f-stack/dpdk/drivers/net/ice/base/ice_flow.c

3919 lines
122 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2001-2020 Intel Corporation
*/
#include "ice_common.h"
#include "ice_flow.h"
/* Size of known protocol header fields */
#define ICE_FLOW_FLD_SZ_ETH_TYPE 2
#define ICE_FLOW_FLD_SZ_VLAN 2
#define ICE_FLOW_FLD_SZ_IPV4_ADDR 4
#define ICE_FLOW_FLD_SZ_IPV6_ADDR 16
#define ICE_FLOW_FLD_SZ_IPV6_PRE32_ADDR 4
#define ICE_FLOW_FLD_SZ_IPV6_PRE48_ADDR 6
#define ICE_FLOW_FLD_SZ_IPV6_PRE64_ADDR 8
#define ICE_FLOW_FLD_SZ_IP_DSCP 1
#define ICE_FLOW_FLD_SZ_IP_TTL 1
#define ICE_FLOW_FLD_SZ_IP_PROT 1
#define ICE_FLOW_FLD_SZ_PORT 2
#define ICE_FLOW_FLD_SZ_TCP_FLAGS 1
#define ICE_FLOW_FLD_SZ_ICMP_TYPE 1
#define ICE_FLOW_FLD_SZ_ICMP_CODE 1
#define ICE_FLOW_FLD_SZ_ARP_OPER 2
#define ICE_FLOW_FLD_SZ_GRE_KEYID 4
#define ICE_FLOW_FLD_SZ_GTP_TEID 4
#define ICE_FLOW_FLD_SZ_GTP_QFI 2
#define ICE_FLOW_FLD_SZ_PPPOE_SESS_ID 2
#define ICE_FLOW_FLD_SZ_PFCP_SEID 8
#define ICE_FLOW_FLD_SZ_L2TPV3_SESS_ID 4
#define ICE_FLOW_FLD_SZ_ESP_SPI 4
#define ICE_FLOW_FLD_SZ_AH_SPI 4
#define ICE_FLOW_FLD_SZ_NAT_T_ESP_SPI 4
/* Describe properties of a protocol header field */
struct ice_flow_field_info {
enum ice_flow_seg_hdr hdr;
s16 off; /* Offset from start of a protocol header, in bits */
u16 size; /* Size of fields in bits */
u16 mask; /* 16-bit mask for field */
};
#define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \
.hdr = _hdr, \
.off = (_offset_bytes) * BITS_PER_BYTE, \
.size = (_size_bytes) * BITS_PER_BYTE, \
.mask = 0, \
}
#define ICE_FLOW_FLD_INFO_MSK(_hdr, _offset_bytes, _size_bytes, _mask) { \
.hdr = _hdr, \
.off = (_offset_bytes) * BITS_PER_BYTE, \
.size = (_size_bytes) * BITS_PER_BYTE, \
.mask = _mask, \
}
/* Table containing properties of supported protocol header fields */
static const
struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = {
/* Ether */
/* ICE_FLOW_FIELD_IDX_ETH_DA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ETH_ALEN),
/* ICE_FLOW_FIELD_IDX_ETH_SA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, ETH_ALEN, ETH_ALEN),
/* ICE_FLOW_FIELD_IDX_S_VLAN */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 12, ICE_FLOW_FLD_SZ_VLAN),
/* ICE_FLOW_FIELD_IDX_C_VLAN */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 14, ICE_FLOW_FLD_SZ_VLAN),
/* ICE_FLOW_FIELD_IDX_ETH_TYPE */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ICE_FLOW_FLD_SZ_ETH_TYPE),
/* IPv4 / IPv6 */
/* ICE_FLOW_FIELD_IDX_IPV4_DSCP */
ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV4, 0, ICE_FLOW_FLD_SZ_IP_DSCP,
0x00fc),
/* ICE_FLOW_FIELD_IDX_IPV6_DSCP */
ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV6, 0, ICE_FLOW_FLD_SZ_IP_DSCP,
0x0ff0),
/* ICE_FLOW_FIELD_IDX_IPV4_TTL */
ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8,
ICE_FLOW_FLD_SZ_IP_TTL, 0xff00),
/* ICE_FLOW_FIELD_IDX_IPV4_PROT */
ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8,
ICE_FLOW_FLD_SZ_IP_PROT, 0x00ff),
/* ICE_FLOW_FIELD_IDX_IPV6_TTL */
ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6,
ICE_FLOW_FLD_SZ_IP_TTL, 0x00ff),
/* ICE_FLOW_FIELD_IDX_IPV6_PROT */
ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6,
ICE_FLOW_FLD_SZ_IP_PROT, 0xff00),
/* ICE_FLOW_FIELD_IDX_IPV4_SA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, ICE_FLOW_FLD_SZ_IPV4_ADDR),
/* ICE_FLOW_FIELD_IDX_IPV4_DA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, ICE_FLOW_FLD_SZ_IPV4_ADDR),
/* ICE_FLOW_FIELD_IDX_IPV6_SA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, ICE_FLOW_FLD_SZ_IPV6_ADDR),
/* ICE_FLOW_FIELD_IDX_IPV6_DA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, ICE_FLOW_FLD_SZ_IPV6_ADDR),
/* ICE_FLOW_FIELD_IDX_IPV6_PRE32_SA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8,
ICE_FLOW_FLD_SZ_IPV6_PRE32_ADDR),
/* ICE_FLOW_FIELD_IDX_IPV6_PRE32_DA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24,
ICE_FLOW_FLD_SZ_IPV6_PRE32_ADDR),
/* ICE_FLOW_FIELD_IDX_IPV6_PRE48_SA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8,
ICE_FLOW_FLD_SZ_IPV6_PRE48_ADDR),
/* ICE_FLOW_FIELD_IDX_IPV6_PRE48_DA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24,
ICE_FLOW_FLD_SZ_IPV6_PRE48_ADDR),
/* ICE_FLOW_FIELD_IDX_IPV6_PRE64_SA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8,
ICE_FLOW_FLD_SZ_IPV6_PRE64_ADDR),
/* ICE_FLOW_FIELD_IDX_IPV6_PRE64_DA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24,
ICE_FLOW_FLD_SZ_IPV6_PRE64_ADDR),
/* Transport */
/* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, ICE_FLOW_FLD_SZ_PORT),
/* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, ICE_FLOW_FLD_SZ_PORT),
/* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, ICE_FLOW_FLD_SZ_PORT),
/* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, ICE_FLOW_FLD_SZ_PORT),
/* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, ICE_FLOW_FLD_SZ_PORT),
/* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, ICE_FLOW_FLD_SZ_PORT),
/* ICE_FLOW_FIELD_IDX_TCP_FLAGS */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 13, ICE_FLOW_FLD_SZ_TCP_FLAGS),
/* ARP */
/* ICE_FLOW_FIELD_IDX_ARP_SIP */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 14, ICE_FLOW_FLD_SZ_IPV4_ADDR),
/* ICE_FLOW_FIELD_IDX_ARP_DIP */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 24, ICE_FLOW_FLD_SZ_IPV4_ADDR),
/* ICE_FLOW_FIELD_IDX_ARP_SHA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 8, ETH_ALEN),
/* ICE_FLOW_FIELD_IDX_ARP_DHA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 18, ETH_ALEN),
/* ICE_FLOW_FIELD_IDX_ARP_OP */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 6, ICE_FLOW_FLD_SZ_ARP_OPER),
/* ICMP */
/* ICE_FLOW_FIELD_IDX_ICMP_TYPE */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 0, ICE_FLOW_FLD_SZ_ICMP_TYPE),
/* ICE_FLOW_FIELD_IDX_ICMP_CODE */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 1, ICE_FLOW_FLD_SZ_ICMP_CODE),
/* GRE */
/* ICE_FLOW_FIELD_IDX_GRE_KEYID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12, ICE_FLOW_FLD_SZ_GRE_KEYID),
/* GTP */
/* ICE_FLOW_FIELD_IDX_GTPC_TEID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPC_TEID, 12,
ICE_FLOW_FLD_SZ_GTP_TEID),
/* ICE_FLOW_FIELD_IDX_GTPU_IP_TEID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_IP, 12,
ICE_FLOW_FLD_SZ_GTP_TEID),
/* ICE_FLOW_FIELD_IDX_GTPU_EH_TEID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_EH, 12,
ICE_FLOW_FLD_SZ_GTP_TEID),
/* ICE_FLOW_FIELD_IDX_GTPU_EH_QFI */
ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_GTPU_EH, 22,
ICE_FLOW_FLD_SZ_GTP_QFI, 0x3f00),
/* ICE_FLOW_FIELD_IDX_GTPU_UP_TEID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_UP, 12,
ICE_FLOW_FLD_SZ_GTP_TEID),
/* ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_DWN, 12,
ICE_FLOW_FLD_SZ_GTP_TEID),
/* PPPOE */
/* ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PPPOE, 2,
ICE_FLOW_FLD_SZ_PPPOE_SESS_ID),
/* PFCP */
/* ICE_FLOW_FIELD_IDX_PFCP_SEID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PFCP_SESSION, 12,
ICE_FLOW_FLD_SZ_PFCP_SEID),
/* L2TPV3 */
/* ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_L2TPV3, 0,
ICE_FLOW_FLD_SZ_L2TPV3_SESS_ID),
/* ESP */
/* ICE_FLOW_FIELD_IDX_ESP_SPI */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ESP, 0,
ICE_FLOW_FLD_SZ_ESP_SPI),
/* AH */
/* ICE_FLOW_FIELD_IDX_AH_SPI */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_AH, 4,
ICE_FLOW_FLD_SZ_AH_SPI),
/* NAT_T_ESP */
/* ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NAT_T_ESP, 8,
ICE_FLOW_FLD_SZ_NAT_T_ESP_SPI),
};
/* Bitmaps indicating relevant packet types for a particular protocol header
*
* Packet types for packets with an Outer/First/Single MAC header
*/
static const u32 ice_ptypes_mac_ofos[] = {
0xFDC00846, 0xBFBF7F7E, 0xF70001DF, 0xFEFDFDFB,
0x0000077E, 0x000003FF, 0x00000000, 0x00000000,
0x00400000, 0x03FFF000, 0xFFFFFFE0, 0x00000307,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last MAC VLAN header */
static const u32 ice_ptypes_macvlan_il[] = {
0x00000000, 0xBC000000, 0x000001DF, 0xF0000000,
0x0000077E, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outer/First/Single IPv4 header, does NOT
* include IPV4 other PTYPEs
*/
static const u32 ice_ptypes_ipv4_ofos[] = {
0x1DC00000, 0x24000800, 0x00000000, 0x00000000,
0x00000000, 0x00000155, 0x00000000, 0x00000000,
0x00000000, 0x000FC000, 0x000002A0, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outer/First/Single IPv4 header, includes
* IPV4 other PTYPEs
*/
static const u32 ice_ptypes_ipv4_ofos_all[] = {
0x1DC00000, 0x24000800, 0x00000000, 0x00000000,
0x00000000, 0x00000155, 0x00000000, 0x00000000,
0x00000000, 0x000FC000, 0x83E0FAA0, 0x00000101,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last IPv4 header */
static const u32 ice_ptypes_ipv4_il[] = {
0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B,
0x0000000E, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x001FF800, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outer/First/Single IPv6 header, does NOT
* include IVP6 other PTYPEs
*/
static const u32 ice_ptypes_ipv6_ofos[] = {
0x00000000, 0x00000000, 0x77000000, 0x10002000,
0x00000000, 0x000002AA, 0x00000000, 0x00000000,
0x00000000, 0x03F00000, 0x00000540, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outer/First/Single IPv6 header, includes
* IPV6 other PTYPEs
*/
static const u32 ice_ptypes_ipv6_ofos_all[] = {
0x00000000, 0x00000000, 0x77000000, 0x10002000,
0x00000000, 0x000002AA, 0x00000000, 0x00000000,
0x00000000, 0x03F00000, 0x7C1F0540, 0x00000206,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last IPv6 header */
static const u32 ice_ptypes_ipv6_il[] = {
0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000,
0x00000770, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x7FE00000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outer/First/Single IPv4 header - no L4 */
static const u32 ice_ptypes_ipv4_ofos_no_l4[] = {
0x10C00000, 0x04000800, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x000cc000, 0x000002A0, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last IPv4 header - no L4 */
static const u32 ice_ptypes_ipv4_il_no_l4[] = {
0x60000000, 0x18043008, 0x80000002, 0x6010c021,
0x00000008, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00139800, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outer/First/Single IPv6 header - no L4 */
static const u32 ice_ptypes_ipv6_ofos_no_l4[] = {
0x00000000, 0x00000000, 0x43000000, 0x10002000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x02300000, 0x00000540, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last IPv6 header - no L4 */
static const u32 ice_ptypes_ipv6_il_no_l4[] = {
0x00000000, 0x02180430, 0x0000010c, 0x086010c0,
0x00000430, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x4e600000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outermost/First ARP header */
static const u32 ice_ptypes_arp_of[] = {
0x00000800, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* UDP Packet types for non-tunneled packets or tunneled
* packets with inner UDP.
*/
static const u32 ice_ptypes_udp_il[] = {
0x81000000, 0x20204040, 0x04000010, 0x80810102,
0x00000040, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00410000, 0x90842000, 0x00000007,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last TCP header */
static const u32 ice_ptypes_tcp_il[] = {
0x04000000, 0x80810102, 0x10000040, 0x02040408,
0x00000102, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00820000, 0x21084000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last SCTP header */
static const u32 ice_ptypes_sctp_il[] = {
0x08000000, 0x01020204, 0x20000081, 0x04080810,
0x00000204, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x01040000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outermost/First ICMP header */
static const u32 ice_ptypes_icmp_of[] = {
0x10000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last ICMP header */
static const u32 ice_ptypes_icmp_il[] = {
0x00000000, 0x02040408, 0x40000102, 0x08101020,
0x00000408, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x42108000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outermost/First GRE header */
static const u32 ice_ptypes_gre_of[] = {
0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000,
0x0000017E, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last MAC header */
static const u32 ice_ptypes_mac_il[] = {
0x00000000, 0x20000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for GTPC */
static const u32 ice_ptypes_gtpc[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x000001E0, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for GTPC with TEID */
static const u32 ice_ptypes_gtpc_tid[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000060, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for GTPU */
static const struct ice_ptype_attributes ice_attr_gtpu_session[] = {
{ ICE_MAC_IPV4_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV4_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV4_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV4_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV6_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV6_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV6_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV6_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV4_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV4_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV4_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV6_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV6_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV6_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_SESSION },
{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_SESSION },
};
static const struct ice_ptype_attributes ice_attr_gtpu_eh[] = {
{ ICE_MAC_IPV4_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_PDU_EH },
};
static const struct ice_ptype_attributes ice_attr_gtpu_down[] = {
{ ICE_MAC_IPV4_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_DOWNLINK },
};
static const struct ice_ptype_attributes ice_attr_gtpu_up[] = {
{ ICE_MAC_IPV4_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_UPLINK },
};
static const u32 ice_ptypes_gtpu[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x7FFFFE00, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for pppoe */
static const u32 ice_ptypes_pppoe[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x03ffe000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with PFCP NODE header */
static const u32 ice_ptypes_pfcp_node[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x80000000, 0x00000002,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with PFCP SESSION header */
static const u32 ice_ptypes_pfcp_session[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000005,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for l2tpv3 */
static const u32 ice_ptypes_l2tpv3[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000300,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for esp */
static const u32 ice_ptypes_esp[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000003, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for ah */
static const u32 ice_ptypes_ah[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x0000000C, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with NAT_T ESP header */
static const u32 ice_ptypes_nat_t_esp[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000030, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
static const u32 ice_ptypes_mac_non_ip_ofos[] = {
0x00000846, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00400000, 0x03FFF000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
static const u32 ice_ptypes_gtpu_no_ip[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000600, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Manage parameters and info. used during the creation of a flow profile */
struct ice_flow_prof_params {
enum ice_block blk;
u16 entry_length; /* # of bytes formatted entry will require */
u8 es_cnt;
struct ice_flow_prof *prof;
/* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0
* This will give us the direction flags.
*/
struct ice_fv_word es[ICE_MAX_FV_WORDS];
/* attributes can be used to add attributes to a particular PTYPE */
const struct ice_ptype_attributes *attr;
u16 attr_cnt;
u16 mask[ICE_MAX_FV_WORDS];
ice_declare_bitmap(ptypes, ICE_FLOW_PTYPE_MAX);
};
#define ICE_FLOW_RSS_HDRS_INNER_MASK \
(ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_GTPC | \
ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_GTPU | \
ICE_FLOW_SEG_HDR_PFCP_SESSION | ICE_FLOW_SEG_HDR_L2TPV3 | \
ICE_FLOW_SEG_HDR_ESP | ICE_FLOW_SEG_HDR_AH | \
ICE_FLOW_SEG_HDR_NAT_T_ESP | ICE_FLOW_SEG_HDR_GTPU_NON_IP)
#define ICE_FLOW_SEG_HDRS_L2_MASK \
(ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN)
#define ICE_FLOW_SEG_HDRS_L3_MASK \
(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6 | \
ICE_FLOW_SEG_HDR_ARP)
#define ICE_FLOW_SEG_HDRS_L4_MASK \
(ICE_FLOW_SEG_HDR_ICMP | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \
ICE_FLOW_SEG_HDR_SCTP)
/* mask for L4 protocols that are NOT part of IPV4/6 OTHER PTYPE groups */
#define ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER \
(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
/**
* ice_flow_val_hdrs - validates packet segments for valid protocol headers
* @segs: array of one or more packet segments that describe the flow
* @segs_cnt: number of packet segments provided
*/
static enum ice_status
ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt)
{
u8 i;
for (i = 0; i < segs_cnt; i++) {
/* Multiple L3 headers */
if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK &&
!ice_is_pow2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK))
return ICE_ERR_PARAM;
/* Multiple L4 headers */
if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK &&
!ice_is_pow2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK))
return ICE_ERR_PARAM;
}
return ICE_SUCCESS;
}
/* Sizes of fixed known protocol headers without header options */
#define ICE_FLOW_PROT_HDR_SZ_MAC 14
#define ICE_FLOW_PROT_HDR_SZ_MAC_VLAN (ICE_FLOW_PROT_HDR_SZ_MAC + 2)
#define ICE_FLOW_PROT_HDR_SZ_IPV4 20
#define ICE_FLOW_PROT_HDR_SZ_IPV6 40
#define ICE_FLOW_PROT_HDR_SZ_ARP 28
#define ICE_FLOW_PROT_HDR_SZ_ICMP 8
#define ICE_FLOW_PROT_HDR_SZ_TCP 20
#define ICE_FLOW_PROT_HDR_SZ_UDP 8
#define ICE_FLOW_PROT_HDR_SZ_SCTP 12
/**
* ice_flow_calc_seg_sz - calculates size of a packet segment based on headers
* @params: information about the flow to be processed
* @seg: index of packet segment whose header size is to be determined
*/
static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg)
{
u16 sz;
/* L2 headers */
sz = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_VLAN) ?
ICE_FLOW_PROT_HDR_SZ_MAC_VLAN : ICE_FLOW_PROT_HDR_SZ_MAC;
/* L3 headers */
if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4)
sz += ICE_FLOW_PROT_HDR_SZ_IPV4;
else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6)
sz += ICE_FLOW_PROT_HDR_SZ_IPV6;
else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ARP)
sz += ICE_FLOW_PROT_HDR_SZ_ARP;
else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK)
/* A L3 header is required if L4 is specified */
return 0;
/* L4 headers */
if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ICMP)
sz += ICE_FLOW_PROT_HDR_SZ_ICMP;
else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP)
sz += ICE_FLOW_PROT_HDR_SZ_TCP;
else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP)
sz += ICE_FLOW_PROT_HDR_SZ_UDP;
else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP)
sz += ICE_FLOW_PROT_HDR_SZ_SCTP;
return sz;
}
/**
* ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments
* @params: information about the flow to be processed
*
* This function identifies the packet types associated with the protocol
* headers being present in packet segments of the specified flow profile.
*/
static enum ice_status
ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params)
{
struct ice_flow_prof *prof;
u8 i;
ice_memset(params->ptypes, 0xff, sizeof(params->ptypes),
ICE_NONDMA_MEM);
prof = params->prof;
for (i = 0; i < params->prof->segs_cnt; i++) {
const ice_bitmap_t *src;
u32 hdrs;
hdrs = prof->segs[i].hdrs;
if (hdrs & ICE_FLOW_SEG_HDR_ETH) {
src = !i ? (const ice_bitmap_t *)ice_ptypes_mac_ofos :
(const ice_bitmap_t *)ice_ptypes_mac_il;
ice_and_bitmap(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
}
if (i && hdrs & ICE_FLOW_SEG_HDR_VLAN) {
src = (const ice_bitmap_t *)ice_ptypes_macvlan_il;
ice_and_bitmap(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
}
if (!i && hdrs & ICE_FLOW_SEG_HDR_ARP) {
ice_and_bitmap(params->ptypes, params->ptypes,
(const ice_bitmap_t *)ice_ptypes_arp_of,
ICE_FLOW_PTYPE_MAX);
}
if (hdrs & ICE_FLOW_SEG_HDR_PPPOE) {
src = (const ice_bitmap_t *)ice_ptypes_pppoe;
ice_and_bitmap(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
}
if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
(hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
src = i ?
(const ice_bitmap_t *)ice_ptypes_ipv4_il :
(const ice_bitmap_t *)ice_ptypes_ipv4_ofos_all;
ice_and_bitmap(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
(hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
src = i ?
(const ice_bitmap_t *)ice_ptypes_ipv6_il :
(const ice_bitmap_t *)ice_ptypes_ipv6_ofos_all;
ice_and_bitmap(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
!(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
src = !i ? (const ice_bitmap_t *)ice_ptypes_ipv4_ofos_no_l4 :
(const ice_bitmap_t *)ice_ptypes_ipv4_il_no_l4;
ice_and_bitmap(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_IPV4) {
src = !i ? (const ice_bitmap_t *)ice_ptypes_ipv4_ofos :
(const ice_bitmap_t *)ice_ptypes_ipv4_il;
ice_and_bitmap(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
!(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
src = !i ? (const ice_bitmap_t *)ice_ptypes_ipv6_ofos_no_l4 :
(const ice_bitmap_t *)ice_ptypes_ipv6_il_no_l4;
ice_and_bitmap(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) {
src = !i ? (const ice_bitmap_t *)ice_ptypes_ipv6_ofos :
(const ice_bitmap_t *)ice_ptypes_ipv6_il;
ice_and_bitmap(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
}
if (hdrs & ICE_FLOW_SEG_HDR_ETH_NON_IP) {
src = (const ice_bitmap_t *)ice_ptypes_mac_non_ip_ofos;
ice_and_bitmap(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_PPPOE) {
src = (const ice_bitmap_t *)ice_ptypes_pppoe;
ice_and_bitmap(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else {
src = (const ice_bitmap_t *)ice_ptypes_pppoe;
ice_andnot_bitmap(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
}
if (hdrs & ICE_FLOW_SEG_HDR_UDP) {
src = (const ice_bitmap_t *)ice_ptypes_udp_il;
ice_and_bitmap(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_TCP) {
ice_and_bitmap(params->ptypes, params->ptypes,
(const ice_bitmap_t *)ice_ptypes_tcp_il,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) {
src = (const ice_bitmap_t *)ice_ptypes_sctp_il;
ice_and_bitmap(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
}
if (hdrs & ICE_FLOW_SEG_HDR_ICMP) {
src = !i ? (const ice_bitmap_t *)ice_ptypes_icmp_of :
(const ice_bitmap_t *)ice_ptypes_icmp_il;
ice_and_bitmap(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_GRE) {
if (!i) {
src = (const ice_bitmap_t *)ice_ptypes_gre_of;
ice_and_bitmap(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
}
} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC) {
src = (const ice_bitmap_t *)ice_ptypes_gtpc;
ice_and_bitmap(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC_TEID) {
src = (const ice_bitmap_t *)ice_ptypes_gtpc_tid;
ice_and_bitmap(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_NON_IP) {
src = (const ice_bitmap_t *)ice_ptypes_gtpu_no_ip;
ice_and_bitmap(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_DWN) {
src = (const ice_bitmap_t *)ice_ptypes_gtpu;
ice_and_bitmap(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
/* Attributes for GTP packet with downlink */
params->attr = ice_attr_gtpu_down;
params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_down);
} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_UP) {
src = (const ice_bitmap_t *)ice_ptypes_gtpu;
ice_and_bitmap(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
/* Attributes for GTP packet with uplink */
params->attr = ice_attr_gtpu_up;
params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_up);
} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_EH) {
src = (const ice_bitmap_t *)ice_ptypes_gtpu;
ice_and_bitmap(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
/* Attributes for GTP packet with Extension Header */
params->attr = ice_attr_gtpu_eh;
params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_eh);
} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_IP) {
src = (const ice_bitmap_t *)ice_ptypes_gtpu;
ice_and_bitmap(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
/* Attributes for GTP packet without Extension Header */
params->attr = ice_attr_gtpu_session;
params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_session);
} else if (hdrs & ICE_FLOW_SEG_HDR_L2TPV3) {
src = (const ice_bitmap_t *)ice_ptypes_l2tpv3;
ice_and_bitmap(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_ESP) {
src = (const ice_bitmap_t *)ice_ptypes_esp;
ice_and_bitmap(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_AH) {
src = (const ice_bitmap_t *)ice_ptypes_ah;
ice_and_bitmap(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_NAT_T_ESP) {
src = (const ice_bitmap_t *)ice_ptypes_nat_t_esp;
ice_and_bitmap(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
}
if (hdrs & ICE_FLOW_SEG_HDR_PFCP) {
if (hdrs & ICE_FLOW_SEG_HDR_PFCP_NODE)
src =
(const ice_bitmap_t *)ice_ptypes_pfcp_node;
else
src =
(const ice_bitmap_t *)ice_ptypes_pfcp_session;
ice_and_bitmap(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
} else {
src = (const ice_bitmap_t *)ice_ptypes_pfcp_node;
ice_andnot_bitmap(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
src = (const ice_bitmap_t *)ice_ptypes_pfcp_session;
ice_andnot_bitmap(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
}
}
return ICE_SUCCESS;
}
/**
* ice_flow_xtract_pkt_flags - Create an extr sequence entry for packet flags
* @hw: pointer to the HW struct
* @params: information about the flow to be processed
* @flags: The value of pkt_flags[x:x] in Rx/Tx MDID metadata.
*
* This function will allocate an extraction sequence entries for a DWORD size
* chunk of the packet flags.
*/
static enum ice_status
ice_flow_xtract_pkt_flags(struct ice_hw *hw,
struct ice_flow_prof_params *params,
enum ice_flex_mdid_pkt_flags flags)
{
u8 fv_words = hw->blk[params->blk].es.fvw;
u8 idx;
/* Make sure the number of extraction sequence entries required does not
* exceed the block's capacity.
*/
if (params->es_cnt >= fv_words)
return ICE_ERR_MAX_LIMIT;
/* some blocks require a reversed field vector layout */
if (hw->blk[params->blk].es.reverse)
idx = fv_words - params->es_cnt - 1;
else
idx = params->es_cnt;
params->es[idx].prot_id = ICE_PROT_META_ID;
params->es[idx].off = flags;
params->es_cnt++;
return ICE_SUCCESS;
}
/**
* ice_flow_xtract_fld - Create an extraction sequence entry for the given field
* @hw: pointer to the HW struct
* @params: information about the flow to be processed
* @seg: packet segment index of the field to be extracted
* @fld: ID of field to be extracted
* @match: bitfield of all fields
*
* This function determines the protocol ID, offset, and size of the given
* field. It then allocates one or more extraction sequence entries for the
* given field, and fill the entries with protocol ID and offset information.
*/
static enum ice_status
ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params,
u8 seg, enum ice_flow_field fld, u64 match)
{
enum ice_flow_field sib = ICE_FLOW_FIELD_IDX_MAX;
enum ice_prot_id prot_id = ICE_PROT_ID_INVAL;
u8 fv_words = hw->blk[params->blk].es.fvw;
struct ice_flow_fld_info *flds;
u16 cnt, ese_bits, i;
u16 sib_mask = 0;
u16 mask;
u16 off;
flds = params->prof->segs[seg].fields;
switch (fld) {
case ICE_FLOW_FIELD_IDX_ETH_DA:
case ICE_FLOW_FIELD_IDX_ETH_SA:
case ICE_FLOW_FIELD_IDX_S_VLAN:
case ICE_FLOW_FIELD_IDX_C_VLAN:
prot_id = seg == 0 ? ICE_PROT_MAC_OF_OR_S : ICE_PROT_MAC_IL;
break;
case ICE_FLOW_FIELD_IDX_ETH_TYPE:
prot_id = seg == 0 ? ICE_PROT_ETYPE_OL : ICE_PROT_ETYPE_IL;
break;
case ICE_FLOW_FIELD_IDX_IPV4_DSCP:
prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
break;
case ICE_FLOW_FIELD_IDX_IPV6_DSCP:
prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
break;
case ICE_FLOW_FIELD_IDX_IPV4_TTL:
case ICE_FLOW_FIELD_IDX_IPV4_PROT:
prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
/* TTL and PROT share the same extraction seq. entry.
* Each is considered a sibling to the other in terms of sharing
* the same extraction sequence entry.
*/
if (fld == ICE_FLOW_FIELD_IDX_IPV4_TTL)
sib = ICE_FLOW_FIELD_IDX_IPV4_PROT;
else
sib = ICE_FLOW_FIELD_IDX_IPV4_TTL;
/* If the sibling field is also included, that field's
* mask needs to be included.
*/
if (match & BIT(sib))
sib_mask = ice_flds_info[sib].mask;
break;
case ICE_FLOW_FIELD_IDX_IPV6_TTL:
case ICE_FLOW_FIELD_IDX_IPV6_PROT:
prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
/* TTL and PROT share the same extraction seq. entry.
* Each is considered a sibling to the other in terms of sharing
* the same extraction sequence entry.
*/
if (fld == ICE_FLOW_FIELD_IDX_IPV6_TTL)
sib = ICE_FLOW_FIELD_IDX_IPV6_PROT;
else
sib = ICE_FLOW_FIELD_IDX_IPV6_TTL;
/* If the sibling field is also included, that field's
* mask needs to be included.
*/
if (match & BIT(sib))
sib_mask = ice_flds_info[sib].mask;
break;
case ICE_FLOW_FIELD_IDX_IPV4_SA:
case ICE_FLOW_FIELD_IDX_IPV4_DA:
prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
break;
case ICE_FLOW_FIELD_IDX_IPV6_SA:
case ICE_FLOW_FIELD_IDX_IPV6_DA:
case ICE_FLOW_FIELD_IDX_IPV6_PRE32_SA:
case ICE_FLOW_FIELD_IDX_IPV6_PRE32_DA:
case ICE_FLOW_FIELD_IDX_IPV6_PRE48_SA:
case ICE_FLOW_FIELD_IDX_IPV6_PRE48_DA:
case ICE_FLOW_FIELD_IDX_IPV6_PRE64_SA:
case ICE_FLOW_FIELD_IDX_IPV6_PRE64_DA:
prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
break;
case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT:
case ICE_FLOW_FIELD_IDX_TCP_DST_PORT:
case ICE_FLOW_FIELD_IDX_TCP_FLAGS:
prot_id = ICE_PROT_TCP_IL;
break;
case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT:
case ICE_FLOW_FIELD_IDX_UDP_DST_PORT:
prot_id = ICE_PROT_UDP_IL_OR_S;
break;
case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT:
case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT:
prot_id = ICE_PROT_SCTP_IL;
break;
case ICE_FLOW_FIELD_IDX_GTPC_TEID:
case ICE_FLOW_FIELD_IDX_GTPU_IP_TEID:
case ICE_FLOW_FIELD_IDX_GTPU_UP_TEID:
case ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID:
case ICE_FLOW_FIELD_IDX_GTPU_EH_TEID:
case ICE_FLOW_FIELD_IDX_GTPU_EH_QFI:
/* GTP is accessed through UDP OF protocol */
prot_id = ICE_PROT_UDP_OF;
break;
case ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID:
prot_id = ICE_PROT_PPPOE;
break;
case ICE_FLOW_FIELD_IDX_PFCP_SEID:
prot_id = ICE_PROT_UDP_IL_OR_S;
break;
case ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID:
prot_id = ICE_PROT_L2TPV3;
break;
case ICE_FLOW_FIELD_IDX_ESP_SPI:
prot_id = ICE_PROT_ESP_F;
break;
case ICE_FLOW_FIELD_IDX_AH_SPI:
prot_id = ICE_PROT_ESP_2;
break;
case ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI:
prot_id = ICE_PROT_UDP_IL_OR_S;
break;
case ICE_FLOW_FIELD_IDX_ARP_SIP:
case ICE_FLOW_FIELD_IDX_ARP_DIP:
case ICE_FLOW_FIELD_IDX_ARP_SHA:
case ICE_FLOW_FIELD_IDX_ARP_DHA:
case ICE_FLOW_FIELD_IDX_ARP_OP:
prot_id = ICE_PROT_ARP_OF;
break;
case ICE_FLOW_FIELD_IDX_ICMP_TYPE:
case ICE_FLOW_FIELD_IDX_ICMP_CODE:
/* ICMP type and code share the same extraction seq. entry */
prot_id = (params->prof->segs[seg].hdrs &
ICE_FLOW_SEG_HDR_IPV4) ?
ICE_PROT_ICMP_IL : ICE_PROT_ICMPV6_IL;
sib = fld == ICE_FLOW_FIELD_IDX_ICMP_TYPE ?
ICE_FLOW_FIELD_IDX_ICMP_CODE :
ICE_FLOW_FIELD_IDX_ICMP_TYPE;
break;
case ICE_FLOW_FIELD_IDX_GRE_KEYID:
prot_id = ICE_PROT_GRE_OF;
break;
default:
return ICE_ERR_NOT_IMPL;
}
/* Each extraction sequence entry is a word in size, and extracts a
* word-aligned offset from a protocol header.
*/
ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE;
flds[fld].xtrct.prot_id = prot_id;
flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) *
ICE_FLOW_FV_EXTRACT_SZ;
flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits);
flds[fld].xtrct.idx = params->es_cnt;
flds[fld].xtrct.mask = ice_flds_info[fld].mask;
/* Adjust the next field-entry index after accommodating the number of
* entries this field consumes
*/
cnt = DIVIDE_AND_ROUND_UP(flds[fld].xtrct.disp +
ice_flds_info[fld].size, ese_bits);
/* Fill in the extraction sequence entries needed for this field */
off = flds[fld].xtrct.off;
mask = flds[fld].xtrct.mask;
for (i = 0; i < cnt; i++) {
/* Only consume an extraction sequence entry if there is no
* sibling field associated with this field or the sibling entry
* already extracts the word shared with this field.
*/
if (sib == ICE_FLOW_FIELD_IDX_MAX ||
flds[sib].xtrct.prot_id == ICE_PROT_ID_INVAL ||
flds[sib].xtrct.off != off) {
u8 idx;
/* Make sure the number of extraction sequence required
* does not exceed the block's capability
*/
if (params->es_cnt >= fv_words)
return ICE_ERR_MAX_LIMIT;
/* some blocks require a reversed field vector layout */
if (hw->blk[params->blk].es.reverse)
idx = fv_words - params->es_cnt - 1;
else
idx = params->es_cnt;
params->es[idx].prot_id = prot_id;
params->es[idx].off = off;
params->mask[idx] = mask | sib_mask;
params->es_cnt++;
}
off += ICE_FLOW_FV_EXTRACT_SZ;
}
return ICE_SUCCESS;
}
/**
* ice_flow_xtract_raws - Create extract sequence entries for raw bytes
* @hw: pointer to the HW struct
* @params: information about the flow to be processed
* @seg: index of packet segment whose raw fields are to be extracted
*/
static enum ice_status
ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params,
u8 seg)
{
u16 fv_words;
u16 hdrs_sz;
u8 i;
if (!params->prof->segs[seg].raws_cnt)
return ICE_SUCCESS;
if (params->prof->segs[seg].raws_cnt >
ARRAY_SIZE(params->prof->segs[seg].raws))
return ICE_ERR_MAX_LIMIT;
/* Offsets within the segment headers are not supported */
hdrs_sz = ice_flow_calc_seg_sz(params, seg);
if (!hdrs_sz)
return ICE_ERR_PARAM;
fv_words = hw->blk[params->blk].es.fvw;
for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) {
struct ice_flow_seg_fld_raw *raw;
u16 off, cnt, j;
raw = &params->prof->segs[seg].raws[i];
/* Storing extraction information */
raw->info.xtrct.prot_id = ICE_PROT_MAC_OF_OR_S;
raw->info.xtrct.off = (raw->off / ICE_FLOW_FV_EXTRACT_SZ) *
ICE_FLOW_FV_EXTRACT_SZ;
raw->info.xtrct.disp = (raw->off % ICE_FLOW_FV_EXTRACT_SZ) *
BITS_PER_BYTE;
raw->info.xtrct.idx = params->es_cnt;
/* Determine the number of field vector entries this raw field
* consumes.
*/
cnt = DIVIDE_AND_ROUND_UP(raw->info.xtrct.disp +
(raw->info.src.last * BITS_PER_BYTE),
(ICE_FLOW_FV_EXTRACT_SZ *
BITS_PER_BYTE));
off = raw->info.xtrct.off;
for (j = 0; j < cnt; j++) {
u16 idx;
/* Make sure the number of extraction sequence required
* does not exceed the block's capability
*/
if (params->es_cnt >= hw->blk[params->blk].es.count ||
params->es_cnt >= ICE_MAX_FV_WORDS)
return ICE_ERR_MAX_LIMIT;
/* some blocks require a reversed field vector layout */
if (hw->blk[params->blk].es.reverse)
idx = fv_words - params->es_cnt - 1;
else
idx = params->es_cnt;
params->es[idx].prot_id = raw->info.xtrct.prot_id;
params->es[idx].off = off;
params->es_cnt++;
off += ICE_FLOW_FV_EXTRACT_SZ;
}
}
return ICE_SUCCESS;
}
/**
* ice_flow_create_xtrct_seq - Create an extraction sequence for given segments
* @hw: pointer to the HW struct
* @params: information about the flow to be processed
*
* This function iterates through all matched fields in the given segments, and
* creates an extraction sequence for the fields.
*/
static enum ice_status
ice_flow_create_xtrct_seq(struct ice_hw *hw,
struct ice_flow_prof_params *params)
{
enum ice_status status = ICE_SUCCESS;
u8 i;
/* For ACL, we also need to extract the direction bit (Rx,Tx) data from
* packet flags
*/
if (params->blk == ICE_BLK_ACL) {
status = ice_flow_xtract_pkt_flags(hw, params,
ICE_RX_MDID_PKT_FLAGS_15_0);
if (status)
return status;
}
for (i = 0; i < params->prof->segs_cnt; i++) {
u64 match = params->prof->segs[i].match;
enum ice_flow_field j;
ice_for_each_set_bit(j, (ice_bitmap_t *)&match,
ICE_FLOW_FIELD_IDX_MAX) {
status = ice_flow_xtract_fld(hw, params, i, j, match);
if (status)
return status;
ice_clear_bit(j, (ice_bitmap_t *)&match);
}
/* Process raw matching bytes */
status = ice_flow_xtract_raws(hw, params, i);
if (status)
return status;
}
return status;
}
/**
* ice_flow_sel_acl_scen - returns the specific scenario
* @hw: pointer to the hardware structure
* @params: information about the flow to be processed
*
* This function will return the specific scenario based on the
* params passed to it
*/
static enum ice_status
ice_flow_sel_acl_scen(struct ice_hw *hw, struct ice_flow_prof_params *params)
{
/* Find the best-fit scenario for the provided match width */
struct ice_acl_scen *cand_scen = NULL, *scen;
if (!hw->acl_tbl)
return ICE_ERR_DOES_NOT_EXIST;
/* Loop through each scenario and match against the scenario width
* to select the specific scenario
*/
LIST_FOR_EACH_ENTRY(scen, &hw->acl_tbl->scens, ice_acl_scen, list_entry)
if (scen->eff_width >= params->entry_length &&
(!cand_scen || cand_scen->eff_width > scen->eff_width))
cand_scen = scen;
if (!cand_scen)
return ICE_ERR_DOES_NOT_EXIST;
params->prof->cfg.scen = cand_scen;
return ICE_SUCCESS;
}
/**
* ice_flow_acl_def_entry_frmt - Determine the layout of flow entries
* @params: information about the flow to be processed
*/
static enum ice_status
ice_flow_acl_def_entry_frmt(struct ice_flow_prof_params *params)
{
u16 index, i, range_idx = 0;
index = ICE_AQC_ACL_PROF_BYTE_SEL_START_IDX;
for (i = 0; i < params->prof->segs_cnt; i++) {
struct ice_flow_seg_info *seg = &params->prof->segs[i];
u8 j;
ice_for_each_set_bit(j, (ice_bitmap_t *)&seg->match,
ICE_FLOW_FIELD_IDX_MAX) {
struct ice_flow_fld_info *fld = &seg->fields[j];
fld->entry.mask = ICE_FLOW_FLD_OFF_INVAL;
if (fld->type == ICE_FLOW_FLD_TYPE_RANGE) {
fld->entry.last = ICE_FLOW_FLD_OFF_INVAL;
/* Range checking only supported for single
* words
*/
if (DIVIDE_AND_ROUND_UP(ice_flds_info[j].size +
fld->xtrct.disp,
BITS_PER_BYTE * 2) > 1)
return ICE_ERR_PARAM;
/* Ranges must define low and high values */
if (fld->src.val == ICE_FLOW_FLD_OFF_INVAL ||
fld->src.last == ICE_FLOW_FLD_OFF_INVAL)
return ICE_ERR_PARAM;
fld->entry.val = range_idx++;
} else {
/* Store adjusted byte-length of field for later
* use, taking into account potential
* non-byte-aligned displacement
*/
fld->entry.last = DIVIDE_AND_ROUND_UP
(ice_flds_info[j].size +
(fld->xtrct.disp % BITS_PER_BYTE),
BITS_PER_BYTE);
fld->entry.val = index;
index += fld->entry.last;
}
}
for (j = 0; j < seg->raws_cnt; j++) {
struct ice_flow_seg_fld_raw *raw = &seg->raws[j];
raw->info.entry.mask = ICE_FLOW_FLD_OFF_INVAL;
raw->info.entry.val = index;
raw->info.entry.last = raw->info.src.last;
index += raw->info.entry.last;
}
}
/* Currently only support using the byte selection base, which only
* allows for an effective entry size of 30 bytes. Reject anything
* larger.
*/
if (index > ICE_AQC_ACL_PROF_BYTE_SEL_ELEMS)
return ICE_ERR_PARAM;
/* Only 8 range checkers per profile, reject anything trying to use
* more
*/
if (range_idx > ICE_AQC_ACL_PROF_RANGES_NUM_CFG)
return ICE_ERR_PARAM;
/* Store # bytes required for entry for later use */
params->entry_length = index - ICE_AQC_ACL_PROF_BYTE_SEL_START_IDX;
return ICE_SUCCESS;
}
/**
* ice_flow_proc_segs - process all packet segments associated with a profile
* @hw: pointer to the HW struct
* @params: information about the flow to be processed
*/
static enum ice_status
ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params)
{
enum ice_status status;
status = ice_flow_proc_seg_hdrs(params);
if (status)
return status;
status = ice_flow_create_xtrct_seq(hw, params);
if (status)
return status;
switch (params->blk) {
case ICE_BLK_FD:
case ICE_BLK_RSS:
status = ICE_SUCCESS;
break;
case ICE_BLK_ACL:
status = ice_flow_acl_def_entry_frmt(params);
if (status)
return status;
status = ice_flow_sel_acl_scen(hw, params);
if (status)
return status;
break;
default:
return ICE_ERR_NOT_IMPL;
}
return status;
}
#define ICE_FLOW_FIND_PROF_CHK_FLDS 0x00000001
#define ICE_FLOW_FIND_PROF_CHK_VSI 0x00000002
#define ICE_FLOW_FIND_PROF_NOT_CHK_DIR 0x00000004
/**
* ice_flow_find_prof_conds - Find a profile matching headers and conditions
* @hw: pointer to the HW struct
* @blk: classification stage
* @dir: flow direction
* @segs: array of one or more packet segments that describe the flow
* @segs_cnt: number of packet segments provided
* @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI)
* @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*)
*/
static struct ice_flow_prof *
ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk,
enum ice_flow_dir dir, struct ice_flow_seg_info *segs,
u8 segs_cnt, u16 vsi_handle, u32 conds)
{
struct ice_flow_prof *p, *prof = NULL;
ice_acquire_lock(&hw->fl_profs_locks[blk]);
LIST_FOR_EACH_ENTRY(p, &hw->fl_profs[blk], ice_flow_prof, l_entry)
if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) &&
segs_cnt && segs_cnt == p->segs_cnt) {
u8 i;
/* Check for profile-VSI association if specified */
if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) &&
ice_is_vsi_valid(hw, vsi_handle) &&
!ice_is_bit_set(p->vsis, vsi_handle))
continue;
/* Protocol headers must be checked. Matched fields are
* checked if specified.
*/
for (i = 0; i < segs_cnt; i++)
if (segs[i].hdrs != p->segs[i].hdrs ||
((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) &&
segs[i].match != p->segs[i].match))
break;
/* A match is found if all segments are matched */
if (i == segs_cnt) {
prof = p;
break;
}
}
ice_release_lock(&hw->fl_profs_locks[blk]);
return prof;
}
/**
* ice_flow_find_prof - Look up a profile matching headers and matched fields
* @hw: pointer to the HW struct
* @blk: classification stage
* @dir: flow direction
* @segs: array of one or more packet segments that describe the flow
* @segs_cnt: number of packet segments provided
*/
u64
ice_flow_find_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
struct ice_flow_seg_info *segs, u8 segs_cnt)
{
struct ice_flow_prof *p;
p = ice_flow_find_prof_conds(hw, blk, dir, segs, segs_cnt,
ICE_MAX_VSI, ICE_FLOW_FIND_PROF_CHK_FLDS);
return p ? p->id : ICE_FLOW_PROF_ID_INVAL;
}
/**
* ice_flow_find_prof_id - Look up a profile with given profile ID
* @hw: pointer to the HW struct
* @blk: classification stage
* @prof_id: unique ID to identify this flow profile
*/
static struct ice_flow_prof *
ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
{
struct ice_flow_prof *p;
LIST_FOR_EACH_ENTRY(p, &hw->fl_profs[blk], ice_flow_prof, l_entry)
if (p->id == prof_id)
return p;
return NULL;
}
/**
* ice_dealloc_flow_entry - Deallocate flow entry memory
* @hw: pointer to the HW struct
* @entry: flow entry to be removed
*/
static void
ice_dealloc_flow_entry(struct ice_hw *hw, struct ice_flow_entry *entry)
{
if (!entry)
return;
if (entry->entry)
ice_free(hw, entry->entry);
if (entry->range_buf) {
ice_free(hw, entry->range_buf);
entry->range_buf = NULL;
}
if (entry->acts) {
ice_free(hw, entry->acts);
entry->acts = NULL;
entry->acts_cnt = 0;
}
ice_free(hw, entry);
}
/**
* ice_flow_get_hw_prof - return the HW profile for a specific profile ID handle
* @hw: pointer to the HW struct
* @blk: classification stage
* @prof_id: the profile ID handle
* @hw_prof_id: pointer to variable to receive the HW profile ID
*/
enum ice_status
ice_flow_get_hw_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
u8 *hw_prof_id)
{
enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
struct ice_prof_map *map;
ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
map = ice_search_prof_id(hw, blk, prof_id);
if (map) {
*hw_prof_id = map->prof_id;
status = ICE_SUCCESS;
}
ice_release_lock(&hw->blk[blk].es.prof_map_lock);
return status;
}
#define ICE_ACL_INVALID_SCEN 0x3f
/**
* ice_flow_acl_is_prof_in_use - Verify if the profile is associated to any PF
* @hw: pointer to the hardware structure
* @prof: pointer to flow profile
* @buf: destination buffer function writes partial extraction sequence to
*
* returns ICE_SUCCESS if no PF is associated to the given profile
* returns ICE_ERR_IN_USE if at least one PF is associated to the given profile
* returns other error code for real error
*/
static enum ice_status
ice_flow_acl_is_prof_in_use(struct ice_hw *hw, struct ice_flow_prof *prof,
struct ice_aqc_acl_prof_generic_frmt *buf)
{
enum ice_status status;
u8 prof_id = 0;
status = ice_flow_get_hw_prof(hw, ICE_BLK_ACL, prof->id, &prof_id);
if (status)
return status;
status = ice_query_acl_prof(hw, prof_id, buf, NULL);
if (status)
return status;
/* If all PF's associated scenarios are all 0 or all
* ICE_ACL_INVALID_SCEN (63) for the given profile then the latter has
* not been configured yet.
*/
if (buf->pf_scenario_num[0] == 0 && buf->pf_scenario_num[1] == 0 &&
buf->pf_scenario_num[2] == 0 && buf->pf_scenario_num[3] == 0 &&
buf->pf_scenario_num[4] == 0 && buf->pf_scenario_num[5] == 0 &&
buf->pf_scenario_num[6] == 0 && buf->pf_scenario_num[7] == 0)
return ICE_SUCCESS;
if (buf->pf_scenario_num[0] == ICE_ACL_INVALID_SCEN &&
buf->pf_scenario_num[1] == ICE_ACL_INVALID_SCEN &&
buf->pf_scenario_num[2] == ICE_ACL_INVALID_SCEN &&
buf->pf_scenario_num[3] == ICE_ACL_INVALID_SCEN &&
buf->pf_scenario_num[4] == ICE_ACL_INVALID_SCEN &&
buf->pf_scenario_num[5] == ICE_ACL_INVALID_SCEN &&
buf->pf_scenario_num[6] == ICE_ACL_INVALID_SCEN &&
buf->pf_scenario_num[7] == ICE_ACL_INVALID_SCEN)
return ICE_SUCCESS;
return ICE_ERR_IN_USE;
}
/**
* ice_flow_acl_free_act_cntr - Free the ACL rule's actions
* @hw: pointer to the hardware structure
* @acts: array of actions to be performed on a match
* @acts_cnt: number of actions
*/
static enum ice_status
ice_flow_acl_free_act_cntr(struct ice_hw *hw, struct ice_flow_action *acts,
u8 acts_cnt)
{
int i;
for (i = 0; i < acts_cnt; i++) {
if (acts[i].type == ICE_FLOW_ACT_CNTR_PKT ||
acts[i].type == ICE_FLOW_ACT_CNTR_BYTES ||
acts[i].type == ICE_FLOW_ACT_CNTR_PKT_BYTES) {
struct ice_acl_cntrs cntrs = { 0 };
enum ice_status status;
/* amount is unused in the dealloc path but the common
* parameter check routine wants a value set, as zero
* is invalid for the check. Just set it.
*/
cntrs.amount = 1;
cntrs.bank = 0; /* Only bank0 for the moment */
cntrs.first_cntr =
LE16_TO_CPU(acts[i].data.acl_act.value);
cntrs.last_cntr =
LE16_TO_CPU(acts[i].data.acl_act.value);
if (acts[i].type == ICE_FLOW_ACT_CNTR_PKT_BYTES)
cntrs.type = ICE_AQC_ACL_CNT_TYPE_DUAL;
else
cntrs.type = ICE_AQC_ACL_CNT_TYPE_SINGLE;
status = ice_aq_dealloc_acl_cntrs(hw, &cntrs, NULL);
if (status)
return status;
}
}
return ICE_SUCCESS;
}
/**
* ice_flow_acl_disassoc_scen - Disassociate the scenario from the profile
* @hw: pointer to the hardware structure
* @prof: pointer to flow profile
*
* Disassociate the scenario from the profile for the PF of the VSI.
*/
static enum ice_status
ice_flow_acl_disassoc_scen(struct ice_hw *hw, struct ice_flow_prof *prof)
{
struct ice_aqc_acl_prof_generic_frmt buf;
enum ice_status status = ICE_SUCCESS;
u8 prof_id = 0;
ice_memset(&buf, 0, sizeof(buf), ICE_NONDMA_MEM);
status = ice_flow_get_hw_prof(hw, ICE_BLK_ACL, prof->id, &prof_id);
if (status)
return status;
status = ice_query_acl_prof(hw, prof_id, &buf, NULL);
if (status)
return status;
/* Clear scenario for this PF */
buf.pf_scenario_num[hw->pf_id] = ICE_ACL_INVALID_SCEN;
status = ice_prgm_acl_prof_xtrct(hw, prof_id, &buf, NULL);
return status;
}
/**
* ice_flow_rem_entry_sync - Remove a flow entry
* @hw: pointer to the HW struct
* @blk: classification stage
* @entry: flow entry to be removed
*/
static enum ice_status
ice_flow_rem_entry_sync(struct ice_hw *hw, enum ice_block blk,
struct ice_flow_entry *entry)
{
if (!entry)
return ICE_ERR_BAD_PTR;
if (blk == ICE_BLK_ACL) {
enum ice_status status;
if (!entry->prof)
return ICE_ERR_BAD_PTR;
status = ice_acl_rem_entry(hw, entry->prof->cfg.scen,
entry->scen_entry_idx);
if (status)
return status;
/* Checks if we need to release an ACL counter. */
if (entry->acts_cnt && entry->acts)
ice_flow_acl_free_act_cntr(hw, entry->acts,
entry->acts_cnt);
}
LIST_DEL(&entry->l_entry);
ice_dealloc_flow_entry(hw, entry);
return ICE_SUCCESS;
}
/**
* ice_flow_add_prof_sync - Add a flow profile for packet segments and fields
* @hw: pointer to the HW struct
* @blk: classification stage
* @dir: flow direction
* @prof_id: unique ID to identify this flow profile
* @segs: array of one or more packet segments that describe the flow
* @segs_cnt: number of packet segments provided
* @acts: array of default actions
* @acts_cnt: number of default actions
* @prof: stores the returned flow profile added
*
* Assumption: the caller has acquired the lock to the profile list
*/
static enum ice_status
ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk,
enum ice_flow_dir dir, u64 prof_id,
struct ice_flow_seg_info *segs, u8 segs_cnt,
struct ice_flow_action *acts, u8 acts_cnt,
struct ice_flow_prof **prof)
{
struct ice_flow_prof_params *params;
enum ice_status status;
u8 i;
if (!prof || (acts_cnt && !acts))
return ICE_ERR_BAD_PTR;
params = (struct ice_flow_prof_params *)ice_malloc(hw, sizeof(*params));
if (!params)
return ICE_ERR_NO_MEMORY;
params->prof = (struct ice_flow_prof *)
ice_malloc(hw, sizeof(*params->prof));
if (!params->prof) {
status = ICE_ERR_NO_MEMORY;
goto free_params;
}
/* initialize extraction sequence to all invalid (0xff) */
for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
params->es[i].prot_id = ICE_PROT_INVALID;
params->es[i].off = ICE_FV_OFFSET_INVAL;
}
params->blk = blk;
params->prof->id = prof_id;
params->prof->dir = dir;
params->prof->segs_cnt = segs_cnt;
/* Make a copy of the segments that need to be persistent in the flow
* profile instance
*/
for (i = 0; i < segs_cnt; i++)
ice_memcpy(&params->prof->segs[i], &segs[i], sizeof(*segs),
ICE_NONDMA_TO_NONDMA);
/* Make a copy of the actions that need to be persistent in the flow
* profile instance.
*/
if (acts_cnt) {
params->prof->acts = (struct ice_flow_action *)
ice_memdup(hw, acts, acts_cnt * sizeof(*acts),
ICE_NONDMA_TO_NONDMA);
if (!params->prof->acts) {
status = ICE_ERR_NO_MEMORY;
goto out;
}
}
status = ice_flow_proc_segs(hw, params);
if (status) {
ice_debug(hw, ICE_DBG_FLOW, "Error processing a flow's packet segments\n");
goto out;
}
/* Add a HW profile for this flow profile */
status = ice_add_prof(hw, blk, prof_id, (u8 *)params->ptypes,
params->attr, params->attr_cnt, params->es,
params->mask);
if (status) {
ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n");
goto out;
}
INIT_LIST_HEAD(&params->prof->entries);
ice_init_lock(&params->prof->entries_lock);
*prof = params->prof;
out:
if (status) {
if (params->prof->acts)
ice_free(hw, params->prof->acts);
ice_free(hw, params->prof);
}
free_params:
ice_free(hw, params);
return status;
}
/**
* ice_flow_rem_prof_sync - remove a flow profile
* @hw: pointer to the hardware structure
* @blk: classification stage
* @prof: pointer to flow profile to remove
*
* Assumption: the caller has acquired the lock to the profile list
*/
static enum ice_status
ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk,
struct ice_flow_prof *prof)
{
enum ice_status status;
/* Remove all remaining flow entries before removing the flow profile */
if (!LIST_EMPTY(&prof->entries)) {
struct ice_flow_entry *e, *t;
ice_acquire_lock(&prof->entries_lock);
LIST_FOR_EACH_ENTRY_SAFE(e, t, &prof->entries, ice_flow_entry,
l_entry) {
status = ice_flow_rem_entry_sync(hw, blk, e);
if (status)
break;
}
ice_release_lock(&prof->entries_lock);
}
if (blk == ICE_BLK_ACL) {
struct ice_aqc_acl_profile_ranges query_rng_buf;
struct ice_aqc_acl_prof_generic_frmt buf;
u8 prof_id = 0;
/* Disassociate the scenario from the profile for the PF */
status = ice_flow_acl_disassoc_scen(hw, prof);
if (status)
return status;
/* Clear the range-checker if the profile ID is no longer
* used by any PF
*/
status = ice_flow_acl_is_prof_in_use(hw, prof, &buf);
if (status && status != ICE_ERR_IN_USE) {
return status;
} else if (!status) {
/* Clear the range-checker value for profile ID */
ice_memset(&query_rng_buf, 0,
sizeof(struct ice_aqc_acl_profile_ranges),
ICE_NONDMA_MEM);
status = ice_flow_get_hw_prof(hw, blk, prof->id,
&prof_id);
if (status)
return status;
status = ice_prog_acl_prof_ranges(hw, prof_id,
&query_rng_buf, NULL);
if (status)
return status;
}
}
/* Remove all hardware profiles associated with this flow profile */
status = ice_rem_prof(hw, blk, prof->id);
if (!status) {
LIST_DEL(&prof->l_entry);
ice_destroy_lock(&prof->entries_lock);
if (prof->acts)
ice_free(hw, prof->acts);
ice_free(hw, prof);
}
return status;
}
/**
* ice_flow_acl_set_xtrct_seq_fld - Populate xtrct seq for single field
* @buf: Destination buffer function writes partial xtrct sequence to
* @info: Info about field
*/
static void
ice_flow_acl_set_xtrct_seq_fld(struct ice_aqc_acl_prof_generic_frmt *buf,
struct ice_flow_fld_info *info)
{
u16 dst, i;
u8 src;
src = info->xtrct.idx * ICE_FLOW_FV_EXTRACT_SZ +
info->xtrct.disp / BITS_PER_BYTE;
dst = info->entry.val;
for (i = 0; i < info->entry.last; i++)
/* HW stores field vector words in LE, convert words back to BE
* so constructed entries will end up in network order
*/
buf->byte_selection[dst++] = src++ ^ 1;
}
/**
* ice_flow_acl_set_xtrct_seq - Program ACL extraction sequence
* @hw: pointer to the hardware structure
* @prof: pointer to flow profile
*/
static enum ice_status
ice_flow_acl_set_xtrct_seq(struct ice_hw *hw, struct ice_flow_prof *prof)
{
struct ice_aqc_acl_prof_generic_frmt buf;
struct ice_flow_fld_info *info;
enum ice_status status;
u8 prof_id = 0;
u16 i;
ice_memset(&buf, 0, sizeof(buf), ICE_NONDMA_MEM);
status = ice_flow_get_hw_prof(hw, ICE_BLK_ACL, prof->id, &prof_id);
if (status)
return status;
status = ice_flow_acl_is_prof_in_use(hw, prof, &buf);
if (status && status != ICE_ERR_IN_USE)
return status;
if (!status) {
/* Program the profile dependent configuration. This is done
* only once regardless of the number of PFs using that profile
*/
ice_memset(&buf, 0, sizeof(buf), ICE_NONDMA_MEM);
for (i = 0; i < prof->segs_cnt; i++) {
struct ice_flow_seg_info *seg = &prof->segs[i];
u16 j;
ice_for_each_set_bit(j, (ice_bitmap_t *)&seg->match,
ICE_FLOW_FIELD_IDX_MAX) {
info = &seg->fields[j];
if (info->type == ICE_FLOW_FLD_TYPE_RANGE)
buf.word_selection[info->entry.val] =
info->xtrct.idx;
else
ice_flow_acl_set_xtrct_seq_fld(&buf,
info);
}
for (j = 0; j < seg->raws_cnt; j++) {
info = &seg->raws[j].info;
ice_flow_acl_set_xtrct_seq_fld(&buf, info);
}
}
ice_memset(&buf.pf_scenario_num[0], ICE_ACL_INVALID_SCEN,
ICE_AQC_ACL_PROF_PF_SCEN_NUM_ELEMS,
ICE_NONDMA_MEM);
}
/* Update the current PF */
buf.pf_scenario_num[hw->pf_id] = (u8)prof->cfg.scen->id;
status = ice_prgm_acl_prof_xtrct(hw, prof_id, &buf, NULL);
return status;
}
/**
* ice_flow_assoc_vsig_vsi - associate a VSI with VSIG
* @hw: pointer to the hardware structure
* @blk: classification stage
* @vsi_handle: software VSI handle
* @vsig: target VSI group
*
* Assumption: the caller has already verified that the VSI to
* be added has the same characteristics as the VSIG and will
* thereby have access to all resources added to that VSIG.
*/
enum ice_status
ice_flow_assoc_vsig_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi_handle,
u16 vsig)
{
enum ice_status status;
if (!ice_is_vsi_valid(hw, vsi_handle) || blk >= ICE_BLK_COUNT)
return ICE_ERR_PARAM;
ice_acquire_lock(&hw->fl_profs_locks[blk]);
status = ice_add_vsi_flow(hw, blk, ice_get_hw_vsi_num(hw, vsi_handle),
vsig);
ice_release_lock(&hw->fl_profs_locks[blk]);
return status;
}
/**
* ice_flow_assoc_prof - associate a VSI with a flow profile
* @hw: pointer to the hardware structure
* @blk: classification stage
* @prof: pointer to flow profile
* @vsi_handle: software VSI handle
*
* Assumption: the caller has acquired the lock to the profile list
* and the software VSI handle has been validated
*/
enum ice_status
ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk,
struct ice_flow_prof *prof, u16 vsi_handle)
{
enum ice_status status = ICE_SUCCESS;
if (!ice_is_bit_set(prof->vsis, vsi_handle)) {
if (blk == ICE_BLK_ACL) {
status = ice_flow_acl_set_xtrct_seq(hw, prof);
if (status)
return status;
}
status = ice_add_prof_id_flow(hw, blk,
ice_get_hw_vsi_num(hw,
vsi_handle),
prof->id);
if (!status)
ice_set_bit(vsi_handle, prof->vsis);
else
ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed, %d\n",
status);
}
return status;
}
/**
* ice_flow_disassoc_prof - disassociate a VSI from a flow profile
* @hw: pointer to the hardware structure
* @blk: classification stage
* @prof: pointer to flow profile
* @vsi_handle: software VSI handle
*
* Assumption: the caller has acquired the lock to the profile list
* and the software VSI handle has been validated
*/
static enum ice_status
ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk,
struct ice_flow_prof *prof, u16 vsi_handle)
{
enum ice_status status = ICE_SUCCESS;
if (ice_is_bit_set(prof->vsis, vsi_handle)) {
status = ice_rem_prof_id_flow(hw, blk,
ice_get_hw_vsi_num(hw,
vsi_handle),
prof->id);
if (!status)
ice_clear_bit(vsi_handle, prof->vsis);
else
ice_debug(hw, ICE_DBG_FLOW, "HW profile remove failed, %d\n",
status);
}
return status;
}
/**
* ice_flow_add_prof - Add a flow profile for packet segments and matched fields
* @hw: pointer to the HW struct
* @blk: classification stage
* @dir: flow direction
* @prof_id: unique ID to identify this flow profile
* @segs: array of one or more packet segments that describe the flow
* @segs_cnt: number of packet segments provided
* @acts: array of default actions
* @acts_cnt: number of default actions
* @prof: stores the returned flow profile added
*/
enum ice_status
ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
u64 prof_id, struct ice_flow_seg_info *segs, u8 segs_cnt,
struct ice_flow_action *acts, u8 acts_cnt,
struct ice_flow_prof **prof)
{
enum ice_status status;
if (segs_cnt > ICE_FLOW_SEG_MAX)
return ICE_ERR_MAX_LIMIT;
if (!segs_cnt)
return ICE_ERR_PARAM;
if (!segs)
return ICE_ERR_BAD_PTR;
status = ice_flow_val_hdrs(segs, segs_cnt);
if (status)
return status;
ice_acquire_lock(&hw->fl_profs_locks[blk]);
status = ice_flow_add_prof_sync(hw, blk, dir, prof_id, segs, segs_cnt,
acts, acts_cnt, prof);
if (!status)
LIST_ADD(&(*prof)->l_entry, &hw->fl_profs[blk]);
ice_release_lock(&hw->fl_profs_locks[blk]);
return status;
}
/**
* ice_flow_rem_prof - Remove a flow profile and all entries associated with it
* @hw: pointer to the HW struct
* @blk: the block for which the flow profile is to be removed
* @prof_id: unique ID of the flow profile to be removed
*/
enum ice_status
ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
{
struct ice_flow_prof *prof;
enum ice_status status;
ice_acquire_lock(&hw->fl_profs_locks[blk]);
prof = ice_flow_find_prof_id(hw, blk, prof_id);
if (!prof) {
status = ICE_ERR_DOES_NOT_EXIST;
goto out;
}
/* prof becomes invalid after the call */
status = ice_flow_rem_prof_sync(hw, blk, prof);
out:
ice_release_lock(&hw->fl_profs_locks[blk]);
return status;
}
/**
* ice_flow_find_entry - look for a flow entry using its unique ID
* @hw: pointer to the HW struct
* @blk: classification stage
* @entry_id: unique ID to identify this flow entry
*
* This function looks for the flow entry with the specified unique ID in all
* flow profiles of the specified classification stage. If the entry is found,
* and it returns the handle to the flow entry. Otherwise, it returns
* ICE_FLOW_ENTRY_ID_INVAL.
*/
u64 ice_flow_find_entry(struct ice_hw *hw, enum ice_block blk, u64 entry_id)
{
struct ice_flow_entry *found = NULL;
struct ice_flow_prof *p;
ice_acquire_lock(&hw->fl_profs_locks[blk]);
LIST_FOR_EACH_ENTRY(p, &hw->fl_profs[blk], ice_flow_prof, l_entry) {
struct ice_flow_entry *e;
ice_acquire_lock(&p->entries_lock);
LIST_FOR_EACH_ENTRY(e, &p->entries, ice_flow_entry, l_entry)
if (e->id == entry_id) {
found = e;
break;
}
ice_release_lock(&p->entries_lock);
if (found)
break;
}
ice_release_lock(&hw->fl_profs_locks[blk]);
return found ? ICE_FLOW_ENTRY_HNDL(found) : ICE_FLOW_ENTRY_HANDLE_INVAL;
}
/**
* ice_flow_acl_check_actions - Checks the ACL rule's actions
* @hw: pointer to the hardware structure
* @acts: array of actions to be performed on a match
* @acts_cnt: number of actions
* @cnt_alloc: indicates if an ACL counter has been allocated.
*/
static enum ice_status
ice_flow_acl_check_actions(struct ice_hw *hw, struct ice_flow_action *acts,
u8 acts_cnt, bool *cnt_alloc)
{
ice_declare_bitmap(dup_check, ICE_AQC_TBL_MAX_ACTION_PAIRS * 2);
int i;
ice_zero_bitmap(dup_check, ICE_AQC_TBL_MAX_ACTION_PAIRS * 2);
*cnt_alloc = false;
if (acts_cnt > ICE_FLOW_ACL_MAX_NUM_ACT)
return ICE_ERR_OUT_OF_RANGE;
for (i = 0; i < acts_cnt; i++) {
if (acts[i].type != ICE_FLOW_ACT_NOP &&
acts[i].type != ICE_FLOW_ACT_DROP &&
acts[i].type != ICE_FLOW_ACT_CNTR_PKT &&
acts[i].type != ICE_FLOW_ACT_FWD_QUEUE)
return ICE_ERR_CFG;
/* If the caller want to add two actions of the same type, then
* it is considered invalid configuration.
*/
if (ice_test_and_set_bit(acts[i].type, dup_check))
return ICE_ERR_PARAM;
}
/* Checks if ACL counters are needed. */
for (i = 0; i < acts_cnt; i++) {
if (acts[i].type == ICE_FLOW_ACT_CNTR_PKT ||
acts[i].type == ICE_FLOW_ACT_CNTR_BYTES ||
acts[i].type == ICE_FLOW_ACT_CNTR_PKT_BYTES) {
struct ice_acl_cntrs cntrs = { 0 };
enum ice_status status;
cntrs.amount = 1;
cntrs.bank = 0; /* Only bank0 for the moment */
if (acts[i].type == ICE_FLOW_ACT_CNTR_PKT_BYTES)
cntrs.type = ICE_AQC_ACL_CNT_TYPE_DUAL;
else
cntrs.type = ICE_AQC_ACL_CNT_TYPE_SINGLE;
status = ice_aq_alloc_acl_cntrs(hw, &cntrs, NULL);
if (status)
return status;
/* Counter index within the bank */
acts[i].data.acl_act.value =
CPU_TO_LE16(cntrs.first_cntr);
*cnt_alloc = true;
}
}
return ICE_SUCCESS;
}
/**
* ice_flow_acl_frmt_entry_range - Format an ACL range checker for a given field
* @fld: number of the given field
* @info: info about field
* @range_buf: range checker configuration buffer
* @data: pointer to a data buffer containing flow entry's match values/masks
* @range: Input/output param indicating which range checkers are being used
*/
static void
ice_flow_acl_frmt_entry_range(u16 fld, struct ice_flow_fld_info *info,
struct ice_aqc_acl_profile_ranges *range_buf,
u8 *data, u8 *range)
{
u16 new_mask;
/* If not specified, default mask is all bits in field */
new_mask = (info->src.mask == ICE_FLOW_FLD_OFF_INVAL ?
BIT(ice_flds_info[fld].size) - 1 :
(*(u16 *)(data + info->src.mask))) << info->xtrct.disp;
/* If the mask is 0, then we don't need to worry about this input
* range checker value.
*/
if (new_mask) {
u16 new_high =
(*(u16 *)(data + info->src.last)) << info->xtrct.disp;
u16 new_low =
(*(u16 *)(data + info->src.val)) << info->xtrct.disp;
u8 range_idx = info->entry.val;
range_buf->checker_cfg[range_idx].low_boundary =
CPU_TO_BE16(new_low);
range_buf->checker_cfg[range_idx].high_boundary =
CPU_TO_BE16(new_high);
range_buf->checker_cfg[range_idx].mask = CPU_TO_BE16(new_mask);
/* Indicate which range checker is being used */
*range |= BIT(range_idx);
}
}
/**
* ice_flow_acl_frmt_entry_fld - Partially format ACL entry for a given field
* @fld: number of the given field
* @info: info about the field
* @buf: buffer containing the entry
* @dontcare: buffer containing don't care mask for entry
* @data: pointer to a data buffer containing flow entry's match values/masks
*/
static void
ice_flow_acl_frmt_entry_fld(u16 fld, struct ice_flow_fld_info *info, u8 *buf,
u8 *dontcare, u8 *data)
{
u16 dst, src, mask, k, end_disp, tmp_s = 0, tmp_m = 0;
bool use_mask = false;
u8 disp;
src = info->src.val;
mask = info->src.mask;
dst = info->entry.val - ICE_AQC_ACL_PROF_BYTE_SEL_START_IDX;
disp = info->xtrct.disp % BITS_PER_BYTE;
if (mask != ICE_FLOW_FLD_OFF_INVAL)
use_mask = true;
for (k = 0; k < info->entry.last; k++, dst++) {
/* Add overflow bits from previous byte */
buf[dst] = (tmp_s & 0xff00) >> 8;
/* If mask is not valid, tmp_m is always zero, so just setting
* dontcare to 0 (no masked bits). If mask is valid, pulls in
* overflow bits of mask from prev byte
*/
dontcare[dst] = (tmp_m & 0xff00) >> 8;
/* If there is displacement, last byte will only contain
* displaced data, but there is no more data to read from user
* buffer, so skip so as not to potentially read beyond end of
* user buffer
*/
if (!disp || k < info->entry.last - 1) {
/* Store shifted data to use in next byte */
tmp_s = data[src++] << disp;
/* Add current (shifted) byte */
buf[dst] |= tmp_s & 0xff;
/* Handle mask if valid */
if (use_mask) {
tmp_m = (~data[mask++] & 0xff) << disp;
dontcare[dst] |= tmp_m & 0xff;
}
}
}
/* Fill in don't care bits at beginning of field */
if (disp) {
dst = info->entry.val - ICE_AQC_ACL_PROF_BYTE_SEL_START_IDX;
for (k = 0; k < disp; k++)
dontcare[dst] |= BIT(k);
}
end_disp = (disp + ice_flds_info[fld].size) % BITS_PER_BYTE;
/* Fill in don't care bits at end of field */
if (end_disp) {
dst = info->entry.val - ICE_AQC_ACL_PROF_BYTE_SEL_START_IDX +
info->entry.last - 1;
for (k = end_disp; k < BITS_PER_BYTE; k++)
dontcare[dst] |= BIT(k);
}
}
/**
* ice_flow_acl_frmt_entry - Format ACL entry
* @hw: pointer to the hardware structure
* @prof: pointer to flow profile
* @e: pointer to the flow entry
* @data: pointer to a data buffer containing flow entry's match values/masks
* @acts: array of actions to be performed on a match
* @acts_cnt: number of actions
*
* Formats the key (and key_inverse) to be matched from the data passed in,
* along with data from the flow profile. This key/key_inverse pair makes up
* the 'entry' for an ACL flow entry.
*/
static enum ice_status
ice_flow_acl_frmt_entry(struct ice_hw *hw, struct ice_flow_prof *prof,
struct ice_flow_entry *e, u8 *data,
struct ice_flow_action *acts, u8 acts_cnt)
{
u8 *buf = NULL, *dontcare = NULL, *key = NULL, range = 0, dir_flag_msk;
struct ice_aqc_acl_profile_ranges *range_buf = NULL;
enum ice_status status;
bool cnt_alloc;
u8 prof_id = 0;
u16 i, buf_sz;
status = ice_flow_get_hw_prof(hw, ICE_BLK_ACL, prof->id, &prof_id);
if (status)
return status;
/* Format the result action */
status = ice_flow_acl_check_actions(hw, acts, acts_cnt, &cnt_alloc);
if (status)
return status;
status = ICE_ERR_NO_MEMORY;
e->acts = (struct ice_flow_action *)
ice_memdup(hw, acts, acts_cnt * sizeof(*acts),
ICE_NONDMA_TO_NONDMA);
if (!e->acts)
goto out;
e->acts_cnt = acts_cnt;
/* Format the matching data */
buf_sz = prof->cfg.scen->width;
buf = (u8 *)ice_malloc(hw, buf_sz);
if (!buf)
goto out;
dontcare = (u8 *)ice_malloc(hw, buf_sz);
if (!dontcare)
goto out;
/* 'key' buffer will store both key and key_inverse, so must be twice
* size of buf
*/
key = (u8 *)ice_malloc(hw, buf_sz * 2);
if (!key)
goto out;
range_buf = (struct ice_aqc_acl_profile_ranges *)
ice_malloc(hw, sizeof(struct ice_aqc_acl_profile_ranges));
if (!range_buf)
goto out;
/* Set don't care mask to all 1's to start, will zero out used bytes */
ice_memset(dontcare, 0xff, buf_sz, ICE_NONDMA_MEM);
for (i = 0; i < prof->segs_cnt; i++) {
struct ice_flow_seg_info *seg = &prof->segs[i];
u8 j;
ice_for_each_set_bit(j, (ice_bitmap_t *)&seg->match,
ICE_FLOW_FIELD_IDX_MAX) {
struct ice_flow_fld_info *info = &seg->fields[j];
if (info->type == ICE_FLOW_FLD_TYPE_RANGE)
ice_flow_acl_frmt_entry_range(j, info,
range_buf, data,
&range);
else
ice_flow_acl_frmt_entry_fld(j, info, buf,
dontcare, data);
}
for (j = 0; j < seg->raws_cnt; j++) {
struct ice_flow_fld_info *info = &seg->raws[j].info;
u16 dst, src, mask, k;
bool use_mask = false;
src = info->src.val;
dst = info->entry.val -
ICE_AQC_ACL_PROF_BYTE_SEL_START_IDX;
mask = info->src.mask;
if (mask != ICE_FLOW_FLD_OFF_INVAL)
use_mask = true;
for (k = 0; k < info->entry.last; k++, dst++) {
buf[dst] = data[src++];
if (use_mask)
dontcare[dst] = ~data[mask++];
else
dontcare[dst] = 0;
}
}
}
buf[prof->cfg.scen->pid_idx] = (u8)prof_id;
dontcare[prof->cfg.scen->pid_idx] = 0;
/* Format the buffer for direction flags */
dir_flag_msk = BIT(ICE_FLG_PKT_DIR);
if (prof->dir == ICE_FLOW_RX)
buf[prof->cfg.scen->pkt_dir_idx] = dir_flag_msk;
if (range) {
buf[prof->cfg.scen->rng_chk_idx] = range;
/* Mark any unused range checkers as don't care */
dontcare[prof->cfg.scen->rng_chk_idx] = ~range;
e->range_buf = range_buf;
} else {
ice_free(hw, range_buf);
}
status = ice_set_key(key, buf_sz * 2, buf, NULL, dontcare, NULL, 0,
buf_sz);
if (status)
goto out;
e->entry = key;
e->entry_sz = buf_sz * 2;
out:
if (buf)
ice_free(hw, buf);
if (dontcare)
ice_free(hw, dontcare);
if (status && key)
ice_free(hw, key);
if (status && range_buf) {
ice_free(hw, range_buf);
e->range_buf = NULL;
}
if (status && e->acts) {
ice_free(hw, e->acts);
e->acts = NULL;
e->acts_cnt = 0;
}
if (status && cnt_alloc)
ice_flow_acl_free_act_cntr(hw, acts, acts_cnt);
return status;
}
/**
* ice_flow_acl_find_scen_entry_cond - Find an ACL scenario entry that matches
* the compared data.
* @prof: pointer to flow profile
* @e: pointer to the comparing flow entry
* @do_chg_action: decide if we want to change the ACL action
* @do_add_entry: decide if we want to add the new ACL entry
* @do_rem_entry: decide if we want to remove the current ACL entry
*
* Find an ACL scenario entry that matches the compared data. In the same time,
* this function also figure out:
* a/ If we want to change the ACL action
* b/ If we want to add the new ACL entry
* c/ If we want to remove the current ACL entry
*/
static struct ice_flow_entry *
ice_flow_acl_find_scen_entry_cond(struct ice_flow_prof *prof,
struct ice_flow_entry *e, bool *do_chg_action,
bool *do_add_entry, bool *do_rem_entry)
{
struct ice_flow_entry *p, *return_entry = NULL;
u8 i, j;
/* Check if:
* a/ There exists an entry with same matching data, but different
* priority, then we remove this existing ACL entry. Then, we
* will add the new entry to the ACL scenario.
* b/ There exists an entry with same matching data, priority, and
* result action, then we do nothing
* c/ There exists an entry with same matching data, priority, but
* different, action, then do only change the action's entry.
* d/ Else, we add this new entry to the ACL scenario.
*/
*do_chg_action = false;
*do_add_entry = true;
*do_rem_entry = false;
LIST_FOR_EACH_ENTRY(p, &prof->entries, ice_flow_entry, l_entry) {
if (memcmp(p->entry, e->entry, p->entry_sz))
continue;
/* From this point, we have the same matching_data. */
*do_add_entry = false;
return_entry = p;
if (p->priority != e->priority) {
/* matching data && !priority */
*do_add_entry = true;
*do_rem_entry = true;
break;
}
/* From this point, we will have matching_data && priority */
if (p->acts_cnt != e->acts_cnt)
*do_chg_action = true;
for (i = 0; i < p->acts_cnt; i++) {
bool found_not_match = false;
for (j = 0; j < e->acts_cnt; j++)
if (memcmp(&p->acts[i], &e->acts[j],
sizeof(struct ice_flow_action))) {
found_not_match = true;
break;
}
if (found_not_match) {
*do_chg_action = true;
break;
}
}
/* (do_chg_action = true) means :
* matching_data && priority && !result_action
* (do_chg_action = false) means :
* matching_data && priority && result_action
*/
break;
}
return return_entry;
}
/**
* ice_flow_acl_convert_to_acl_prio - Convert to ACL priority
* @p: flow priority
*/
static enum ice_acl_entry_prio
ice_flow_acl_convert_to_acl_prio(enum ice_flow_priority p)
{
enum ice_acl_entry_prio acl_prio;
switch (p) {
case ICE_FLOW_PRIO_LOW:
acl_prio = ICE_ACL_PRIO_LOW;
break;
case ICE_FLOW_PRIO_NORMAL:
acl_prio = ICE_ACL_PRIO_NORMAL;
break;
case ICE_FLOW_PRIO_HIGH:
acl_prio = ICE_ACL_PRIO_HIGH;
break;
default:
acl_prio = ICE_ACL_PRIO_NORMAL;
break;
}
return acl_prio;
}
/**
* ice_flow_acl_union_rng_chk - Perform union operation between two
* range-range checker buffers
* @dst_buf: pointer to destination range checker buffer
* @src_buf: pointer to source range checker buffer
*
* For this function, we do the union between dst_buf and src_buf
* range checker buffer, and we will save the result back to dst_buf
*/
static enum ice_status
ice_flow_acl_union_rng_chk(struct ice_aqc_acl_profile_ranges *dst_buf,
struct ice_aqc_acl_profile_ranges *src_buf)
{
u8 i, j;
if (!dst_buf || !src_buf)
return ICE_ERR_BAD_PTR;
for (i = 0; i < ICE_AQC_ACL_PROF_RANGES_NUM_CFG; i++) {
struct ice_acl_rng_data *cfg_data = NULL, *in_data;
bool will_populate = false;
in_data = &src_buf->checker_cfg[i];
if (!in_data->mask)
break;
for (j = 0; j < ICE_AQC_ACL_PROF_RANGES_NUM_CFG; j++) {
cfg_data = &dst_buf->checker_cfg[j];
if (!cfg_data->mask ||
!memcmp(cfg_data, in_data,
sizeof(struct ice_acl_rng_data))) {
will_populate = true;
break;
}
}
if (will_populate) {
ice_memcpy(cfg_data, in_data,
sizeof(struct ice_acl_rng_data),
ICE_NONDMA_TO_NONDMA);
} else {
/* No available slot left to program range checker */
return ICE_ERR_MAX_LIMIT;
}
}
return ICE_SUCCESS;
}
/**
* ice_flow_acl_add_scen_entry_sync - Add entry to ACL scenario sync
* @hw: pointer to the hardware structure
* @prof: pointer to flow profile
* @entry: double pointer to the flow entry
*
* For this function, we will look at the current added entries in the
* corresponding ACL scenario. Then, we will perform matching logic to
* see if we want to add/modify/do nothing with this new entry.
*/
static enum ice_status
ice_flow_acl_add_scen_entry_sync(struct ice_hw *hw, struct ice_flow_prof *prof,
struct ice_flow_entry **entry)
{
bool do_add_entry, do_rem_entry, do_chg_action, do_chg_rng_chk;
struct ice_aqc_acl_profile_ranges query_rng_buf, cfg_rng_buf;
struct ice_acl_act_entry *acts = NULL;
struct ice_flow_entry *exist;
enum ice_status status = ICE_SUCCESS;
struct ice_flow_entry *e;
u8 i;
if (!entry || !(*entry) || !prof)
return ICE_ERR_BAD_PTR;
e = *entry;
do_chg_rng_chk = false;
if (e->range_buf) {
u8 prof_id = 0;
status = ice_flow_get_hw_prof(hw, ICE_BLK_ACL, prof->id,
&prof_id);
if (status)
return status;
/* Query the current range-checker value in FW */
status = ice_query_acl_prof_ranges(hw, prof_id, &query_rng_buf,
NULL);
if (status)
return status;
ice_memcpy(&cfg_rng_buf, &query_rng_buf,
sizeof(struct ice_aqc_acl_profile_ranges),
ICE_NONDMA_TO_NONDMA);
/* Generate the new range-checker value */
status = ice_flow_acl_union_rng_chk(&cfg_rng_buf, e->range_buf);
if (status)
return status;
/* Reconfigure the range check if the buffer is changed. */
do_chg_rng_chk = false;
if (memcmp(&query_rng_buf, &cfg_rng_buf,
sizeof(struct ice_aqc_acl_profile_ranges))) {
status = ice_prog_acl_prof_ranges(hw, prof_id,
&cfg_rng_buf, NULL);
if (status)
return status;
do_chg_rng_chk = true;
}
}
/* Figure out if we want to (change the ACL action) and/or
* (Add the new ACL entry) and/or (Remove the current ACL entry)
*/
exist = ice_flow_acl_find_scen_entry_cond(prof, e, &do_chg_action,
&do_add_entry, &do_rem_entry);
if (do_rem_entry) {
status = ice_flow_rem_entry_sync(hw, ICE_BLK_ACL, exist);
if (status)
return status;
}
/* Prepare the result action buffer */
acts = (struct ice_acl_act_entry *)
ice_calloc(hw, e->entry_sz, sizeof(struct ice_acl_act_entry));
if (!acts)
return ICE_ERR_NO_MEMORY;
for (i = 0; i < e->acts_cnt; i++)
ice_memcpy(&acts[i], &e->acts[i].data.acl_act,
sizeof(struct ice_acl_act_entry),
ICE_NONDMA_TO_NONDMA);
if (do_add_entry) {
enum ice_acl_entry_prio prio;
u8 *keys, *inverts;
u16 entry_idx;
keys = (u8 *)e->entry;
inverts = keys + (e->entry_sz / 2);
prio = ice_flow_acl_convert_to_acl_prio(e->priority);
status = ice_acl_add_entry(hw, prof->cfg.scen, prio, keys,
inverts, acts, e->acts_cnt,
&entry_idx);
if (status)
goto out;
e->scen_entry_idx = entry_idx;
LIST_ADD(&e->l_entry, &prof->entries);
} else {
if (do_chg_action) {
/* For the action memory info, update the SW's copy of
* exist entry with e's action memory info
*/
ice_free(hw, exist->acts);
exist->acts_cnt = e->acts_cnt;
exist->acts = (struct ice_flow_action *)
ice_calloc(hw, exist->acts_cnt,
sizeof(struct ice_flow_action));
if (!exist->acts) {
status = ICE_ERR_NO_MEMORY;
goto out;
}
ice_memcpy(exist->acts, e->acts,
sizeof(struct ice_flow_action) * e->acts_cnt,
ICE_NONDMA_TO_NONDMA);
status = ice_acl_prog_act(hw, prof->cfg.scen, acts,
e->acts_cnt,
exist->scen_entry_idx);
if (status)
goto out;
}
if (do_chg_rng_chk) {
/* In this case, we want to update the range checker
* information of the exist entry
*/
status = ice_flow_acl_union_rng_chk(exist->range_buf,
e->range_buf);
if (status)
goto out;
}
/* As we don't add the new entry to our SW DB, deallocate its
* memories, and return the exist entry to the caller
*/
ice_dealloc_flow_entry(hw, e);
*(entry) = exist;
}
out:
ice_free(hw, acts);
return status;
}
/**
* ice_flow_acl_add_scen_entry - Add entry to ACL scenario
* @hw: pointer to the hardware structure
* @prof: pointer to flow profile
* @e: double pointer to the flow entry
*/
static enum ice_status
ice_flow_acl_add_scen_entry(struct ice_hw *hw, struct ice_flow_prof *prof,
struct ice_flow_entry **e)
{
enum ice_status status;
ice_acquire_lock(&prof->entries_lock);
status = ice_flow_acl_add_scen_entry_sync(hw, prof, e);
ice_release_lock(&prof->entries_lock);
return status;
}
/**
* ice_flow_add_entry - Add a flow entry
* @hw: pointer to the HW struct
* @blk: classification stage
* @prof_id: ID of the profile to add a new flow entry to
* @entry_id: unique ID to identify this flow entry
* @vsi_handle: software VSI handle for the flow entry
* @prio: priority of the flow entry
* @data: pointer to a data buffer containing flow entry's match values/masks
* @acts: arrays of actions to be performed on a match
* @acts_cnt: number of actions
* @entry_h: pointer to buffer that receives the new flow entry's handle
*/
enum ice_status
ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio,
void *data, struct ice_flow_action *acts, u8 acts_cnt,
u64 *entry_h)
{
struct ice_flow_entry *e = NULL;
struct ice_flow_prof *prof;
enum ice_status status = ICE_SUCCESS;
/* ACL entries must indicate an action */
if (blk == ICE_BLK_ACL && (!acts || !acts_cnt))
return ICE_ERR_PARAM;
/* No flow entry data is expected for RSS */
if (!entry_h || (!data && blk != ICE_BLK_RSS))
return ICE_ERR_BAD_PTR;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
ice_acquire_lock(&hw->fl_profs_locks[blk]);
prof = ice_flow_find_prof_id(hw, blk, prof_id);
if (!prof) {
status = ICE_ERR_DOES_NOT_EXIST;
} else {
/* Allocate memory for the entry being added and associate
* the VSI to the found flow profile
*/
e = (struct ice_flow_entry *)ice_malloc(hw, sizeof(*e));
if (!e)
status = ICE_ERR_NO_MEMORY;
else
status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
}
ice_release_lock(&hw->fl_profs_locks[blk]);
if (status)
goto out;
e->id = entry_id;
e->vsi_handle = vsi_handle;
e->prof = prof;
e->priority = prio;
switch (blk) {
case ICE_BLK_FD:
case ICE_BLK_RSS:
break;
case ICE_BLK_ACL:
/* ACL will handle the entry management */
status = ice_flow_acl_frmt_entry(hw, prof, e, (u8 *)data, acts,
acts_cnt);
if (status)
goto out;
status = ice_flow_acl_add_scen_entry(hw, prof, &e);
if (status)
goto out;
break;
default:
status = ICE_ERR_NOT_IMPL;
goto out;
}
if (blk != ICE_BLK_ACL) {
/* ACL will handle the entry management */
ice_acquire_lock(&prof->entries_lock);
LIST_ADD(&e->l_entry, &prof->entries);
ice_release_lock(&prof->entries_lock);
}
*entry_h = ICE_FLOW_ENTRY_HNDL(e);
out:
if (status && e) {
if (e->entry)
ice_free(hw, e->entry);
ice_free(hw, e);
}
return status;
}
/**
* ice_flow_rem_entry - Remove a flow entry
* @hw: pointer to the HW struct
* @blk: classification stage
* @entry_h: handle to the flow entry to be removed
*/
enum ice_status ice_flow_rem_entry(struct ice_hw *hw, enum ice_block blk,
u64 entry_h)
{
struct ice_flow_entry *entry;
struct ice_flow_prof *prof;
enum ice_status status = ICE_SUCCESS;
if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL)
return ICE_ERR_PARAM;
entry = ICE_FLOW_ENTRY_PTR((unsigned long)entry_h);
/* Retain the pointer to the flow profile as the entry will be freed */
prof = entry->prof;
if (prof) {
ice_acquire_lock(&prof->entries_lock);
status = ice_flow_rem_entry_sync(hw, blk, entry);
ice_release_lock(&prof->entries_lock);
}
return status;
}
/**
* ice_flow_set_fld_ext - specifies locations of field from entry's input buffer
* @seg: packet segment the field being set belongs to
* @fld: field to be set
* @field_type: type of the field
* @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
* entry's input buffer
* @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
* input buffer
* @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
* entry's input buffer
*
* This helper function stores information of a field being matched, including
* the type of the field and the locations of the value to match, the mask, and
* the upper-bound value in the start of the input buffer for a flow entry.
* This function should only be used for fixed-size data structures.
*
* This function also opportunistically determines the protocol headers to be
* present based on the fields being set. Some fields cannot be used alone to
* determine the protocol headers present. Sometimes, fields for particular
* protocol headers are not matched. In those cases, the protocol headers
* must be explicitly set.
*/
static void
ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
enum ice_flow_fld_match_type field_type, u16 val_loc,
u16 mask_loc, u16 last_loc)
{
u64 bit = BIT_ULL(fld);
seg->match |= bit;
if (field_type == ICE_FLOW_FLD_TYPE_RANGE)
seg->range |= bit;
seg->fields[fld].type = field_type;
seg->fields[fld].src.val = val_loc;
seg->fields[fld].src.mask = mask_loc;
seg->fields[fld].src.last = last_loc;
ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr);
}
/**
* ice_flow_set_fld - specifies locations of field from entry's input buffer
* @seg: packet segment the field being set belongs to
* @fld: field to be set
* @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
* entry's input buffer
* @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
* input buffer
* @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
* entry's input buffer
* @range: indicate if field being matched is to be in a range
*
* This function specifies the locations, in the form of byte offsets from the
* start of the input buffer for a flow entry, from where the value to match,
* the mask value, and upper value can be extracted. These locations are then
* stored in the flow profile. When adding a flow entry associated with the
* flow profile, these locations will be used to quickly extract the values and
* create the content of a match entry. This function should only be used for
* fixed-size data structures.
*/
void
ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
u16 val_loc, u16 mask_loc, u16 last_loc, bool range)
{
enum ice_flow_fld_match_type t = range ?
ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG;
ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc);
}
/**
* ice_flow_set_fld_prefix - sets locations of prefix field from entry's buf
* @seg: packet segment the field being set belongs to
* @fld: field to be set
* @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
* entry's input buffer
* @pref_loc: location of prefix value from entry's input buffer
* @pref_sz: size of the location holding the prefix value
*
* This function specifies the locations, in the form of byte offsets from the
* start of the input buffer for a flow entry, from where the value to match
* and the IPv4 prefix value can be extracted. These locations are then stored
* in the flow profile. When adding flow entries to the associated flow profile,
* these locations can be used to quickly extract the values to create the
* content of a match entry. This function should only be used for fixed-size
* data structures.
*/
void
ice_flow_set_fld_prefix(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
u16 val_loc, u16 pref_loc, u8 pref_sz)
{
/* For this type of field, the "mask" location is for the prefix value's
* location and the "last" location is for the size of the location of
* the prefix value.
*/
ice_flow_set_fld_ext(seg, fld, ICE_FLOW_FLD_TYPE_PREFIX, val_loc,
pref_loc, (u16)pref_sz);
}
/**
* ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf
* @seg: packet segment the field being set belongs to
* @off: offset of the raw field from the beginning of the segment in bytes
* @len: length of the raw pattern to be matched
* @val_loc: location of the value to match from entry's input buffer
* @mask_loc: location of mask value from entry's input buffer
*
* This function specifies the offset of the raw field to be match from the
* beginning of the specified packet segment, and the locations, in the form of
* byte offsets from the start of the input buffer for a flow entry, from where
* the value to match and the mask value to be extracted. These locations are
* then stored in the flow profile. When adding flow entries to the associated
* flow profile, these locations can be used to quickly extract the values to
* create the content of a match entry. This function should only be used for
* fixed-size data structures.
*/
void
ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len,
u16 val_loc, u16 mask_loc)
{
if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) {
seg->raws[seg->raws_cnt].off = off;
seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE;
seg->raws[seg->raws_cnt].info.src.val = val_loc;
seg->raws[seg->raws_cnt].info.src.mask = mask_loc;
/* The "last" field is used to store the length of the field */
seg->raws[seg->raws_cnt].info.src.last = len;
}
/* Overflows of "raws" will be handled as an error condition later in
* the flow when this information is processed.
*/
seg->raws_cnt++;
}
#define ICE_FLOW_RSS_SEG_HDR_L2_MASKS \
(ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_ETH_NON_IP | ICE_FLOW_SEG_HDR_VLAN)
#define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \
(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
#define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \
(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
#define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \
(ICE_FLOW_RSS_SEG_HDR_L2_MASKS | \
ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \
ICE_FLOW_RSS_SEG_HDR_L4_MASKS)
/**
* ice_flow_set_rss_seg_info - setup packet segments for RSS
* @segs: pointer to the flow field segment(s)
* @seg_cnt: segment count
* @cfg: configure parameters
*
* Helper function to extract fields from hash bitmap and use flow
* header value to set flow field segment for further use in flow
* profile entry or removal.
*/
static enum ice_status
ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u8 seg_cnt,
const struct ice_rss_hash_cfg *cfg)
{
struct ice_flow_seg_info *seg;
u64 val;
u8 i;
/* set inner most segment */
seg = &segs[seg_cnt - 1];
ice_for_each_set_bit(i, (const ice_bitmap_t *)&cfg->hash_flds,
ICE_FLOW_FIELD_IDX_MAX)
ice_flow_set_fld(seg, (enum ice_flow_field)i,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, false);
ICE_FLOW_SET_HDRS(seg, cfg->addl_hdrs);
/* set outer most header */
if (cfg->hdr_type == ICE_RSS_INNER_HEADERS_W_OUTER_IPV4)
segs[ICE_RSS_OUTER_HEADERS].hdrs |= ICE_FLOW_SEG_HDR_IPV4 |
ICE_FLOW_SEG_HDR_IPV_OTHER;
else if (cfg->hdr_type == ICE_RSS_INNER_HEADERS_W_OUTER_IPV6)
segs[ICE_RSS_OUTER_HEADERS].hdrs |= ICE_FLOW_SEG_HDR_IPV6 |
ICE_FLOW_SEG_HDR_IPV_OTHER;
if (seg->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS &
~ICE_FLOW_RSS_HDRS_INNER_MASK & ~ICE_FLOW_SEG_HDR_IPV_OTHER)
return ICE_ERR_PARAM;
val = (u64)(seg->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS);
if (val && !ice_is_pow2(val))
return ICE_ERR_CFG;
val = (u64)(seg->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS);
if (val && !ice_is_pow2(val))
return ICE_ERR_CFG;
return ICE_SUCCESS;
}
/**
* ice_rem_vsi_rss_list - remove VSI from RSS list
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
*
* Remove the VSI from all RSS configurations in the list.
*/
void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle)
{
struct ice_rss_cfg *r, *tmp;
if (LIST_EMPTY(&hw->rss_list_head))
return;
ice_acquire_lock(&hw->rss_locks);
LIST_FOR_EACH_ENTRY_SAFE(r, tmp, &hw->rss_list_head,
ice_rss_cfg, l_entry)
if (ice_test_and_clear_bit(vsi_handle, r->vsis))
if (!ice_is_any_bit_set(r->vsis, ICE_MAX_VSI)) {
LIST_DEL(&r->l_entry);
ice_free(hw, r);
}
ice_release_lock(&hw->rss_locks);
}
/**
* ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
*
* This function will iterate through all flow profiles and disassociate
* the VSI from that profile. If the flow profile has no VSIs it will
* be removed.
*/
enum ice_status ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
{
const enum ice_block blk = ICE_BLK_RSS;
struct ice_flow_prof *p, *t;
enum ice_status status = ICE_SUCCESS;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
if (LIST_EMPTY(&hw->fl_profs[blk]))
return ICE_SUCCESS;
ice_acquire_lock(&hw->rss_locks);
LIST_FOR_EACH_ENTRY_SAFE(p, t, &hw->fl_profs[blk], ice_flow_prof,
l_entry)
if (ice_is_bit_set(p->vsis, vsi_handle)) {
status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle);
if (status)
break;
if (!ice_is_any_bit_set(p->vsis, ICE_MAX_VSI)) {
status = ice_flow_rem_prof(hw, blk, p->id);
if (status)
break;
}
}
ice_release_lock(&hw->rss_locks);
return status;
}
/**
* ice_get_rss_hdr_type - get a RSS profile's header type
* @prof: RSS flow profile
*/
static enum ice_rss_cfg_hdr_type
ice_get_rss_hdr_type(struct ice_flow_prof *prof)
{
enum ice_rss_cfg_hdr_type hdr_type = ICE_RSS_ANY_HEADERS;
if (prof->segs_cnt == ICE_FLOW_SEG_SINGLE) {
hdr_type = ICE_RSS_OUTER_HEADERS;
} else if (prof->segs_cnt == ICE_FLOW_SEG_MAX) {
if (prof->segs[ICE_RSS_OUTER_HEADERS].hdrs == ICE_FLOW_SEG_HDR_NONE)
hdr_type = ICE_RSS_INNER_HEADERS;
if (prof->segs[ICE_RSS_OUTER_HEADERS].hdrs & ICE_FLOW_SEG_HDR_IPV4)
hdr_type = ICE_RSS_INNER_HEADERS_W_OUTER_IPV4;
if (prof->segs[ICE_RSS_OUTER_HEADERS].hdrs & ICE_FLOW_SEG_HDR_IPV6)
hdr_type = ICE_RSS_INNER_HEADERS_W_OUTER_IPV6;
}
return hdr_type;
}
/**
* ice_rem_rss_list - remove RSS configuration from list
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @prof: pointer to flow profile
*
* Assumption: lock has already been acquired for RSS list
*/
static void
ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
{
enum ice_rss_cfg_hdr_type hdr_type;
struct ice_rss_cfg *r, *tmp;
/* Search for RSS hash fields associated to the VSI that match the
* hash configurations associated to the flow profile. If found
* remove from the RSS entry list of the VSI context and delete entry.
*/
hdr_type = ice_get_rss_hdr_type(prof);
LIST_FOR_EACH_ENTRY_SAFE(r, tmp, &hw->rss_list_head,
ice_rss_cfg, l_entry)
if (r->hash.hash_flds == prof->segs[prof->segs_cnt - 1].match &&
r->hash.addl_hdrs == prof->segs[prof->segs_cnt - 1].hdrs &&
r->hash.hdr_type == hdr_type) {
ice_clear_bit(vsi_handle, r->vsis);
if (!ice_is_any_bit_set(r->vsis, ICE_MAX_VSI)) {
LIST_DEL(&r->l_entry);
ice_free(hw, r);
}
return;
}
}
/**
* ice_add_rss_list - add RSS configuration to list
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @prof: pointer to flow profile
*
* Assumption: lock has already been acquired for RSS list
*/
static enum ice_status
ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
{
enum ice_rss_cfg_hdr_type hdr_type;
struct ice_rss_cfg *r, *rss_cfg;
hdr_type = ice_get_rss_hdr_type(prof);
LIST_FOR_EACH_ENTRY(r, &hw->rss_list_head,
ice_rss_cfg, l_entry)
if (r->hash.hash_flds == prof->segs[prof->segs_cnt - 1].match &&
r->hash.addl_hdrs == prof->segs[prof->segs_cnt - 1].hdrs &&
r->hash.hdr_type == hdr_type) {
ice_set_bit(vsi_handle, r->vsis);
return ICE_SUCCESS;
}
rss_cfg = (struct ice_rss_cfg *)ice_malloc(hw, sizeof(*rss_cfg));
if (!rss_cfg)
return ICE_ERR_NO_MEMORY;
rss_cfg->hash.hash_flds = prof->segs[prof->segs_cnt - 1].match;
rss_cfg->hash.addl_hdrs = prof->segs[prof->segs_cnt - 1].hdrs;
rss_cfg->hash.hdr_type = hdr_type;
rss_cfg->hash.symm = prof->cfg.symm;
ice_set_bit(vsi_handle, rss_cfg->vsis);
LIST_ADD_TAIL(&rss_cfg->l_entry, &hw->rss_list_head);
return ICE_SUCCESS;
}
#define ICE_FLOW_PROF_HASH_S 0
#define ICE_FLOW_PROF_HASH_M (0xFFFFFFFFULL << ICE_FLOW_PROF_HASH_S)
#define ICE_FLOW_PROF_HDR_S 32
#define ICE_FLOW_PROF_HDR_M (0x3FFFFFFFULL << ICE_FLOW_PROF_HDR_S)
#define ICE_FLOW_PROF_ENCAP_S 62
#define ICE_FLOW_PROF_ENCAP_M (0x3ULL << ICE_FLOW_PROF_ENCAP_S)
/* Flow profile ID format:
* [0:31] - Packet match fields
* [32:61] - Protocol header
* [62:63] - Encapsulation flag:
* 0 if non-tunneled
* 1 if tunneled
* 2 for tunneled with outer ipv4
* 3 for tunneled with outer ipv6
*/
#define ICE_FLOW_GEN_PROFID(hash, hdr, encap) \
(u64)(((u64)(hash) & ICE_FLOW_PROF_HASH_M) | \
(((u64)(hdr) << ICE_FLOW_PROF_HDR_S) & ICE_FLOW_PROF_HDR_M) | \
(((u64)(encap) << ICE_FLOW_PROF_ENCAP_S) & ICE_FLOW_PROF_ENCAP_M))
static void
ice_rss_config_xor_word(struct ice_hw *hw, u8 prof_id, u8 src, u8 dst)
{
u32 s = ((src % 4) << 3); /* byte shift */
u32 v = dst | 0x80; /* value to program */
u8 i = src / 4; /* register index */
u32 reg;
reg = rd32(hw, GLQF_HSYMM(prof_id, i));
reg = (reg & ~(0xff << s)) | (v << s);
wr32(hw, GLQF_HSYMM(prof_id, i), reg);
}
static void
ice_rss_config_xor(struct ice_hw *hw, u8 prof_id, u8 src, u8 dst, u8 len)
{
int fv_last_word =
ICE_FLOW_SW_FIELD_VECTOR_MAX / ICE_FLOW_FV_EXTRACT_SZ - 1;
int i;
for (i = 0; i < len; i++) {
ice_rss_config_xor_word(hw, prof_id,
/* Yes, field vector in GLQF_HSYMM and
* GLQF_HINSET is inversed!
*/
fv_last_word - (src + i),
fv_last_word - (dst + i));
ice_rss_config_xor_word(hw, prof_id,
fv_last_word - (dst + i),
fv_last_word - (src + i));
}
}
static void
ice_rss_update_symm(struct ice_hw *hw,
struct ice_flow_prof *prof)
{
struct ice_prof_map *map;
u8 prof_id, m;
ice_acquire_lock(&hw->blk[ICE_BLK_RSS].es.prof_map_lock);
map = ice_search_prof_id(hw, ICE_BLK_RSS, prof->id);
if (map)
prof_id = map->prof_id;
ice_release_lock(&hw->blk[ICE_BLK_RSS].es.prof_map_lock);
if (!map)
return;
/* clear to default */
for (m = 0; m < 6; m++)
wr32(hw, GLQF_HSYMM(prof_id, m), 0);
if (prof->cfg.symm) {
struct ice_flow_seg_info *seg =
&prof->segs[prof->segs_cnt - 1];
struct ice_flow_seg_xtrct *ipv4_src =
&seg->fields[ICE_FLOW_FIELD_IDX_IPV4_SA].xtrct;
struct ice_flow_seg_xtrct *ipv4_dst =
&seg->fields[ICE_FLOW_FIELD_IDX_IPV4_DA].xtrct;
struct ice_flow_seg_xtrct *ipv6_src =
&seg->fields[ICE_FLOW_FIELD_IDX_IPV6_SA].xtrct;
struct ice_flow_seg_xtrct *ipv6_dst =
&seg->fields[ICE_FLOW_FIELD_IDX_IPV6_DA].xtrct;
struct ice_flow_seg_xtrct *tcp_src =
&seg->fields[ICE_FLOW_FIELD_IDX_TCP_SRC_PORT].xtrct;
struct ice_flow_seg_xtrct *tcp_dst =
&seg->fields[ICE_FLOW_FIELD_IDX_TCP_DST_PORT].xtrct;
struct ice_flow_seg_xtrct *udp_src =
&seg->fields[ICE_FLOW_FIELD_IDX_UDP_SRC_PORT].xtrct;
struct ice_flow_seg_xtrct *udp_dst =
&seg->fields[ICE_FLOW_FIELD_IDX_UDP_DST_PORT].xtrct;
struct ice_flow_seg_xtrct *sctp_src =
&seg->fields[ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT].xtrct;
struct ice_flow_seg_xtrct *sctp_dst =
&seg->fields[ICE_FLOW_FIELD_IDX_SCTP_DST_PORT].xtrct;
/* xor IPv4 */
if (ipv4_src->prot_id != 0 && ipv4_dst->prot_id != 0)
ice_rss_config_xor(hw, prof_id,
ipv4_src->idx, ipv4_dst->idx, 2);
/* xor IPv6 */
if (ipv6_src->prot_id != 0 && ipv6_dst->prot_id != 0)
ice_rss_config_xor(hw, prof_id,
ipv6_src->idx, ipv6_dst->idx, 8);
/* xor TCP */
if (tcp_src->prot_id != 0 && tcp_dst->prot_id != 0)
ice_rss_config_xor(hw, prof_id,
tcp_src->idx, tcp_dst->idx, 1);
/* xor UDP */
if (udp_src->prot_id != 0 && udp_dst->prot_id != 0)
ice_rss_config_xor(hw, prof_id,
udp_src->idx, udp_dst->idx, 1);
/* xor SCTP */
if (sctp_src->prot_id != 0 && sctp_dst->prot_id != 0)
ice_rss_config_xor(hw, prof_id,
sctp_src->idx, sctp_dst->idx, 1);
}
}
/**
* ice_add_rss_cfg_sync - add an RSS configuration
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @cfg: configure parameters
*
* Assumption: lock has already been acquired for RSS list
*/
static enum ice_status
ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle,
const struct ice_rss_hash_cfg *cfg)
{
const enum ice_block blk = ICE_BLK_RSS;
struct ice_flow_prof *prof = NULL;
struct ice_flow_seg_info *segs;
enum ice_status status;
u8 segs_cnt;
segs_cnt = (cfg->hdr_type == ICE_RSS_OUTER_HEADERS) ?
ICE_FLOW_SEG_SINGLE : ICE_FLOW_SEG_MAX;
segs = (struct ice_flow_seg_info *)ice_calloc(hw, segs_cnt,
sizeof(*segs));
if (!segs)
return ICE_ERR_NO_MEMORY;
/* Construct the packet segment info from the hashed fields */
status = ice_flow_set_rss_seg_info(segs, segs_cnt, cfg);
if (status)
goto exit;
/* Don't do RSS for GTPU Outer */
if (segs_cnt == ICE_FLOW_SEG_SINGLE &&
segs[segs_cnt - 1].hdrs & ICE_FLOW_SEG_HDR_GTPU) {
status = ICE_SUCCESS;
goto exit;
}
/* Search for a flow profile that has matching headers, hash fields
* and has the input VSI associated to it. If found, no further
* operations required and exit.
*/
prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
vsi_handle,
ICE_FLOW_FIND_PROF_CHK_FLDS |
ICE_FLOW_FIND_PROF_CHK_VSI);
if (prof) {
if (prof->cfg.symm == cfg->symm)
goto exit;
prof->cfg.symm = cfg->symm;
goto update_symm;
}
/* Check if a flow profile exists with the same protocol headers and
* associated with the input VSI. If so disassociate the VSI from
* this profile. The VSI will be added to a new profile created with
* the protocol header and new hash field configuration.
*/
prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
vsi_handle, ICE_FLOW_FIND_PROF_CHK_VSI);
if (prof) {
status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
if (!status)
ice_rem_rss_list(hw, vsi_handle, prof);
else
goto exit;
/* Remove profile if it has no VSIs associated */
if (!ice_is_any_bit_set(prof->vsis, ICE_MAX_VSI)) {
status = ice_flow_rem_prof(hw, blk, prof->id);
if (status)
goto exit;
}
}
/* Search for a profile that has same match fields only. If this
* exists then associate the VSI to this profile.
*/
prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
vsi_handle,
ICE_FLOW_FIND_PROF_CHK_FLDS);
if (prof) {
if (prof->cfg.symm == cfg->symm) {
status = ice_flow_assoc_prof(hw, blk, prof,
vsi_handle);
if (!status)
status = ice_add_rss_list(hw, vsi_handle,
prof);
} else {
/* if a profile exist but with different symmetric
* requirement, just return error.
*/
status = ICE_ERR_NOT_SUPPORTED;
}
goto exit;
}
/* Create a new flow profile with generated profile and packet
* segment information.
*/
status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX,
ICE_FLOW_GEN_PROFID(cfg->hash_flds,
segs[segs_cnt - 1].hdrs,
cfg->hdr_type),
segs, segs_cnt, NULL, 0, &prof);
if (status)
goto exit;
status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
/* If association to a new flow profile failed then this profile can
* be removed.
*/
if (status) {
ice_flow_rem_prof(hw, blk, prof->id);
goto exit;
}
status = ice_add_rss_list(hw, vsi_handle, prof);
prof->cfg.symm = cfg->symm;
update_symm:
ice_rss_update_symm(hw, prof);
exit:
ice_free(hw, segs);
return status;
}
/**
* ice_add_rss_cfg - add an RSS configuration with specified hashed fields
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @cfg: configure parameters
*
* This function will generate a flow profile based on fields associated with
* the input fields to hash on, the flow type and use the VSI number to add
* a flow entry to the profile.
*/
enum ice_status
ice_add_rss_cfg(struct ice_hw *hw, u16 vsi_handle,
const struct ice_rss_hash_cfg *cfg)
{
struct ice_rss_hash_cfg local_cfg;
enum ice_status status;
if (!ice_is_vsi_valid(hw, vsi_handle) ||
!cfg || cfg->hdr_type > ICE_RSS_ANY_HEADERS ||
cfg->hash_flds == ICE_HASH_INVALID)
return ICE_ERR_PARAM;
local_cfg = *cfg;
if (cfg->hdr_type < ICE_RSS_ANY_HEADERS) {
ice_acquire_lock(&hw->rss_locks);
status = ice_add_rss_cfg_sync(hw, vsi_handle, &local_cfg);
ice_release_lock(&hw->rss_locks);
} else {
ice_acquire_lock(&hw->rss_locks);
local_cfg.hdr_type = ICE_RSS_OUTER_HEADERS;
status = ice_add_rss_cfg_sync(hw, vsi_handle, &local_cfg);
if (!status) {
local_cfg.hdr_type = ICE_RSS_INNER_HEADERS;
status = ice_add_rss_cfg_sync(hw, vsi_handle,
&local_cfg);
}
ice_release_lock(&hw->rss_locks);
}
return status;
}
/**
* ice_rem_rss_cfg_sync - remove an existing RSS configuration
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @cfg: configure parameters
*
* Assumption: lock has already been acquired for RSS list
*/
static enum ice_status
ice_rem_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle,
const struct ice_rss_hash_cfg *cfg)
{
const enum ice_block blk = ICE_BLK_RSS;
struct ice_flow_seg_info *segs;
struct ice_flow_prof *prof;
enum ice_status status;
u8 segs_cnt;
segs_cnt = (cfg->hdr_type == ICE_RSS_OUTER_HEADERS) ?
ICE_FLOW_SEG_SINGLE : ICE_FLOW_SEG_MAX;
segs = (struct ice_flow_seg_info *)ice_calloc(hw, segs_cnt,
sizeof(*segs));
if (!segs)
return ICE_ERR_NO_MEMORY;
/* Construct the packet segment info from the hashed fields */
status = ice_flow_set_rss_seg_info(segs, segs_cnt, cfg);
if (status)
goto out;
/* Don't do RSS for GTPU Outer */
if (segs_cnt == ICE_FLOW_SEG_SINGLE &&
segs[segs_cnt - 1].hdrs & ICE_FLOW_SEG_HDR_GTPU) {
status = ICE_SUCCESS;
goto out;
}
prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
vsi_handle,
ICE_FLOW_FIND_PROF_CHK_FLDS);
if (!prof) {
status = ICE_ERR_DOES_NOT_EXIST;
goto out;
}
status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
if (status)
goto out;
/* Remove RSS configuration from VSI context before deleting
* the flow profile.
*/
ice_rem_rss_list(hw, vsi_handle, prof);
if (!ice_is_any_bit_set(prof->vsis, ICE_MAX_VSI))
status = ice_flow_rem_prof(hw, blk, prof->id);
out:
ice_free(hw, segs);
return status;
}
/**
* ice_rem_rss_cfg - remove an existing RSS config with matching hashed fields
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @cfg: configure parameters
*
* This function will lookup the flow profile based on the input
* hash field bitmap, iterate through the profile entry list of
* that profile and find entry associated with input VSI to be
* removed. Calls are made to underlying flow apis which will in
* turn build or update buffers for RSS XLT1 section.
*/
enum ice_status
ice_rem_rss_cfg(struct ice_hw *hw, u16 vsi_handle,
const struct ice_rss_hash_cfg *cfg)
{
struct ice_rss_hash_cfg local_cfg;
enum ice_status status;
if (!ice_is_vsi_valid(hw, vsi_handle) ||
!cfg || cfg->hdr_type > ICE_RSS_ANY_HEADERS ||
cfg->hash_flds == ICE_HASH_INVALID)
return ICE_ERR_PARAM;
ice_acquire_lock(&hw->rss_locks);
local_cfg = *cfg;
if (cfg->hdr_type < ICE_RSS_ANY_HEADERS) {
status = ice_rem_rss_cfg_sync(hw, vsi_handle, &local_cfg);
} else {
local_cfg.hdr_type = ICE_RSS_OUTER_HEADERS;
status = ice_rem_rss_cfg_sync(hw, vsi_handle, &local_cfg);
if (!status) {
local_cfg.hdr_type = ICE_RSS_INNER_HEADERS;
status = ice_rem_rss_cfg_sync(hw, vsi_handle,
&local_cfg);
}
}
ice_release_lock(&hw->rss_locks);
return status;
}
/**
* ice_replay_rss_cfg - replay RSS configurations associated with VSI
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
*/
enum ice_status ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
{
enum ice_status status = ICE_SUCCESS;
struct ice_rss_cfg *r;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
ice_acquire_lock(&hw->rss_locks);
LIST_FOR_EACH_ENTRY(r, &hw->rss_list_head,
ice_rss_cfg, l_entry) {
if (ice_is_bit_set(r->vsis, vsi_handle)) {
status = ice_add_rss_cfg_sync(hw, vsi_handle, &r->hash);
if (status)
break;
}
}
ice_release_lock(&hw->rss_locks);
return status;
}
/**
* ice_get_rss_cfg - returns hashed fields for the given header types
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @hdrs: protocol header type
*
* This function will return the match fields of the first instance of flow
* profile having the given header types and containing input VSI
*/
u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs)
{
u64 rss_hash = ICE_HASH_INVALID;
struct ice_rss_cfg *r;
/* verify if the protocol header is non zero and VSI is valid */
if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle))
return ICE_HASH_INVALID;
ice_acquire_lock(&hw->rss_locks);
LIST_FOR_EACH_ENTRY(r, &hw->rss_list_head,
ice_rss_cfg, l_entry)
if (ice_is_bit_set(r->vsis, vsi_handle) &&
r->hash.addl_hdrs == hdrs) {
rss_hash = r->hash.hash_flds;
break;
}
ice_release_lock(&hw->rss_locks);
return rss_hash;
}