exit;
tmp_fltr = v_list_itr->fltr_info;
tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
/* Update the previous switch rule to a new VSI list which
* includes current VSI that is requested
*/
status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
if (status)
goto exit;
/* before overriding VSI list map info. decrement ref_cnt of
* previous VSI list
*/
v_list_itr->vsi_list_info->ref_cnt--;
/* now update to newly created list */
v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
v_list_itr->vsi_list_info =
ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
vsi_list_id);
v_list_itr->vsi_count++;
}
exit:
ice_release_lock(rule_lock);
return status;
}
/**
* ice_add_vlan_rule - Add VLAN based filter rule
* @hw: pointer to the hardware structure
* @v_list: list of VLAN entries and forwarding information
* @sw: pointer to switch info struct for which function add rule
*/
static enum ice_status
ice_add_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list,
struct ice_switch_info *sw)
{
struct ice_fltr_list_entry *v_list_itr;
struct ice_sw_recipe *recp_list;
recp_list = &sw->recp_list[ICE_SW_LKUP_VLAN];
LIST_FOR_EACH_ENTRY(v_list_itr, v_list, ice_fltr_list_entry,
list_entry) {
if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
return ICE_ERR_PARAM;
v_list_itr->fltr_info.flag = ICE_FLTR_TX;
v_list_itr->status = ice_add_vlan_internal(hw, recp_list,
v_list_itr);
if (v_list_itr->status)
return v_list_itr->status;
}
return ICE_SUCCESS;
}
/**
* ice_add_vlan - Add a VLAN based filter rule
* @hw: pointer to the hardware structure
* @v_list: list of VLAN and forwarding information
*
* Function add VLAN rule for logical port from HW struct
*/
enum ice_status ice_add_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
{
if (!v_list || !hw)
return ICE_ERR_PARAM;
return ice_add_vlan_rule(hw, v_list, hw->switch_info);
}
/**
* ice_add_mac_vlan - Add MAC and VLAN pair based filter rule
* @hw: pointer to the hardware structure
* @mv_list: list of MAC and VLAN filters
* @sw: pointer to switch info struct for which function add rule
* @lport: logic port number on which function add rule
*
* If the VSI on which the MAC-VLAN pair has to be added has Rx and Tx VLAN
* pruning bits enabled, then it is the responsibility of the caller to make
* sure to add a VLAN only filter on the same VSI. Packets belonging to that
* VLAN won't be received on that VSI otherwise.
*/
static enum ice_status
ice_add_mac_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *mv_list,
struct ice_switch_info *sw, u8 lport)
{
struct ice_fltr_list_entry *mv_list_itr;
struct ice_sw_recipe *recp_list;
if (!mv_list || !hw)
return ICE_ERR_PARAM;
recp_list = &sw->recp_list[ICE_SW_LKUP_MAC_VLAN];
LIST_FOR_EACH_ENTRY(mv_list_itr, mv_list, ice_fltr_list_entry,
list_entry) {
enum ice_sw_lkup_type l_type =
mv_list_itr->fltr_info.lkup_type;
if (l_type != ICE_SW_LKUP_MAC_VLAN)
return ICE_ERR_PARAM;
mv_list_itr->fltr_info.flag = ICE_FLTR_TX;
mv_list_itr->status =
ice_add_rule_internal(hw, recp_list, lport,
mv_list_itr);
if (mv_list_itr->status)
return mv_list_itr->status;
}
return ICE_SUCCESS;
}
/**
* ice_add_mac_vlan - Add a MAC VLAN address based filter rule
* @hw: pointer to the hardware structure
* @mv_list: list of MAC VLAN addresses and forwarding information
*
* Function add MAC VLAN rule for logical port from HW struct
*/
enum ice_status
ice_add_mac_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *mv_list)
{
if (!mv_list || !hw)
return ICE_ERR_PARAM;
return ice_add_mac_vlan_rule(hw, mv_list, hw->switch_info,
hw->port_info->lport);
}
/**
* ice_add_eth_mac_rule - Add ethertype and MAC based filter rule
* @hw: pointer to the hardware structure
* @em_list: list of ether type MAC filter, MAC is optional
* @sw: pointer to switch info struct for which function add rule
* @lport: logic port number on which function add rule
*
* This function requires the caller to populate the entries in
* the filter list with the necessary fields (including flags to
* indicate Tx or Rx rules).
*/
static enum ice_status
ice_add_eth_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list,
struct ice_switch_info *sw, u8 lport)
{
struct ice_fltr_list_entry *em_list_itr;
LIST_FOR_EACH_ENTRY(em_list_itr, em_list, ice_fltr_list_entry,
list_entry) {
struct ice_sw_recipe *recp_list;
enum ice_sw_lkup_type l_type;
l_type = em_list_itr->fltr_info.lkup_type;
recp_list = &sw->recp_list[l_type];
if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
l_type != ICE_SW_LKUP_ETHERTYPE)
return ICE_ERR_PARAM;
em_list_itr->status = ice_add_rule_internal(hw, recp_list,
lport,
em_list_itr);
if (em_list_itr->status)
return em_list_itr->status;
}
return ICE_SUCCESS;
}
/**
* ice_add_eth_mac - Add a ethertype based filter rule
* @hw: pointer to the hardware structure
* @em_list: list of ethertype and forwarding information
*
* Function add ethertype rule for logical port from HW struct
*/
enum ice_status
ice_add_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
{
if (!em_list || !hw)
return ICE_ERR_PARAM;
return ice_add_eth_mac_rule(hw, em_list, hw->switch_info,
hw->port_info->lport);
}
/**
* ice_remove_eth_mac_rule - Remove an ethertype (or MAC) based filter rule
* @hw: pointer to the hardware structure
* @em_list: list of ethertype or ethertype MAC entries
* @sw: pointer to switch info struct for which function add rule
*/
static enum ice_status
ice_remove_eth_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list,
struct ice_switch_info *sw)
{
struct ice_fltr_list_entry *em_list_itr, *tmp;
LIST_FOR_EACH_ENTRY_SAFE(em_list_itr, tmp, em_list, ice_fltr_list_entry,
list_entry) {
struct ice_sw_recipe *recp_list;
enum ice_sw_lkup_type l_type;
l_type = em_list_itr->fltr_info.lkup_type;
if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
l_type != ICE_SW_LKUP_ETHERTYPE)
return ICE_ERR_PARAM;
recp_list = &sw->recp_list[l_type];
em_list_itr->status = ice_remove_rule_internal(hw, recp_list,
em_list_itr);
if (em_list_itr->status)
return em_list_itr->status;
}
return ICE_SUCCESS;
}
/**
* ice_remove_eth_mac - remove a ethertype based filter rule
* @hw: pointer to the hardware structure
* @em_list: list of ethertype and forwarding information
*
*/
enum ice_status
ice_remove_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
{
if (!em_list || !hw)
return ICE_ERR_PARAM;
return ice_remove_eth_mac_rule(hw, em_list, hw->switch_info);
}
/**
* ice_rem_sw_rule_info
* @hw: pointer to the hardware structure
* @rule_head: pointer to the switch list structure that we want to delete
*/
static void
ice_rem_sw_rule_info(struct ice_hw *hw, struct LIST_HEAD_TYPE *rule_head)
{
if (!LIST_EMPTY(rule_head)) {
struct ice_fltr_mgmt_list_entry *entry;
struct ice_fltr_mgmt_list_entry *tmp;
LIST_FOR_EACH_ENTRY_SAFE(entry, tmp, rule_head,
ice_fltr_mgmt_list_entry, list_entry) {
LIST_DEL(&entry->list_entry);
ice_free(hw, entry);
}
}
}
/**
* ice_rem_adv_rule_info
* @hw: pointer to the hardware structure
* @rule_head: pointer to the switch list structure that we want to delete
*/
static void
ice_rem_adv_rule_info(struct ice_hw *hw, struct LIST_HEAD_TYPE *rule_head)
{
struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
struct ice_adv_fltr_mgmt_list_entry *lst_itr;
if (LIST_EMPTY(rule_head))
return;
LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry, rule_head,
ice_adv_fltr_mgmt_list_entry, list_entry) {
LIST_DEL(&lst_itr->list_entry);
ice_free(hw, lst_itr->lkups);
ice_free(hw, lst_itr);
}
}
/**
* ice_rem_all_sw_rules_info
* @hw: pointer to the hardware structure
*/
void ice_rem_all_sw_rules_info(struct ice_hw *hw)
{
struct ice_switch_info *sw = hw->switch_info;
u8 i;
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
struct LIST_HEAD_TYPE *rule_head;
rule_head = &sw->recp_list[i].filt_rules;
if (!sw->recp_list[i].adv_rule)
ice_rem_sw_rule_info(hw, rule_head);
else
ice_rem_adv_rule_info(hw, rule_head);
if (sw->recp_list[i].adv_rule &&
LIST_EMPTY(&sw->recp_list[i].filt_rules))
sw->recp_list[i].adv_rule = false;
}
}
/**
* ice_cfg_dflt_vsi - change state of VSI to set/clear default
* @pi: pointer to the port_info structure
* @vsi_handle: VSI handle to set as default
* @set: true to add the above mentioned switch rule, false to remove it
* @direction: ICE_FLTR_RX or ICE_FLTR_TX
*
* add filter rule to set/unset given VSI as default VSI for the switch
* (represented by swid)
*/
enum ice_status
ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
u8 direction)
{
struct ice_aqc_sw_rules_elem *s_rule;
struct ice_fltr_info f_info;
struct ice_hw *hw = pi->hw;
enum ice_adminq_opc opcode;
enum ice_status status;
u16 s_rule_size;
u16 hw_vsi_id;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
s_rule_size = set ? ICE_SW_RULE_RX_TX_ETH_HDR_SIZE :
ICE_SW_RULE_RX_TX_NO_HDR_SIZE;
s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size);
if (!s_rule)
return ICE_ERR_NO_MEMORY;
ice_memset(&f_info, 0, sizeof(f_info), ICE_NONDMA_MEM);
f_info.lkup_type = ICE_SW_LKUP_DFLT;
f_info.flag = direction;
f_info.fltr_act = ICE_FWD_TO_VSI;
f_info.fwd_id.hw_vsi_id = hw_vsi_id;
if (f_info.flag & ICE_FLTR_RX) {
f_info.src = pi->lport;
f_info.src_id = ICE_SRC_ID_LPORT;
if (!set)
f_info.fltr_rule_id =
pi->dflt_rx_vsi_rule_id;
} else if (f_info.flag & ICE_FLTR_TX) {
f_info.src_id = ICE_SRC_ID_VSI;
f_info.src = hw_vsi_id;
if (!set)
f_info.fltr_rule_id =
pi->dflt_tx_vsi_rule_id;
}
if (set)
opcode = ice_aqc_opc_add_sw_rules;
else
opcode = ice_aqc_opc_remove_sw_rules;
ice_fill_sw_rule(hw, &f_info, s_rule, opcode);
status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opcode, NULL);
if (status || !(f_info.flag & ICE_FLTR_TX_RX))
goto out;
if (set) {
u16 index = LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
if (f_info.flag & ICE_FLTR_TX) {
pi->dflt_tx_vsi_num = hw_vsi_id;
pi->dflt_tx_vsi_rule_id = index;
} else if (f_info.flag & ICE_FLTR_RX) {
pi->dflt_rx_vsi_num = hw_vsi_id;
pi->dflt_rx_vsi_rule_id = index;
}
} else {
if (f_info.flag & ICE_FLTR_TX) {
pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL;
pi->dflt_tx_vsi_rule_id = ICE_INVAL_ACT;
} else if (f_info.flag & ICE_FLTR_RX) {
pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL;
pi->dflt_rx_vsi_rule_id = ICE_INVAL_ACT;
}
}
out:
ice_free(hw, s_rule);
return status;
}
/**
* ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry
* @list_head: head of rule list
* @f_info: rule information
*
* Helper function to search for a unicast rule entry - this is to be used
* to remove unicast MAC filter that is not shared with other VSIs on the
* PF switch.
*
* Returns pointer to entry storing the rule if found
*/
static struct ice_fltr_mgmt_list_entry *
ice_find_ucast_rule_entry(struct LIST_HEAD_TYPE *list_head,
struct ice_fltr_info *f_info)
{
struct ice_fltr_mgmt_list_entry *list_itr;
LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
list_entry) {
if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
sizeof(f_info->l_data)) &&
f_info->fwd_id.hw_vsi_id ==
list_itr->fltr_info.fwd_id.hw_vsi_id &&
f_info->flag == list_itr->fltr_info.flag)
return list_itr;
}
return NULL;
}
/**
* ice_remove_mac_rule - remove a MAC based filter rule
* @hw: pointer to the hardware structure
* @m_list: list of MAC addresses and forwarding information
* @recp_list: list from which function remove MAC address
*
* This function removes either a MAC filter rule or a specific VSI from a
* VSI list for a multicast MAC address.
*
* Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by
* ice_add_mac. Caller should be aware that this call will only work if all
* the entries passed into m_list were added previously. It will not attempt to
* do a partial remove of entries that were found.
*/
static enum ice_status
ice_remove_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list,
struct ice_sw_recipe *recp_list)
{
struct ice_fltr_list_entry *list_itr, *tmp;
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
if (!m_list)
return ICE_ERR_PARAM;
rule_lock = &recp_list->filt_rule_lock;
LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, m_list, ice_fltr_list_entry,
list_entry) {
enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0];
u16 vsi_handle;
if (l_type != ICE_SW_LKUP_MAC)
return ICE_ERR_PARAM;
vsi_handle = list_itr->fltr_info.vsi_handle;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
list_itr->fltr_info.fwd_id.hw_vsi_id =
ice_get_hw_vsi_num(hw, vsi_handle);
if (IS_UNICAST_ETHER_ADDR(add) && !hw->ucast_shared) {
/* Don't remove the unicast address that belongs to
* another VSI on the switch, since it is not being
* shared...
*/
ice_acquire_lock(rule_lock);
if (!ice_find_ucast_rule_entry(&recp_list->filt_rules,
&list_itr->fltr_info)) {
ice_release_lock(rule_lock);
return ICE_ERR_DOES_NOT_EXIST;
}
ice_release_lock(rule_lock);
}
list_itr->status = ice_remove_rule_internal(hw, recp_list,
list_itr);
if (list_itr->status)
return list_itr->status;
}
return ICE_SUCCESS;
}
/**
* ice_remove_mac - remove a MAC address based filter rule
* @hw: pointer to the hardware structure
* @m_list: list of MAC addresses and forwarding information
*
*/
enum ice_status ice_remove_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
{
struct ice_sw_recipe *recp_list;
recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
return ice_remove_mac_rule(hw, m_list, recp_list);
}
/**
* ice_remove_vlan_rule - Remove VLAN based filter rule
* @hw: pointer to the hardware structure
* @v_list: list of VLAN entries and forwarding information
* @recp_list: list from which function remove VLAN
*/
static enum ice_status
ice_remove_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list,
struct ice_sw_recipe *recp_list)
{
struct ice_fltr_list_entry *v_list_itr, *tmp;
LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
list_entry) {
enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
if (l_type != ICE_SW_LKUP_VLAN)
return ICE_ERR_PARAM;
v_list_itr->status = ice_remove_rule_internal(hw, recp_list,
v_list_itr);
if (v_list_itr->status)
return v_list_itr->status;
}
return ICE_SUCCESS;
}
/**
* ice_remove_vlan - remove a VLAN address based filter rule
* @hw: pointer to the hardware structure
* @v_list: list of VLAN and forwarding information
*
*/
enum ice_status
ice_remove_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
{
struct ice_sw_recipe *recp_list;
if (!v_list || !hw)
return ICE_ERR_PARAM;
recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_VLAN];
return ice_remove_vlan_rule(hw, v_list, recp_list);
}
/**
* ice_remove_mac_vlan_rule - Remove MAC VLAN based filter rule
* @hw: pointer to the hardware structure
* @v_list: list of MAC VLAN entries and forwarding information
* @recp_list: list from which function remove MAC VLAN
*/
static enum ice_status
ice_remove_mac_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list,
struct ice_sw_recipe *recp_list)
{
struct ice_fltr_list_entry *v_list_itr, *tmp;
recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC_VLAN];
LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
list_entry) {
enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
if (l_type != ICE_SW_LKUP_MAC_VLAN)
return ICE_ERR_PARAM;
v_list_itr->status =
ice_remove_rule_internal(hw, recp_list,
v_list_itr);
if (v_list_itr->status)
return v_list_itr->status;
}
return ICE_SUCCESS;
}
/**
* ice_remove_mac_vlan - remove a MAC VLAN address based filter rule
* @hw: pointer to the hardware structure
* @mv_list: list of MAC VLAN and forwarding information
*/
enum ice_status
ice_remove_mac_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *mv_list)
{
struct ice_sw_recipe *recp_list;
if (!mv_list || !hw)
return ICE_ERR_PARAM;
recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC_VLAN];
return ice_remove_mac_vlan_rule(hw, mv_list, recp_list);
}
/**
* ice_vsi_uses_fltr - Determine if given VSI uses specified filter
* @fm_entry: filter entry to inspect
* @vsi_handle: VSI handle to compare with filter info
*/
static bool
ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
{
return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
fm_entry->fltr_info.vsi_handle == vsi_handle) ||
(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
fm_entry->vsi_list_info &&
(ice_is_bit_set(fm_entry->vsi_list_info->vsi_map,
vsi_handle))));
}
/**
* ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to remove filters from
* @vsi_list_head: pointer to the list to add entry to
* @fi: pointer to fltr_info of filter entry to copy & add
*
* Helper function, used when creating a list of filters to remove from
* a specific VSI. The entry added to vsi_list_head is a COPY of the
* original filter entry, with the exception of fltr_info.fltr_act and
* fltr_info.fwd_id fields. These are set such that later logic can
* extract which VSI to remove the fltr from, and pass on that information.
*/
static enum ice_status
ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
struct LIST_HEAD_TYPE *vsi_list_head,
struct ice_fltr_info *fi)
{
struct ice_fltr_list_entry *tmp;
/* this memory is freed up in the caller function
* once filters for this VSI are removed
*/
tmp = (struct ice_fltr_list_entry *)ice_malloc(hw, sizeof(*tmp));
if (!tmp)
return ICE_ERR_NO_MEMORY;
tmp->fltr_info = *fi;
/* Overwrite these fields to indicate which VSI to remove filter from,
* so find and remove logic can extract the information from the
* list entries. Note that original entries will still have proper
* values.
*/
tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
tmp->fltr_info.vsi_handle = vsi_handle;
tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
LIST_ADD(&tmp->list_entry, vsi_list_head);
return ICE_SUCCESS;
}
/**
* ice_add_to_vsi_fltr_list - Add VSI filters to the list
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to remove filters from
* @lkup_list_head: pointer to the list that has certain lookup type filters
* @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
*
* Locates all filters in lkup_list_head that are used by the given VSI,
* and adds COPIES of those entries to vsi_list_head (intended to be used
* to remove the listed filters).
* Note that this means all entries in vsi_list_head must be explicitly
* deallocated by the caller when done with list.
*/
static enum ice_status
ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
struct LIST_HEAD_TYPE *lkup_list_head,
struct LIST_HEAD_TYPE *vsi_list_head)
{
struct ice_fltr_mgmt_list_entry *fm_entry;
enum ice_status status = ICE_SUCCESS;
/* check to make sure VSI ID is valid and within boundary */
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
LIST_FOR_EACH_ENTRY(fm_entry, lkup_list_head,
ice_fltr_mgmt_list_entry, list_entry) {
if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
continue;
status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
vsi_list_head,
&fm_entry->fltr_info);
if (status)
return status;
}
return status;
}
/**
* ice_determine_promisc_mask
* @fi: filter info to parse
*
* Helper function to determine which ICE_PROMISC_ mask corresponds
* to given filter into.
*/
static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
{
u16 vid = fi->l_data.mac_vlan.vlan_id;
u8 *macaddr = fi->l_data.mac.mac_addr;
bool is_tx_fltr = false;
u8 promisc_mask = 0;
if (fi->flag == ICE_FLTR_TX)
is_tx_fltr = true;
if (IS_BROADCAST_ETHER_ADDR(macaddr))
promisc_mask |= is_tx_fltr ?
ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
else if (IS_MULTICAST_ETHER_ADDR(macaddr))
promisc_mask |= is_tx_fltr ?
ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
else if (IS_UNICAST_ETHER_ADDR(macaddr))
promisc_mask |= is_tx_fltr ?
ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
if (vid)
promisc_mask |= is_tx_fltr ?
ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
return promisc_mask;
}
/**
* _ice_get_vsi_promisc - get promiscuous mode of given VSI
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to retrieve info from
* @promisc_mask: pointer to mask to be filled in
* @vid: VLAN ID of promisc VLAN VSI
* @sw: pointer to switch info struct for which function add rule
*/
static enum ice_status
_ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
u16 *vid, struct ice_switch_info *sw)
{
struct ice_fltr_mgmt_list_entry *itr;
struct LIST_HEAD_TYPE *rule_head;
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
*vid = 0;
*promisc_mask = 0;
rule_head = &sw->recp_list[ICE_SW_LKUP_PROMISC].filt_rules;
rule_lock = &sw->recp_list[ICE_SW_LKUP_PROMISC].filt_rule_lock;
ice_acquire_lock(rule_lock);
LIST_FOR_EACH_ENTRY(itr, rule_head,
ice_fltr_mgmt_list_entry, list_entry) {
/* Continue if this filter doesn't apply to this VSI or the
* VSI ID is not in the VSI map for this filter
*/
if (!ice_vsi_uses_fltr(itr, vsi_handle))
continue;
*promisc_mask |= ice_determine_promisc_mask(&itr->fltr_info);
}
ice_release_lock(rule_lock);
return ICE_SUCCESS;
}
/**
* ice_get_vsi_promisc - get promiscuous mode of given VSI
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to retrieve info from
* @promisc_mask: pointer to mask to be filled in
* @vid: VLAN ID of promisc VLAN VSI
*/
enum ice_status
ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
u16 *vid)
{
return _ice_get_vsi_promisc(hw, vsi_handle, promisc_mask,
vid, hw->switch_info);
}
/**
* ice_get_vsi_vlan_promisc - get VLAN promiscuous mode of given VSI
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to retrieve info from
* @promisc_mask: pointer to mask to be filled in
* @vid: VLAN ID of promisc VLAN VSI
* @sw: pointer to switch info struct for which function add rule
*/
static enum ice_status
_ice_get_vsi_vlan_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
u16 *vid, struct ice_switch_info *sw)
{
struct ice_fltr_mgmt_list_entry *itr;
struct LIST_HEAD_TYPE *rule_head;
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
*vid = 0;
*promisc_mask = 0;
rule_head = &sw->recp_list[ICE_SW_LKUP_PROMISC_VLAN].filt_rules;
rule_lock = &sw->recp_list[ICE_SW_LKUP_PROMISC_VLAN].filt_rule_lock;
ice_acquire_lock(rule_lock);
LIST_FOR_EACH_ENTRY(itr, rule_head, ice_fltr_mgmt_list_entry,
list_entry) {
/* Continue if this filter doesn't apply to this VSI or the
* VSI ID is not in the VSI map for this filter
*/
if (!ice_vsi_uses_fltr(itr, vsi_handle))
continue;
*promisc_mask |= ice_determine_promisc_mask(&itr->fltr_info);
}
ice_release_lock(rule_lock);
return ICE_SUCCESS;
}
/**
* ice_get_vsi_vlan_promisc - get VLAN promiscuous mode of given VSI
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to retrieve info from
* @promisc_mask: pointer to mask to be filled in
* @vid: VLAN ID of promisc VLAN VSI
*/
enum ice_status
ice_get_vsi_vlan_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
u16 *vid)
{
return _ice_get_vsi_vlan_promisc(hw, vsi_handle, promisc_mask,
vid, hw->switch_info);
}
/**
* ice_remove_promisc - Remove promisc based filter rules
* @hw: pointer to the hardware structure
* @recp_id: recipe ID for which the rule needs to removed
* @v_list: list of promisc entries
*/
static enum ice_status
ice_remove_promisc(struct ice_hw *hw, u8 recp_id,
struct LIST_HEAD_TYPE *v_list)
{
struct ice_fltr_list_entry *v_list_itr, *tmp;
struct ice_sw_recipe *recp_list;
recp_list = &hw->switch_info->recp_list[recp_id];
LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
list_entry) {
v_list_itr->status =
ice_remove_rule_internal(hw, recp_list, v_list_itr);
if (v_list_itr->status)
return v_list_itr->status;
}
return ICE_SUCCESS;
}
/**
* _ice_clear_vsi_promisc - clear specified promiscuous mode(s)
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to clear mode
* @promisc_mask: mask of promiscuous config bits to clear
* @vid: VLAN ID to clear VLAN promiscuous
* @sw: pointer to switch info struct for which function add rule
*/
static enum ice_status
_ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
u16 vid, struct ice_switch_info *sw)
{
struct ice_fltr_list_entry *fm_entry, *tmp;
struct LIST_HEAD_TYPE remove_list_head;
struct ice_fltr_mgmt_list_entry *itr;
struct LIST_HEAD_TYPE *rule_head;
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
enum ice_status status = ICE_SUCCESS;
u8 recipe_id;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
else
recipe_id = ICE_SW_LKUP_PROMISC;
rule_head = &sw->recp_list[recipe_id].filt_rules;
rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
INIT_LIST_HEAD(&remove_list_head);
ice_acquire_lock(rule_lock);
LIST_FOR_EACH_ENTRY(itr, rule_head,
ice_fltr_mgmt_list_entry, list_entry) {
struct ice_fltr_info *fltr_info;
u8 fltr_promisc_mask = 0;
if (!ice_vsi_uses_fltr(itr, vsi_handle))
continue;
fltr_info = &itr->fltr_info;
if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
vid != fltr_info->l_data.mac_vlan.vlan_id)
continue;
fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
/* Skip if filter is not completely specified by given mask */
if (fltr_promisc_mask & ~promisc_mask)
continue;
status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
&remove_list_head,
fltr_info);
if (status) {
ice_release_lock(rule_lock);
goto free_fltr_list;
}
}
ice_release_lock(rule_lock);
status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
free_fltr_list:
LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
ice_fltr_list_entry, list_entry) {
LIST_DEL(&fm_entry->list_entry);
ice_free(hw, fm_entry);
}
return status;
}
/**
* ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to clear mode
* @promisc_mask: mask of promiscuous config bits to clear
* @vid: VLAN ID to clear VLAN promiscuous
*/
enum ice_status
ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
u8 promisc_mask, u16 vid)
{
return _ice_clear_vsi_promisc(hw, vsi_handle, promisc_mask,
vid, hw->switch_info);
}
/**
* _ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to configure
* @promisc_mask: mask of promiscuous config bits
* @vid: VLAN ID to set VLAN promiscuous
* @lport: logical port number to configure promisc mode
* @sw: pointer to switch info struct for which function add rule
*/
static enum ice_status
_ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
u16 vid, u8 lport, struct ice_switch_info *sw)
{
enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
struct ice_fltr_list_entry f_list_entry;
struct ice_fltr_info new_fltr;
enum ice_status status = ICE_SUCCESS;
bool is_tx_fltr;
u16 hw_vsi_id;
int pkt_type;
u8 recipe_id;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
ice_memset(&new_fltr, 0, sizeof(new_fltr), ICE_NONDMA_MEM);
if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
new_fltr.l_data.mac_vlan.vlan_id = vid;
recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
} else {
new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
recipe_id = ICE_SW_LKUP_PROMISC;
}
/* Separate filters must be set for each direction/packet type
* combination, so we will loop over the mask value, store the
* individual type, and clear it out in the input mask as it
* is found.
*/
while (promisc_mask) {
struct ice_sw_recipe *recp_list;
u8 *mac_addr;
pkt_type = 0;
is_tx_fltr = false;
if (promisc_mask & ICE_PROMISC_UCAST_RX) {
promisc_mask &= ~ICE_PROMISC_UCAST_RX;
pkt_type = UCAST_FLTR;
} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
promisc_mask &= ~ICE_PROMISC_UCAST_TX;
pkt_type = UCAST_FLTR;
is_tx_fltr = true;
} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
promisc_mask &= ~ICE_PROMISC_MCAST_RX;
pkt_type = MCAST_FLTR;
} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
promisc_mask &= ~ICE_PROMISC_MCAST_TX;
pkt_type = MCAST_FLTR;
is_tx_fltr = true;
} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
promisc_mask &= ~ICE_PROMISC_BCAST_RX;
pkt_type = BCAST_FLTR;
} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
promisc_mask &= ~ICE_PROMISC_BCAST_TX;
pkt_type = BCAST_FLTR;
is_tx_fltr = true;
}
/* Check for VLAN promiscuous flag */
if (promisc_mask & ICE_PROMISC_VLAN_RX) {
promisc_mask &= ~ICE_PROMISC_VLAN_RX;
} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
promisc_mask &= ~ICE_PROMISC_VLAN_TX;
is_tx_fltr = true;
}
/* Set filter DA based on packet type */
mac_addr = new_fltr.l_data.mac.mac_addr;
if (pkt_type == BCAST_FLTR) {
ice_memset(mac_addr, 0xff, ETH_ALEN, ICE_NONDMA_MEM);
} else if (pkt_type == MCAST_FLTR ||
pkt_type == UCAST_FLTR) {
/* Use the dummy ether header DA */
ice_memcpy(mac_addr, dummy_eth_header, ETH_ALEN,
ICE_NONDMA_TO_NONDMA);
if (pkt_type == MCAST_FLTR)
mac_addr[0] |= 0x1; /* Set multicast bit */
}
/* Need to reset this to zero for all iterations */
new_fltr.flag = 0;
if (is_tx_fltr) {
new_fltr.flag |= ICE_FLTR_TX;
new_fltr.src = hw_vsi_id;
} else {
new_fltr.flag |= ICE_FLTR_RX;
new_fltr.src = lport;
}
new_fltr.fltr_act = ICE_FWD_TO_VSI;
new_fltr.vsi_handle = vsi_handle;
new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
f_list_entry.fltr_info = new_fltr;
recp_list = &sw->recp_list[recipe_id];
status = ice_add_rule_internal(hw, recp_list, lport,
&f_list_entry);
if (status != ICE_SUCCESS)
goto set_promisc_exit;
}
set_promisc_exit:
return status;
}
/**
* ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to configure
* @promisc_mask: mask of promiscuous config bits
* @vid: VLAN ID to set VLAN promiscuous
*/
enum ice_status
ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
u16 vid)
{
return _ice_set_vsi_promisc(hw, vsi_handle, promisc_mask, vid,
hw->port_info->lport,
hw->switch_info);
}
/**
* _ice_set_vlan_vsi_promisc
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to configure
* @promisc_mask: mask of promiscuous config bits
* @rm_vlan_promisc: Clear VLANs VSI promisc mode
* @lport: logical port number to configure promisc mode
* @sw: pointer to switch info struct for which function add rule
*
* Configure VSI with all associated VLANs to given promiscuous mode(s)
*/
static enum ice_status
_ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
bool rm_vlan_promisc, u8 lport,
struct ice_switch_info *sw)
{
struct ice_fltr_list_entry *list_itr, *tmp;
struct LIST_HEAD_TYPE vsi_list_head;
struct LIST_HEAD_TYPE *vlan_head;
struct ice_lock *vlan_lock; /* Lock to protect filter rule list */
enum ice_status status;
u16 vlan_id;
INIT_LIST_HEAD(&vsi_list_head);
vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
ice_acquire_lock(vlan_lock);
status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
&vsi_list_head);
ice_release_lock(vlan_lock);
if (status)
goto free_fltr_list;
LIST_FOR_EACH_ENTRY(list_itr, &vsi_list_head, ice_fltr_list_entry,
list_entry) {
vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
if (rm_vlan_promisc)
status = _ice_clear_vsi_promisc(hw, vsi_handle,
promisc_mask,
vlan_id, sw);
else
status = _ice_set_vsi_promisc(hw, vsi_handle,
promisc_mask, vlan_id,
lport, sw);
if (status)
break;
}
free_fltr_list:
LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, &vsi_list_head,
ice_fltr_list_entry, list_entry) {
LIST_DEL(&list_itr->list_entry);
ice_free(hw, list_itr);
}
return status;
}
/**
* ice_set_vlan_vsi_promisc
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to configure
* @promisc_mask: mask of promiscuous config bits
* @rm_vlan_promisc: Clear VLANs VSI promisc mode
*
* Configure VSI with all associated VLANs to given promiscuous mode(s)
*/
enum ice_status
ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
bool rm_vlan_promisc)
{
return _ice_set_vlan_vsi_promisc(hw, vsi_handle, promisc_mask,
rm_vlan_promisc, hw->port_info->lport,
hw->switch_info);
}
/**
* ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to remove filters from
* @recp_list: recipe list from which function remove fltr
* @lkup: switch rule filter lookup type
*/
static void
ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
struct ice_sw_recipe *recp_list,
enum ice_sw_lkup_type lkup)
{
struct ice_fltr_list_entry *fm_entry;
struct LIST_HEAD_TYPE remove_list_head;
struct LIST_HEAD_TYPE *rule_head;
struct ice_fltr_list_entry *tmp;
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
enum ice_status status;
INIT_LIST_HEAD(&remove_list_head);
rule_lock = &recp_list[lkup].filt_rule_lock;
rule_head = &recp_list[lkup].filt_rules;
ice_acquire_lock(rule_lock);
status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
&remove_list_head);
ice_release_lock(rule_lock);
if (status)
goto free_fltr_list;
switch (lkup) {
case ICE_SW_LKUP_MAC:
ice_remove_mac_rule(hw, &remove_list_head, &recp_list[lkup]);
break;
case ICE_SW_LKUP_VLAN:
ice_remove_vlan_rule(hw, &remove_list_head, &recp_list[lkup]);
break;
case ICE_SW_LKUP_PROMISC:
case ICE_SW_LKUP_PROMISC_VLAN:
ice_remove_promisc(hw, lkup, &remove_list_head);
break;
case ICE_SW_LKUP_MAC_VLAN:
ice_remove_mac_vlan(hw, &remove_list_head);
break;
case ICE_SW_LKUP_ETHERTYPE:
case ICE_SW_LKUP_ETHERTYPE_MAC:
ice_remove_eth_mac(hw, &remove_list_head);
break;
case ICE_SW_LKUP_DFLT:
ice_debug(hw, ICE_DBG_SW, "Remove filters for this lookup type hasn't been implemented yet\n");
break;
case ICE_SW_LKUP_LAST:
ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type\n");
break;
}
free_fltr_list:
LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
ice_fltr_list_entry, list_entry) {
LIST_DEL(&fm_entry->list_entry);
ice_free(hw, fm_entry);
}
}
/**
* ice_remove_vsi_fltr_rule - Remove all filters for a VSI
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to remove filters from
* @sw: pointer to switch info struct
*/
static void
ice_remove_vsi_fltr_rule(struct ice_hw *hw, u16 vsi_handle,
struct ice_switch_info *sw)
{
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
ice_remove_vsi_lkup_fltr(hw, vsi_handle,
sw->recp_list, ICE_SW_LKUP_MAC);
ice_remove_vsi_lkup_fltr(hw, vsi_handle,
sw->recp_list, ICE_SW_LKUP_MAC_VLAN);
ice_remove_vsi_lkup_fltr(hw, vsi_handle,
sw->recp_list, ICE_SW_LKUP_PROMISC);
ice_remove_vsi_lkup_fltr(hw, vsi_handle,
sw->recp_list, ICE_SW_LKUP_VLAN);
ice_remove_vsi_lkup_fltr(hw, vsi_handle,
sw->recp_list, ICE_SW_LKUP_DFLT);
ice_remove_vsi_lkup_fltr(hw, vsi_handle,
sw->recp_list, ICE_SW_LKUP_ETHERTYPE);
ice_remove_vsi_lkup_fltr(hw, vsi_handle,
sw->recp_list, ICE_SW_LKUP_ETHERTYPE_MAC);
ice_remove_vsi_lkup_fltr(hw, vsi_handle,
sw->recp_list, ICE_SW_LKUP_PROMISC_VLAN);
}
/**
* ice_remove_vsi_fltr - Remove all filters for a VSI
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle to remove filters from
*/
void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
{
ice_remove_vsi_fltr_rule(hw, vsi_handle, hw->switch_info);
}
/**
* ice_alloc_res_cntr - allocating resource counter
* @hw: pointer to the hardware structure
* @type: type of resource
* @alloc_shared: if set it is shared else dedicated
* @num_items: number of entries requested for FD resource type
* @counter_id: counter index returned by AQ call
*/
enum ice_status
ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
u16 *counter_id)
{
struct ice_aqc_alloc_free_res_elem *buf;
enum ice_status status;
u16 buf_len;
/* Allocate resource */
buf_len = ice_struct_size(buf, elem, 1);
buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
if (!buf)
return ICE_ERR_NO_MEMORY;
buf->num_elems = CPU_TO_LE16(num_items);
buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
ICE_AQC_RES_TYPE_M) | alloc_shared);
status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
ice_aqc_opc_alloc_res, NULL);
if (status)
goto exit;
*counter_id = LE16_TO_CPU(buf->elem[0].e.sw_resp);
exit:
ice_free(hw, buf);
return status;
}
/**
* ice_free_res_cntr - free resource counter
* @hw: pointer to the hardware structure
* @type: type of resource
* @alloc_shared: if set it is shared else dedicated
* @num_items: number of entries to be freed for FD resource type
* @counter_id: counter ID resource which needs to be freed
*/
enum ice_status
ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
u16 counter_id)
{
struct ice_aqc_alloc_free_res_elem *buf;
enum ice_status status;
u16 buf_len;
/* Free resource */
buf_len = ice_struct_size(buf, elem, 1);
buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
if (!buf)
return ICE_ERR_NO_MEMORY;
buf->num_elems = CPU_TO_LE16(num_items);
buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
ICE_AQC_RES_TYPE_M) | alloc_shared);
buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
ice_aqc_opc_free_res, NULL);
if (status)
ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
ice_free(hw, buf);
return status;
}
/**
* ice_alloc_vlan_res_counter - obtain counter resource for VLAN type
* @hw: pointer to the hardware structure
* @counter_id: returns counter index
*/
enum ice_status ice_alloc_vlan_res_counter(struct ice_hw *hw, u16 *counter_id)
{
return ice_alloc_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
counter_id);
}
/**
* ice_free_vlan_res_counter - Free counter resource for VLAN type
* @hw: pointer to the hardware structure
* @counter_id: counter index to be freed
*/
enum ice_status ice_free_vlan_res_counter(struct ice_hw *hw, u16 counter_id)
{
return ice_free_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
counter_id);
}
/**
* ice_alloc_res_lg_act - add large action resource
* @hw: pointer to the hardware structure
* @l_id: large action ID to fill it in
* @num_acts: number of actions to hold with a large action entry
*/
static enum ice_status
ice_alloc_res_lg_act(struct ice_hw *hw, u16 *l_id, u16 num_acts)
{
struct ice_aqc_alloc_free_res_elem *sw_buf;
enum ice_status status;
u16 buf_len;
if (num_acts > ICE_MAX_LG_ACT || num_acts == 0)
return ICE_ERR_PARAM;
/* Allocate resource for large action */
buf_len = ice_struct_size(sw_buf, elem, 1);
sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
if (!sw_buf)
return ICE_ERR_NO_MEMORY;
sw_buf->num_elems = CPU_TO_LE16(1);
/* If num_acts is 1, use ICE_AQC_RES_TYPE_WIDE_TABLE_1.
* If num_acts is 2, use ICE_AQC_RES_TYPE_WIDE_TABLE_3.
* If num_acts is greater than 2, then use
* ICE_AQC_RES_TYPE_WIDE_TABLE_4.
* The num_acts cannot exceed 4. This was ensured at the
* beginning of the function.
*/
if (num_acts == 1)
sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_1);
else if (num_acts == 2)
sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_2);
else
sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_4);
status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
ice_aqc_opc_alloc_res, NULL);
if (!status)
*l_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
ice_free(hw, sw_buf);
return status;
}
/**
* ice_add_mac_with_sw_marker - add filter with sw marker
* @hw: pointer to the hardware structure
* @f_info: filter info structure containing the MAC filter information
* @sw_marker: sw marker to tag the Rx descriptor with
*/
enum ice_status
ice_add_mac_with_sw_marker(struct ice_hw *hw, struct ice_fltr_info *f_info,
u16 sw_marker)
{
struct ice_fltr_mgmt_list_entry *m_entry;
struct ice_fltr_list_entry fl_info;
struct ice_sw_recipe *recp_list;
struct LIST_HEAD_TYPE l_head;
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
enum ice_status ret;
bool entry_exists;
u16 lg_act_id;
if (f_info->fltr_act != ICE_FWD_TO_VSI)
return ICE_ERR_PARAM;
if (f_info->lkup_type != ICE_SW_LKUP_MAC)
return ICE_ERR_PARAM;
if (sw_marker == ICE_INVAL_SW_MARKER_ID)
return ICE_ERR_PARAM;
if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
return ICE_ERR_PARAM;
f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
/* Add filter if it doesn't exist so then the adding of large
* action always results in update
*/
INIT_LIST_HEAD(&l_head);
fl_info.fltr_info = *f_info;
LIST_ADD(&fl_info.list_entry, &l_head);
entry_exists = false;
ret = ice_add_mac_rule(hw, &l_head, hw->switch_info,
hw->port_info->lport);
if (ret == ICE_ERR_ALREADY_EXISTS)
entry_exists = true;
else if (ret)
return ret;
recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
rule_lock = &recp_list->filt_rule_lock;
ice_acquire_lock(rule_lock);
/* Get the book keeping entry for the filter */
m_entry = ice_find_rule_entry(&recp_list->filt_rules, f_info);
if (!m_entry)
goto exit_error;
/* If counter action was enabled for this rule then don't enable
* sw marker large action
*/
if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
ret = ICE_ERR_PARAM;
goto exit_error;
}
/* if same marker was added before */
if (m_entry->sw_marker_id == sw_marker) {
ret = ICE_ERR_ALREADY_EXISTS;
goto exit_error;
}
/* Allocate a hardware table entry to hold large act. Three actions
* for marker based large action
*/
ret = ice_alloc_res_lg_act(hw, &lg_act_id, 3);
if (ret)
goto exit_error;
if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
goto exit_error;
/* Update the switch rule to add the marker action */
ret = ice_add_marker_act(hw, m_entry, sw_marker, lg_act_id);
if (!ret) {
ice_release_lock(rule_lock);
return ret;
}
exit_error:
ice_release_lock(rule_lock);
/* only remove entry if it did not exist previously */
if (!entry_exists)
ret = ice_remove_mac(hw, &l_head);
return ret;
}
/**
* ice_add_mac_with_counter - add filter with counter enabled
* @hw: pointer to the hardware structure
* @f_info: pointer to filter info structure containing the MAC filter
* information
*/
enum ice_status
ice_add_mac_with_counter(struct ice_hw *hw, struct ice_fltr_info *f_info)
{
struct ice_fltr_mgmt_list_entry *m_entry;
struct ice_fltr_list_entry fl_info;
struct ice_sw_recipe *recp_list;
struct LIST_HEAD_TYPE l_head;
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
enum ice_status ret;
bool entry_exist;
u16 counter_id;
u16 lg_act_id;
if (f_info->fltr_act != ICE_FWD_TO_VSI)
return ICE_ERR_PARAM;
if (f_info->lkup_type != ICE_SW_LKUP_MAC)
return ICE_ERR_PARAM;
if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
return ICE_ERR_PARAM;
f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
entry_exist = false;
rule_lock = &recp_list->filt_rule_lock;
/* Add filter if it doesn't exist so then the adding of large
* action always results in update
*/
INIT_LIST_HEAD(&l_head);
fl_info.fltr_info = *f_info;
LIST_ADD(&fl_info.list_entry, &l_head);
ret = ice_add_mac_rule(hw, &l_head, hw->switch_info,
hw->port_info->lport);
if (ret == ICE_ERR_ALREADY_EXISTS)
entry_exist = true;
else if (ret)
return ret;
ice_acquire_lock(rule_lock);
m_entry = ice_find_rule_entry(&recp_list->filt_rules, f_info);
if (!m_entry) {
ret = ICE_ERR_BAD_PTR;
goto exit_error;
}
/* Don't enable counter for a filter for which sw marker was enabled */
if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) {
ret = ICE_ERR_PARAM;
goto exit_error;
}
/* If a counter was already enabled then don't need to add again */
if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
ret = ICE_ERR_ALREADY_EXISTS;
goto exit_error;
}
/* Allocate a hardware table entry to VLAN counter */
ret = ice_alloc_vlan_res_counter(hw, &counter_id);
if (ret)
goto exit_error;
/* Allocate a hardware table entry to hold large act. Two actions for
* counter based large action
*/
ret = ice_alloc_res_lg_act(hw, &lg_act_id, 2);
if (ret)
goto exit_error;
if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
goto exit_error;
/* Update the switch rule to add the counter action */
ret = ice_add_counter_act(hw, m_entry, counter_id, lg_act_id);
if (!ret) {
ice_release_lock(rule_lock);
return ret;
}
exit_error:
ice_release_lock(rule_lock);
/* only remove entry if it did not exist previously */
if (!entry_exist)
ret = ice_remove_mac(hw, &l_head);
return ret;
}
/* This is mapping table entry that maps every word within a given protocol
* structure to the real byte offset as per the specification of that
* protocol header.
* for example dst address is 3 words in ethertype header and corresponding
* bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
* IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
* matching entry describing its field. This needs to be updated if new
* structure is added to that union.
*/
static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
{ ICE_MAC_OFOS, { 0, 2, 4, 6, 8, 10, 12 } },
{ ICE_MAC_IL, { 0, 2, 4, 6, 8, 10, 12 } },
{ ICE_ETYPE_OL, { 0 } },
{ ICE_VLAN_OFOS, { 0, 2 } },
{ ICE_IPV4_OFOS, { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
{ ICE_IPV4_IL, { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
{ ICE_IPV6_OFOS, { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
26, 28, 30, 32, 34, 36, 38 } },
{ ICE_IPV6_IL, { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
26, 28, 30, 32, 34, 36, 38 } },
{ ICE_TCP_IL, { 0, 2 } },
{ ICE_UDP_OF, { 0, 2 } },
{ ICE_UDP_ILOS, { 0, 2 } },
{ ICE_SCTP_IL, { 0, 2 } },
{ ICE_VXLAN, { 8, 10, 12, 14 } },
{ ICE_GENEVE, { 8, 10, 12, 14 } },
{ ICE_VXLAN_GPE, { 8, 10, 12, 14 } },
{ ICE_NVGRE, { 0, 2, 4, 6 } },
{ ICE_GTP, { 8, 10, 12, 14, 16, 18, 20 } },
{ ICE_PPPOE, { 0, 2, 4, 6 } },
{ ICE_PFCP, { 8, 10, 12, 14, 16, 18, 20, 22 } },
{ ICE_L2TPV3, { 0, 2, 4, 6, 8, 10 } },
{ ICE_ESP, { 0, 2, 4, 6 } },
{ ICE_AH, { 0, 2, 4, 6, 8, 10 } },
{ ICE_NAT_T, { 8, 10, 12, 14 } },
{ ICE_GTP_NO_PAY, { 8, 10, 12, 14 } },
{ ICE_VLAN_EX, { 0, 2 } },
};
/* The following table describes preferred grouping of recipes.
* If a recipe that needs to be programmed is a superset or matches one of the
* following combinations, then the recipe needs to be chained as per the
* following policy.
*/
static const struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
{ ICE_MAC_OFOS, ICE_MAC_OFOS_HW },
{ ICE_MAC_IL, ICE_MAC_IL_HW },
{ ICE_ETYPE_OL, ICE_ETYPE_OL_HW },
{ ICE_VLAN_OFOS, ICE_VLAN_OL_HW },
{ ICE_IPV4_OFOS, ICE_IPV4_OFOS_HW },
{ ICE_IPV4_IL, ICE_IPV4_IL_HW },
{ ICE_IPV6_OFOS, ICE_IPV6_OFOS_HW },
{ ICE_IPV6_IL, ICE_IPV6_IL_HW },
{ ICE_TCP_IL, ICE_TCP_IL_HW },
{ ICE_UDP_OF, ICE_UDP_OF_HW },
{ ICE_UDP_ILOS, ICE_UDP_ILOS_HW },
{ ICE_SCTP_IL, ICE_SCTP_IL_HW },
{ ICE_VXLAN, ICE_UDP_OF_HW },
{ ICE_GENEVE, ICE_UDP_OF_HW },
{ ICE_VXLAN_GPE, ICE_UDP_OF_HW },
{ ICE_NVGRE, ICE_GRE_OF_HW },
{ ICE_GTP, ICE_UDP_OF_HW },
{ ICE_PPPOE, ICE_PPPOE_HW },
{ ICE_PFCP, ICE_UDP_ILOS_HW },
{ ICE_L2TPV3, ICE_L2TPV3_HW },
{ ICE_ESP, ICE_ESP_HW },
{ ICE_AH, ICE_AH_HW },
{ ICE_NAT_T, ICE_UDP_ILOS_HW },
{ ICE_GTP_NO_PAY, ICE_UDP_ILOS_HW },
{ ICE_VLAN_EX, ICE_VLAN_OF_HW },
};
/**
* ice_find_recp - find a recipe
* @hw: pointer to the hardware structure
* @lkup_exts: extension sequence to match
*
* Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
*/
static u16 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
enum ice_sw_tunnel_type tun_type)
{
bool refresh_required = true;
struct ice_sw_recipe *recp;
u8 i;
/* Walk through existing recipes to find a match */
recp = hw->switch_info->recp_list;
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
/* If recipe was not created for this ID, in SW bookkeeping,
* check if FW has an entry for this recipe. If the FW has an
* entry update it in our SW bookkeeping and continue with the
* matching.
*/
if (!recp[i].recp_created)
if (ice_get_recp_frm_fw(hw,
hw->switch_info->recp_list, i,
&refresh_required))
continue;
/* Skip inverse action recipes */
if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
ICE_AQ_RECIPE_ACT_INV_ACT)
continue;
/* if number of words we are looking for match */
if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
struct ice_fv_word *be = lkup_exts->fv_words;
u16 *cr = recp[i].lkup_exts.field_mask;
u16 *de = lkup_exts->field_mask;
bool found = true;
u8 pe, qr;
/* ar, cr, and qr are related to the recipe words, while
* be, de, and pe are related to the lookup words
*/
for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
qr++) {
if (ar[qr].off == be[pe].off &&
ar[qr].prot_id == be[pe].prot_id &&
cr[qr] == de[pe])
/* Found the "pe"th word in the
* given recipe
*/
break;
}
/* After walking through all the words in the
* "i"th recipe if "p"th word was not found then
* this recipe is not what we are looking for.
* So break out from this loop and try the next
* recipe
*/
if (qr >= recp[i].lkup_exts.n_val_words) {
found = false;
break;
}
}
/* If for "i"th recipe the found was never set to false
* then it means we found our match
*/
if (tun_type == recp[i].tun_type && found)
return i; /* Return the recipe ID */
}
}
return ICE_MAX_NUM_RECIPES;
}
/**
* ice_prot_type_to_id - get protocol ID from protocol type
* @type: protocol type
* @id: pointer to variable that will receive the ID
*
* Returns true if found, false otherwise
*/
static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
{
u8 i;
for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
if (ice_prot_id_tbl[i].type == type) {
*id = ice_prot_id_tbl[i].protocol_id;
return true;
}
return false;
}
/**
* ice_find_valid_words - count valid words
* @rule: advanced rule with lookup information
* @lkup_exts: byte offset extractions of the words that are valid
*
* calculate valid words in a lookup rule using mask value
*/
static u8
ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
struct ice_prot_lkup_ext *lkup_exts)
{
u8 j, word, prot_id, ret_val;
if (!ice_prot_type_to_id(rule->type, &prot_id))
return 0;
word = lkup_exts->n_val_words;
for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
if (((u16 *)&rule->m_u)[j] &&
rule->type < ARRAY_SIZE(ice_prot_ext)) {
/* No more space to accommodate */
if (word >= ICE_MAX_CHAIN_WORDS)
return 0;
lkup_exts->fv_words[word].off =
ice_prot_ext[rule->type].offs[j];
lkup_exts->fv_words[word].prot_id =
ice_prot_id_tbl[rule->type].protocol_id;
lkup_exts->field_mask[word] =
BE16_TO_CPU(((_FORCE_ __be16 *)&rule->m_u)[j]);
word++;
}
ret_val = word - lkup_exts->n_val_words;
lkup_exts->n_val_words = word;
return ret_val;
}
/**
* ice_create_first_fit_recp_def - Create a recipe grouping
* @hw: pointer to the hardware structure
* @lkup_exts: an array of protocol header extractions
* @rg_list: pointer to a list that stores new recipe groups
* @recp_cnt: pointer to a variable that stores returned number of recipe groups
*
* Using first fit algorithm, take all the words that are still not done
* and start grouping them in 4-word groups. Each group makes up one
* recipe.
*/
static enum ice_status
ice_create_first_fit_recp_def(struct ice_hw *hw,
struct ice_prot_lkup_ext *lkup_exts,
struct LIST_HEAD_TYPE *rg_list,
u8 *recp_cnt)
{
struct ice_pref_recipe_group *grp = NULL;
u8 j;
*recp_cnt = 0;
if (!lkup_exts->n_val_words) {
struct ice_recp_grp_entry *entry;
entry = (struct ice_recp_grp_entry *)
ice_malloc(hw, sizeof(*entry));
if (!entry)
return ICE_ERR_NO_MEMORY;
LIST_ADD(&entry->l_entry, rg_list);
grp = &entry->r_group;
(*recp_cnt)++;
grp->n_val_pairs = 0;
}
/* Walk through every word in the rule to check if it is not done. If so
* then this word needs to be part of a new recipe.
*/
for (j = 0; j < lkup_exts->n_val_words; j++)
if (!ice_is_bit_set(lkup_exts->done, j)) {
if (!grp ||
grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
struct ice_recp_grp_entry *entry;
entry = (struct ice_recp_grp_entry *)
ice_malloc(hw, sizeof(*entry));
if (!entry)
return ICE_ERR_NO_MEMORY;
LIST_ADD(&entry->l_entry, rg_list);
grp = &entry->r_group;
(*recp_cnt)++;
}
grp->pairs[grp->n_val_pairs].prot_id =
lkup_exts->fv_words[j].prot_id;
grp->pairs[grp->n_val_pairs].off =
lkup_exts->fv_words[j].off;
grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
grp->n_val_pairs++;
}
return ICE_SUCCESS;
}
/**
* ice_fill_fv_word_index - fill in the field vector indices for a recipe group
* @hw: pointer to the hardware structure
* @fv_list: field vector with the extraction sequence information
* @rg_list: recipe groupings with protocol-offset pairs
*
* Helper function to fill in the field vector indices for protocol-offset
* pairs. These indexes are then ultimately programmed into a recipe.
*/
static enum ice_status
ice_fill_fv_word_index(struct ice_hw *hw, struct LIST_HEAD_TYPE *fv_list,
struct LIST_HEAD_TYPE *rg_list)
{
struct ice_sw_fv_list_entry *fv;
struct ice_recp_grp_entry *rg;
struct ice_fv_word *fv_ext;
if (LIST_EMPTY(fv_list))
return ICE_SUCCESS;
fv = LIST_FIRST_ENTRY(fv_list, struct ice_sw_fv_list_entry, list_entry);
fv_ext = fv->fv_ptr->ew;
LIST_FOR_EACH_ENTRY(rg, rg_list, ice_recp_grp_entry, l_entry) {
u8 i;
for (i = 0; i < rg->r_group.n_val_pairs; i++) {
struct ice_fv_word *pr;
bool found = false;
u16 mask;
u8 j;
pr = &rg->r_group.pairs[i];
mask = rg->r_group.mask[i];
for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
if (fv_ext[j].prot_id == pr->prot_id &&
fv_ext[j].off == pr->off) {
found = true;
/* Store index of field vector */
rg->fv_idx[i] = j;
rg->fv_mask[i] = mask;
break;
}
/* Protocol/offset could not be found, caller gave an
* invalid pair
*/
if (!found)
return ICE_ERR_PARAM;
}
}
return ICE_SUCCESS;
}
/**
* ice_find_free_recp_res_idx - find free result indexes for recipe
* @hw: pointer to hardware structure
* @profiles: bitmap of profiles that will be associated with the new recipe
* @free_idx: pointer to variable to receive the free index bitmap
*
* The algorithm used here is:
* 1. When creating a new recipe, create a set P which contains all
* Profiles that will be associated with our new recipe
*
* 2. For each Profile p in set P:
* a. Add all recipes associated with Profile p into set R
* b. Optional : PossibleIndexes &= profile[p].possibleIndexes
* [initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
* i. Or just assume they all have the same possible indexes:
* 44, 45, 46, 47
* i.e., PossibleIndexes = 0x0000F00000000000
*
* 3. For each Recipe r in set R:
* a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
* b. FreeIndexes = UsedIndexes ^ PossibleIndexes
*
* FreeIndexes will contain the bits indicating the indexes free for use,
* then the code needs to update the recipe[r].used_result_idx_bits to
* indicate which indexes were selected for use by this recipe.
*/
static u16
ice_find_free_recp_res_idx(struct ice_hw *hw, const ice_bitmap_t *profiles,
ice_bitmap_t *free_idx)
{
ice_declare_bitmap(possible_idx, ICE_MAX_FV_WORDS);
ice_declare_bitmap(recipes, ICE_MAX_NUM_RECIPES);
ice_declare_bitmap(used_idx, ICE_MAX_FV_WORDS);
u16 bit;
ice_zero_bitmap(possible_idx, ICE_MAX_FV_WORDS);
ice_zero_bitmap(recipes, ICE_MAX_NUM_RECIPES);
ice_zero_bitmap(used_idx, ICE_MAX_FV_WORDS);
ice_zero_bitmap(free_idx, ICE_MAX_FV_WORDS);
ice_bitmap_set(possible_idx, 0, ICE_MAX_FV_WORDS);
/* For each profile we are going to associate the recipe with, add the
* recipes that are associated with that profile. This will give us
* the set of recipes that our recipe may collide with. Also, determine
* what possible result indexes are usable given this set of profiles.
*/
ice_for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
ice_or_bitmap(recipes, recipes, profile_to_recipe[bit],
ICE_MAX_NUM_RECIPES);
ice_and_bitmap(possible_idx, possible_idx,
hw->switch_info->prof_res_bm[bit],
ICE_MAX_FV_WORDS);
}
/* For each recipe that our new recipe may collide with, determine
* which indexes have been used.
*/
ice_for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
ice_or_bitmap(used_idx, used_idx,
hw->switch_info->recp_list[bit].res_idxs,
ICE_MAX_FV_WORDS);
ice_xor_bitmap(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
/* return number of free indexes */
return (u16)ice_bitmap_hweight(free_idx, ICE_MAX_FV_WORDS);
}
/**
* ice_add_sw_recipe - function to call AQ calls to create switch recipe
* @hw: pointer to hardware structure
* @rm: recipe management list entry
* @profiles: bitmap of profiles that will be associated.
*/
static enum ice_status
ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
ice_bitmap_t *profiles)
{
ice_declare_bitmap(result_idx_bm, ICE_MAX_FV_WORDS);
struct ice_aqc_recipe_data_elem *tmp;
struct ice_aqc_recipe_data_elem *buf;
struct ice_recp_grp_entry *entry;
enum ice_status status;
u16 free_res_idx;
u16 recipe_count;
u8 chain_idx;
u8 recps = 0;
/* When more than one recipe are required, another recipe is needed to
* chain them together. Matching a tunnel metadata ID takes up one of
* the match fields in the chaining recipe reducing the number of
* chained recipes by one.
*/
/* check number of free result indices */
ice_zero_bitmap(result_idx_bm, ICE_MAX_FV_WORDS);
free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
free_res_idx, rm->n_grp_count);
if (rm->n_grp_count > 1) {
if (rm->n_grp_count > free_res_idx)
return ICE_ERR_MAX_LIMIT;
rm->n_grp_count++;
}
if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE)
return ICE_ERR_MAX_LIMIT;
tmp = (struct ice_aqc_recipe_data_elem *)ice_calloc(hw,
ICE_MAX_NUM_RECIPES,
sizeof(*tmp));
if (!tmp)
return ICE_ERR_NO_MEMORY;
buf = (struct ice_aqc_recipe_data_elem *)
ice_calloc(hw, rm->n_grp_count, sizeof(*buf));
if (!buf) {
status = ICE_ERR_NO_MEMORY;
goto err_mem;
}
ice_zero_bitmap(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
recipe_count = ICE_MAX_NUM_RECIPES;
status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
NULL);
if (status || recipe_count == 0)
goto err_unroll;
/* Allocate the recipe resources, and configure them according to the
* match fields from protocol headers and extracted field vectors.
*/
chain_idx = ice_find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
LIST_FOR_EACH_ENTRY(entry, &rm->rg_list, ice_recp_grp_entry, l_entry) {
u8 i;
status = ice_alloc_recipe(hw, &entry->rid);
if (status)
goto err_unroll;
/* Clear the result index of the located recipe, as this will be
* updated, if needed, later in the recipe creation process.
*/
tmp[0].content.result_indx = 0;
buf[recps] = tmp[0];
buf[recps].recipe_indx = (u8)entry->rid;
/* if the recipe is a non-root recipe RID should be programmed
* as 0 for the rules to be applied correctly.
*/
buf[recps].content.rid = 0;
ice_memset(&buf[recps].content.lkup_indx, 0,
sizeof(buf[recps].content.lkup_indx),
ICE_NONDMA_MEM);
/* All recipes use look-up index 0 to match switch ID. */
buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
buf[recps].content.mask[0] =
CPU_TO_LE16(ICE_AQ_SW_ID_LKUP_MASK);
/* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
* to be 0
*/
for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
buf[recps].content.lkup_indx[i] = 0x80;
buf[recps].content.mask[i] = 0;
}
for (i = 0; i < entry->r_group.n_val_pairs; i++) {
buf[recps].content.lkup_indx[i + 1] = entry->fv_idx[i];
buf[recps].content.mask[i + 1] =
CPU_TO_LE16(entry->fv_mask[i]);
}
if (rm->n_grp_count > 1) {
/* Checks to see if there really is a valid result index
* that can be used.
*/
if (chain_idx >= ICE_MAX_FV_WORDS) {
ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
status = ICE_ERR_MAX_LIMIT;
goto err_unroll;
}
entry->chain_idx = chain_idx;
buf[recps].content.result_indx =
ICE_AQ_RECIPE_RESULT_EN |
((chain_idx << ICE_AQ_RECIPE_RESULT_DATA_S) &
ICE_AQ_RECIPE_RESULT_DATA_M);
ice_clear_bit(chain_idx, result_idx_bm);
chain_idx = ice_find_first_bit(result_idx_bm,
ICE_MAX_FV_WORDS);
}
/* fill recipe dependencies */
ice_zero_bitmap((ice_bitmap_t *)buf[recps].recipe_bitmap,
ICE_MAX_NUM_RECIPES);
ice_set_bit(buf[recps].recipe_indx,
(ice_bitmap_t *)buf[recps].recipe_bitmap);
buf[recps].content.act_ctrl_fwd_priority = rm->priority;
recps++;
}
if (rm->n_grp_count == 1) {
rm->root_rid = buf[0].recipe_indx;
ice_set_bit(buf[0].recipe_indx, rm->r_bitmap);
buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
ice_memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
sizeof(buf[0].recipe_bitmap),
ICE_NONDMA_TO_NONDMA);
} else {
status = ICE_ERR_BAD_PTR;
goto err_unroll;
}
/* Applicable only for ROOT_RECIPE, set the fwd_priority for
* the recipe which is getting created if specified
* by user. Usually any advanced switch filter, which results
* into new extraction sequence, ended up creating a new recipe
* of type ROOT and usually recipes are associated with profiles
* Switch rule referreing newly created recipe, needs to have
* either/or 'fwd' or 'join' priority, otherwise switch rule
* evaluation will not happen correctly. In other words, if
* switch rule to be evaluated on priority basis, then recipe
* needs to have priority, otherwise it will be evaluated last.
*/
buf[0].content.act_ctrl_fwd_priority = rm->priority;
} else {
struct ice_recp_grp_entry *last_chain_entry;
u16 rid, i;
/* Allocate the last recipe that will chain the outcomes of the
* other recipes together
*/
status = ice_alloc_recipe(hw, &rid);
if (status)
goto err_unroll;
buf[recps].recipe_indx = (u8)rid;
buf[recps].content.rid = (u8)rid;
buf[recps].content.rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
/* the new entry created should also be part of rg_list to
* make sure we have complete recipe
*/
last_chain_entry = (struct ice_recp_grp_entry *)ice_malloc(hw,
sizeof(*last_chain_entry));
if (!last_chain_entry) {
status = ICE_ERR_NO_MEMORY;
goto err_unroll;
}
last_chain_entry->rid = rid;
ice_memset(&buf[recps].content.lkup_indx, 0,
sizeof(buf[recps].content.lkup_indx),
ICE_NONDMA_MEM);
/* All recipes use look-up index 0 to match switch ID. */
buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
buf[recps].content.mask[0] =
CPU_TO_LE16(ICE_AQ_SW_ID_LKUP_MASK);
for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
buf[recps].content.lkup_indx[i] =
ICE_AQ_RECIPE_LKUP_IGNORE;
buf[recps].content.mask[i] = 0;
}
i = 1;
/* update r_bitmap with the recp that is used for chaining */
ice_set_bit(rid, rm->r_bitmap);
/* this is the recipe that chains all the other recipes so it
* should not have a chaining ID to indicate the same
*/
last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
LIST_FOR_EACH_ENTRY(entry, &rm->rg_list, ice_recp_grp_entry,
l_entry) {
last_chain_entry->fv_idx[i] = entry->chain_idx;
buf[recps].content.lkup_indx[i] = entry->chain_idx;
buf[recps].content.mask[i++] = CPU_TO_LE16(0xFFFF);
ice_set_bit(entry->rid, rm->r_bitmap);
}
LIST_ADD(&last_chain_entry->l_entry, &rm->rg_list);
if (sizeof(buf[recps].recipe_bitmap) >=
sizeof(rm->r_bitmap)) {
ice_memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
sizeof(buf[recps].recipe_bitmap),
ICE_NONDMA_TO_NONDMA);
} else {
status = ICE_ERR_BAD_PTR;
goto err_unroll;
}
buf[recps].content.act_ctrl_fwd_priority = rm->priority;
recps++;
rm->root_rid = (u8)rid;
}
status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
if (status)
goto err_unroll;
status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
ice_release_change_lock(hw);
if (status)
goto err_unroll;
/* Every recipe that just got created add it to the recipe
* book keeping list
*/
LIST_FOR_EACH_ENTRY(entry, &rm->rg_list, ice_recp_grp_entry, l_entry) {
struct ice_switch_info *sw = hw->switch_info;
bool is_root, idx_found = false;
struct ice_sw_recipe *recp;
u16 idx, buf_idx = 0;
/* find buffer index for copying some data */
for (idx = 0; idx < rm->n_grp_count; idx++)
if (buf[idx].recipe_indx == entry->rid) {
buf_idx = idx;
idx_found = true;
}
if (!idx_found) {
status = ICE_ERR_OUT_OF_RANGE;
goto err_unroll;
}
recp = &sw->recp_list[entry->rid];
is_root = (rm->root_rid == entry->rid);
recp->is_root = is_root;
recp->root_rid = entry->rid;
recp->big_recp = (is_root && rm->n_grp_count > 1);
ice_memcpy(&recp->ext_words, entry->r_group.pairs,
entry->r_group.n_val_pairs *
sizeof(struct ice_fv_word),
ICE_NONDMA_TO_NONDMA);
ice_memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
sizeof(recp->r_bitmap), ICE_NONDMA_TO_NONDMA);
/* Copy non-result fv index values and masks to recipe. This
* call will also update the result recipe bitmask.
*/
ice_collect_result_idx(&buf[buf_idx], recp);
/* for non-root recipes, also copy to the root, this allows
* easier matching of a complete chained recipe
*/
if (!is_root)
ice_collect_result_idx(&buf[buf_idx],
&sw->recp_list[rm->root_rid]);
recp->n_ext_words = entry->r_group.n_val_pairs;
recp->chain_idx = entry->chain_idx;
recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
recp->n_grp_count = rm->n_grp_count;
recp->tun_type = rm->tun_type;
recp->recp_created = true;
}
rm->root_buf = buf;
ice_free(hw, tmp);
return status;
err_unroll:
err_mem:
ice_free(hw, tmp);
ice_free(hw, buf);
return status;
}
/**
* ice_create_recipe_group - creates recipe group
* @hw: pointer to hardware structure
* @rm: recipe management list entry
* @lkup_exts: lookup elements
*/
static enum ice_status
ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
struct ice_prot_lkup_ext *lkup_exts)
{
enum ice_status status;
u8 recp_count = 0;
rm->n_grp_count = 0;
/* Create recipes for words that are marked not done by packing them
* as best fit.
*/
status = ice_create_first_fit_recp_def(hw, lkup_exts,
&rm->rg_list, &recp_count);
if (!status) {
rm->n_grp_count += recp_count;
rm->n_ext_words = lkup_exts->n_val_words;
ice_memcpy(&rm->ext_words, lkup_exts->fv_words,
sizeof(rm->ext_words), ICE_NONDMA_TO_NONDMA);
ice_memcpy(rm->word_masks, lkup_exts->field_mask,
sizeof(rm->word_masks), ICE_NONDMA_TO_NONDMA);
}
return status;
}
/**
* ice_get_fv - get field vectors/extraction sequences for spec. lookup types
* @hw: pointer to hardware structure
* @lkups: lookup elements or match criteria for the advanced recipe, one
* structure per protocol header
* @lkups_cnt: number of protocols
* @bm: bitmap of field vectors to consider
* @fv_list: pointer to a list that holds the returned field vectors
*/
static enum ice_status
ice_get_fv(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
ice_bitmap_t *bm, struct LIST_HEAD_TYPE *fv_list)
{
enum ice_status status;
u8 *prot_ids;
u16 i;
if (!lkups_cnt)
return ICE_SUCCESS;
prot_ids = (u8 *)ice_calloc(hw, lkups_cnt, sizeof(*prot_ids));
if (!prot_ids)
return ICE_ERR_NO_MEMORY;
for (i = 0; i < lkups_cnt; i++)
if (!ice_prot_type_to_id(lkups[i].type, &prot_ids[i])) {
status = ICE_ERR_CFG;
goto free_mem;
}
/* Find field vectors that include all specified protocol types */
status = ice_get_sw_fv_list(hw, prot_ids, lkups_cnt, bm, fv_list);
free_mem:
ice_free(hw, prot_ids);
return status;
}
/**
* ice_tun_type_match_mask - determine if tun type needs a match mask
* @tun_type: tunnel type
* @mask: mask to be used for the tunnel
*/
static bool ice_tun_type_match_word(enum ice_sw_tunnel_type tun_type, u16 *mask)
{
switch (tun_type) {
case ICE_SW_TUN_VXLAN_GPE:
case ICE_SW_TUN_GENEVE:
case ICE_SW_TUN_VXLAN:
case ICE_SW_TUN_NVGRE:
case ICE_SW_TUN_UDP:
case ICE_ALL_TUNNELS:
case ICE_SW_TUN_AND_NON_TUN_QINQ:
case ICE_NON_TUN_QINQ:
case ICE_SW_TUN_PPPOE_QINQ:
case ICE_SW_TUN_PPPOE_PAY_QINQ:
case ICE_SW_TUN_PPPOE_IPV4_QINQ:
case ICE_SW_TUN_PPPOE_IPV6_QINQ:
*mask = ICE_TUN_FLAG_MASK;
return true;
case ICE_SW_TUN_GENEVE_VLAN:
case ICE_SW_TUN_VXLAN_VLAN:
*mask = ICE_TUN_FLAG_MASK & ~ICE_TUN_FLAG_VLAN_MASK;
return true;
default:
*mask = 0;
return false;
}
}
/**
* ice_add_special_words - Add words that are not protocols, such as metadata
* @rinfo: other information regarding the rule e.g. priority and action info
* @lkup_exts: lookup word structure
*/
static enum ice_status
ice_add_special_words(struct ice_adv_rule_info *rinfo,
struct ice_prot_lkup_ext *lkup_exts)
{
u16 mask;
/* If this is a tunneled packet, then add recipe index to match the
* tunnel bit in the packet metadata flags.
*/
if (ice_tun_type_match_word(rinfo->tun_type, &mask)) {
if (lkup_exts->n_val_words < ICE_MAX_CHAIN_WORDS) {
u8 word = lkup_exts->n_val_words++;
lkup_exts->fv_words[word].prot_id = ICE_META_DATA_ID_HW;
lkup_exts->fv_words[word].off = ICE_TUN_FLAG_MDID_OFF;
lkup_exts->field_mask[word] = mask;
} else {
return ICE_ERR_MAX_LIMIT;
}
}
return ICE_SUCCESS;
}
/* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
* @hw: pointer to hardware structure
* @rinfo: other information regarding the rule e.g. priority and action info
* @bm: pointer to memory for returning the bitmap of field vectors
*/
static void
ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
ice_bitmap_t *bm)
{
enum ice_prof_type prof_type;
ice_zero_bitmap(bm, ICE_MAX_NUM_PROFILES);
switch (rinfo->tun_type) {
case ICE_NON_TUN:
case ICE_NON_TUN_QINQ:
prof_type = ICE_PROF_NON_TUN;
break;
case ICE_ALL_TUNNELS:
prof_type = ICE_PROF_TUN_ALL;
break;
case ICE_SW_TUN_VXLAN_GPE:
case ICE_SW_TUN_GENEVE:
case ICE_SW_TUN_GENEVE_VLAN:
case ICE_SW_TUN_VXLAN:
case ICE_SW_TUN_VXLAN_VLAN:
case ICE_SW_TUN_UDP:
case ICE_SW_TUN_GTP:
prof_type = ICE_PROF_TUN_UDP;
break;
case ICE_SW_TUN_NVGRE:
prof_type = ICE_PROF_TUN_GRE;
break;
case ICE_SW_TUN_PPPOE:
case ICE_SW_TUN_PPPOE_QINQ:
prof_type = ICE_PROF_TUN_PPPOE;
break;
case ICE_SW_TUN_PPPOE_PAY:
case ICE_SW_TUN_PPPOE_PAY_QINQ:
ice_set_bit(ICE_PROFID_PPPOE_PAY, bm);
return;
case ICE_SW_TUN_PPPOE_IPV4:
case ICE_SW_TUN_PPPOE_IPV4_QINQ:
ice_set_bit(ICE_PROFID_PPPOE_IPV4_OTHER, bm);
ice_set_bit(ICE_PROFID_PPPOE_IPV4_UDP, bm);
ice_set_bit(ICE_PROFID_PPPOE_IPV4_TCP, bm);
return;
case ICE_SW_TUN_PPPOE_IPV4_TCP:
ice_set_bit(ICE_PROFID_PPPOE_IPV4_TCP, bm);
return;
case ICE_SW_TUN_PPPOE_IPV4_UDP:
ice_set_bit(ICE_PROFID_PPPOE_IPV4_UDP, bm);
return;
case ICE_SW_TUN_PPPOE_IPV6:
case ICE_SW_TUN_PPPOE_IPV6_QINQ:
ice_set_bit(ICE_PROFID_PPPOE_IPV6_OTHER, bm);
ice_set_bit(ICE_PROFID_PPPOE_IPV6_UDP, bm);
ice_set_bit(ICE_PROFID_PPPOE_IPV6_TCP, bm);
return;
case ICE_SW_TUN_PPPOE_IPV6_TCP:
ice_set_bit(ICE_PROFID_PPPOE_IPV6_TCP, bm);
return;
case ICE_SW_TUN_PPPOE_IPV6_UDP:
ice_set_bit(ICE_PROFID_PPPOE_IPV6_UDP, bm);
return;
case ICE_SW_TUN_PROFID_IPV6_ESP:
case ICE_SW_TUN_IPV6_ESP:
ice_set_bit(ICE_PROFID_IPV6_ESP, bm);
return;
case ICE_SW_TUN_PROFID_IPV6_AH:
case ICE_SW_TUN_IPV6_AH:
ice_set_bit(ICE_PROFID_IPV6_AH, bm);
return;
case ICE_SW_TUN_PROFID_MAC_IPV6_L2TPV3:
case ICE_SW_TUN_IPV6_L2TPV3:
ice_set_bit(ICE_PROFID_MAC_IPV6_L2TPV3, bm);
return;
case ICE_SW_TUN_PROFID_IPV6_NAT_T:
case ICE_SW_TUN_IPV6_NAT_T:
ice_set_bit(ICE_PROFID_IPV6_NAT_T, bm);
return;
case ICE_SW_TUN_PROFID_IPV4_PFCP_NODE:
ice_set_bit(ICE_PROFID_IPV4_PFCP_NODE, bm);
return;
case ICE_SW_TUN_PROFID_IPV4_PFCP_SESSION:
ice_set_bit(ICE_PROFID_IPV4_PFCP_SESSION, bm);
return;
case ICE_SW_TUN_PROFID_IPV6_PFCP_NODE:
ice_set_bit(ICE_PROFID_IPV6_PFCP_NODE, bm);
return;
case ICE_SW_TUN_PROFID_IPV6_PFCP_SESSION:
ice_set_bit(ICE_PROFID_IPV6_PFCP_SESSION, bm);
return;
case ICE_SW_TUN_IPV4_NAT_T:
ice_set_bit(ICE_PROFID_IPV4_NAT_T, bm);
return;
case ICE_SW_TUN_IPV4_L2TPV3:
ice_set_bit(ICE_PROFID_MAC_IPV4_L2TPV3, bm);
return;
case ICE_SW_TUN_IPV4_ESP:
ice_set_bit(ICE_PROFID_IPV4_ESP, bm);
return;
case ICE_SW_TUN_IPV4_AH:
ice_set_bit(ICE_PROFID_IPV4_AH, bm);
return;
case ICE_SW_IPV4_TCP:
ice_set_bit(ICE_PROFID_IPV4_TCP, bm);
return;
case ICE_SW_IPV4_UDP:
ice_set_bit(ICE_PROFID_IPV4_UDP, bm);
return;
case ICE_SW_IPV6_TCP:
ice_set_bit(ICE_PROFID_IPV6_TCP, bm);
return;
case ICE_SW_IPV6_UDP:
ice_set_bit(ICE_PROFID_IPV6_UDP, bm);
return;
case ICE_SW_TUN_IPV4_GTPU_IPV4:
ice_set_bit(ICE_PROFID_IPV4_GTPU_EH_IPV4_OTHER, bm);
ice_set_bit(ICE_PROFID_IPV4_GTPU_IPV4_OTHER, bm);
ice_set_bit(ICE_PROFID_IPV4_GTPU_EH_IPV4_UDP, bm);
ice_set_bit(ICE_PROFID_IPV4_GTPU_IPV4_UDP, bm);
ice_set_bit(ICE_PROFID_IPV4_GTPU_EH_IPV4_TCP, bm);
ice_set_bit(ICE_PROFID_IPV4_GTPU_IPV4_TCP, bm);
return;
case ICE_SW_TUN_IPV6_GTPU_IPV4:
ice_set_bit(ICE_PROFID_IPV6_GTPU_EH_IPV4_OTHER, bm);
ice_set_bit(ICE_PROFID_IPV6_GTPU_IPV4_OTHER, bm);
ice_set_bit(ICE_PROFID_IPV6_GTPU_EH_IPV4_UDP, bm);
ice_set_bit(ICE_PROFID_IPV6_GTPU_IPV4_UDP, bm);
ice_set_bit(ICE_PROFID_IPV6_GTPU_EH_IPV4_TCP, bm);
ice_set_bit(ICE_PROFID_IPV6_GTPU_IPV4_TCP, bm);
return;
case ICE_SW_TUN_IPV4_GTPU_IPV6:
ice_set_bit(ICE_PROFID_IPV4_GTPU_EH_IPV6_OTHER, bm);
ice_set_bit(ICE_PROFID_IPV4_GTPU_IPV6_OTHER, bm);
ice_set_bit(ICE_PROFID_IPV4_GTPU_EH_IPV6_UDP, bm);
ice_set_bit(ICE_PROFID_IPV4_GTPU_IPV6_UDP, bm);
ice_set_bit(ICE_PROFID_IPV4_GTPU_EH_IPV6_TCP, bm);
ice_set_bit(ICE_PROFID_IPV4_GTPU_IPV6_TCP, bm);
return;
case ICE_SW_TUN_IPV6_GTPU_IPV6:
ice_set_bit(ICE_PROFID_IPV6_GTPU_EH_IPV6_OTHER, bm);
ice_set_bit(ICE_PROFID_IPV6_GTPU_IPV6_OTHER, bm);
ice_set_bit(ICE_PROFID_IPV6_GTPU_EH_IPV6_UDP, bm);
ice_set_bit(ICE_PROFID_IPV6_GTPU_IPV6_UDP, bm);
ice_set_bit(ICE_PROFID_IPV6_GTPU_EH_IPV6_TCP, bm);
ice_set_bit(ICE_PROFID_IPV6_GTPU_IPV6_TCP, bm);
return;
case ICE_SW_TUN_AND_NON_TUN:
case ICE_SW_TUN_AND_NON_TUN_QINQ:
default:
prof_type = ICE_PROF_ALL;
break;
}
ice_get_sw_fv_bitmap(hw, prof_type, bm);
}
/**
* ice_is_prof_rule - determine if rule type is a profile rule
* @type: the rule type
*
* if the rule type is a profile rule, that means that there no field value
* match required, in this case just a profile hit is required.
*/
bool ice_is_prof_rule(enum ice_sw_tunnel_type type)
{
switch (type) {
case ICE_SW_TUN_AND_NON_TUN:
case ICE_SW_TUN_PROFID_IPV6_ESP:
case ICE_SW_TUN_PROFID_IPV6_AH:
case ICE_SW_TUN_PROFID_MAC_IPV6_L2TPV3:
case ICE_SW_TUN_PROFID_IPV6_NAT_T:
case ICE_SW_TUN_PROFID_IPV4_PFCP_NODE:
case ICE_SW_TUN_PROFID_IPV4_PFCP_SESSION:
case ICE_SW_TUN_PROFID_IPV6_PFCP_NODE:
case ICE_SW_TUN_PROFID_IPV6_PFCP_SESSION:
return true;
default:
break;
}
return false;
}
/**
* ice_add_adv_recipe - Add an advanced recipe that is not part of the default
* @hw: pointer to hardware structure
* @lkups: lookup elements or match criteria for the advanced recipe, one
* structure per protocol header
* @lkups_cnt: number of protocols
* @rinfo: other information regarding the rule e.g. priority and action info
* @rid: return the recipe ID of the recipe created
*/
static enum ice_status
ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
{
ice_declare_bitmap(fv_bitmap, ICE_MAX_NUM_PROFILES);
ice_declare_bitmap(profiles, ICE_MAX_NUM_PROFILES);
struct ice_prot_lkup_ext *lkup_exts;
struct ice_recp_grp_entry *r_entry;
struct ice_sw_fv_list_entry *fvit;
struct ice_recp_grp_entry *r_tmp;
struct ice_sw_fv_list_entry *tmp;
enum ice_status status = ICE_SUCCESS;
struct ice_sw_recipe *rm;
u8 i;
if (!ice_is_prof_rule(rinfo->tun_type) && !lkups_cnt)
return ICE_ERR_PARAM;
lkup_exts = (struct ice_prot_lkup_ext *)
ice_malloc(hw, sizeof(*lkup_exts));
if (!lkup_exts)
return ICE_ERR_NO_MEMORY;
/* Determine the number of words to be matched and if it exceeds a
* recipe's restrictions
*/
for (i = 0; i < lkups_cnt; i++) {
u16 count;
if (lkups[i].type >= ICE_PROTOCOL_LAST) {
status = ICE_ERR_CFG;
goto err_free_lkup_exts;
}
count = ice_fill_valid_words(&lkups[i], lkup_exts);
if (!count) {
status = ICE_ERR_CFG;
goto err_free_lkup_exts;
}
}
rm = (struct ice_sw_recipe *)ice_malloc(hw, sizeof(*rm));
if (!rm) {
status = ICE_ERR_NO_MEMORY;
goto err_free_lkup_exts;
}
/* Get field vectors that contain fields extracted from all the protocol
* headers being programmed.
*/
INIT_LIST_HEAD(&rm->fv_list);
INIT_LIST_HEAD(&rm->rg_list);
/* Get bitmap of field vectors (profiles) that are compatible with the
* rule request; only these will be searched in the subsequent call to
* ice_get_fv.
*/
ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
status = ice_get_fv(hw, lkups, lkups_cnt, fv_bitmap, &rm->fv_list);
if (status)
goto err_unroll;
/* Create any special protocol/offset pairs, such as looking at tunnel
* bits by extracting metadata
*/
status = ice_add_special_words(rinfo, lkup_exts);
if (status)
goto err_free_lkup_exts;
/* Group match words into recipes using preferred recipe grouping
* criteria.
*/
status = ice_create_recipe_group(hw, rm, lkup_exts);
if (status)
goto err_unroll;
/* set the recipe priority if specified */
rm->priority = (u8)rinfo->priority;
/* Find offsets from the field vector. Pick the first one for all the
* recipes.
*/
status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
if (status)
goto err_unroll;
/* An empty FV list means to use all the profiles returned in the
* profile bitmap
*/
if (LIST_EMPTY(&rm->fv_list)) {
u16 j;
ice_for_each_set_bit(j, fv_bitmap, ICE_MAX_NUM_PROFILES) {
struct ice_sw_fv_list_entry *fvl;
fvl = (struct ice_sw_fv_list_entry *)
ice_malloc(hw, sizeof(*fvl));
if (!fvl)
goto err_unroll;
fvl->fv_ptr = NULL;
fvl->profile_id = j;
LIST_ADD(&fvl->list_entry, &rm->fv_list);
}
}
/* get bitmap of all profiles the recipe will be associated with */
ice_zero_bitmap(profiles, ICE_MAX_NUM_PROFILES);
LIST_FOR_EACH_ENTRY(fvit, &rm->fv_list, ice_sw_fv_list_entry,
list_entry) {
ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
ice_set_bit((u16)fvit->profile_id, profiles);
}
/* Look for a recipe which matches our requested fv / mask list */
*rid = ice_find_recp(hw, lkup_exts, rinfo->tun_type);
if (*rid < ICE_MAX_NUM_RECIPES)
/* Success if found a recipe that match the existing criteria */
goto err_unroll;
rm->tun_type = rinfo->tun_type;
/* Recipe we need does not exist, add a recipe */
status = ice_add_sw_recipe(hw, rm, profiles);
if (status)
goto err_unroll;
/* Associate all the recipes created with all the profiles in the
* common field vector.
*/
LIST_FOR_EACH_ENTRY(fvit, &rm->fv_list, ice_sw_fv_list_entry,
list_entry) {
ice_declare_bitmap(r_bitmap, ICE_MAX_NUM_RECIPES);
u16 j;
status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
(u8 *)r_bitmap, NULL);
if (status)
goto err_unroll;
ice_or_bitmap(r_bitmap, r_bitmap, rm->r_bitmap,
ICE_MAX_NUM_RECIPES);
status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
if (status)
goto err_unroll;
status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
(u8 *)r_bitmap,
NULL);
ice_release_change_lock(hw);
if (status)
goto err_unroll;
/* Update profile to recipe bitmap array */
ice_cp_bitmap(profile_to_recipe[fvit->profile_id], r_bitmap,
ICE_MAX_NUM_RECIPES);
/* Update recipe to profile bitmap array */
ice_for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
ice_set_bit((u16)fvit->profile_id,
recipe_to_profile[j]);
}
*rid = rm->root_rid;
ice_memcpy(&hw->switch_info->recp_list[*rid].lkup_exts,
lkup_exts, sizeof(*lkup_exts), ICE_NONDMA_TO_NONDMA);
err_unroll:
LIST_FOR_EACH_ENTRY_SAFE(r_entry, r_tmp, &rm->rg_list,
ice_recp_grp_entry, l_entry) {
LIST_DEL(&r_entry->l_entry);
ice_free(hw, r_entry);
}
LIST_FOR_EACH_ENTRY_SAFE(fvit, tmp, &rm->fv_list, ice_sw_fv_list_entry,
list_entry) {
LIST_DEL(&fvit->list_entry);
ice_free(hw, fvit);
}
if (rm->root_buf)
ice_free(hw, rm->root_buf);
ice_free(hw, rm);
err_free_lkup_exts:
ice_free(hw, lkup_exts);
return status;
}
/**
* ice_find_dummy_packet - find dummy packet by tunnel type
*
* @lkups: lookup elements or match criteria for the advanced recipe, one
* structure per protocol header
* @lkups_cnt: number of protocols
* @tun_type: tunnel type from the match criteria
* @pkt: dummy packet to fill according to filter match criteria
* @pkt_len: packet length of dummy packet
* @offsets: pointer to receive the pointer to the offsets for the packet
*/
static void
ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
enum ice_sw_tunnel_type tun_type, const u8 **pkt,
u16 *pkt_len,
const struct ice_dummy_pkt_offsets **offsets)
{
bool tcp = false, udp = false, ipv6 = false, vlan = false;
bool gre = false;
u16 i;
for (i = 0; i < lkups_cnt; i++) {
if (lkups[i].type == ICE_UDP_ILOS)
udp = true;
else if (lkups[i].type == ICE_TCP_IL)
tcp = true;
else if (lkups[i].type == ICE_IPV6_OFOS)
ipv6 = true;
else if (lkups[i].type == ICE_VLAN_OFOS)
vlan = true;
else if (lkups[i].type == ICE_IPV4_OFOS &&
lkups[i].h_u.ipv4_hdr.protocol ==
ICE_IPV4_NVGRE_PROTO_ID &&
lkups[i].m_u.ipv4_hdr.protocol ==
0xFF)
gre = true;
else if (lkups[i].type == ICE_PPPOE &&
lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
CPU_TO_BE16(ICE_PPP_IPV6_PROTO_ID) &&
lkups[i].m_u.pppoe_hdr.ppp_prot_id ==
0xFFFF)
ipv6 = true;
else if (lkups[i].type == ICE_ETYPE_OL &&
lkups[i].h_u.ethertype.ethtype_id ==
CPU_TO_BE16(ICE_IPV6_ETHER_ID) &&
lkups[i].m_u.ethertype.ethtype_id ==
0xFFFF)
ipv6 = true;
else if (lkups[i].type == ICE_IPV4_IL &&
lkups[i].h_u.ipv4_hdr.protocol ==
ICE_TCP_PROTO_ID &&
lkups[i].m_u.ipv4_hdr.protocol ==
0xFF)
tcp = true;
}
if ((tun_type == ICE_SW_TUN_AND_NON_TUN_QINQ ||
tun_type == ICE_NON_TUN_QINQ) && ipv6) {
*pkt = dummy_qinq_ipv6_pkt;
*pkt_len = sizeof(dummy_qinq_ipv6_pkt);
*offsets = dummy_qinq_ipv6_packet_offsets;
return;
} else if (tun_type == ICE_SW_TUN_AND_NON_TUN_QINQ ||
tun_type == ICE_NON_TUN_QINQ) {
*pkt = dummy_qinq_ipv4_pkt;
*pkt_len = sizeof(dummy_qinq_ipv4_pkt);
*offsets = dummy_qinq_ipv4_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_PPPOE_IPV6_QINQ) {
*pkt = dummy_qinq_pppoe_ipv6_packet;
*pkt_len = sizeof(dummy_qinq_pppoe_ipv6_packet);
*offsets = dummy_qinq_pppoe_packet_ipv6_offsets;
return;
} else if (tun_type == ICE_SW_TUN_PPPOE_IPV4_QINQ) {
*pkt = dummy_qinq_pppoe_ipv4_pkt;
*pkt_len = sizeof(dummy_qinq_pppoe_ipv4_pkt);
*offsets = dummy_qinq_pppoe_ipv4_packet_offsets;
return;
} else if (tun_type == ICE_SW_TUN_PPPOE_QINQ ||
tun_type == ICE_SW_TUN_PPPOE_PAY_QINQ) {
*pkt = dummy_qinq_pppoe_ipv4_pkt;
*pkt_len = sizeof(dummy_qinq_pppoe_ipv4_pkt);
*offsets = dummy_qinq_pppoe_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_IPV4_GTPU_NO_PAY) {
*pkt = dummy_ipv4_gtpu_ipv4_packet;
*pkt_len = sizeof(dummy_ipv4_gtpu_ipv4_packet);
*offsets = dummy_ipv4_gtp_no_pay_packet_offsets;
return;
} else if (tun_type == ICE_SW_TUN_IPV6_GTPU_NO_PAY) {
*pkt = dummy_ipv6_gtpu_ipv6_packet;
*pkt_len = sizeof(dummy_ipv6_gtpu_ipv6_packet);
*offsets = dummy_ipv6_gtp_no_pay_packet_offsets;
return;
} else if (tun_type == ICE_SW_TUN_IPV4_GTPU_IPV4) {
*pkt = dummy_ipv4_gtpu_ipv4_packet;
*pkt_len = sizeof(dummy_ipv4_gtpu_ipv4_packet);
*offsets = dummy_ipv4_gtpu_ipv4_packet_offsets;
return;
} else if (tun_type == ICE_SW_TUN_IPV4_GTPU_IPV6) {
*pkt = dummy_ipv4_gtpu_ipv6_packet;
*pkt_len = sizeof(dummy_ipv4_gtpu_ipv6_packet);
*offsets = dummy_ipv4_gtpu_ipv6_packet_offsets;
return;
} else if (tun_type == ICE_SW_TUN_IPV6_GTPU_IPV4) {
*pkt = dummy_ipv6_gtpu_ipv4_packet;
*pkt_len = sizeof(dummy_ipv6_gtpu_ipv4_packet);
*offsets = dummy_ipv6_gtpu_ipv4_packet_offsets;
return;
} else if (tun_type == ICE_SW_TUN_IPV6_GTPU_IPV6) {
*pkt = dummy_ipv6_gtpu_ipv6_packet;
*pkt_len = sizeof(dummy_ipv6_gtpu_ipv6_packet);
*offsets = dummy_ipv6_gtpu_ipv6_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_IPV4_ESP) {
*pkt = dummy_ipv4_esp_pkt;
*pkt_len = sizeof(dummy_ipv4_esp_pkt);
*offsets = dummy_ipv4_esp_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_IPV6_ESP) {
*pkt = dummy_ipv6_esp_pkt;
*pkt_len = sizeof(dummy_ipv6_esp_pkt);
*offsets = dummy_ipv6_esp_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_IPV4_AH) {
*pkt = dummy_ipv4_ah_pkt;
*pkt_len = sizeof(dummy_ipv4_ah_pkt);
*offsets = dummy_ipv4_ah_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_IPV6_AH) {
*pkt = dummy_ipv6_ah_pkt;
*pkt_len = sizeof(dummy_ipv6_ah_pkt);
*offsets = dummy_ipv6_ah_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_IPV4_NAT_T) {
*pkt = dummy_ipv4_nat_pkt;
*pkt_len = sizeof(dummy_ipv4_nat_pkt);
*offsets = dummy_ipv4_nat_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_IPV6_NAT_T) {
*pkt = dummy_ipv6_nat_pkt;
*pkt_len = sizeof(dummy_ipv6_nat_pkt);
*offsets = dummy_ipv6_nat_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_IPV4_L2TPV3) {
*pkt = dummy_ipv4_l2tpv3_pkt;
*pkt_len = sizeof(dummy_ipv4_l2tpv3_pkt);
*offsets = dummy_ipv4_l2tpv3_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_IPV6_L2TPV3) {
*pkt = dummy_ipv6_l2tpv3_pkt;
*pkt_len = sizeof(dummy_ipv6_l2tpv3_pkt);
*offsets = dummy_ipv6_l2tpv3_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_GTP) {
*pkt = dummy_udp_gtp_packet;
*pkt_len = sizeof(dummy_udp_gtp_packet);
*offsets = dummy_udp_gtp_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_PPPOE && ipv6) {
*pkt = dummy_pppoe_ipv6_packet;
*pkt_len = sizeof(dummy_pppoe_ipv6_packet);
*offsets = dummy_pppoe_packet_offsets;
return;
} else if (tun_type == ICE_SW_TUN_PPPOE ||
tun_type == ICE_SW_TUN_PPPOE_PAY) {
*pkt = dummy_pppoe_ipv4_packet;
*pkt_len = sizeof(dummy_pppoe_ipv4_packet);
*offsets = dummy_pppoe_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_PPPOE_IPV4) {
*pkt = dummy_pppoe_ipv4_packet;
*pkt_len = sizeof(dummy_pppoe_ipv4_packet);
*offsets = dummy_pppoe_packet_ipv4_offsets;
return;
}
if (tun_type == ICE_SW_TUN_PPPOE_IPV4_TCP) {
*pkt = dummy_pppoe_ipv4_tcp_packet;
*pkt_len = sizeof(dummy_pppoe_ipv4_tcp_packet);
*offsets = dummy_pppoe_ipv4_tcp_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_PPPOE_IPV4_UDP) {
*pkt = dummy_pppoe_ipv4_udp_packet;
*pkt_len = sizeof(dummy_pppoe_ipv4_udp_packet);
*offsets = dummy_pppoe_ipv4_udp_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_PPPOE_IPV6) {
*pkt = dummy_pppoe_ipv6_packet;
*pkt_len = sizeof(dummy_pppoe_ipv6_packet);
*offsets = dummy_pppoe_packet_ipv6_offsets;
return;
}
if (tun_type == ICE_SW_TUN_PPPOE_IPV6_TCP) {
*pkt = dummy_pppoe_ipv6_tcp_packet;
*pkt_len = sizeof(dummy_pppoe_ipv6_tcp_packet);
*offsets = dummy_pppoe_packet_ipv6_tcp_offsets;
return;
}
if (tun_type == ICE_SW_TUN_PPPOE_IPV6_UDP) {
*pkt = dummy_pppoe_ipv6_udp_packet;
*pkt_len = sizeof(dummy_pppoe_ipv6_udp_packet);
*offsets = dummy_pppoe_packet_ipv6_udp_offsets;
return;
}
if (tun_type == ICE_SW_IPV4_TCP) {
*pkt = dummy_tcp_packet;
*pkt_len = sizeof(dummy_tcp_packet);
*offsets = dummy_tcp_packet_offsets;
return;
}
if (tun_type == ICE_SW_IPV4_UDP) {
*pkt = dummy_udp_packet;
*pkt_len = sizeof(dummy_udp_packet);
*offsets = dummy_udp_packet_offsets;
return;
}
if (tun_type == ICE_SW_IPV6_TCP) {
*pkt = dummy_tcp_ipv6_packet;
*pkt_len = sizeof(dummy_tcp_ipv6_packet);
*offsets = dummy_tcp_ipv6_packet_offsets;
return;
}
if (tun_type == ICE_SW_IPV6_UDP) {
*pkt = dummy_udp_ipv6_packet;
*pkt_len = sizeof(dummy_udp_ipv6_packet);
*offsets = dummy_udp_ipv6_packet_offsets;
return;
}
if (tun_type == ICE_ALL_TUNNELS) {
*pkt = dummy_gre_udp_packet;
*pkt_len = sizeof(dummy_gre_udp_packet);
*offsets = dummy_gre_udp_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_NVGRE || gre) {
if (tcp) {
*pkt = dummy_gre_tcp_packet;
*pkt_len = sizeof(dummy_gre_tcp_packet);
*offsets = dummy_gre_tcp_packet_offsets;
return;
}
*pkt = dummy_gre_udp_packet;
*pkt_len = sizeof(dummy_gre_udp_packet);
*offsets = dummy_gre_udp_packet_offsets;
return;
}
if (tun_type == ICE_SW_TUN_VXLAN || tun_type == ICE_SW_TUN_GENEVE ||
tun_type == ICE_SW_TUN_VXLAN_GPE || tun_type == ICE_SW_TUN_UDP ||
tun_type == ICE_SW_TUN_GENEVE_VLAN ||
tun_type == ICE_SW_TUN_VXLAN_VLAN) {
if (tcp) {
*pkt = dummy_udp_tun_tcp_packet;
*pkt_len = sizeof(dummy_udp_tun_tcp_packet);
*offsets = dummy_udp_tun_tcp_packet_offsets;
return;
}
*pkt = dummy_udp_tun_udp_packet;
*pkt_len = sizeof(dummy_udp_tun_udp_packet);
*offsets = dummy_udp_tun_udp_packet_offsets;
return;
}
if (udp && !ipv6) {
if (vlan) {
*pkt = dummy_vlan_udp_packet;
*pkt_len = sizeof(dummy_vlan_udp_packet);
*offsets = dummy_vlan_udp_packet_offsets;
return;
}
*pkt = dummy_udp_packet;
*pkt_len = sizeof(dummy_udp_packet);
*offsets = dummy_udp_packet_offsets;
return;
} else if (udp && ipv6) {
if (vlan) {
*pkt = dummy_vlan_udp_ipv6_packet;
*pkt_len = sizeof(dummy_vlan_udp_ipv6_packet);
*offsets = dummy_vlan_udp_ipv6_packet_offsets;
return;
}
*pkt = dummy_udp_ipv6_packet;
*pkt_len = sizeof(dummy_udp_ipv6_packet);
*offsets = dummy_udp_ipv6_packet_offsets;
return;
} else if ((tcp && ipv6) || ipv6) {
if (vlan) {
*pkt = dummy_vlan_tcp_ipv6_packet;
*pkt_len = sizeof(dummy_vlan_tcp_ipv6_packet);
*offsets = dummy_vlan_tcp_ipv6_packet_offsets;
return;
}
*pkt = dummy_tcp_ipv6_packet;
*pkt_len = sizeof(dummy_tcp_ipv6_packet);
*offsets = dummy_tcp_ipv6_packet_offsets;
return;
}
if (vlan) {
*pkt = dummy_vlan_tcp_packet;
*pkt_len = sizeof(dummy_vlan_tcp_packet);
*offsets = dummy_vlan_tcp_packet_offsets;
} else {
*pkt = dummy_tcp_packet;
*pkt_len = sizeof(dummy_tcp_packet);
*offsets = dummy_tcp_packet_offsets;
}
}
/**
* ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
*
* @lkups: lookup elements or match criteria for the advanced recipe, one
* structure per protocol header
* @lkups_cnt: number of protocols
* @s_rule: stores rule information from the match criteria
* @dummy_pkt: dummy packet to fill according to filter match criteria
* @pkt_len: packet length of dummy packet
* @offsets: offset info for the dummy packet
*/
static enum ice_status
ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
struct ice_aqc_sw_rules_elem *s_rule,
const u8 *dummy_pkt, u16 pkt_len,
const struct ice_dummy_pkt_offsets *offsets)
{
u8 *pkt;
u16 i;
/* Start with a packet with a pre-defined/dummy content. Then, fill
* in the header values to be looked up or matched.
*/
pkt = s_rule->pdata.lkup_tx_rx.hdr;
ice_memcpy(pkt, dummy_pkt, pkt_len, ICE_NONDMA_TO_NONDMA);
for (i = 0; i < lkups_cnt; i++) {
enum ice_protocol_type type;
u16 offset = 0, len = 0, j;
bool found = false;
/* find the start of this layer; it should be found since this
* was already checked when search for the dummy packet
*/
type = lkups[i].type;
for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
if (type == offsets[j].type) {
offset = offsets[j].offset;
found = true;
break;
}
}
/* this should never happen in a correct calling sequence */
if (!found)
return ICE_ERR_PARAM;
switch (lkups[i].type) {
case ICE_MAC_OFOS:
case ICE_MAC_IL:
len = sizeof(struct ice_ether_hdr);
break;
case ICE_ETYPE_OL:
len = sizeof(struct ice_ethtype_hdr);
break;
case ICE_VLAN_OFOS:
case ICE_VLAN_EX:
len = sizeof(struct ice_vlan_hdr);
break;
case ICE_IPV4_OFOS:
case ICE_IPV4_IL:
len = sizeof(struct ice_ipv4_hdr);
break;
case ICE_IPV6_OFOS:
case ICE_IPV6_IL:
len = sizeof(struct ice_ipv6_hdr);
break;
case ICE_TCP_IL:
case ICE_UDP_OF:
case ICE_UDP_ILOS:
len = sizeof(struct ice_l4_hdr);
break;
case ICE_SCTP_IL:
len = sizeof(struct ice_sctp_hdr);
break;
case ICE_NVGRE:
len = sizeof(struct ice_nvgre);
break;
case ICE_VXLAN:
case ICE_GENEVE:
case ICE_VXLAN_GPE:
len = sizeof(struct ice_udp_tnl_hdr);
break;
case ICE_GTP:
case ICE_GTP_NO_PAY:
len = sizeof(struct ice_udp_gtp_hdr);
break;
case ICE_PPPOE:
len = sizeof(struct ice_pppoe_hdr);
break;
case ICE_ESP:
len = sizeof(struct ice_esp_hdr);
break;
case ICE_NAT_T:
len = sizeof(struct ice_nat_t_hdr);
break;
case ICE_AH:
len = sizeof(struct ice_ah_hdr);
break;
case ICE_L2TPV3:
len = sizeof(struct ice_l2tpv3_sess_hdr);
break;
default:
return ICE_ERR_PARAM;
}
/* the length should be a word multiple */
if (len % ICE_BYTES_PER_WORD)
return ICE_ERR_CFG;
/* We have the offset to the header start, the length, the
* caller's header values and mask. Use this information to
* copy the data into the dummy packet appropriately based on
* the mask. Note that we need to only write the bits as
* indicated by the mask to make sure we don't improperly write
* over any significant packet data.
*/
for (j = 0; j < len / sizeof(u16); j++)
if (((u16 *)&lkups[i].m_u)[j])
((u16 *)(pkt + offset))[j] =
(((u16 *)(pkt + offset))[j] &
~((u16 *)&lkups[i].m_u)[j]) |
(((u16 *)&lkups[i].h_u)[j] &
((u16 *)&lkups[i].m_u)[j]);
}
s_rule->pdata.lkup_tx_rx.hdr_len = CPU_TO_LE16(pkt_len);
return ICE_SUCCESS;
}
/**
* ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
* @hw: pointer to the hardware structure
* @tun_type: tunnel type
* @pkt: dummy packet to fill in
* @offsets: offset info for the dummy packet
*/
static enum ice_status
ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
{
u16 open_port, i;
switch (tun_type) {
case ICE_SW_TUN_AND_NON_TUN:
case ICE_SW_TUN_VXLAN_GPE:
case ICE_SW_TUN_VXLAN:
case ICE_SW_TUN_VXLAN_VLAN:
case ICE_SW_TUN_UDP:
if (!ice_get_open_tunnel_port(hw, TNL_VXLAN, &open_port))
return ICE_ERR_CFG;
break;
case ICE_SW_TUN_GENEVE:
case ICE_SW_TUN_GENEVE_VLAN:
if (!ice_get_open_tunnel_port(hw, TNL_GENEVE, &open_port))
return ICE_ERR_CFG;
break;
default:
/* Nothing needs to be done for this tunnel type */
return ICE_SUCCESS;
}
/* Find the outer UDP protocol header and insert the port number */
for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
if (offsets[i].type == ICE_UDP_OF) {
struct ice_l4_hdr *hdr;
u16 offset;
offset = offsets[i].offset;
hdr = (struct ice_l4_hdr *)&pkt[offset];
hdr->dst_port = CPU_TO_BE16(open_port);
return ICE_SUCCESS;
}
}
return ICE_ERR_CFG;
}
/**
* ice_find_adv_rule_entry - Search a rule entry
* @hw: pointer to the hardware structure
* @lkups: lookup elements or match criteria for the advanced recipe, one
* structure per protocol header
* @lkups_cnt: number of protocols
* @recp_id: recipe ID for which we are finding the rule
* @rinfo: other information regarding the rule e.g. priority and action info
*
* Helper function to search for a given advance rule entry
* Returns pointer to entry storing the rule if found
*/
static struct ice_adv_fltr_mgmt_list_entry *
ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
u16 lkups_cnt, u16 recp_id,
struct ice_adv_rule_info *rinfo)
{
struct ice_adv_fltr_mgmt_list_entry *list_itr;
struct ice_switch_info *sw = hw->switch_info;
int i;
LIST_FOR_EACH_ENTRY(list_itr, &sw->recp_list[recp_id].filt_rules,
ice_adv_fltr_mgmt_list_entry, list_entry) {
bool lkups_matched = true;
if (lkups_cnt != list_itr->lkups_cnt)
continue;
for (i = 0; i < list_itr->lkups_cnt; i++)
if (memcmp(&list_itr->lkups[i], &lkups[i],
sizeof(*lkups))) {
lkups_matched = false;
break;
}
if (rinfo->sw_act.flag == list_itr->rule_info.sw_act.flag &&
rinfo->tun_type == list_itr->rule_info.tun_type &&
lkups_matched)
return list_itr;
}
return NULL;
}
/**
* ice_adv_add_update_vsi_list
* @hw: pointer to the hardware structure
* @m_entry: pointer to current adv filter management list entry
* @cur_fltr: filter information from the book keeping entry
* @new_fltr: filter information with the new VSI to be added
*
* Call AQ command to add or update previously created VSI list with new VSI.
*
* Helper function to do book keeping associated with adding filter information
* The algorithm to do the booking keeping is described below :
* When a VSI needs to subscribe to a given advanced filter
* if only one VSI has been added till now
* Allocate a new VSI list and add two VSIs
* to this list using switch rule command
* Update the previously created switch rule with the
* newly created VSI list ID
* if a VSI list was previously created
* Add the new VSI to the previously created VSI list set
* using the update switch rule command
*/
static enum ice_status
ice_adv_add_update_vsi_list(struct ice_hw *hw,
struct ice_adv_fltr_mgmt_list_entry *m_entry,
struct ice_adv_rule_info *cur_fltr,
struct ice_adv_rule_info *new_fltr)
{
enum ice_status status;
u16 vsi_list_id = 0;
if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
return ICE_ERR_NOT_IMPL;
if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
(cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
return ICE_ERR_NOT_IMPL;
if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
/* Only one entry existed in the mapping and it was not already
* a part of a VSI list. So, create a VSI list with the old and
* new VSIs.
*/
struct ice_fltr_info tmp_fltr;
u16 vsi_handle_arr[2];
/* A rule already exists with the new VSI being added */
if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
new_fltr->sw_act.fwd_id.hw_vsi_id)
return ICE_ERR_ALREADY_EXISTS;
vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
&vsi_list_id,
ICE_SW_LKUP_LAST);
if (status)
return status;
ice_memset(&tmp_fltr, 0, sizeof(tmp_fltr), ICE_NONDMA_MEM);
tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
/* Update the previous switch rule of "forward to VSI" to
* "fwd to VSI list"
*/
status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
if (status)
return status;
cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
m_entry->vsi_list_info =
ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
vsi_list_id);
} else {
u16 vsi_handle = new_fltr->sw_act.vsi_handle;
if (!m_entry->vsi_list_info)
return ICE_ERR_CFG;
/* A rule already exists with the new VSI being added */
if (ice_is_bit_set(m_entry->vsi_list_info->vsi_map, vsi_handle))
return ICE_SUCCESS;
/* Update the previously created VSI list set with
* the new VSI ID passed in
*/
vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
vsi_list_id, false,
ice_aqc_opc_update_sw_rules,
ICE_SW_LKUP_LAST);
/* update VSI list mapping info with new VSI ID */
if (!status)
ice_set_bit(vsi_handle,
m_entry->vsi_list_info->vsi_map);
}
if (!status)
m_entry->vsi_count++;
return status;
}
/**
* ice_add_adv_rule - helper function to create an advanced switch rule
* @hw: pointer to the hardware structure
* @lkups: information on the words that needs to be looked up. All words
* together makes one recipe
* @lkups_cnt: num of entries in the lkups array
* @rinfo: other information related to the rule that needs to be programmed
* @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
* ignored is case of error.
*
* This function can program only 1 rule at a time. The lkups is used to
* describe the all the words that forms the "lookup" portion of the recipe.
* These words can span multiple protocols. Callers to this function need to
* pass in a list of protocol headers with lookup information along and mask
* that determines which words are valid from the given protocol header.
* rinfo describes other information related to this rule such as forwarding
* IDs, priority of this rule, etc.
*/
enum ice_status
ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
struct ice_rule_query_data *added_entry)
{
struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
u16 rid = 0, i, pkt_len, rule_buf_sz, vsi_handle;
const struct ice_dummy_pkt_offsets *pkt_offsets;
struct ice_aqc_sw_rules_elem *s_rule = NULL;
struct LIST_HEAD_TYPE *rule_head;
struct ice_switch_info *sw;
enum ice_status status;
const u8 *pkt = NULL;
bool prof_rule;
u16 word_cnt;
u32 act = 0;
u8 q_rgn;
/* Initialize profile to result index bitmap */
if (!hw->switch_info->prof_res_bm_init) {
hw->switch_info->prof_res_bm_init = 1;
ice_init_prof_result_bm(hw);
}
prof_rule = ice_is_prof_rule(rinfo->tun_type);
if (!prof_rule && !lkups_cnt)
return ICE_ERR_PARAM;
/* get # of words we need to match */
word_cnt = 0;
for (i = 0; i < lkups_cnt; i++) {
u16 j, *ptr;
ptr = (u16 *)&lkups[i].m_u;
for (j = 0; j < sizeof(lkups->m_u) / sizeof(u16); j++)
if (ptr[j] != 0)
word_cnt++;
}
if (prof_rule) {
if (word_cnt > ICE_MAX_CHAIN_WORDS)
return ICE_ERR_PARAM;
} else {
if (!word_cnt || word_cnt > ICE_MAX_CHAIN_WORDS)
return ICE_ERR_PARAM;
}
/* make sure that we can locate a dummy packet */
ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type, &pkt, &pkt_len,
&pkt_offsets);
if (!pkt) {
status = ICE_ERR_PARAM;
goto err_ice_add_adv_rule;
}
if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
rinfo->sw_act.fltr_act == ICE_DROP_PACKET))
return ICE_ERR_CFG;
vsi_handle = rinfo->sw_act.vsi_handle;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
rinfo->sw_act.fwd_id.hw_vsi_id =
ice_get_hw_vsi_num(hw, vsi_handle);
if (rinfo->sw_act.flag & ICE_FLTR_TX)
rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
if (status)
return status;
m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
if (m_entry) {
/* we have to add VSI to VSI_LIST and increment vsi_count.
* Also Update VSI list so that we can change forwarding rule
* if the rule already exists, we will check if it exists with
* same vsi_id, if not then add it to the VSI list if it already
* exists if not then create a VSI list and add the existing VSI
* ID and the new VSI ID to the list
* We will add that VSI to the list
*/
status = ice_adv_add_update_vsi_list(hw, m_entry,
&m_entry->rule_info,
rinfo);
if (added_entry) {
added_entry->rid = rid;
added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
}
return status;
}
rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE + pkt_len;
s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rule_buf_sz);
if (!s_rule)
return ICE_ERR_NO_MEMORY;
act |= ICE_SINGLE_ACT_LAN_ENABLE;
switch (rinfo->sw_act.fltr_act) {
case ICE_FWD_TO_VSI:
act |= (rinfo->sw_act.fwd_id.hw_vsi_id <<
ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M;
act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
break;
case ICE_FWD_TO_Q:
act |= ICE_SINGLE_ACT_TO_Q;
act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
ICE_SINGLE_ACT_Q_INDEX_M;
break;
case ICE_FWD_TO_QGRP:
q_rgn = rinfo->sw_act.qgrp_size > 0 ?
(u8)ice_ilog2(rinfo->sw_act.qgrp_size) : 0;
act |= ICE_SINGLE_ACT_TO_Q;
act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
ICE_SINGLE_ACT_Q_INDEX_M;
act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
ICE_SINGLE_ACT_Q_REGION_M;
break;
case ICE_DROP_PACKET:
act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
ICE_SINGLE_ACT_VALID_BIT;
break;
default:
status = ICE_ERR_CFG;
goto err_ice_add_adv_rule;
}
/* set the rule LOOKUP type based on caller specified 'RX'
* instead of hardcoding it to be either LOOKUP_TX/RX
*
* for 'RX' set the source to be the port number
* for 'TX' set the source to be the source HW VSI number (determined
* by caller)
*/
if (rinfo->rx) {
s_rule->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_RX);
s_rule->pdata.lkup_tx_rx.src =
CPU_TO_LE16(hw->port_info->lport);
} else {
s_rule->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_TX);
s_rule->pdata.lkup_tx_rx.src = CPU_TO_LE16(rinfo->sw_act.src);
}
s_rule->pdata.lkup_tx_rx.recipe_id = CPU_TO_LE16(rid);
s_rule->pdata.lkup_tx_rx.act = CPU_TO_LE32(act);
status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, pkt,
pkt_len, pkt_offsets);
if (status)
goto err_ice_add_adv_rule;
if (rinfo->tun_type != ICE_NON_TUN &&
rinfo->tun_type != ICE_SW_TUN_AND_NON_TUN) {
status = ice_fill_adv_packet_tun(hw, rinfo->tun_type,
s_rule->pdata.lkup_tx_rx.hdr,
pkt_offsets);
if (status)
goto err_ice_add_adv_rule;
}
status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
NULL);
if (status)
goto err_ice_add_adv_rule;
adv_fltr = (struct ice_adv_fltr_mgmt_list_entry *)
ice_malloc(hw, sizeof(struct ice_adv_fltr_mgmt_list_entry));
if (!adv_fltr) {
status = ICE_ERR_NO_MEMORY;
goto err_ice_add_adv_rule;
}
adv_fltr->lkups = (struct ice_adv_lkup_elem *)
ice_memdup(hw, lkups, lkups_cnt * sizeof(*lkups),
ICE_NONDMA_TO_NONDMA);
if (!adv_fltr->lkups && !prof_rule) {
status = ICE_ERR_NO_MEMORY;
goto err_ice_add_adv_rule;
}
adv_fltr->lkups_cnt = lkups_cnt;
adv_fltr->rule_info = *rinfo;
adv_fltr->rule_info.fltr_rule_id =
LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
sw = hw->switch_info;
sw->recp_list[rid].adv_rule = true;
rule_head = &sw->recp_list[rid].filt_rules;
if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
adv_fltr->vsi_count = 1;
/* Add rule entry to book keeping list */
LIST_ADD(&adv_fltr->list_entry, rule_head);
if (added_entry) {
added_entry->rid = rid;
added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
}
err_ice_add_adv_rule:
if (status && adv_fltr) {
ice_free(hw, adv_fltr->lkups);
ice_free(hw, adv_fltr);
}
ice_free(hw, s_rule);
return status;
}
/**
* ice_adv_rem_update_vsi_list
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle of the VSI to remove
* @fm_list: filter management entry for which the VSI list management needs to
* be done
*/
static enum ice_status
ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
struct ice_adv_fltr_mgmt_list_entry *fm_list)
{
struct ice_vsi_list_map_info *vsi_list_info;
enum ice_sw_lkup_type lkup_type;
enum ice_status status;
u16 vsi_list_id;
if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
fm_list->vsi_count == 0)
return ICE_ERR_PARAM;
/* A rule with the VSI being removed does not exist */
if (!ice_is_bit_set(fm_list->vsi_list_info->vsi_map, vsi_handle))
return ICE_ERR_DOES_NOT_EXIST;
lkup_type = ICE_SW_LKUP_LAST;
vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
ice_aqc_opc_update_sw_rules,
lkup_type);
if (status)
return status;
fm_list->vsi_count--;
ice_clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
vsi_list_info = fm_list->vsi_list_info;
if (fm_list->vsi_count == 1) {
struct ice_fltr_info tmp_fltr;
u16 rem_vsi_handle;
rem_vsi_handle = ice_find_first_bit(vsi_list_info->vsi_map,
ICE_MAX_VSI);
if (!ice_is_vsi_valid(hw, rem_vsi_handle))
return ICE_ERR_OUT_OF_RANGE;
/* Make sure VSI list is empty before removing it below */
status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
vsi_list_id, true,
ice_aqc_opc_update_sw_rules,
lkup_type);
if (status)
return status;
ice_memset(&tmp_fltr, 0, sizeof(tmp_fltr), ICE_NONDMA_MEM);
tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
tmp_fltr.fwd_id.hw_vsi_id =
ice_get_hw_vsi_num(hw, rem_vsi_handle);
fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
ice_get_hw_vsi_num(hw, rem_vsi_handle);
fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
/* Update the previous switch rule of "MAC forward to VSI" to
* "MAC fwd to VSI list"
*/
status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
if (status) {
ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
tmp_fltr.fwd_id.hw_vsi_id, status);
return status;
}
fm_list->vsi_list_info->ref_cnt--;
/* Remove the VSI list since it is no longer used */
status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
if (status) {
ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
vsi_list_id, status);
return status;
}
LIST_DEL(&vsi_list_info->list_entry);
ice_free(hw, vsi_list_info);
fm_list->vsi_list_info = NULL;
}
return status;
}
/**
* ice_rem_adv_rule - removes existing advanced switch rule
* @hw: pointer to the hardware structure
* @lkups: information on the words that needs to be looked up. All words
* together makes one recipe
* @lkups_cnt: num of entries in the lkups array
* @rinfo: Its the pointer to the rule information for the rule
*
* This function can be used to remove 1 rule at a time. The lkups is
* used to describe all the words that forms the "lookup" portion of the
* rule. These words can span multiple protocols. Callers to this function
* need to pass in a list of protocol headers with lookup information along
* and mask that determines which words are valid from the given protocol
* header. rinfo describes other information related to this rule such as
* forwarding IDs, priority of this rule, etc.
*/
enum ice_status
ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
{
struct ice_adv_fltr_mgmt_list_entry *list_elem;
struct ice_prot_lkup_ext lkup_exts;
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
enum ice_status status = ICE_SUCCESS;
bool remove_rule = false;
u16 i, rid, vsi_handle;
ice_memset(&lkup_exts, 0, sizeof(lkup_exts), ICE_NONDMA_MEM);
for (i = 0; i < lkups_cnt; i++) {
u16 count;
if (lkups[i].type >= ICE_PROTOCOL_LAST)
return ICE_ERR_CFG;
count = ice_fill_valid_words(&lkups[i], &lkup_exts);
if (!count)
return ICE_ERR_CFG;
}
/* Create any special protocol/offset pairs, such as looking at tunnel
* bits by extracting metadata
*/
status = ice_add_special_words(rinfo, &lkup_exts);
if (status)
return status;
rid = ice_find_recp(hw, &lkup_exts, rinfo->tun_type);
/* If did not find a recipe that match the existing criteria */
if (rid == ICE_MAX_NUM_RECIPES)
return ICE_ERR_PARAM;
rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
/* the rule is already removed */
if (!list_elem)
return ICE_SUCCESS;
ice_acquire_lock(rule_lock);
if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
remove_rule = true;
} else if (list_elem->vsi_count > 1) {
remove_rule = false;
vsi_handle = rinfo->sw_act.vsi_handle;
status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
} else {
vsi_handle = rinfo->sw_act.vsi_handle;
status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
if (status) {
ice_release_lock(rule_lock);
return status;
}
if (list_elem->vsi_count == 0)
remove_rule = true;
}
ice_release_lock(rule_lock);
if (remove_rule) {
struct ice_aqc_sw_rules_elem *s_rule;
u16 rule_buf_sz;
rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE;
s_rule = (struct ice_aqc_sw_rules_elem *)
ice_malloc(hw, rule_buf_sz);
if (!s_rule)
return ICE_ERR_NO_MEMORY;
s_rule->pdata.lkup_tx_rx.act = 0;
s_rule->pdata.lkup_tx_rx.index =
CPU_TO_LE16(list_elem->rule_info.fltr_rule_id);
s_rule->pdata.lkup_tx_rx.hdr_len = 0;
status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
rule_buf_sz, 1,
ice_aqc_opc_remove_sw_rules, NULL);
if (status == ICE_SUCCESS || status == ICE_ERR_DOES_NOT_EXIST) {
struct ice_switch_info *sw = hw->switch_info;
ice_acquire_lock(rule_lock);
LIST_DEL(&list_elem->list_entry);
ice_free(hw, list_elem->lkups);
ice_free(hw, list_elem);
ice_release_lock(rule_lock);
if (LIST_EMPTY(&sw->recp_list[rid].filt_rules))
sw->recp_list[rid].adv_rule = false;
}
ice_free(hw, s_rule);
}
return status;
}
/**
* ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
* @hw: pointer to the hardware structure
* @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
*
* This function is used to remove 1 rule at a time. The removal is based on
* the remove_entry parameter. This function will remove rule for a given
* vsi_handle with a given rule_id which is passed as parameter in remove_entry
*/
enum ice_status
ice_rem_adv_rule_by_id(struct ice_hw *hw,
struct ice_rule_query_data *remove_entry)
{
struct ice_adv_fltr_mgmt_list_entry *list_itr;
struct LIST_HEAD_TYPE *list_head;
struct ice_adv_rule_info rinfo;
struct ice_switch_info *sw;
sw = hw->switch_info;
if (!sw->recp_list[remove_entry->rid].recp_created)
return ICE_ERR_PARAM;
list_head = &sw->recp_list[remove_entry->rid].filt_rules;
LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_adv_fltr_mgmt_list_entry,
list_entry) {
if (list_itr->rule_info.fltr_rule_id ==
remove_entry->rule_id) {
rinfo = list_itr->rule_info;
rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
return ice_rem_adv_rule(hw, list_itr->lkups,
list_itr->lkups_cnt, &rinfo);
}
}
/* either list is empty or unable to find rule */
return ICE_ERR_DOES_NOT_EXIST;
}
/**
* ice_rem_adv_for_vsi - removes existing advanced switch rules for a
* given VSI handle
* @hw: pointer to the hardware structure
* @vsi_handle: VSI handle for which we are supposed to remove all the rules.
*
* This function is used to remove all the rules for a given VSI and as soon
* as removing a rule fails, it will return immediately with the error code,
* else it will return ICE_SUCCESS
*/
enum ice_status ice_rem_adv_rule_for_vsi(struct ice_hw *hw, u16 vsi_handle)
{
struct ice_adv_fltr_mgmt_list_entry *list_itr, *tmp_entry;
struct ice_vsi_list_map_info *map_info;
struct LIST_HEAD_TYPE *list_head;
struct ice_adv_rule_info rinfo;
struct ice_switch_info *sw;
enum ice_status status;
u8 rid;
sw = hw->switch_info;
for (rid = 0; rid < ICE_MAX_NUM_RECIPES; rid++) {
if (!sw->recp_list[rid].recp_created)
continue;
if (!sw->recp_list[rid].adv_rule)
continue;
list_head = &sw->recp_list[rid].filt_rules;
LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp_entry, list_head,
ice_adv_fltr_mgmt_list_entry,
list_entry) {
rinfo = list_itr->rule_info;
if (rinfo.sw_act.fltr_act == ICE_FWD_TO_VSI_LIST) {
map_info = list_itr->vsi_list_info;
if (!map_info)
continue;
if (!ice_is_bit_set(map_info->vsi_map,
vsi_handle))
continue;
} else if (rinfo.sw_act.vsi_handle != vsi_handle) {
continue;
}
rinfo.sw_act.vsi_handle = vsi_handle;
status = ice_rem_adv_rule(hw, list_itr->lkups,
list_itr->lkups_cnt, &rinfo);
if (status)
return status;
}
}
return ICE_SUCCESS;
}
/**
* ice_replay_fltr - Replay all the filters stored by a specific list head
* @hw: pointer to the hardware structure
* @list_head: list for which filters needs to be replayed
* @recp_id: Recipe ID for which rules need to be replayed
*/
static enum ice_status
ice_replay_fltr(struct ice_hw *hw, u8 recp_id, struct LIST_HEAD_TYPE *list_head)
{
struct ice_fltr_mgmt_list_entry *itr;
enum ice_status status = ICE_SUCCESS;
struct ice_sw_recipe *recp_list;
u8 lport = hw->port_info->lport;
struct LIST_HEAD_TYPE l_head;
if (LIST_EMPTY(list_head))
return status;
recp_list = &hw->switch_info->recp_list[recp_id];
/* Move entries from the given list_head to a temporary l_head so that
* they can be replayed. Otherwise when trying to re-add the same
* filter, the function will return already exists
*/
LIST_REPLACE_INIT(list_head, &l_head);
/* Mark the given list_head empty by reinitializing it so filters
* could be added again by *handler
*/
LIST_FOR_EACH_ENTRY(itr, &l_head, ice_fltr_mgmt_list_entry,
list_entry) {
struct ice_fltr_list_entry f_entry;
u16 vsi_handle;
f_entry.fltr_info = itr->fltr_info;
if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN) {
status = ice_add_rule_internal(hw, recp_list, lport,
&f_entry);
if (status != ICE_SUCCESS)
goto end;
continue;
}
/* Add a filter per VSI separately */
ice_for_each_set_bit(vsi_handle, itr->vsi_list_info->vsi_map,
ICE_MAX_VSI) {
if (!ice_is_vsi_valid(hw, vsi_handle))
break;
ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
f_entry.fltr_info.vsi_handle = vsi_handle;
f_entry.fltr_info.fwd_id.hw_vsi_id =
ice_get_hw_vsi_num(hw, vsi_handle);
f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
if (recp_id == ICE_SW_LKUP_VLAN)
status = ice_add_vlan_internal(hw, recp_list,
&f_entry);
else
status = ice_add_rule_internal(hw, recp_list,
lport,
&f_entry);
if (status != ICE_SUCCESS)
goto end;
}
}
end:
/* Clear the filter management list */
ice_rem_sw_rule_info(hw, &l_head);
return status;
}
/**
* ice_replay_all_fltr - replay all filters stored in bookkeeping lists
* @hw: pointer to the hardware structure
*
* NOTE: This function does not clean up partially added filters on error.
* It is up to caller of the function to issue a reset or fail early.
*/
enum ice_status ice_replay_all_fltr(struct ice_hw *hw)
{
struct ice_switch_info *sw = hw->switch_info;
enum ice_status status = ICE_SUCCESS;
u8 i;
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
struct LIST_HEAD_TYPE *head = &sw->recp_list[i].filt_rules;
status = ice_replay_fltr(hw, i, head);
if (status != ICE_SUCCESS)
return status;
}
return status;
}
/**
* ice_replay_vsi_fltr - Replay filters for requested VSI
* @hw: pointer to the hardware structure
* @pi: pointer to port information structure
* @sw: pointer to switch info struct for which function replays filters
* @vsi_handle: driver VSI handle
* @recp_id: Recipe ID for which rules need to be replayed
* @list_head: list for which filters need to be replayed
*
* Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
* It is required to pass valid VSI handle.
*/
static enum ice_status
ice_replay_vsi_fltr(struct ice_hw *hw, struct ice_port_info *pi,
struct ice_switch_info *sw, u16 vsi_handle, u8 recp_id,
struct LIST_HEAD_TYPE *list_head)
{
struct ice_fltr_mgmt_list_entry *itr;
enum ice_status status = ICE_SUCCESS;
struct ice_sw_recipe *recp_list;
u16 hw_vsi_id;
if (LIST_EMPTY(list_head))
return status;
recp_list = &sw->recp_list[recp_id];
hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
LIST_FOR_EACH_ENTRY(itr, list_head, ice_fltr_mgmt_list_entry,
list_entry) {
struct ice_fltr_list_entry f_entry;
f_entry.fltr_info = itr->fltr_info;
if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
itr->fltr_info.vsi_handle == vsi_handle) {
/* update the src in case it is VSI num */
if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
f_entry.fltr_info.src = hw_vsi_id;
status = ice_add_rule_internal(hw, recp_list,
pi->lport,
&f_entry);
if (status != ICE_SUCCESS)
goto end;
continue;
}
if (!itr->vsi_list_info ||
!ice_is_bit_set(itr->vsi_list_info->vsi_map, vsi_handle))
continue;
/* Clearing it so that the logic can add it back */
ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
f_entry.fltr_info.vsi_handle = vsi_handle;
f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
/* update the src in case it is VSI num */
if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
f_entry.fltr_info.src = hw_vsi_id;
if (recp_id == ICE_SW_LKUP_VLAN)
status = ice_add_vlan_internal(hw, recp_list, &f_entry);
else
status = ice_add_rule_internal(hw, recp_list,
pi->lport,
&f_entry);
if (status != ICE_SUCCESS)
goto end;
}
end:
return status;
}
/**
* ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
* @hw: pointer to the hardware structure
* @vsi_handle: driver VSI handle
* @list_head: list for which filters need to be replayed
*
* Replay the advanced rule for the given VSI.
*/
static enum ice_status
ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
struct LIST_HEAD_TYPE *list_head)
{
struct ice_rule_query_data added_entry = { 0 };
struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
enum ice_status status = ICE_SUCCESS;
if (LIST_EMPTY(list_head))
return status;
LIST_FOR_EACH_ENTRY(adv_fltr, list_head, ice_adv_fltr_mgmt_list_entry,
list_entry) {
struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
u16 lk_cnt = adv_fltr->lkups_cnt;
if (vsi_handle != rinfo->sw_act.vsi_handle)
continue;
status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
&added_entry);
if (status)
break;
}
return status;
}
/**
* ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
* @hw: pointer to the hardware structure
* @pi: pointer to port information structure
* @vsi_handle: driver VSI handle
*
* Replays filters for requested VSI via vsi_handle.
*/
enum ice_status
ice_replay_vsi_all_fltr(struct ice_hw *hw, struct ice_port_info *pi,
u16 vsi_handle)
{
struct ice_switch_info *sw = hw->switch_info;
enum ice_status status;
u8 i;
/* Update the recipes that were created */
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
struct LIST_HEAD_TYPE *head;
head = &sw->recp_list[i].filt_replay_rules;
if (!sw->recp_list[i].adv_rule)
status = ice_replay_vsi_fltr(hw, pi, sw, vsi_handle, i,
head);
else
status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
if (status != ICE_SUCCESS)
return status;
}
return ICE_SUCCESS;
}
/**
* ice_rm_all_sw_replay_rule - helper function to delete filter replay rules
* @hw: pointer to the HW struct
* @sw: pointer to switch info struct for which function removes filters
*
* Deletes the filter replay rules for given switch
*/
void ice_rm_sw_replay_rule_info(struct ice_hw *hw, struct ice_switch_info *sw)
{
u8 i;
if (!sw)
return;
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
if (!LIST_EMPTY(&sw->recp_list[i].filt_replay_rules)) {
struct LIST_HEAD_TYPE *l_head;
l_head = &sw->recp_list[i].filt_replay_rules;
if (!sw->recp_list[i].adv_rule)
ice_rem_sw_rule_info(hw, l_head);
else
ice_rem_adv_rule_info(hw, l_head);
}
}
}
/**
* ice_rm_all_sw_replay_rule_info - deletes filter replay rules
* @hw: pointer to the HW struct
*
* Deletes the filter replay rules.
*/
void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
{
ice_rm_sw_replay_rule_info(hw, hw->switch_info);
}