f-stack/dpdk/drivers/net/hns3/hns3_rxtx.c

4118 lines
106 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2021 HiSilicon Limited.
*/
#include <rte_bus_pci.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_geneve.h>
#include <rte_vxlan.h>
#include <rte_ethdev_driver.h>
#include <rte_io.h>
#include <rte_net.h>
#include <rte_malloc.h>
#if defined(RTE_ARCH_ARM64)
#include <rte_cpuflags.h>
#endif
#include "hns3_ethdev.h"
#include "hns3_rxtx.h"
#include "hns3_regs.h"
#include "hns3_logs.h"
#define HNS3_CFG_DESC_NUM(num) ((num) / 8 - 1)
#define HNS3_RX_RING_PREFETCTH_MASK 3
static void
hns3_rx_queue_release_mbufs(struct hns3_rx_queue *rxq)
{
uint16_t i;
/* Note: Fake rx queue will not enter here */
if (rxq->sw_ring == NULL)
return;
if (rxq->rx_rearm_nb == 0) {
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
rxq->sw_ring[i].mbuf = NULL;
}
}
} else {
for (i = rxq->next_to_use;
i != rxq->rx_rearm_start;
i = (i + 1) % rxq->nb_rx_desc) {
if (rxq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
rxq->sw_ring[i].mbuf = NULL;
}
}
}
for (i = 0; i < rxq->bulk_mbuf_num; i++)
rte_pktmbuf_free_seg(rxq->bulk_mbuf[i]);
rxq->bulk_mbuf_num = 0;
if (rxq->pkt_first_seg) {
rte_pktmbuf_free(rxq->pkt_first_seg);
rxq->pkt_first_seg = NULL;
}
}
static void
hns3_tx_queue_release_mbufs(struct hns3_tx_queue *txq)
{
uint16_t i;
/* Note: Fake tx queue will not enter here */
if (txq->sw_ring) {
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_ring[i].mbuf) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
}
static void
hns3_rx_queue_release(void *queue)
{
struct hns3_rx_queue *rxq = queue;
if (rxq) {
hns3_rx_queue_release_mbufs(rxq);
if (rxq->mz)
rte_memzone_free(rxq->mz);
if (rxq->sw_ring)
rte_free(rxq->sw_ring);
rte_free(rxq);
}
}
static void
hns3_tx_queue_release(void *queue)
{
struct hns3_tx_queue *txq = queue;
if (txq) {
hns3_tx_queue_release_mbufs(txq);
if (txq->mz)
rte_memzone_free(txq->mz);
if (txq->sw_ring)
rte_free(txq->sw_ring);
if (txq->free)
rte_free(txq->free);
rte_free(txq);
}
}
void
hns3_dev_rx_queue_release(void *queue)
{
struct hns3_rx_queue *rxq = queue;
struct hns3_adapter *hns;
if (rxq == NULL)
return;
hns = rxq->hns;
rte_spinlock_lock(&hns->hw.lock);
hns3_rx_queue_release(queue);
rte_spinlock_unlock(&hns->hw.lock);
}
void
hns3_dev_tx_queue_release(void *queue)
{
struct hns3_tx_queue *txq = queue;
struct hns3_adapter *hns;
if (txq == NULL)
return;
hns = txq->hns;
rte_spinlock_lock(&hns->hw.lock);
hns3_tx_queue_release(queue);
rte_spinlock_unlock(&hns->hw.lock);
}
static void
hns3_fake_rx_queue_release(struct hns3_rx_queue *queue)
{
struct hns3_rx_queue *rxq = queue;
struct hns3_adapter *hns;
struct hns3_hw *hw;
uint16_t idx;
if (rxq == NULL)
return;
hns = rxq->hns;
hw = &hns->hw;
idx = rxq->queue_id;
if (hw->fkq_data.rx_queues[idx]) {
hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]);
hw->fkq_data.rx_queues[idx] = NULL;
}
/* free fake rx queue arrays */
if (idx == (hw->fkq_data.nb_fake_rx_queues - 1)) {
hw->fkq_data.nb_fake_rx_queues = 0;
rte_free(hw->fkq_data.rx_queues);
hw->fkq_data.rx_queues = NULL;
}
}
static void
hns3_fake_tx_queue_release(struct hns3_tx_queue *queue)
{
struct hns3_tx_queue *txq = queue;
struct hns3_adapter *hns;
struct hns3_hw *hw;
uint16_t idx;
if (txq == NULL)
return;
hns = txq->hns;
hw = &hns->hw;
idx = txq->queue_id;
if (hw->fkq_data.tx_queues[idx]) {
hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]);
hw->fkq_data.tx_queues[idx] = NULL;
}
/* free fake tx queue arrays */
if (idx == (hw->fkq_data.nb_fake_tx_queues - 1)) {
hw->fkq_data.nb_fake_tx_queues = 0;
rte_free(hw->fkq_data.tx_queues);
hw->fkq_data.tx_queues = NULL;
}
}
static void
hns3_free_rx_queues(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_fake_queue_data *fkq_data;
struct hns3_hw *hw = &hns->hw;
uint16_t nb_rx_q;
uint16_t i;
nb_rx_q = hw->data->nb_rx_queues;
for (i = 0; i < nb_rx_q; i++) {
if (dev->data->rx_queues[i]) {
hns3_rx_queue_release(dev->data->rx_queues[i]);
dev->data->rx_queues[i] = NULL;
}
}
/* Free fake Rx queues */
fkq_data = &hw->fkq_data;
for (i = 0; i < fkq_data->nb_fake_rx_queues; i++) {
if (fkq_data->rx_queues[i])
hns3_fake_rx_queue_release(fkq_data->rx_queues[i]);
}
}
static void
hns3_free_tx_queues(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_fake_queue_data *fkq_data;
struct hns3_hw *hw = &hns->hw;
uint16_t nb_tx_q;
uint16_t i;
nb_tx_q = hw->data->nb_tx_queues;
for (i = 0; i < nb_tx_q; i++) {
if (dev->data->tx_queues[i]) {
hns3_tx_queue_release(dev->data->tx_queues[i]);
dev->data->tx_queues[i] = NULL;
}
}
/* Free fake Tx queues */
fkq_data = &hw->fkq_data;
for (i = 0; i < fkq_data->nb_fake_tx_queues; i++) {
if (fkq_data->tx_queues[i])
hns3_fake_tx_queue_release(fkq_data->tx_queues[i]);
}
}
void
hns3_free_all_queues(struct rte_eth_dev *dev)
{
hns3_free_rx_queues(dev);
hns3_free_tx_queues(dev);
}
static int
hns3_alloc_rx_queue_mbufs(struct hns3_hw *hw, struct hns3_rx_queue *rxq)
{
struct rte_mbuf *mbuf;
uint64_t dma_addr;
uint16_t i;
for (i = 0; i < rxq->nb_rx_desc; i++) {
mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
if (unlikely(mbuf == NULL)) {
hns3_err(hw, "Failed to allocate RXD[%u] for rx queue!",
i);
hns3_rx_queue_release_mbufs(rxq);
return -ENOMEM;
}
rte_mbuf_refcnt_set(mbuf, 1);
mbuf->next = NULL;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->port = rxq->port_id;
rxq->sw_ring[i].mbuf = mbuf;
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxq->rx_ring[i].addr = dma_addr;
rxq->rx_ring[i].rx.bd_base_info = 0;
}
return 0;
}
static int
hns3_buf_size2type(uint32_t buf_size)
{
int bd_size_type;
switch (buf_size) {
case 512:
bd_size_type = HNS3_BD_SIZE_512_TYPE;
break;
case 1024:
bd_size_type = HNS3_BD_SIZE_1024_TYPE;
break;
case 4096:
bd_size_type = HNS3_BD_SIZE_4096_TYPE;
break;
default:
bd_size_type = HNS3_BD_SIZE_2048_TYPE;
}
return bd_size_type;
}
static void
hns3_init_rx_queue_hw(struct hns3_rx_queue *rxq)
{
uint32_t rx_buf_len = rxq->rx_buf_len;
uint64_t dma_addr = rxq->rx_ring_phys_addr;
hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_L_REG, (uint32_t)dma_addr);
hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_H_REG,
(uint32_t)(dma_addr >> 32));
hns3_write_dev(rxq, HNS3_RING_RX_BD_LEN_REG,
hns3_buf_size2type(rx_buf_len));
hns3_write_dev(rxq, HNS3_RING_RX_BD_NUM_REG,
HNS3_CFG_DESC_NUM(rxq->nb_rx_desc));
}
static void
hns3_init_tx_queue_hw(struct hns3_tx_queue *txq)
{
uint64_t dma_addr = txq->tx_ring_phys_addr;
hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_L_REG, (uint32_t)dma_addr);
hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_H_REG,
(uint32_t)(dma_addr >> 32));
hns3_write_dev(txq, HNS3_RING_TX_BD_NUM_REG,
HNS3_CFG_DESC_NUM(txq->nb_tx_desc));
}
void
hns3_update_all_queues_pvid_proc_en(struct hns3_hw *hw)
{
uint16_t nb_rx_q = hw->data->nb_rx_queues;
uint16_t nb_tx_q = hw->data->nb_tx_queues;
struct hns3_rx_queue *rxq;
struct hns3_tx_queue *txq;
bool pvid_en;
int i;
pvid_en = hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE;
for (i = 0; i < hw->cfg_max_queues; i++) {
if (i < nb_rx_q) {
rxq = hw->data->rx_queues[i];
if (rxq != NULL)
rxq->pvid_sw_discard_en = pvid_en;
}
if (i < nb_tx_q) {
txq = hw->data->tx_queues[i];
if (txq != NULL)
txq->pvid_sw_shift_en = pvid_en;
}
}
}
static void
hns3_stop_unused_queue(void *tqp_base, enum hns3_ring_type queue_type)
{
uint32_t reg_offset;
uint32_t reg;
reg_offset = queue_type == HNS3_RING_TYPE_TX ?
HNS3_RING_TX_EN_REG : HNS3_RING_RX_EN_REG;
reg = hns3_read_reg(tqp_base, reg_offset);
reg &= ~BIT(HNS3_RING_EN_B);
hns3_write_reg(tqp_base, reg_offset, reg);
}
void
hns3_enable_all_queues(struct hns3_hw *hw, bool en)
{
uint16_t nb_rx_q = hw->data->nb_rx_queues;
uint16_t nb_tx_q = hw->data->nb_tx_queues;
struct hns3_rx_queue *rxq;
struct hns3_tx_queue *txq;
uint32_t rcb_reg;
void *tqp_base;
int i;
for (i = 0; i < hw->cfg_max_queues; i++) {
if (hns3_dev_indep_txrx_supported(hw)) {
rxq = i < nb_rx_q ? hw->data->rx_queues[i] : NULL;
txq = i < nb_tx_q ? hw->data->tx_queues[i] : NULL;
tqp_base = (void *)((char *)hw->io_base +
hns3_get_tqp_reg_offset(i));
/*
* If queue struct is not initialized, it means the
* related HW ring has not been initialized yet.
* So, these queues should be disabled before enable
* the tqps to avoid a HW exception since the queues
* are enabled by default.
*/
if (rxq == NULL)
hns3_stop_unused_queue(tqp_base,
HNS3_RING_TYPE_RX);
if (txq == NULL)
hns3_stop_unused_queue(tqp_base,
HNS3_RING_TYPE_TX);
} else {
rxq = i < nb_rx_q ? hw->data->rx_queues[i] :
hw->fkq_data.rx_queues[i - nb_rx_q];
tqp_base = rxq->io_base;
}
/*
* This is the master switch that used to control the enabling
* of a pair of Tx and Rx queues. Both the Rx and Tx point to
* the same register
*/
rcb_reg = hns3_read_reg(tqp_base, HNS3_RING_EN_REG);
if (en)
rcb_reg |= BIT(HNS3_RING_EN_B);
else
rcb_reg &= ~BIT(HNS3_RING_EN_B);
hns3_write_reg(tqp_base, HNS3_RING_EN_REG, rcb_reg);
}
}
static void
hns3_enable_txq(struct hns3_tx_queue *txq, bool en)
{
struct hns3_hw *hw = &txq->hns->hw;
uint32_t reg;
if (hns3_dev_indep_txrx_supported(hw)) {
reg = hns3_read_dev(txq, HNS3_RING_TX_EN_REG);
if (en)
reg |= BIT(HNS3_RING_EN_B);
else
reg &= ~BIT(HNS3_RING_EN_B);
hns3_write_dev(txq, HNS3_RING_TX_EN_REG, reg);
}
txq->enabled = en;
}
static void
hns3_enable_rxq(struct hns3_rx_queue *rxq, bool en)
{
struct hns3_hw *hw = &rxq->hns->hw;
uint32_t reg;
if (hns3_dev_indep_txrx_supported(hw)) {
reg = hns3_read_dev(rxq, HNS3_RING_RX_EN_REG);
if (en)
reg |= BIT(HNS3_RING_EN_B);
else
reg &= ~BIT(HNS3_RING_EN_B);
hns3_write_dev(rxq, HNS3_RING_RX_EN_REG, reg);
}
rxq->enabled = en;
}
int
hns3_start_all_txqs(struct rte_eth_dev *dev)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_tx_queue *txq;
uint16_t i, j;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = hw->data->tx_queues[i];
if (!txq) {
hns3_err(hw, "Tx queue %u not available or setup.", i);
goto start_txqs_fail;
}
/*
* Tx queue is enabled by default. Therefore, the Tx queues
* needs to be disabled when deferred_start is set. There is
* another master switch used to control the enabling of a pair
* of Tx and Rx queues. And the master switch is disabled by
* default.
*/
if (txq->tx_deferred_start)
hns3_enable_txq(txq, false);
else
hns3_enable_txq(txq, true);
}
return 0;
start_txqs_fail:
for (j = 0; j < i; j++) {
txq = hw->data->tx_queues[j];
hns3_enable_txq(txq, false);
}
return -EINVAL;
}
int
hns3_start_all_rxqs(struct rte_eth_dev *dev)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_rx_queue *rxq;
uint16_t i, j;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = hw->data->rx_queues[i];
if (!rxq) {
hns3_err(hw, "Rx queue %u not available or setup.", i);
goto start_rxqs_fail;
}
/*
* Rx queue is enabled by default. Therefore, the Rx queues
* needs to be disabled when deferred_start is set. There is
* another master switch used to control the enabling of a pair
* of Tx and Rx queues. And the master switch is disabled by
* default.
*/
if (rxq->rx_deferred_start)
hns3_enable_rxq(rxq, false);
else
hns3_enable_rxq(rxq, true);
}
return 0;
start_rxqs_fail:
for (j = 0; j < i; j++) {
rxq = hw->data->rx_queues[j];
hns3_enable_rxq(rxq, false);
}
return -EINVAL;
}
void
hns3_restore_tqp_enable_state(struct hns3_hw *hw)
{
struct hns3_rx_queue *rxq;
struct hns3_tx_queue *txq;
uint16_t i;
for (i = 0; i < hw->data->nb_rx_queues; i++) {
rxq = hw->data->rx_queues[i];
if (rxq != NULL)
hns3_enable_rxq(rxq, rxq->enabled);
}
for (i = 0; i < hw->data->nb_tx_queues; i++) {
txq = hw->data->tx_queues[i];
if (txq != NULL)
hns3_enable_txq(txq, txq->enabled);
}
}
void
hns3_stop_all_txqs(struct rte_eth_dev *dev)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_tx_queue *txq;
uint16_t i;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = hw->data->tx_queues[i];
if (!txq)
continue;
hns3_enable_txq(txq, false);
}
}
static int
hns3_tqp_enable(struct hns3_hw *hw, uint16_t queue_id, bool enable)
{
struct hns3_cfg_com_tqp_queue_cmd *req;
struct hns3_cmd_desc desc;
int ret;
req = (struct hns3_cfg_com_tqp_queue_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_COM_TQP_QUEUE, false);
req->tqp_id = rte_cpu_to_le_16(queue_id);
req->stream_id = 0;
hns3_set_bit(req->enable, HNS3_TQP_ENABLE_B, enable ? 1 : 0);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "TQP enable fail, ret = %d", ret);
return ret;
}
static int
hns3_send_reset_tqp_cmd(struct hns3_hw *hw, uint16_t queue_id, bool enable)
{
struct hns3_reset_tqp_queue_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, false);
req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
req->tqp_id = rte_cpu_to_le_16(queue_id);
hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "send tqp reset cmd error, queue_id = %u, "
"ret = %d", queue_id, ret);
return ret;
}
static int
hns3_get_tqp_reset_status(struct hns3_hw *hw, uint16_t queue_id,
uint8_t *reset_status)
{
struct hns3_reset_tqp_queue_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, true);
req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
req->tqp_id = rte_cpu_to_le_16(queue_id);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "get tqp reset status error, queue_id = %u, "
"ret = %d.", queue_id, ret);
return ret;
}
*reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B);
return ret;
}
static int
hns3pf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id)
{
#define HNS3_TQP_RESET_TRY_MS 200
uint16_t wait_time = 0;
uint8_t reset_status;
int ret;
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, all task queue pairs are mapped to PF function, so PF's queue
* id is equals to the global queue id in PF range.
*/
ret = hns3_send_reset_tqp_cmd(hw, queue_id, true);
if (ret) {
hns3_err(hw, "Send reset tqp cmd fail, ret = %d", ret);
return ret;
}
do {
/* Wait for tqp hw reset */
rte_delay_ms(HNS3_POLL_RESPONE_MS);
wait_time += HNS3_POLL_RESPONE_MS;
ret = hns3_get_tqp_reset_status(hw, queue_id, &reset_status);
if (ret)
goto tqp_reset_fail;
if (reset_status)
break;
} while (wait_time < HNS3_TQP_RESET_TRY_MS);
if (!reset_status) {
ret = -ETIMEDOUT;
hns3_err(hw, "reset tqp timeout, queue_id = %u, ret = %d",
queue_id, ret);
goto tqp_reset_fail;
}
ret = hns3_send_reset_tqp_cmd(hw, queue_id, false);
if (ret)
hns3_err(hw, "Deassert the soft reset fail, ret = %d", ret);
return ret;
tqp_reset_fail:
hns3_send_reset_tqp_cmd(hw, queue_id, false);
return ret;
}
static int
hns3vf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id)
{
uint8_t msg_data[2];
int ret;
memcpy(msg_data, &queue_id, sizeof(uint16_t));
ret = hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data,
sizeof(msg_data), true, NULL, 0);
if (ret)
hns3_err(hw, "fail to reset tqp, queue_id = %u, ret = %d.",
queue_id, ret);
return ret;
}
static int
hns3_reset_rcb_cmd(struct hns3_hw *hw, uint8_t *reset_status)
{
struct hns3_reset_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
req = (struct hns3_reset_cmd *)desc.data;
hns3_set_bit(req->fun_reset_rcb, HNS3_CFG_RESET_RCB_B, 1);
/*
* The start qid should be the global qid of the first tqp of the
* function which should be reset in this port. Since our PF not
* support take over of VFs, so we only need to reset function 0,
* and its start qid is always 0.
*/
req->fun_reset_rcb_vqid_start = rte_cpu_to_le_16(0);
req->fun_reset_rcb_vqid_num = rte_cpu_to_le_16(hw->cfg_max_queues);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "fail to send rcb reset cmd, ret = %d.", ret);
return ret;
}
*reset_status = req->fun_reset_rcb_return_status;
return 0;
}
static int
hns3pf_reset_all_tqps(struct hns3_hw *hw)
{
#define HNS3_RESET_RCB_NOT_SUPPORT 0U
#define HNS3_RESET_ALL_TQP_SUCCESS 1U
uint8_t reset_status;
int ret;
int i;
ret = hns3_reset_rcb_cmd(hw, &reset_status);
if (ret)
return ret;
/*
* If the firmware version is low, it may not support the rcb reset
* which means reset all the tqps at a time. In this case, we should
* reset tqps one by one.
*/
if (reset_status == HNS3_RESET_RCB_NOT_SUPPORT) {
for (i = 0; i < hw->cfg_max_queues; i++) {
ret = hns3pf_reset_tqp(hw, i);
if (ret) {
hns3_err(hw,
"fail to reset tqp, queue_id = %d, ret = %d.",
i, ret);
return ret;
}
}
} else if (reset_status != HNS3_RESET_ALL_TQP_SUCCESS) {
hns3_err(hw, "fail to reset all tqps, reset_status = %u.",
reset_status);
return -EIO;
}
return 0;
}
static int
hns3vf_reset_all_tqps(struct hns3_hw *hw)
{
#define HNS3VF_RESET_ALL_TQP_DONE 1U
uint8_t reset_status;
uint8_t msg_data[2];
int ret;
int i;
memset(msg_data, 0, sizeof(msg_data));
ret = hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data,
sizeof(msg_data), true, &reset_status,
sizeof(reset_status));
if (ret) {
hns3_err(hw, "fail to send rcb reset mbx, ret = %d.", ret);
return ret;
}
if (reset_status == HNS3VF_RESET_ALL_TQP_DONE)
return 0;
/*
* If the firmware version or kernel PF version is low, it may not
* support the rcb reset which means reset all the tqps at a time.
* In this case, we should reset tqps one by one.
*/
for (i = 1; i < hw->cfg_max_queues; i++) {
ret = hns3vf_reset_tqp(hw, i);
if (ret)
return ret;
}
return 0;
}
int
hns3_reset_all_tqps(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret, i;
/* Disable all queues before reset all queues */
for (i = 0; i < hw->cfg_max_queues; i++) {
ret = hns3_tqp_enable(hw, i, false);
if (ret) {
hns3_err(hw,
"fail to disable tqps before tqps reset, ret = %d.",
ret);
return ret;
}
}
if (hns->is_vf)
return hns3vf_reset_all_tqps(hw);
else
return hns3pf_reset_all_tqps(hw);
}
static int
hns3_send_reset_queue_cmd(struct hns3_hw *hw, uint16_t queue_id,
enum hns3_ring_type queue_type, bool enable)
{
struct hns3_reset_tqp_queue_cmd *req;
struct hns3_cmd_desc desc;
int queue_direction;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, false);
req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
req->tqp_id = rte_cpu_to_le_16(queue_id);
queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1;
req->queue_direction = rte_cpu_to_le_16(queue_direction);
hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "send queue reset cmd error, queue_id = %u, "
"queue_type = %s, ret = %d.", queue_id,
queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret);
return ret;
}
static int
hns3_get_queue_reset_status(struct hns3_hw *hw, uint16_t queue_id,
enum hns3_ring_type queue_type,
uint8_t *reset_status)
{
struct hns3_reset_tqp_queue_cmd *req;
struct hns3_cmd_desc desc;
int queue_direction;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, true);
req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
req->tqp_id = rte_cpu_to_le_16(queue_id);
queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1;
req->queue_direction = rte_cpu_to_le_16(queue_direction);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "get queue reset status error, queue_id = %u "
"queue_type = %s, ret = %d.", queue_id,
queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret);
return ret;
}
*reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B);
return ret;
}
static int
hns3_reset_queue(struct hns3_hw *hw, uint16_t queue_id,
enum hns3_ring_type queue_type)
{
#define HNS3_QUEUE_RESET_TRY_MS 200
struct hns3_tx_queue *txq;
struct hns3_rx_queue *rxq;
uint32_t reset_wait_times;
uint32_t max_wait_times;
uint8_t reset_status;
int ret;
if (queue_type == HNS3_RING_TYPE_TX) {
txq = hw->data->tx_queues[queue_id];
hns3_enable_txq(txq, false);
} else {
rxq = hw->data->rx_queues[queue_id];
hns3_enable_rxq(rxq, false);
}
ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, true);
if (ret) {
hns3_err(hw, "send reset queue cmd fail, ret = %d.", ret);
return ret;
}
reset_wait_times = 0;
max_wait_times = HNS3_QUEUE_RESET_TRY_MS / HNS3_POLL_RESPONE_MS;
while (reset_wait_times < max_wait_times) {
/* Wait for queue hw reset */
rte_delay_ms(HNS3_POLL_RESPONE_MS);
ret = hns3_get_queue_reset_status(hw, queue_id,
queue_type, &reset_status);
if (ret)
goto queue_reset_fail;
if (reset_status)
break;
reset_wait_times++;
}
if (!reset_status) {
hns3_err(hw, "reset queue timeout, queue_id = %u, "
"queue_type = %s", queue_id,
queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx");
ret = -ETIMEDOUT;
goto queue_reset_fail;
}
ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false);
if (ret)
hns3_err(hw, "deassert queue reset fail, ret = %d.", ret);
return ret;
queue_reset_fail:
hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false);
return ret;
}
uint32_t
hns3_get_tqp_intr_reg_offset(uint16_t tqp_intr_id)
{
uint32_t reg_offset;
/* Need an extend offset to config queues > 64 */
if (tqp_intr_id < HNS3_MIN_EXT_TQP_INTR_ID)
reg_offset = HNS3_TQP_INTR_REG_BASE +
tqp_intr_id * HNS3_TQP_INTR_LOW_ORDER_OFFSET;
else
reg_offset = HNS3_TQP_INTR_EXT_REG_BASE +
tqp_intr_id / HNS3_MIN_EXT_TQP_INTR_ID *
HNS3_TQP_INTR_HIGH_ORDER_OFFSET +
tqp_intr_id % HNS3_MIN_EXT_TQP_INTR_ID *
HNS3_TQP_INTR_LOW_ORDER_OFFSET;
return reg_offset;
}
void
hns3_set_queue_intr_gl(struct hns3_hw *hw, uint16_t queue_id,
uint8_t gl_idx, uint16_t gl_value)
{
uint32_t offset[] = {HNS3_TQP_INTR_GL0_REG,
HNS3_TQP_INTR_GL1_REG,
HNS3_TQP_INTR_GL2_REG};
uint32_t addr, value;
if (gl_idx >= RTE_DIM(offset) || gl_value > HNS3_TQP_INTR_GL_MAX)
return;
addr = offset[gl_idx] + hns3_get_tqp_intr_reg_offset(queue_id);
if (hw->intr.gl_unit == HNS3_INTR_COALESCE_GL_UINT_1US)
value = gl_value | HNS3_TQP_INTR_GL_UNIT_1US;
else
value = HNS3_GL_USEC_TO_REG(gl_value);
hns3_write_dev(hw, addr, value);
}
void
hns3_set_queue_intr_rl(struct hns3_hw *hw, uint16_t queue_id, uint16_t rl_value)
{
uint32_t addr, value;
if (rl_value > HNS3_TQP_INTR_RL_MAX)
return;
addr = HNS3_TQP_INTR_RL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
value = HNS3_RL_USEC_TO_REG(rl_value);
if (value > 0)
value |= HNS3_TQP_INTR_RL_ENABLE_MASK;
hns3_write_dev(hw, addr, value);
}
void
hns3_set_queue_intr_ql(struct hns3_hw *hw, uint16_t queue_id, uint16_t ql_value)
{
uint32_t addr;
/*
* int_ql_max == 0 means the hardware does not support QL,
* QL regs config is not permitted if QL is not supported,
* here just return.
*/
if (hw->intr.int_ql_max == HNS3_INTR_QL_NONE)
return;
addr = HNS3_TQP_INTR_TX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
hns3_write_dev(hw, addr, ql_value);
addr = HNS3_TQP_INTR_RX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
hns3_write_dev(hw, addr, ql_value);
}
static void
hns3_queue_intr_enable(struct hns3_hw *hw, uint16_t queue_id, bool en)
{
uint32_t addr, value;
addr = HNS3_TQP_INTR_CTRL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
value = en ? 1 : 0;
hns3_write_dev(hw, addr, value);
}
/*
* Enable all rx queue interrupt when in interrupt rx mode.
* This api was called before enable queue rx&tx (in normal start or reset
* recover scenes), used to fix hardware rx queue interrupt enable was clear
* when FLR.
*/
void
hns3_dev_all_rx_queue_intr_enable(struct hns3_hw *hw, bool en)
{
struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
uint16_t nb_rx_q = hw->data->nb_rx_queues;
int i;
if (dev->data->dev_conf.intr_conf.rxq == 0)
return;
for (i = 0; i < nb_rx_q; i++)
hns3_queue_intr_enable(hw, i, en);
}
int
hns3_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (dev->data->dev_conf.intr_conf.rxq == 0)
return -ENOTSUP;
hns3_queue_intr_enable(hw, queue_id, true);
return rte_intr_ack(intr_handle);
}
int
hns3_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (dev->data->dev_conf.intr_conf.rxq == 0)
return -ENOTSUP;
hns3_queue_intr_enable(hw, queue_id, false);
return 0;
}
static int
hns3_init_rxq(struct hns3_adapter *hns, uint16_t idx)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_rx_queue *rxq;
int ret;
PMD_INIT_FUNC_TRACE();
rxq = (struct hns3_rx_queue *)hw->data->rx_queues[idx];
ret = hns3_alloc_rx_queue_mbufs(hw, rxq);
if (ret) {
hns3_err(hw, "fail to alloc mbuf for Rx queue %u, ret = %d.",
idx, ret);
return ret;
}
rxq->next_to_use = 0;
rxq->rx_rearm_start = 0;
rxq->rx_free_hold = 0;
rxq->rx_rearm_nb = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
hns3_init_rx_queue_hw(rxq);
hns3_rxq_vec_setup(rxq);
return 0;
}
static void
hns3_init_fake_rxq(struct hns3_adapter *hns, uint16_t idx)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_rx_queue *rxq;
rxq = (struct hns3_rx_queue *)hw->fkq_data.rx_queues[idx];
rxq->next_to_use = 0;
rxq->rx_free_hold = 0;
rxq->rx_rearm_start = 0;
rxq->rx_rearm_nb = 0;
hns3_init_rx_queue_hw(rxq);
}
static void
hns3_init_txq(struct hns3_tx_queue *txq)
{
struct hns3_desc *desc;
int i;
/* Clear tx bd */
desc = txq->tx_ring;
for (i = 0; i < txq->nb_tx_desc; i++) {
desc->tx.tp_fe_sc_vld_ra_ri = 0;
desc++;
}
txq->next_to_use = 0;
txq->next_to_clean = 0;
txq->tx_bd_ready = txq->nb_tx_desc - 1;
hns3_init_tx_queue_hw(txq);
}
static void
hns3_init_tx_ring_tc(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_tx_queue *txq;
int i, num;
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
struct hns3_tc_queue_info *tc_queue = &hw->tc_queue[i];
int j;
if (!tc_queue->enable)
continue;
for (j = 0; j < tc_queue->tqp_count; j++) {
num = tc_queue->tqp_offset + j;
txq = (struct hns3_tx_queue *)hw->data->tx_queues[num];
if (txq == NULL)
continue;
hns3_write_dev(txq, HNS3_RING_TX_TC_REG, tc_queue->tc);
}
}
}
static int
hns3_init_rx_queues(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_rx_queue *rxq;
uint16_t i, j;
int ret;
/* Initialize RSS for queues */
ret = hns3_config_rss(hns);
if (ret) {
hns3_err(hw, "failed to configure rss, ret = %d.", ret);
return ret;
}
for (i = 0; i < hw->data->nb_rx_queues; i++) {
rxq = (struct hns3_rx_queue *)hw->data->rx_queues[i];
if (!rxq) {
hns3_err(hw, "Rx queue %u not available or setup.", i);
goto out;
}
if (rxq->rx_deferred_start)
continue;
ret = hns3_init_rxq(hns, i);
if (ret) {
hns3_err(hw, "failed to init Rx queue %u, ret = %d.", i,
ret);
goto out;
}
}
for (i = 0; i < hw->fkq_data.nb_fake_rx_queues; i++)
hns3_init_fake_rxq(hns, i);
return 0;
out:
for (j = 0; j < i; j++) {
rxq = (struct hns3_rx_queue *)hw->data->rx_queues[j];
hns3_rx_queue_release_mbufs(rxq);
}
return ret;
}
static int
hns3_init_tx_queues(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_tx_queue *txq;
uint16_t i;
for (i = 0; i < hw->data->nb_tx_queues; i++) {
txq = (struct hns3_tx_queue *)hw->data->tx_queues[i];
if (!txq) {
hns3_err(hw, "Tx queue %u not available or setup.", i);
return -EINVAL;
}
if (txq->tx_deferred_start)
continue;
hns3_init_txq(txq);
}
for (i = 0; i < hw->fkq_data.nb_fake_tx_queues; i++) {
txq = (struct hns3_tx_queue *)hw->fkq_data.tx_queues[i];
hns3_init_txq(txq);
}
hns3_init_tx_ring_tc(hns);
return 0;
}
/*
* Init all queues.
* Note: just init and setup queues, and don't enable tqps.
*/
int
hns3_init_queues(struct hns3_adapter *hns, bool reset_queue)
{
struct hns3_hw *hw = &hns->hw;
int ret;
if (reset_queue) {
ret = hns3_reset_all_tqps(hns);
if (ret) {
hns3_err(hw, "failed to reset all queues, ret = %d.",
ret);
return ret;
}
}
ret = hns3_init_rx_queues(hns);
if (ret) {
hns3_err(hw, "failed to init rx queues, ret = %d.", ret);
return ret;
}
ret = hns3_init_tx_queues(hns);
if (ret) {
hns3_dev_release_mbufs(hns);
hns3_err(hw, "failed to init tx queues, ret = %d.", ret);
}
return ret;
}
void
hns3_start_tqps(struct hns3_hw *hw)
{
struct hns3_tx_queue *txq;
struct hns3_rx_queue *rxq;
uint16_t i;
hns3_enable_all_queues(hw, true);
for (i = 0; i < hw->data->nb_tx_queues; i++) {
txq = hw->data->tx_queues[i];
if (txq->enabled)
hw->data->tx_queue_state[i] =
RTE_ETH_QUEUE_STATE_STARTED;
}
for (i = 0; i < hw->data->nb_rx_queues; i++) {
rxq = hw->data->rx_queues[i];
if (rxq->enabled)
hw->data->rx_queue_state[i] =
RTE_ETH_QUEUE_STATE_STARTED;
}
}
void
hns3_stop_tqps(struct hns3_hw *hw)
{
uint16_t i;
hns3_enable_all_queues(hw, false);
for (i = 0; i < hw->data->nb_tx_queues; i++)
hw->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
for (i = 0; i < hw->data->nb_rx_queues; i++)
hw->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
}
/*
* Iterate over all Rx Queue, and call the callback() function for each Rx
* queue.
*
* @param[in] dev
* The target eth dev.
* @param[in] callback
* The function to call for each queue.
* if callback function return nonzero will stop iterate and return it's value
* @param[in] arg
* The arguments to provide the callback function with.
*
* @return
* 0 on success, otherwise with errno set.
*/
int
hns3_rxq_iterate(struct rte_eth_dev *dev,
int (*callback)(struct hns3_rx_queue *, void *), void *arg)
{
uint32_t i;
int ret;
if (dev->data->rx_queues == NULL)
return -EINVAL;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
ret = callback(dev->data->rx_queues[i], arg);
if (ret != 0)
return ret;
}
return 0;
}
static void*
hns3_alloc_rxq_and_dma_zone(struct rte_eth_dev *dev,
struct hns3_queue_info *q_info)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
const struct rte_memzone *rx_mz;
struct hns3_rx_queue *rxq;
unsigned int rx_desc;
rxq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_rx_queue),
RTE_CACHE_LINE_SIZE, q_info->socket_id);
if (rxq == NULL) {
hns3_err(hw, "Failed to allocate memory for No.%u rx ring!",
q_info->idx);
return NULL;
}
/* Allocate rx ring hardware descriptors. */
rxq->queue_id = q_info->idx;
rxq->nb_rx_desc = q_info->nb_desc;
/*
* Allocate a litter more memory because rx vector functions
* don't check boundaries each time.
*/
rx_desc = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) *
sizeof(struct hns3_desc);
rx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx,
rx_desc, HNS3_RING_BASE_ALIGN,
q_info->socket_id);
if (rx_mz == NULL) {
hns3_err(hw, "Failed to reserve DMA memory for No.%u rx ring!",
q_info->idx);
hns3_rx_queue_release(rxq);
return NULL;
}
rxq->mz = rx_mz;
rxq->rx_ring = (struct hns3_desc *)rx_mz->addr;
rxq->rx_ring_phys_addr = rx_mz->iova;
hns3_dbg(hw, "No.%u rx descriptors iova 0x%" PRIx64, q_info->idx,
rxq->rx_ring_phys_addr);
return rxq;
}
static int
hns3_fake_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
uint16_t nb_desc, unsigned int socket_id)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_queue_info q_info;
struct hns3_rx_queue *rxq;
uint16_t nb_rx_q;
if (hw->fkq_data.rx_queues[idx]) {
hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]);
hw->fkq_data.rx_queues[idx] = NULL;
}
q_info.idx = idx;
q_info.socket_id = socket_id;
q_info.nb_desc = nb_desc;
q_info.type = "hns3 fake RX queue";
q_info.ring_name = "rx_fake_ring";
rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info);
if (rxq == NULL) {
hns3_err(hw, "Failed to setup No.%u fake rx ring.", idx);
return -ENOMEM;
}
/* Don't need alloc sw_ring, because upper applications don't use it */
rxq->sw_ring = NULL;
rxq->hns = hns;
rxq->rx_deferred_start = false;
rxq->port_id = dev->data->port_id;
rxq->configured = true;
nb_rx_q = dev->data->nb_rx_queues;
rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
(nb_rx_q + idx) * HNS3_TQP_REG_SIZE);
rxq->rx_buf_len = HNS3_MIN_BD_BUF_SIZE;
rte_spinlock_lock(&hw->lock);
hw->fkq_data.rx_queues[idx] = rxq;
rte_spinlock_unlock(&hw->lock);
return 0;
}
static void*
hns3_alloc_txq_and_dma_zone(struct rte_eth_dev *dev,
struct hns3_queue_info *q_info)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
const struct rte_memzone *tx_mz;
struct hns3_tx_queue *txq;
struct hns3_desc *desc;
unsigned int tx_desc;
int i;
txq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_tx_queue),
RTE_CACHE_LINE_SIZE, q_info->socket_id);
if (txq == NULL) {
hns3_err(hw, "Failed to allocate memory for No.%u tx ring!",
q_info->idx);
return NULL;
}
/* Allocate tx ring hardware descriptors. */
txq->queue_id = q_info->idx;
txq->nb_tx_desc = q_info->nb_desc;
tx_desc = txq->nb_tx_desc * sizeof(struct hns3_desc);
tx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx,
tx_desc, HNS3_RING_BASE_ALIGN,
q_info->socket_id);
if (tx_mz == NULL) {
hns3_err(hw, "Failed to reserve DMA memory for No.%u tx ring!",
q_info->idx);
hns3_tx_queue_release(txq);
return NULL;
}
txq->mz = tx_mz;
txq->tx_ring = (struct hns3_desc *)tx_mz->addr;
txq->tx_ring_phys_addr = tx_mz->iova;
hns3_dbg(hw, "No.%u tx descriptors iova 0x%" PRIx64, q_info->idx,
txq->tx_ring_phys_addr);
/* Clear tx bd */
desc = txq->tx_ring;
for (i = 0; i < txq->nb_tx_desc; i++) {
desc->tx.tp_fe_sc_vld_ra_ri = 0;
desc++;
}
return txq;
}
static int
hns3_fake_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
uint16_t nb_desc, unsigned int socket_id)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_queue_info q_info;
struct hns3_tx_queue *txq;
uint16_t nb_tx_q;
if (hw->fkq_data.tx_queues[idx] != NULL) {
hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]);
hw->fkq_data.tx_queues[idx] = NULL;
}
q_info.idx = idx;
q_info.socket_id = socket_id;
q_info.nb_desc = nb_desc;
q_info.type = "hns3 fake TX queue";
q_info.ring_name = "tx_fake_ring";
txq = hns3_alloc_txq_and_dma_zone(dev, &q_info);
if (txq == NULL) {
hns3_err(hw, "Failed to setup No.%u fake tx ring.", idx);
return -ENOMEM;
}
/* Don't need alloc sw_ring, because upper applications don't use it */
txq->sw_ring = NULL;
txq->free = NULL;
txq->hns = hns;
txq->tx_deferred_start = false;
txq->port_id = dev->data->port_id;
txq->configured = true;
nb_tx_q = dev->data->nb_tx_queues;
txq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
(nb_tx_q + idx) * HNS3_TQP_REG_SIZE);
rte_spinlock_lock(&hw->lock);
hw->fkq_data.tx_queues[idx] = txq;
rte_spinlock_unlock(&hw->lock);
return 0;
}
static int
hns3_fake_rx_queue_config(struct hns3_hw *hw, uint16_t nb_queues)
{
uint16_t old_nb_queues = hw->fkq_data.nb_fake_rx_queues;
void **rxq;
uint16_t i;
if (hw->fkq_data.rx_queues == NULL && nb_queues != 0) {
/* first time configuration */
uint32_t size;
size = sizeof(hw->fkq_data.rx_queues[0]) * nb_queues;
hw->fkq_data.rx_queues = rte_zmalloc("fake_rx_queues", size,
RTE_CACHE_LINE_SIZE);
if (hw->fkq_data.rx_queues == NULL) {
hw->fkq_data.nb_fake_rx_queues = 0;
return -ENOMEM;
}
} else if (hw->fkq_data.rx_queues != NULL && nb_queues != 0) {
/* re-configure */
rxq = hw->fkq_data.rx_queues;
for (i = nb_queues; i < old_nb_queues; i++)
hns3_dev_rx_queue_release(rxq[i]);
rxq = rte_realloc(rxq, sizeof(rxq[0]) * nb_queues,
RTE_CACHE_LINE_SIZE);
if (rxq == NULL)
return -ENOMEM;
if (nb_queues > old_nb_queues) {
uint16_t new_qs = nb_queues - old_nb_queues;
memset(rxq + old_nb_queues, 0, sizeof(rxq[0]) * new_qs);
}
hw->fkq_data.rx_queues = rxq;
} else if (hw->fkq_data.rx_queues != NULL && nb_queues == 0) {
rxq = hw->fkq_data.rx_queues;
for (i = nb_queues; i < old_nb_queues; i++)
hns3_dev_rx_queue_release(rxq[i]);
rte_free(hw->fkq_data.rx_queues);
hw->fkq_data.rx_queues = NULL;
}
hw->fkq_data.nb_fake_rx_queues = nb_queues;
return 0;
}
static int
hns3_fake_tx_queue_config(struct hns3_hw *hw, uint16_t nb_queues)
{
uint16_t old_nb_queues = hw->fkq_data.nb_fake_tx_queues;
void **txq;
uint16_t i;
if (hw->fkq_data.tx_queues == NULL && nb_queues != 0) {
/* first time configuration */
uint32_t size;
size = sizeof(hw->fkq_data.tx_queues[0]) * nb_queues;
hw->fkq_data.tx_queues = rte_zmalloc("fake_tx_queues", size,
RTE_CACHE_LINE_SIZE);
if (hw->fkq_data.tx_queues == NULL) {
hw->fkq_data.nb_fake_tx_queues = 0;
return -ENOMEM;
}
} else if (hw->fkq_data.tx_queues != NULL && nb_queues != 0) {
/* re-configure */
txq = hw->fkq_data.tx_queues;
for (i = nb_queues; i < old_nb_queues; i++)
hns3_dev_tx_queue_release(txq[i]);
txq = rte_realloc(txq, sizeof(txq[0]) * nb_queues,
RTE_CACHE_LINE_SIZE);
if (txq == NULL)
return -ENOMEM;
if (nb_queues > old_nb_queues) {
uint16_t new_qs = nb_queues - old_nb_queues;
memset(txq + old_nb_queues, 0, sizeof(txq[0]) * new_qs);
}
hw->fkq_data.tx_queues = txq;
} else if (hw->fkq_data.tx_queues != NULL && nb_queues == 0) {
txq = hw->fkq_data.tx_queues;
for (i = nb_queues; i < old_nb_queues; i++)
hns3_dev_tx_queue_release(txq[i]);
rte_free(hw->fkq_data.tx_queues);
hw->fkq_data.tx_queues = NULL;
}
hw->fkq_data.nb_fake_tx_queues = nb_queues;
return 0;
}
int
hns3_set_fake_rx_or_tx_queues(struct rte_eth_dev *dev, uint16_t nb_rx_q,
uint16_t nb_tx_q)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t rx_need_add_nb_q;
uint16_t tx_need_add_nb_q;
uint16_t port_id;
uint16_t q;
int ret;
if (hns3_dev_indep_txrx_supported(hw))
return 0;
/* Setup new number of fake RX/TX queues and reconfigure device. */
rx_need_add_nb_q = hw->cfg_max_queues - nb_rx_q;
tx_need_add_nb_q = hw->cfg_max_queues - nb_tx_q;
ret = hns3_fake_rx_queue_config(hw, rx_need_add_nb_q);
if (ret) {
hns3_err(hw, "Fail to configure fake rx queues: %d", ret);
return ret;
}
ret = hns3_fake_tx_queue_config(hw, tx_need_add_nb_q);
if (ret) {
hns3_err(hw, "Fail to configure fake rx queues: %d", ret);
goto cfg_fake_tx_q_fail;
}
/* Allocate and set up fake RX queue per Ethernet port. */
port_id = hw->data->port_id;
for (q = 0; q < rx_need_add_nb_q; q++) {
ret = hns3_fake_rx_queue_setup(dev, q, HNS3_MIN_RING_DESC,
rte_eth_dev_socket_id(port_id));
if (ret)
goto setup_fake_rx_q_fail;
}
/* Allocate and set up fake TX queue per Ethernet port. */
for (q = 0; q < tx_need_add_nb_q; q++) {
ret = hns3_fake_tx_queue_setup(dev, q, HNS3_MIN_RING_DESC,
rte_eth_dev_socket_id(port_id));
if (ret)
goto setup_fake_tx_q_fail;
}
return 0;
setup_fake_tx_q_fail:
setup_fake_rx_q_fail:
(void)hns3_fake_tx_queue_config(hw, 0);
cfg_fake_tx_q_fail:
(void)hns3_fake_rx_queue_config(hw, 0);
return ret;
}
void
hns3_dev_release_mbufs(struct hns3_adapter *hns)
{
struct rte_eth_dev_data *dev_data = hns->hw.data;
struct hns3_rx_queue *rxq;
struct hns3_tx_queue *txq;
int i;
if (dev_data->rx_queues)
for (i = 0; i < dev_data->nb_rx_queues; i++) {
rxq = dev_data->rx_queues[i];
if (rxq == NULL)
continue;
hns3_rx_queue_release_mbufs(rxq);
}
if (dev_data->tx_queues)
for (i = 0; i < dev_data->nb_tx_queues; i++) {
txq = dev_data->tx_queues[i];
if (txq == NULL)
continue;
hns3_tx_queue_release_mbufs(txq);
}
}
static int
hns3_rx_buf_len_calc(struct rte_mempool *mp, uint16_t *rx_buf_len)
{
uint16_t vld_buf_size;
uint16_t num_hw_specs;
uint16_t i;
/*
* hns3 network engine only support to set 4 typical specification, and
* different buffer size will affect the max packet_len and the max
* number of segmentation when hw gro is turned on in receive side. The
* relationship between them is as follows:
* rx_buf_size | max_gro_pkt_len | max_gro_nb_seg
* ---------------------|-------------------|----------------
* HNS3_4K_BD_BUF_SIZE | 60KB | 15
* HNS3_2K_BD_BUF_SIZE | 62KB | 31
* HNS3_1K_BD_BUF_SIZE | 63KB | 63
* HNS3_512_BD_BUF_SIZE | 31.5KB | 63
*/
static const uint16_t hw_rx_buf_size[] = {
HNS3_4K_BD_BUF_SIZE,
HNS3_2K_BD_BUF_SIZE,
HNS3_1K_BD_BUF_SIZE,
HNS3_512_BD_BUF_SIZE
};
vld_buf_size = (uint16_t)(rte_pktmbuf_data_room_size(mp) -
RTE_PKTMBUF_HEADROOM);
if (vld_buf_size < HNS3_MIN_BD_BUF_SIZE)
return -EINVAL;
num_hw_specs = RTE_DIM(hw_rx_buf_size);
for (i = 0; i < num_hw_specs; i++) {
if (vld_buf_size >= hw_rx_buf_size[i]) {
*rx_buf_len = hw_rx_buf_size[i];
break;
}
}
return 0;
}
static int
hns3_rxq_conf_runtime_check(struct hns3_hw *hw, uint16_t buf_size,
uint16_t nb_desc)
{
struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
struct rte_eth_rxmode *rxmode = &hw->data->dev_conf.rxmode;
eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
uint16_t min_vec_bds;
/*
* HNS3 hardware network engine set scattered as default. If the driver
* is not work in scattered mode and the pkts greater than buf_size
* but smaller than max_rx_pkt_len will be distributed to multiple BDs.
* Driver cannot handle this situation.
*/
if (!hw->data->scattered_rx && rxmode->max_rx_pkt_len > buf_size) {
hns3_err(hw, "max_rx_pkt_len is not allowed to be set greater "
"than rx_buf_len if scattered is off.");
return -EINVAL;
}
if (pkt_burst == hns3_recv_pkts_vec ||
pkt_burst == hns3_recv_pkts_vec_sve) {
min_vec_bds = HNS3_DEFAULT_RXQ_REARM_THRESH +
HNS3_DEFAULT_RX_BURST;
if (nb_desc < min_vec_bds ||
nb_desc % HNS3_DEFAULT_RXQ_REARM_THRESH) {
hns3_err(hw, "if Rx burst mode is vector, "
"number of descriptor is required to be "
"bigger than min vector bds:%u, and could be "
"divided by rxq rearm thresh:%u.",
min_vec_bds, HNS3_DEFAULT_RXQ_REARM_THRESH);
return -EINVAL;
}
}
return 0;
}
static int
hns3_rx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_rxconf *conf,
struct rte_mempool *mp, uint16_t nb_desc,
uint16_t *buf_size)
{
int ret;
if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC ||
nb_desc % HNS3_ALIGN_RING_DESC) {
hns3_err(hw, "Number (%u) of rx descriptors is invalid",
nb_desc);
return -EINVAL;
}
if (conf->rx_drop_en == 0)
hns3_warn(hw, "if no descriptors available, packets are always "
"dropped and rx_drop_en (1) is fixed on");
if (hns3_rx_buf_len_calc(mp, buf_size)) {
hns3_err(hw, "rxq mbufs' data room size (%u) is not enough! "
"minimal data room size (%u).",
rte_pktmbuf_data_room_size(mp),
HNS3_MIN_BD_BUF_SIZE + RTE_PKTMBUF_HEADROOM);
return -EINVAL;
}
if (hw->data->dev_started) {
ret = hns3_rxq_conf_runtime_check(hw, *buf_size, nb_desc);
if (ret) {
hns3_err(hw, "Rx queue runtime setup fail.");
return ret;
}
}
return 0;
}
uint32_t
hns3_get_tqp_reg_offset(uint16_t queue_id)
{
uint32_t reg_offset;
/* Need an extend offset to config queue > 1024 */
if (queue_id < HNS3_MIN_EXTEND_QUEUE_ID)
reg_offset = HNS3_TQP_REG_OFFSET + queue_id * HNS3_TQP_REG_SIZE;
else
reg_offset = HNS3_TQP_REG_OFFSET + HNS3_TQP_EXT_REG_OFFSET +
(queue_id - HNS3_MIN_EXTEND_QUEUE_ID) *
HNS3_TQP_REG_SIZE;
return reg_offset;
}
int
hns3_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
unsigned int socket_id, const struct rte_eth_rxconf *conf,
struct rte_mempool *mp)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_queue_info q_info;
struct hns3_rx_queue *rxq;
uint16_t rx_buf_size;
int rx_entry_len;
int ret;
ret = hns3_rx_queue_conf_check(hw, conf, mp, nb_desc, &rx_buf_size);
if (ret)
return ret;
if (dev->data->rx_queues[idx]) {
hns3_rx_queue_release(dev->data->rx_queues[idx]);
dev->data->rx_queues[idx] = NULL;
}
q_info.idx = idx;
q_info.socket_id = socket_id;
q_info.nb_desc = nb_desc;
q_info.type = "hns3 RX queue";
q_info.ring_name = "rx_ring";
rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info);
if (rxq == NULL) {
hns3_err(hw,
"Failed to alloc mem and reserve DMA mem for rx ring!");
return -ENOMEM;
}
rxq->hns = hns;
rxq->ptype_tbl = &hns->ptype_tbl;
rxq->mb_pool = mp;
rxq->rx_free_thresh = (conf->rx_free_thresh > 0) ?
conf->rx_free_thresh : HNS3_DEFAULT_RX_FREE_THRESH;
rxq->rx_deferred_start = conf->rx_deferred_start;
if (rxq->rx_deferred_start && !hns3_dev_indep_txrx_supported(hw)) {
hns3_warn(hw, "deferred start is not supported.");
rxq->rx_deferred_start = false;
}
rx_entry_len = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) *
sizeof(struct hns3_entry);
rxq->sw_ring = rte_zmalloc_socket("hns3 RX sw ring", rx_entry_len,
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq->sw_ring == NULL) {
hns3_err(hw, "Failed to allocate memory for rx sw ring!");
hns3_rx_queue_release(rxq);
return -ENOMEM;
}
rxq->next_to_use = 0;
rxq->rx_free_hold = 0;
rxq->rx_rearm_start = 0;
rxq->rx_rearm_nb = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
rxq->port_id = dev->data->port_id;
/*
* For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE,
* the pvid_sw_discard_en in the queue struct should not be changed,
* because PVID-related operations do not need to be processed by PMD.
* For hns3 VF device, whether it needs to process PVID depends
* on the configuration of PF kernel mode netdevice driver. And the
* related PF configuration is delivered through the mailbox and finally
* reflected in port_base_vlan_cfg.
*/
if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
rxq->pvid_sw_discard_en = hw->port_base_vlan_cfg.state ==
HNS3_PORT_BASE_VLAN_ENABLE;
else
rxq->pvid_sw_discard_en = false;
rxq->configured = true;
rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
idx * HNS3_TQP_REG_SIZE);
rxq->io_base = (void *)((char *)hw->io_base +
hns3_get_tqp_reg_offset(idx));
rxq->io_head_reg = (volatile void *)((char *)rxq->io_base +
HNS3_RING_RX_HEAD_REG);
rxq->rx_buf_len = rx_buf_size;
rxq->l2_errors = 0;
rxq->pkt_len_errors = 0;
rxq->l3_csum_errors = 0;
rxq->l4_csum_errors = 0;
rxq->ol3_csum_errors = 0;
rxq->ol4_csum_errors = 0;
/* CRC len set here is used for amending packet length */
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
rxq->crc_len = RTE_ETHER_CRC_LEN;
else
rxq->crc_len = 0;
rxq->bulk_mbuf_num = 0;
rte_spinlock_lock(&hw->lock);
dev->data->rx_queues[idx] = rxq;
rte_spinlock_unlock(&hw->lock);
return 0;
}
void
hns3_rx_scattered_reset(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
hw->rx_buf_len = 0;
dev->data->scattered_rx = false;
}
void
hns3_rx_scattered_calc(struct rte_eth_dev *dev)
{
struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_rx_queue *rxq;
uint32_t queue_id;
if (dev->data->rx_queues == NULL)
return;
for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
rxq = dev->data->rx_queues[queue_id];
if (hw->rx_buf_len == 0)
hw->rx_buf_len = rxq->rx_buf_len;
else
hw->rx_buf_len = RTE_MIN(hw->rx_buf_len,
rxq->rx_buf_len);
}
if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_SCATTER ||
dev_conf->rxmode.max_rx_pkt_len > hw->rx_buf_len)
dev->data->scattered_rx = true;
}
const uint32_t *
hns3_dev_supported_ptypes_get(struct rte_eth_dev *dev)
{
static const uint32_t ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_LLDP,
RTE_PTYPE_L2_ETHER_ARP,
RTE_PTYPE_L3_IPV4,
RTE_PTYPE_L3_IPV4_EXT,
RTE_PTYPE_L3_IPV6,
RTE_PTYPE_L3_IPV6_EXT,
RTE_PTYPE_L4_IGMP,
RTE_PTYPE_L4_ICMP,
RTE_PTYPE_L4_SCTP,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_TUNNEL_GRE,
RTE_PTYPE_INNER_L2_ETHER,
RTE_PTYPE_INNER_L3_IPV4,
RTE_PTYPE_INNER_L3_IPV6,
RTE_PTYPE_INNER_L3_IPV4_EXT,
RTE_PTYPE_INNER_L3_IPV6_EXT,
RTE_PTYPE_INNER_L4_UDP,
RTE_PTYPE_INNER_L4_TCP,
RTE_PTYPE_INNER_L4_SCTP,
RTE_PTYPE_INNER_L4_ICMP,
RTE_PTYPE_TUNNEL_VXLAN,
RTE_PTYPE_TUNNEL_NVGRE,
RTE_PTYPE_UNKNOWN
};
if (dev->rx_pkt_burst == hns3_recv_pkts ||
dev->rx_pkt_burst == hns3_recv_scattered_pkts ||
dev->rx_pkt_burst == hns3_recv_pkts_vec ||
dev->rx_pkt_burst == hns3_recv_pkts_vec_sve)
return ptypes;
return NULL;
}
static void
hns3_init_non_tunnel_ptype_tbl(struct hns3_ptype_table *tbl)
{
tbl->l3table[0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4;
tbl->l3table[1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6;
tbl->l3table[2] = RTE_PTYPE_L2_ETHER_ARP;
tbl->l3table[4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT;
tbl->l3table[5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT;
tbl->l3table[6] = RTE_PTYPE_L2_ETHER_LLDP;
tbl->l4table[0] = RTE_PTYPE_L4_UDP;
tbl->l4table[1] = RTE_PTYPE_L4_TCP;
tbl->l4table[2] = RTE_PTYPE_TUNNEL_GRE;
tbl->l4table[3] = RTE_PTYPE_L4_SCTP;
tbl->l4table[4] = RTE_PTYPE_L4_IGMP;
tbl->l4table[5] = RTE_PTYPE_L4_ICMP;
}
static void
hns3_init_tunnel_ptype_tbl(struct hns3_ptype_table *tbl)
{
tbl->inner_l3table[0] = RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4;
tbl->inner_l3table[1] = RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6;
/* There is not a ptype for inner ARP/RARP */
tbl->inner_l3table[2] = RTE_PTYPE_UNKNOWN;
tbl->inner_l3table[3] = RTE_PTYPE_UNKNOWN;
tbl->inner_l3table[4] = RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT;
tbl->inner_l3table[5] = RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT;
tbl->inner_l4table[0] = RTE_PTYPE_INNER_L4_UDP;
tbl->inner_l4table[1] = RTE_PTYPE_INNER_L4_TCP;
/* There is not a ptype for inner GRE */
tbl->inner_l4table[2] = RTE_PTYPE_UNKNOWN;
tbl->inner_l4table[3] = RTE_PTYPE_INNER_L4_SCTP;
/* There is not a ptype for inner IGMP */
tbl->inner_l4table[4] = RTE_PTYPE_UNKNOWN;
tbl->inner_l4table[5] = RTE_PTYPE_INNER_L4_ICMP;
tbl->ol3table[0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4;
tbl->ol3table[1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6;
tbl->ol3table[2] = RTE_PTYPE_UNKNOWN;
tbl->ol3table[3] = RTE_PTYPE_UNKNOWN;
tbl->ol3table[4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT;
tbl->ol3table[5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT;
tbl->ol4table[0] = RTE_PTYPE_UNKNOWN;
tbl->ol4table[1] = RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN;
tbl->ol4table[2] = RTE_PTYPE_TUNNEL_NVGRE;
}
void
hns3_init_rx_ptype_tble(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_ptype_table *tbl = &hns->ptype_tbl;
memset(tbl, 0, sizeof(*tbl));
hns3_init_non_tunnel_ptype_tbl(tbl);
hns3_init_tunnel_ptype_tbl(tbl);
}
static inline void
hns3_rxd_to_vlan_tci(struct hns3_rx_queue *rxq, struct rte_mbuf *mb,
uint32_t l234_info, const struct hns3_desc *rxd)
{
#define HNS3_STRP_STATUS_NUM 0x4
#define HNS3_NO_STRP_VLAN_VLD 0x0
#define HNS3_INNER_STRP_VLAN_VLD 0x1
#define HNS3_OUTER_STRP_VLAN_VLD 0x2
uint32_t strip_status;
uint32_t report_mode;
/*
* Since HW limitation, the vlan tag will always be inserted into RX
* descriptor when strip the tag from packet, driver needs to determine
* reporting which tag to mbuf according to the PVID configuration
* and vlan striped status.
*/
static const uint32_t report_type[][HNS3_STRP_STATUS_NUM] = {
{
HNS3_NO_STRP_VLAN_VLD,
HNS3_OUTER_STRP_VLAN_VLD,
HNS3_INNER_STRP_VLAN_VLD,
HNS3_OUTER_STRP_VLAN_VLD
},
{
HNS3_NO_STRP_VLAN_VLD,
HNS3_NO_STRP_VLAN_VLD,
HNS3_NO_STRP_VLAN_VLD,
HNS3_INNER_STRP_VLAN_VLD
}
};
strip_status = hns3_get_field(l234_info, HNS3_RXD_STRP_TAGP_M,
HNS3_RXD_STRP_TAGP_S);
report_mode = report_type[rxq->pvid_sw_discard_en][strip_status];
switch (report_mode) {
case HNS3_NO_STRP_VLAN_VLD:
mb->vlan_tci = 0;
return;
case HNS3_INNER_STRP_VLAN_VLD:
mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.vlan_tag);
return;
case HNS3_OUTER_STRP_VLAN_VLD:
mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.ot_vlan_tag);
return;
default:
mb->vlan_tci = 0;
return;
}
}
static inline void
recalculate_data_len(struct rte_mbuf *first_seg, struct rte_mbuf *last_seg,
struct rte_mbuf *rxm, struct hns3_rx_queue *rxq,
uint16_t data_len)
{
uint8_t crc_len = rxq->crc_len;
if (data_len <= crc_len) {
rte_pktmbuf_free_seg(rxm);
first_seg->nb_segs--;
last_seg->data_len = (uint16_t)(last_seg->data_len -
(crc_len - data_len));
last_seg->next = NULL;
} else
rxm->data_len = (uint16_t)(data_len - crc_len);
}
static inline struct rte_mbuf *
hns3_rx_alloc_buffer(struct hns3_rx_queue *rxq)
{
int ret;
if (likely(rxq->bulk_mbuf_num > 0))
return rxq->bulk_mbuf[--rxq->bulk_mbuf_num];
ret = rte_mempool_get_bulk(rxq->mb_pool, (void **)rxq->bulk_mbuf,
HNS3_BULK_ALLOC_MBUF_NUM);
if (likely(ret == 0)) {
rxq->bulk_mbuf_num = HNS3_BULK_ALLOC_MBUF_NUM;
return rxq->bulk_mbuf[--rxq->bulk_mbuf_num];
} else
return rte_mbuf_raw_alloc(rxq->mb_pool);
}
uint16_t
hns3_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
volatile struct hns3_desc *rx_ring; /* RX ring (desc) */
volatile struct hns3_desc *rxdp; /* pointer of the current desc */
struct hns3_rx_queue *rxq; /* RX queue */
struct hns3_entry *sw_ring;
struct hns3_entry *rxe;
struct hns3_desc rxd;
struct rte_mbuf *nmb; /* pointer of the new mbuf */
struct rte_mbuf *rxm;
uint32_t bd_base_info;
uint32_t cksum_err;
uint32_t l234_info;
uint32_t ol_info;
uint64_t dma_addr;
uint16_t nb_rx_bd;
uint16_t nb_rx;
uint16_t rx_id;
int ret;
nb_rx = 0;
nb_rx_bd = 0;
rxq = rx_queue;
rx_ring = rxq->rx_ring;
sw_ring = rxq->sw_ring;
rx_id = rxq->next_to_use;
while (nb_rx < nb_pkts) {
rxdp = &rx_ring[rx_id];
bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
break;
rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
(1u << HNS3_RXD_VLD_B)];
nmb = hns3_rx_alloc_buffer(rxq);
if (unlikely(nmb == NULL)) {
uint16_t port_id;
port_id = rxq->port_id;
rte_eth_devices[port_id].data->rx_mbuf_alloc_failed++;
break;
}
nb_rx_bd++;
rxe = &sw_ring[rx_id];
rx_id++;
if (unlikely(rx_id == rxq->nb_rx_desc))
rx_id = 0;
rte_prefetch0(sw_ring[rx_id].mbuf);
if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) {
rte_prefetch0(&rx_ring[rx_id]);
rte_prefetch0(&sw_ring[rx_id]);
}
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma_addr = rte_mbuf_data_iova_default(nmb);
rxdp->addr = rte_cpu_to_le_64(dma_addr);
rxdp->rx.bd_base_info = 0;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rxm->pkt_len = (uint16_t)(rte_le_to_cpu_16(rxd.rx.pkt_len)) -
rxq->crc_len;
rxm->data_len = rxm->pkt_len;
rxm->port = rxq->port_id;
rxm->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash);
rxm->ol_flags = PKT_RX_RSS_HASH;
if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) {
rxm->hash.fdir.hi =
rte_le_to_cpu_16(rxd.rx.fd_id);
rxm->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
}
rxm->nb_segs = 1;
rxm->next = NULL;
/* Load remained descriptor data and extract necessary fields */
l234_info = rte_le_to_cpu_32(rxd.rx.l234_info);
ol_info = rte_le_to_cpu_32(rxd.rx.ol_info);
ret = hns3_handle_bdinfo(rxq, rxm, bd_base_info,
l234_info, &cksum_err);
if (unlikely(ret))
goto pkt_err;
rxm->packet_type = hns3_rx_calc_ptype(rxq, l234_info, ol_info);
if (likely(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
hns3_rx_set_cksum_flag(rxm, rxm->packet_type,
cksum_err);
hns3_rxd_to_vlan_tci(rxq, rxm, l234_info, &rxd);
rx_pkts[nb_rx++] = rxm;
continue;
pkt_err:
rte_pktmbuf_free(rxm);
}
rxq->next_to_use = rx_id;
rxq->rx_free_hold += nb_rx_bd;
if (rxq->rx_free_hold > rxq->rx_free_thresh) {
hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold);
rxq->rx_free_hold = 0;
}
return nb_rx;
}
uint16_t
hns3_recv_scattered_pkts(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
volatile struct hns3_desc *rx_ring; /* RX ring (desc) */
volatile struct hns3_desc *rxdp; /* pointer of the current desc */
struct hns3_rx_queue *rxq; /* RX queue */
struct hns3_entry *sw_ring;
struct hns3_entry *rxe;
struct rte_mbuf *first_seg;
struct rte_mbuf *last_seg;
struct hns3_desc rxd;
struct rte_mbuf *nmb; /* pointer of the new mbuf */
struct rte_mbuf *rxm;
struct rte_eth_dev *dev;
uint32_t bd_base_info;
uint32_t cksum_err;
uint32_t l234_info;
uint32_t gro_size;
uint32_t ol_info;
uint64_t dma_addr;
uint16_t nb_rx_bd;
uint16_t nb_rx;
uint16_t rx_id;
int ret;
nb_rx = 0;
nb_rx_bd = 0;
rxq = rx_queue;
rx_id = rxq->next_to_use;
rx_ring = rxq->rx_ring;
sw_ring = rxq->sw_ring;
first_seg = rxq->pkt_first_seg;
last_seg = rxq->pkt_last_seg;
while (nb_rx < nb_pkts) {
rxdp = &rx_ring[rx_id];
bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
break;
/*
* The interactive process between software and hardware of
* receiving a new packet in hns3 network engine:
* 1. Hardware network engine firstly writes the packet content
* to the memory pointed by the 'addr' field of the Rx Buffer
* Descriptor, secondly fills the result of parsing the
* packet include the valid field into the Rx Buffer
* Descriptor in one write operation.
* 2. Driver reads the Rx BD's valid field in the loop to check
* whether it's valid, if valid then assign a new address to
* the addr field, clear the valid field, get the other
* information of the packet by parsing Rx BD's other fields,
* finally write back the number of Rx BDs processed by the
* driver to the HNS3_RING_RX_HEAD_REG register to inform
* hardware.
* In the above process, the ordering is very important. We must
* make sure that CPU read Rx BD's other fields only after the
* Rx BD is valid.
*
* There are two type of re-ordering: compiler re-ordering and
* CPU re-ordering under the ARMv8 architecture.
* 1. we use volatile to deal with compiler re-ordering, so you
* can see that rx_ring/rxdp defined with volatile.
* 2. we commonly use memory barrier to deal with CPU
* re-ordering, but the cost is high.
*
* In order to solve the high cost of using memory barrier, we
* use the data dependency order under the ARMv8 architecture,
* for example:
* instr01: load A
* instr02: load B <- A
* the instr02 will always execute after instr01.
*
* To construct the data dependency ordering, we use the
* following assignment:
* rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
* (1u<<HNS3_RXD_VLD_B)]
* Using gcc compiler under the ARMv8 architecture, the related
* assembly code example as follows:
* note: (1u << HNS3_RXD_VLD_B) equal 0x10
* instr01: ldr w26, [x22, #28] --read bd_base_info
* instr02: and w0, w26, #0x10 --calc bd_base_info & 0x10
* instr03: sub w0, w0, #0x10 --calc (bd_base_info &
* 0x10) - 0x10
* instr04: add x0, x22, x0, lsl #5 --calc copy source addr
* instr05: ldp x2, x3, [x0]
* instr06: stp x2, x3, [x29, #256] --copy BD's [0 ~ 15]B
* instr07: ldp x4, x5, [x0, #16]
* instr08: stp x4, x5, [x29, #272] --copy BD's [16 ~ 31]B
* the instr05~08 depend on x0's value, x0 depent on w26's
* value, the w26 is the bd_base_info, this form the data
* dependency ordering.
* note: if BD is valid, (bd_base_info & (1u<<HNS3_RXD_VLD_B)) -
* (1u<<HNS3_RXD_VLD_B) will always zero, so the
* assignment is correct.
*
* So we use the data dependency ordering instead of memory
* barrier to improve receive performance.
*/
rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
(1u << HNS3_RXD_VLD_B)];
nmb = hns3_rx_alloc_buffer(rxq);
if (unlikely(nmb == NULL)) {
dev = &rte_eth_devices[rxq->port_id];
dev->data->rx_mbuf_alloc_failed++;
break;
}
nb_rx_bd++;
rxe = &sw_ring[rx_id];
rx_id++;
if (unlikely(rx_id == rxq->nb_rx_desc))
rx_id = 0;
rte_prefetch0(sw_ring[rx_id].mbuf);
if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) {
rte_prefetch0(&rx_ring[rx_id]);
rte_prefetch0(&sw_ring[rx_id]);
}
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
rxdp->rx.bd_base_info = 0;
rxdp->addr = dma_addr;
if (first_seg == NULL) {
first_seg = rxm;
first_seg->nb_segs = 1;
} else {
first_seg->nb_segs++;
last_seg->next = rxm;
}
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rxm->data_len = rte_le_to_cpu_16(rxd.rx.size);
if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
last_seg = rxm;
rxm->next = NULL;
continue;
}
/*
* The last buffer of the received packet. packet len from
* buffer description may contains CRC len, packet len should
* subtract it, same as data len.
*/
first_seg->pkt_len = rte_le_to_cpu_16(rxd.rx.pkt_len);
/*
* This is the last buffer of the received packet. If the CRC
* is not stripped by the hardware:
* - Subtract the CRC length from the total packet length.
* - If the last buffer only contains the whole CRC or a part
* of it, free the mbuf associated to the last buffer. If part
* of the CRC is also contained in the previous mbuf, subtract
* the length of that CRC part from the data length of the
* previous mbuf.
*/
rxm->next = NULL;
if (unlikely(rxq->crc_len > 0)) {
first_seg->pkt_len -= rxq->crc_len;
recalculate_data_len(first_seg, last_seg, rxm, rxq,
rxm->data_len);
}
first_seg->port = rxq->port_id;
first_seg->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash);
first_seg->ol_flags = PKT_RX_RSS_HASH;
if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) {
first_seg->hash.fdir.hi =
rte_le_to_cpu_16(rxd.rx.fd_id);
first_seg->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
}
gro_size = hns3_get_field(bd_base_info, HNS3_RXD_GRO_SIZE_M,
HNS3_RXD_GRO_SIZE_S);
if (gro_size != 0) {
first_seg->ol_flags |= PKT_RX_LRO;
first_seg->tso_segsz = gro_size;
}
l234_info = rte_le_to_cpu_32(rxd.rx.l234_info);
ol_info = rte_le_to_cpu_32(rxd.rx.ol_info);
ret = hns3_handle_bdinfo(rxq, first_seg, bd_base_info,
l234_info, &cksum_err);
if (unlikely(ret))
goto pkt_err;
first_seg->packet_type = hns3_rx_calc_ptype(rxq,
l234_info, ol_info);
if (bd_base_info & BIT(HNS3_RXD_L3L4P_B))
hns3_rx_set_cksum_flag(first_seg,
first_seg->packet_type,
cksum_err);
hns3_rxd_to_vlan_tci(rxq, first_seg, l234_info, &rxd);
rx_pkts[nb_rx++] = first_seg;
first_seg = NULL;
continue;
pkt_err:
rte_pktmbuf_free(first_seg);
first_seg = NULL;
}
rxq->next_to_use = rx_id;
rxq->pkt_first_seg = first_seg;
rxq->pkt_last_seg = last_seg;
rxq->rx_free_hold += nb_rx_bd;
if (rxq->rx_free_hold > rxq->rx_free_thresh) {
hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold);
rxq->rx_free_hold = 0;
}
return nb_rx;
}
void __rte_weak
hns3_rxq_vec_setup(__rte_unused struct hns3_rx_queue *rxq)
{
}
int __rte_weak
hns3_rx_check_vec_support(__rte_unused struct rte_eth_dev *dev)
{
return -ENOTSUP;
}
uint16_t __rte_weak
hns3_recv_pkts_vec(__rte_unused void *tx_queue,
__rte_unused struct rte_mbuf **rx_pkts,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
uint16_t __rte_weak
hns3_recv_pkts_vec_sve(__rte_unused void *tx_queue,
__rte_unused struct rte_mbuf **rx_pkts,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
int
hns3_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
struct rte_eth_burst_mode *mode)
{
static const struct {
eth_rx_burst_t pkt_burst;
const char *info;
} burst_infos[] = {
{ hns3_recv_pkts, "Scalar" },
{ hns3_recv_scattered_pkts, "Scalar Scattered" },
{ hns3_recv_pkts_vec, "Vector Neon" },
{ hns3_recv_pkts_vec_sve, "Vector Sve" },
};
eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
int ret = -EINVAL;
unsigned int i;
for (i = 0; i < RTE_DIM(burst_infos); i++) {
if (pkt_burst == burst_infos[i].pkt_burst) {
snprintf(mode->info, sizeof(mode->info), "%s",
burst_infos[i].info);
ret = 0;
break;
}
}
return ret;
}
static bool
hns3_get_default_vec_support(void)
{
#if defined(RTE_ARCH_ARM64)
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON))
return true;
#endif
return false;
}
static bool
hns3_check_sve_support(void)
{
#if defined(RTE_HAS_SVE_ACLE)
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SVE))
return true;
#endif
return false;
}
static eth_rx_burst_t
hns3_get_rx_function(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
uint64_t offloads = dev->data->dev_conf.rxmode.offloads;
if (hns->rx_vec_allowed && hns3_rx_check_vec_support(dev) == 0) {
if (hns3_get_default_vec_support())
return hns3_recv_pkts_vec;
else if (hns3_check_sve_support())
return hns3_recv_pkts_vec_sve;
}
if (hns->rx_simple_allowed && !dev->data->scattered_rx &&
(offloads & DEV_RX_OFFLOAD_TCP_LRO) == 0)
return hns3_recv_pkts;
return hns3_recv_scattered_pkts;
}
static int
hns3_tx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_txconf *conf,
uint16_t nb_desc, uint16_t *tx_rs_thresh,
uint16_t *tx_free_thresh, uint16_t idx)
{
#define HNS3_TX_RS_FREE_THRESH_GAP 8
uint16_t rs_thresh, free_thresh, fast_free_thresh;
if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC ||
nb_desc % HNS3_ALIGN_RING_DESC) {
hns3_err(hw, "number (%u) of tx descriptors is invalid",
nb_desc);
return -EINVAL;
}
rs_thresh = (conf->tx_rs_thresh > 0) ?
conf->tx_rs_thresh : HNS3_DEFAULT_TX_RS_THRESH;
free_thresh = (conf->tx_free_thresh > 0) ?
conf->tx_free_thresh : HNS3_DEFAULT_TX_FREE_THRESH;
if (rs_thresh + free_thresh > nb_desc || nb_desc % rs_thresh ||
rs_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP ||
free_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP) {
hns3_err(hw, "tx_rs_thresh (%u) tx_free_thresh (%u) nb_desc "
"(%u) of tx descriptors for port=%u queue=%u check "
"fail!",
rs_thresh, free_thresh, nb_desc, hw->data->port_id,
idx);
return -EINVAL;
}
if (conf->tx_free_thresh == 0) {
/* Fast free Tx memory buffer to improve cache hit rate */
fast_free_thresh = nb_desc - rs_thresh;
if (fast_free_thresh >=
HNS3_TX_FAST_FREE_AHEAD + HNS3_DEFAULT_TX_FREE_THRESH)
free_thresh = fast_free_thresh -
HNS3_TX_FAST_FREE_AHEAD;
}
*tx_rs_thresh = rs_thresh;
*tx_free_thresh = free_thresh;
return 0;
}
int
hns3_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
unsigned int socket_id, const struct rte_eth_txconf *conf)
{
struct hns3_adapter *hns = dev->data->dev_private;
uint16_t tx_rs_thresh, tx_free_thresh;
struct hns3_hw *hw = &hns->hw;
struct hns3_queue_info q_info;
struct hns3_tx_queue *txq;
int tx_entry_len;
int ret;
ret = hns3_tx_queue_conf_check(hw, conf, nb_desc,
&tx_rs_thresh, &tx_free_thresh, idx);
if (ret)
return ret;
if (dev->data->tx_queues[idx] != NULL) {
hns3_tx_queue_release(dev->data->tx_queues[idx]);
dev->data->tx_queues[idx] = NULL;
}
q_info.idx = idx;
q_info.socket_id = socket_id;
q_info.nb_desc = nb_desc;
q_info.type = "hns3 TX queue";
q_info.ring_name = "tx_ring";
txq = hns3_alloc_txq_and_dma_zone(dev, &q_info);
if (txq == NULL) {
hns3_err(hw,
"Failed to alloc mem and reserve DMA mem for tx ring!");
return -ENOMEM;
}
txq->tx_deferred_start = conf->tx_deferred_start;
if (txq->tx_deferred_start && !hns3_dev_indep_txrx_supported(hw)) {
hns3_warn(hw, "deferred start is not supported.");
txq->tx_deferred_start = false;
}
tx_entry_len = sizeof(struct hns3_entry) * txq->nb_tx_desc;
txq->sw_ring = rte_zmalloc_socket("hns3 TX sw ring", tx_entry_len,
RTE_CACHE_LINE_SIZE, socket_id);
if (txq->sw_ring == NULL) {
hns3_err(hw, "Failed to allocate memory for tx sw ring!");
hns3_tx_queue_release(txq);
return -ENOMEM;
}
txq->hns = hns;
txq->next_to_use = 0;
txq->next_to_clean = 0;
txq->tx_bd_ready = txq->nb_tx_desc - 1;
txq->tx_free_thresh = tx_free_thresh;
txq->tx_rs_thresh = tx_rs_thresh;
txq->free = rte_zmalloc_socket("hns3 TX mbuf free array",
sizeof(struct rte_mbuf *) * txq->tx_rs_thresh,
RTE_CACHE_LINE_SIZE, socket_id);
if (!txq->free) {
hns3_err(hw, "failed to allocate tx mbuf free array!");
hns3_tx_queue_release(txq);
return -ENOMEM;
}
txq->port_id = dev->data->port_id;
/*
* For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE,
* the pvid_sw_shift_en in the queue struct should not be changed,
* because PVID-related operations do not need to be processed by PMD.
* For hns3 VF device, whether it needs to process PVID depends
* on the configuration of PF kernel mode netdev driver. And the
* related PF configuration is delivered through the mailbox and finally
* reflected in port_base_vlan_cfg.
*/
if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
txq->pvid_sw_shift_en = hw->port_base_vlan_cfg.state ==
HNS3_PORT_BASE_VLAN_ENABLE;
else
txq->pvid_sw_shift_en = false;
txq->max_non_tso_bd_num = hw->max_non_tso_bd_num;
txq->configured = true;
txq->io_base = (void *)((char *)hw->io_base +
hns3_get_tqp_reg_offset(idx));
txq->io_tail_reg = (volatile void *)((char *)txq->io_base +
HNS3_RING_TX_TAIL_REG);
txq->min_tx_pkt_len = hw->min_tx_pkt_len;
txq->tso_mode = hw->tso_mode;
txq->udp_cksum_mode = hw->udp_cksum_mode;
txq->over_length_pkt_cnt = 0;
txq->exceed_limit_bd_pkt_cnt = 0;
txq->mbuf_fast_free_en = !!(dev->data->dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_MBUF_FAST_FREE);
txq->exceed_limit_bd_reassem_fail = 0;
txq->unsupported_tunnel_pkt_cnt = 0;
txq->queue_full_cnt = 0;
txq->pkt_padding_fail_cnt = 0;
rte_spinlock_lock(&hw->lock);
dev->data->tx_queues[idx] = txq;
rte_spinlock_unlock(&hw->lock);
return 0;
}
static void
hns3_tx_free_useless_buffer(struct hns3_tx_queue *txq)
{
uint16_t tx_next_clean = txq->next_to_clean;
uint16_t tx_next_use = txq->next_to_use;
uint16_t tx_bd_ready = txq->tx_bd_ready;
uint16_t tx_bd_max = txq->nb_tx_desc;
struct hns3_entry *tx_bak_pkt = &txq->sw_ring[tx_next_clean];
struct hns3_desc *desc = &txq->tx_ring[tx_next_clean];
struct rte_mbuf *mbuf;
while ((!(desc->tx.tp_fe_sc_vld_ra_ri &
rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)))) &&
tx_next_use != tx_next_clean) {
mbuf = tx_bak_pkt->mbuf;
if (mbuf) {
rte_pktmbuf_free_seg(mbuf);
tx_bak_pkt->mbuf = NULL;
}
desc++;
tx_bak_pkt++;
tx_next_clean++;
tx_bd_ready++;
if (tx_next_clean >= tx_bd_max) {
tx_next_clean = 0;
desc = txq->tx_ring;
tx_bak_pkt = txq->sw_ring;
}
}
txq->next_to_clean = tx_next_clean;
txq->tx_bd_ready = tx_bd_ready;
}
int
hns3_config_gro(struct hns3_hw *hw, bool en)
{
struct hns3_cfg_gro_status_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GRO_GENERIC_CONFIG, false);
req = (struct hns3_cfg_gro_status_cmd *)desc.data;
req->gro_en = rte_cpu_to_le_16(en ? 1 : 0);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "%s hardware GRO failed, ret = %d",
en ? "enable" : "disable", ret);
return ret;
}
int
hns3_restore_gro_conf(struct hns3_hw *hw)
{
uint64_t offloads;
bool gro_en;
int ret;
offloads = hw->data->dev_conf.rxmode.offloads;
gro_en = offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
ret = hns3_config_gro(hw, gro_en);
if (ret)
hns3_err(hw, "restore hardware GRO to %s failed, ret = %d",
gro_en ? "enabled" : "disabled", ret);
return ret;
}
static inline bool
hns3_pkt_is_tso(struct rte_mbuf *m)
{
return (m->tso_segsz != 0 && m->ol_flags & PKT_TX_TCP_SEG);
}
static void
hns3_set_tso(struct hns3_desc *desc, uint32_t paylen, struct rte_mbuf *rxm)
{
if (!hns3_pkt_is_tso(rxm))
return;
if (paylen <= rxm->tso_segsz)
return;
desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(BIT(HNS3_TXD_TSO_B));
desc->tx.mss = rte_cpu_to_le_16(rxm->tso_segsz);
}
static inline void
hns3_fill_per_desc(struct hns3_desc *desc, struct rte_mbuf *rxm)
{
desc->addr = rte_mbuf_data_iova(rxm);
desc->tx.send_size = rte_cpu_to_le_16(rte_pktmbuf_data_len(rxm));
desc->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B));
}
static void
hns3_fill_first_desc(struct hns3_tx_queue *txq, struct hns3_desc *desc,
struct rte_mbuf *rxm)
{
uint64_t ol_flags = rxm->ol_flags;
uint32_t hdr_len;
uint32_t paylen;
hdr_len = rxm->l2_len + rxm->l3_len + rxm->l4_len;
hdr_len += (ol_flags & PKT_TX_TUNNEL_MASK) ?
rxm->outer_l2_len + rxm->outer_l3_len : 0;
paylen = rxm->pkt_len - hdr_len;
desc->tx.paylen = rte_cpu_to_le_32(paylen);
hns3_set_tso(desc, paylen, rxm);
/*
* Currently, hardware doesn't support more than two layers VLAN offload
* in Tx direction based on hns3 network engine. So when the number of
* VLANs in the packets represented by rxm plus the number of VLAN
* offload by hardware such as PVID etc, exceeds two, the packets will
* be discarded or the original VLAN of the packets will be overwritten
* by hardware. When the PF PVID is enabled by calling the API function
* named rte_eth_dev_set_vlan_pvid or the VF PVID is enabled by the hns3
* PF kernel ether driver, the outer VLAN tag will always be the PVID.
* To avoid the VLAN of Tx descriptor is overwritten by PVID, it should
* be added to the position close to the IP header when PVID is enabled.
*/
if (!txq->pvid_sw_shift_en && ol_flags & (PKT_TX_VLAN_PKT |
PKT_TX_QINQ_PKT)) {
desc->tx.ol_type_vlan_len_msec |=
rte_cpu_to_le_32(BIT(HNS3_TXD_OVLAN_B));
if (ol_flags & PKT_TX_QINQ_PKT)
desc->tx.outer_vlan_tag =
rte_cpu_to_le_16(rxm->vlan_tci_outer);
else
desc->tx.outer_vlan_tag =
rte_cpu_to_le_16(rxm->vlan_tci);
}
if (ol_flags & PKT_TX_QINQ_PKT ||
((ol_flags & PKT_TX_VLAN_PKT) && txq->pvid_sw_shift_en)) {
desc->tx.type_cs_vlan_tso_len |=
rte_cpu_to_le_32(BIT(HNS3_TXD_VLAN_B));
desc->tx.vlan_tag = rte_cpu_to_le_16(rxm->vlan_tci);
}
}
static inline int
hns3_tx_alloc_mbufs(struct rte_mempool *mb_pool, uint16_t nb_new_buf,
struct rte_mbuf **alloc_mbuf)
{
#define MAX_NON_TSO_BD_PER_PKT 18
struct rte_mbuf *pkt_segs[MAX_NON_TSO_BD_PER_PKT];
uint16_t i;
/* Allocate enough mbufs */
if (rte_mempool_get_bulk(mb_pool, (void **)pkt_segs, nb_new_buf))
return -ENOMEM;
for (i = 0; i < nb_new_buf - 1; i++)
pkt_segs[i]->next = pkt_segs[i + 1];
pkt_segs[nb_new_buf - 1]->next = NULL;
pkt_segs[0]->nb_segs = nb_new_buf;
*alloc_mbuf = pkt_segs[0];
return 0;
}
static inline void
hns3_pktmbuf_copy_hdr(struct rte_mbuf *new_pkt, struct rte_mbuf *old_pkt)
{
new_pkt->ol_flags = old_pkt->ol_flags;
new_pkt->pkt_len = rte_pktmbuf_pkt_len(old_pkt);
new_pkt->outer_l2_len = old_pkt->outer_l2_len;
new_pkt->outer_l3_len = old_pkt->outer_l3_len;
new_pkt->l2_len = old_pkt->l2_len;
new_pkt->l3_len = old_pkt->l3_len;
new_pkt->l4_len = old_pkt->l4_len;
new_pkt->vlan_tci_outer = old_pkt->vlan_tci_outer;
new_pkt->vlan_tci = old_pkt->vlan_tci;
}
static int
hns3_reassemble_tx_pkts(struct rte_mbuf *tx_pkt, struct rte_mbuf **new_pkt,
uint8_t max_non_tso_bd_num)
{
struct rte_mempool *mb_pool;
struct rte_mbuf *new_mbuf;
struct rte_mbuf *temp_new;
struct rte_mbuf *temp;
uint16_t last_buf_len;
uint16_t nb_new_buf;
uint16_t buf_size;
uint16_t buf_len;
uint16_t len_s;
uint16_t len_d;
uint16_t len;
int ret;
char *s;
char *d;
mb_pool = tx_pkt->pool;
buf_size = tx_pkt->buf_len - RTE_PKTMBUF_HEADROOM;
nb_new_buf = (rte_pktmbuf_pkt_len(tx_pkt) - 1) / buf_size + 1;
if (nb_new_buf > max_non_tso_bd_num)
return -EINVAL;
last_buf_len = rte_pktmbuf_pkt_len(tx_pkt) % buf_size;
if (last_buf_len == 0)
last_buf_len = buf_size;
/* Allocate enough mbufs */
ret = hns3_tx_alloc_mbufs(mb_pool, nb_new_buf, &new_mbuf);
if (ret)
return ret;
/* Copy the original packet content to the new mbufs */
temp = tx_pkt;
s = rte_pktmbuf_mtod(temp, char *);
len_s = rte_pktmbuf_data_len(temp);
temp_new = new_mbuf;
while (temp != NULL && temp_new != NULL) {
d = rte_pktmbuf_mtod(temp_new, char *);
buf_len = temp_new->next == NULL ? last_buf_len : buf_size;
len_d = buf_len;
while (len_d) {
len = RTE_MIN(len_s, len_d);
memcpy(d, s, len);
s = s + len;
d = d + len;
len_d = len_d - len;
len_s = len_s - len;
if (len_s == 0) {
temp = temp->next;
if (temp == NULL)
break;
s = rte_pktmbuf_mtod(temp, char *);
len_s = rte_pktmbuf_data_len(temp);
}
}
temp_new->data_len = buf_len;
temp_new = temp_new->next;
}
hns3_pktmbuf_copy_hdr(new_mbuf, tx_pkt);
/* free original mbufs */
rte_pktmbuf_free(tx_pkt);
*new_pkt = new_mbuf;
return 0;
}
static void
hns3_parse_outer_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec)
{
uint32_t tmp = *ol_type_vlan_len_msec;
uint64_t ol_flags = m->ol_flags;
/* (outer) IP header type */
if (ol_flags & PKT_TX_OUTER_IPV4) {
if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M,
HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_CSUM);
else
tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M,
HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_NO_CSUM);
} else if (ol_flags & PKT_TX_OUTER_IPV6) {
tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
HNS3_OL3T_IPV6);
}
/* OL3 header size, defined in 4 bytes */
tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
m->outer_l3_len >> HNS3_L3_LEN_UNIT);
*ol_type_vlan_len_msec = tmp;
}
static int
hns3_parse_inner_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec,
uint32_t *type_cs_vlan_tso_len)
{
#define HNS3_NVGRE_HLEN 8
uint32_t tmp_outer = *ol_type_vlan_len_msec;
uint32_t tmp_inner = *type_cs_vlan_tso_len;
uint64_t ol_flags = m->ol_flags;
uint16_t inner_l2_len;
switch (ol_flags & PKT_TX_TUNNEL_MASK) {
case PKT_TX_TUNNEL_VXLAN_GPE:
case PKT_TX_TUNNEL_GENEVE:
case PKT_TX_TUNNEL_VXLAN:
/* MAC in UDP tunnelling packet, include VxLAN and GENEVE */
tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M,
HNS3_TXD_TUNTYPE_S, HNS3_TUN_MAC_IN_UDP);
/*
* The inner l2 length of mbuf is the sum of outer l4 length,
* tunneling header length and inner l2 length for a tunnel
* packet. But in hns3 tx descriptor, the tunneling header
* length is contained in the field of outer L4 length.
* Therefore, driver need to calculate the outer L4 length and
* inner L2 length.
*/
tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M,
HNS3_TXD_L4LEN_S,
(uint8_t)RTE_ETHER_VXLAN_HLEN >>
HNS3_L4_LEN_UNIT);
inner_l2_len = m->l2_len - RTE_ETHER_VXLAN_HLEN;
break;
case PKT_TX_TUNNEL_GRE:
tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M,
HNS3_TXD_TUNTYPE_S, HNS3_TUN_NVGRE);
/*
* For NVGRE tunnel packet, the outer L4 is empty. So only
* fill the NVGRE header length to the outer L4 field.
*/
tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M,
HNS3_TXD_L4LEN_S,
(uint8_t)HNS3_NVGRE_HLEN >> HNS3_L4_LEN_UNIT);
inner_l2_len = m->l2_len - HNS3_NVGRE_HLEN;
break;
default:
/* For non UDP / GRE tunneling, drop the tunnel packet */
return -EINVAL;
}
tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
inner_l2_len >> HNS3_L2_LEN_UNIT);
/* OL2 header size, defined in 2 bytes */
tmp_outer |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
m->outer_l2_len >> HNS3_L2_LEN_UNIT);
*type_cs_vlan_tso_len = tmp_inner;
*ol_type_vlan_len_msec = tmp_outer;
return 0;
}
static int
hns3_parse_tunneling_params(struct hns3_tx_queue *txq, struct rte_mbuf *m,
uint16_t tx_desc_id)
{
struct hns3_desc *tx_ring = txq->tx_ring;
struct hns3_desc *desc = &tx_ring[tx_desc_id];
uint32_t tmp_outer = 0;
uint32_t tmp_inner = 0;
int ret;
/*
* The tunnel header is contained in the inner L2 header field of the
* mbuf, but for hns3 descriptor, it is contained in the outer L4. So,
* there is a need that switching between them. To avoid multiple
* calculations, the length of the L2 header include the outer and
* inner, will be filled during the parsing of tunnel packets.
*/
if (!(m->ol_flags & PKT_TX_TUNNEL_MASK)) {
/*
* For non tunnel type the tunnel type id is 0, so no need to
* assign a value to it. Only the inner(normal) L2 header length
* is assigned.
*/
tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M,
HNS3_TXD_L2LEN_S, m->l2_len >> HNS3_L2_LEN_UNIT);
} else {
/*
* If outer csum is not offload, the outer length may be filled
* with 0. And the length of the outer header is added to the
* inner l2_len. It would lead a cksum error. So driver has to
* calculate the header length.
*/
if (unlikely(!(m->ol_flags & PKT_TX_OUTER_IP_CKSUM) &&
m->outer_l2_len == 0)) {
struct rte_net_hdr_lens hdr_len;
(void)rte_net_get_ptype(m, &hdr_len,
RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK);
m->outer_l3_len = hdr_len.l3_len;
m->outer_l2_len = hdr_len.l2_len;
m->l2_len = m->l2_len - hdr_len.l2_len - hdr_len.l3_len;
}
hns3_parse_outer_params(m, &tmp_outer);
ret = hns3_parse_inner_params(m, &tmp_outer, &tmp_inner);
if (ret)
return -EINVAL;
}
desc->tx.ol_type_vlan_len_msec = rte_cpu_to_le_32(tmp_outer);
desc->tx.type_cs_vlan_tso_len = rte_cpu_to_le_32(tmp_inner);
return 0;
}
static void
hns3_parse_l3_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len)
{
uint64_t ol_flags = m->ol_flags;
uint32_t l3_type;
uint32_t tmp;
tmp = *type_cs_vlan_tso_len;
if (ol_flags & PKT_TX_IPV4)
l3_type = HNS3_L3T_IPV4;
else if (ol_flags & PKT_TX_IPV6)
l3_type = HNS3_L3T_IPV6;
else
l3_type = HNS3_L3T_NONE;
/* inner(/normal) L3 header size, defined in 4 bytes */
tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
m->l3_len >> HNS3_L3_LEN_UNIT);
tmp |= hns3_gen_field_val(HNS3_TXD_L3T_M, HNS3_TXD_L3T_S, l3_type);
/* Enable L3 checksum offloads */
if (ol_flags & PKT_TX_IP_CKSUM)
tmp |= BIT(HNS3_TXD_L3CS_B);
*type_cs_vlan_tso_len = tmp;
}
static void
hns3_parse_l4_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len)
{
uint64_t ol_flags = m->ol_flags;
uint32_t tmp;
/* Enable L4 checksum offloads */
switch (ol_flags & (PKT_TX_L4_MASK | PKT_TX_TCP_SEG)) {
case PKT_TX_TCP_CKSUM | PKT_TX_TCP_SEG:
case PKT_TX_TCP_CKSUM:
case PKT_TX_TCP_SEG:
tmp = *type_cs_vlan_tso_len;
tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
HNS3_L4T_TCP);
break;
case PKT_TX_UDP_CKSUM:
tmp = *type_cs_vlan_tso_len;
tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
HNS3_L4T_UDP);
break;
case PKT_TX_SCTP_CKSUM:
tmp = *type_cs_vlan_tso_len;
tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
HNS3_L4T_SCTP);
break;
default:
return;
}
tmp |= BIT(HNS3_TXD_L4CS_B);
tmp |= hns3_gen_field_val(HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
m->l4_len >> HNS3_L4_LEN_UNIT);
*type_cs_vlan_tso_len = tmp;
}
static void
hns3_txd_enable_checksum(struct hns3_tx_queue *txq, struct rte_mbuf *m,
uint16_t tx_desc_id)
{
struct hns3_desc *tx_ring = txq->tx_ring;
struct hns3_desc *desc = &tx_ring[tx_desc_id];
uint32_t value = 0;
hns3_parse_l3_cksum_params(m, &value);
hns3_parse_l4_cksum_params(m, &value);
desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(value);
}
static bool
hns3_pkt_need_linearized(struct rte_mbuf *tx_pkts, uint32_t bd_num,
uint32_t max_non_tso_bd_num)
{
struct rte_mbuf *m_first = tx_pkts;
struct rte_mbuf *m_last = tx_pkts;
uint32_t tot_len = 0;
uint32_t hdr_len;
uint32_t i;
/*
* Hardware requires that the sum of the data length of every 8
* consecutive buffers is greater than MSS in hns3 network engine.
* We simplify it by ensuring pkt_headlen + the first 8 consecutive
* frags greater than gso header len + mss, and the remaining 7
* consecutive frags greater than MSS except the last 7 frags.
*/
if (bd_num <= max_non_tso_bd_num)
return false;
for (i = 0; m_last && i < max_non_tso_bd_num - 1;
i++, m_last = m_last->next)
tot_len += m_last->data_len;
if (!m_last)
return true;
/* ensure the first 8 frags is greater than mss + header */
hdr_len = tx_pkts->l2_len + tx_pkts->l3_len + tx_pkts->l4_len;
hdr_len += (tx_pkts->ol_flags & PKT_TX_TUNNEL_MASK) ?
tx_pkts->outer_l2_len + tx_pkts->outer_l3_len : 0;
if (tot_len + m_last->data_len < tx_pkts->tso_segsz + hdr_len)
return true;
/*
* ensure the sum of the data length of every 7 consecutive buffer
* is greater than mss except the last one.
*/
for (i = 0; m_last && i < bd_num - max_non_tso_bd_num; i++) {
tot_len -= m_first->data_len;
tot_len += m_last->data_len;
if (tot_len < tx_pkts->tso_segsz)
return true;
m_first = m_first->next;
m_last = m_last->next;
}
return false;
}
static void
hns3_outer_header_cksum_prepare(struct rte_mbuf *m)
{
uint64_t ol_flags = m->ol_flags;
uint32_t paylen, hdr_len, l4_proto;
if (!(ol_flags & (PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6)))
return;
if (ol_flags & PKT_TX_OUTER_IPV4) {
struct rte_ipv4_hdr *ipv4_hdr;
ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
m->outer_l2_len);
l4_proto = ipv4_hdr->next_proto_id;
if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
ipv4_hdr->hdr_checksum = 0;
} else {
struct rte_ipv6_hdr *ipv6_hdr;
ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
m->outer_l2_len);
l4_proto = ipv6_hdr->proto;
}
/* driver should ensure the outer udp cksum is 0 for TUNNEL TSO */
if (l4_proto == IPPROTO_UDP && (ol_flags & PKT_TX_TCP_SEG)) {
struct rte_udp_hdr *udp_hdr;
hdr_len = m->l2_len + m->l3_len + m->l4_len;
hdr_len += m->outer_l2_len + m->outer_l3_len;
paylen = m->pkt_len - hdr_len;
if (paylen <= m->tso_segsz)
return;
udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
m->outer_l2_len +
m->outer_l3_len);
udp_hdr->dgram_cksum = 0;
}
}
static int
hns3_check_tso_pkt_valid(struct rte_mbuf *m)
{
uint32_t tmp_data_len_sum = 0;
uint16_t nb_buf = m->nb_segs;
uint32_t paylen, hdr_len;
struct rte_mbuf *m_seg;
int i;
if (nb_buf > HNS3_MAX_TSO_BD_PER_PKT)
return -EINVAL;
hdr_len = m->l2_len + m->l3_len + m->l4_len;
hdr_len += (m->ol_flags & PKT_TX_TUNNEL_MASK) ?
m->outer_l2_len + m->outer_l3_len : 0;
if (hdr_len > HNS3_MAX_TSO_HDR_SIZE)
return -EINVAL;
paylen = m->pkt_len - hdr_len;
if (paylen > HNS3_MAX_BD_PAYLEN)
return -EINVAL;
/*
* The TSO header (include outer and inner L2, L3 and L4 header)
* should be provided by three descriptors in maximum in hns3 network
* engine.
*/
m_seg = m;
for (i = 0; m_seg != NULL && i < HNS3_MAX_TSO_HDR_BD_NUM && i < nb_buf;
i++, m_seg = m_seg->next) {
tmp_data_len_sum += m_seg->data_len;
}
if (hdr_len > tmp_data_len_sum)
return -EINVAL;
return 0;
}
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
static inline int
hns3_vld_vlan_chk(struct hns3_tx_queue *txq, struct rte_mbuf *m)
{
struct rte_ether_hdr *eh;
struct rte_vlan_hdr *vh;
if (!txq->pvid_sw_shift_en)
return 0;
/*
* Due to hardware limitations, we only support two-layer VLAN hardware
* offload in Tx direction based on hns3 network engine, so when PVID is
* enabled, QinQ insert is no longer supported.
* And when PVID is enabled, in the following two cases:
* i) packets with more than two VLAN tags.
* ii) packets with one VLAN tag while the hardware VLAN insert is
* enabled.
* The packets will be regarded as abnormal packets and discarded by
* hardware in Tx direction. For debugging purposes, a validation check
* for these types of packets is added to the '.tx_pkt_prepare' ops
* implementation function named hns3_prep_pkts to inform users that
* these packets will be discarded.
*/
if (m->ol_flags & PKT_TX_QINQ_PKT)
return -EINVAL;
eh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
if (eh->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) {
if (m->ol_flags & PKT_TX_VLAN_PKT)
return -EINVAL;
/* Ensure the incoming packet is not a QinQ packet */
vh = (struct rte_vlan_hdr *)(eh + 1);
if (vh->eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN))
return -EINVAL;
}
return 0;
}
#endif
static uint16_t
hns3_udp_cksum_help(struct rte_mbuf *m)
{
uint64_t ol_flags = m->ol_flags;
uint16_t cksum = 0;
uint32_t l4_len;
if (ol_flags & PKT_TX_IPV4) {
struct rte_ipv4_hdr *ipv4_hdr = rte_pktmbuf_mtod_offset(m,
struct rte_ipv4_hdr *, m->l2_len);
l4_len = rte_be_to_cpu_16(ipv4_hdr->total_length) - m->l3_len;
} else {
struct rte_ipv6_hdr *ipv6_hdr = rte_pktmbuf_mtod_offset(m,
struct rte_ipv6_hdr *, m->l2_len);
l4_len = rte_be_to_cpu_16(ipv6_hdr->payload_len);
}
rte_raw_cksum_mbuf(m, m->l2_len + m->l3_len, l4_len, &cksum);
cksum = ~cksum;
/*
* RFC 768:If the computed checksum is zero for UDP, it is transmitted
* as all ones
*/
if (cksum == 0)
cksum = 0xffff;
return (uint16_t)cksum;
}
static bool
hns3_validate_tunnel_cksum(struct hns3_tx_queue *tx_queue, struct rte_mbuf *m)
{
uint64_t ol_flags = m->ol_flags;
struct rte_udp_hdr *udp_hdr;
uint16_t dst_port;
if (tx_queue->udp_cksum_mode == HNS3_SPECIAL_PORT_HW_CKSUM_MODE ||
ol_flags & PKT_TX_TUNNEL_MASK ||
(ol_flags & PKT_TX_L4_MASK) != PKT_TX_UDP_CKSUM)
return true;
/*
* A UDP packet with the same dst_port as VXLAN\VXLAN_GPE\GENEVE will
* be recognized as a tunnel packet in HW. In this case, if UDP CKSUM
* offload is set and the tunnel mask has not been set, the CKSUM will
* be wrong since the header length is wrong and driver should complete
* the CKSUM to avoid CKSUM error.
*/
udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
m->l2_len + m->l3_len);
dst_port = rte_be_to_cpu_16(udp_hdr->dst_port);
switch (dst_port) {
case RTE_VXLAN_DEFAULT_PORT:
case RTE_VXLAN_GPE_DEFAULT_PORT:
case RTE_GENEVE_DEFAULT_PORT:
udp_hdr->dgram_cksum = hns3_udp_cksum_help(m);
m->ol_flags = ol_flags & ~PKT_TX_L4_MASK;
return false;
default:
return true;
}
}
static int
hns3_prep_pkt_proc(struct hns3_tx_queue *tx_queue, struct rte_mbuf *m)
{
int ret;
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = -ret;
return ret;
}
ret = hns3_vld_vlan_chk(tx_queue, m);
if (ret != 0) {
rte_errno = EINVAL;
return ret;
}
#endif
if (hns3_pkt_is_tso(m)) {
if (hns3_pkt_need_linearized(m, m->nb_segs,
tx_queue->max_non_tso_bd_num) ||
hns3_check_tso_pkt_valid(m)) {
rte_errno = EINVAL;
return -EINVAL;
}
if (tx_queue->tso_mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) {
/*
* (tso mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) means
* hardware support recalculate the TCP pseudo header
* checksum of packets that need TSO, so network driver
* software not need to recalculate it.
*/
hns3_outer_header_cksum_prepare(m);
return 0;
}
}
ret = rte_net_intel_cksum_prepare(m);
if (ret != 0) {
rte_errno = -ret;
return ret;
}
if (!hns3_validate_tunnel_cksum(tx_queue, m))
return 0;
hns3_outer_header_cksum_prepare(m);
return 0;
}
uint16_t
hns3_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct rte_mbuf *m;
uint16_t i;
for (i = 0; i < nb_pkts; i++) {
m = tx_pkts[i];
if (hns3_prep_pkt_proc(tx_queue, m))
return i;
}
return i;
}
static int
hns3_parse_cksum(struct hns3_tx_queue *txq, uint16_t tx_desc_id,
struct rte_mbuf *m)
{
struct hns3_desc *tx_ring = txq->tx_ring;
struct hns3_desc *desc = &tx_ring[tx_desc_id];
/* Enable checksum offloading */
if (m->ol_flags & HNS3_TX_CKSUM_OFFLOAD_MASK) {
/* Fill in tunneling parameters if necessary */
if (hns3_parse_tunneling_params(txq, m, tx_desc_id)) {
txq->unsupported_tunnel_pkt_cnt++;
return -EINVAL;
}
hns3_txd_enable_checksum(txq, m, tx_desc_id);
} else {
/* clear the control bit */
desc->tx.type_cs_vlan_tso_len = 0;
desc->tx.ol_type_vlan_len_msec = 0;
}
return 0;
}
static int
hns3_check_non_tso_pkt(uint16_t nb_buf, struct rte_mbuf **m_seg,
struct rte_mbuf *tx_pkt, struct hns3_tx_queue *txq)
{
uint8_t max_non_tso_bd_num;
struct rte_mbuf *new_pkt;
int ret;
if (hns3_pkt_is_tso(*m_seg))
return 0;
/*
* If packet length is greater than HNS3_MAX_FRAME_LEN
* driver support, the packet will be ignored.
*/
if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) > HNS3_MAX_FRAME_LEN)) {
txq->over_length_pkt_cnt++;
return -EINVAL;
}
max_non_tso_bd_num = txq->max_non_tso_bd_num;
if (unlikely(nb_buf > max_non_tso_bd_num)) {
txq->exceed_limit_bd_pkt_cnt++;
ret = hns3_reassemble_tx_pkts(tx_pkt, &new_pkt,
max_non_tso_bd_num);
if (ret) {
txq->exceed_limit_bd_reassem_fail++;
return ret;
}
*m_seg = new_pkt;
}
return 0;
}
static inline void
hns3_tx_free_buffer_simple(struct hns3_tx_queue *txq)
{
struct hns3_entry *tx_entry;
struct hns3_desc *desc;
uint16_t tx_next_clean;
int i;
while (1) {
if (HNS3_GET_TX_QUEUE_PEND_BD_NUM(txq) < txq->tx_rs_thresh)
break;
/*
* All mbufs can be released only when the VLD bits of all
* descriptors in a batch are cleared.
*/
tx_next_clean = (txq->next_to_clean + txq->tx_rs_thresh - 1) %
txq->nb_tx_desc;
desc = &txq->tx_ring[tx_next_clean];
for (i = 0; i < txq->tx_rs_thresh; i++) {
if (rte_le_to_cpu_16(desc->tx.tp_fe_sc_vld_ra_ri) &
BIT(HNS3_TXD_VLD_B))
return;
desc--;
}
tx_entry = &txq->sw_ring[txq->next_to_clean];
if (txq->mbuf_fast_free_en) {
rte_mempool_put_bulk(tx_entry->mbuf->pool,
(void **)tx_entry, txq->tx_rs_thresh);
for (i = 0; i < txq->tx_rs_thresh; i++)
tx_entry[i].mbuf = NULL;
goto update_field;
}
for (i = 0; i < txq->tx_rs_thresh; i++)
rte_prefetch0((tx_entry + i)->mbuf);
for (i = 0; i < txq->tx_rs_thresh; i++, tx_entry++) {
rte_mempool_put(tx_entry->mbuf->pool, tx_entry->mbuf);
tx_entry->mbuf = NULL;
}
update_field:
txq->next_to_clean = (tx_next_clean + 1) % txq->nb_tx_desc;
txq->tx_bd_ready += txq->tx_rs_thresh;
}
}
static inline void
hns3_tx_backup_1mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts)
{
tx_entry->mbuf = pkts[0];
}
static inline void
hns3_tx_backup_4mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts)
{
hns3_tx_backup_1mbuf(&tx_entry[0], &pkts[0]);
hns3_tx_backup_1mbuf(&tx_entry[1], &pkts[1]);
hns3_tx_backup_1mbuf(&tx_entry[2], &pkts[2]);
hns3_tx_backup_1mbuf(&tx_entry[3], &pkts[3]);
}
static inline void
hns3_tx_setup_4bd(struct hns3_desc *txdp, struct rte_mbuf **pkts)
{
#define PER_LOOP_NUM 4
const uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B);
uint64_t dma_addr;
uint32_t i;
for (i = 0; i < PER_LOOP_NUM; i++, txdp++, pkts++) {
dma_addr = rte_mbuf_data_iova(*pkts);
txdp->addr = rte_cpu_to_le_64(dma_addr);
txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len);
txdp->tx.paylen = 0;
txdp->tx.type_cs_vlan_tso_len = 0;
txdp->tx.ol_type_vlan_len_msec = 0;
txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag);
}
}
static inline void
hns3_tx_setup_1bd(struct hns3_desc *txdp, struct rte_mbuf **pkts)
{
const uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B);
uint64_t dma_addr;
dma_addr = rte_mbuf_data_iova(*pkts);
txdp->addr = rte_cpu_to_le_64(dma_addr);
txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len);
txdp->tx.paylen = 0;
txdp->tx.type_cs_vlan_tso_len = 0;
txdp->tx.ol_type_vlan_len_msec = 0;
txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag);
}
static inline void
hns3_tx_fill_hw_ring(struct hns3_tx_queue *txq,
struct rte_mbuf **pkts,
uint16_t nb_pkts)
{
#define PER_LOOP_NUM 4
#define PER_LOOP_MASK (PER_LOOP_NUM - 1)
struct hns3_desc *txdp = &txq->tx_ring[txq->next_to_use];
struct hns3_entry *tx_entry = &txq->sw_ring[txq->next_to_use];
const uint32_t mainpart = (nb_pkts & ((uint32_t)~PER_LOOP_MASK));
const uint32_t leftover = (nb_pkts & ((uint32_t)PER_LOOP_MASK));
uint32_t i;
for (i = 0; i < mainpart; i += PER_LOOP_NUM) {
hns3_tx_backup_4mbuf(tx_entry + i, pkts + i);
hns3_tx_setup_4bd(txdp + i, pkts + i);
}
if (unlikely(leftover > 0)) {
for (i = 0; i < leftover; i++) {
hns3_tx_backup_1mbuf(tx_entry + mainpart + i,
pkts + mainpart + i);
hns3_tx_setup_1bd(txdp + mainpart + i,
pkts + mainpart + i);
}
}
}
uint16_t
hns3_xmit_pkts_simple(void *tx_queue,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct hns3_tx_queue *txq = tx_queue;
uint16_t nb_tx = 0;
hns3_tx_free_buffer_simple(txq);
nb_pkts = RTE_MIN(txq->tx_bd_ready, nb_pkts);
if (unlikely(nb_pkts == 0)) {
if (txq->tx_bd_ready == 0)
txq->queue_full_cnt++;
return 0;
}
txq->tx_bd_ready -= nb_pkts;
if (txq->next_to_use + nb_pkts > txq->nb_tx_desc) {
nb_tx = txq->nb_tx_desc - txq->next_to_use;
hns3_tx_fill_hw_ring(txq, tx_pkts, nb_tx);
txq->next_to_use = 0;
}
hns3_tx_fill_hw_ring(txq, tx_pkts + nb_tx, nb_pkts - nb_tx);
txq->next_to_use += nb_pkts - nb_tx;
hns3_write_reg_opt(txq->io_tail_reg, nb_pkts);
return nb_pkts;
}
uint16_t
hns3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct hns3_tx_queue *txq = tx_queue;
struct hns3_entry *tx_bak_pkt;
struct hns3_desc *tx_ring;
struct rte_mbuf *tx_pkt;
struct rte_mbuf *m_seg;
struct hns3_desc *desc;
uint32_t nb_hold = 0;
uint16_t tx_next_use;
uint16_t tx_pkt_num;
uint16_t tx_bd_max;
uint16_t nb_buf;
uint16_t nb_tx;
uint16_t i;
/* free useless buffer */
hns3_tx_free_useless_buffer(txq);
tx_next_use = txq->next_to_use;
tx_bd_max = txq->nb_tx_desc;
tx_pkt_num = nb_pkts;
tx_ring = txq->tx_ring;
/* send packets */
tx_bak_pkt = &txq->sw_ring[tx_next_use];
for (nb_tx = 0; nb_tx < tx_pkt_num; nb_tx++) {
tx_pkt = *tx_pkts++;
nb_buf = tx_pkt->nb_segs;
if (nb_buf > txq->tx_bd_ready) {
txq->queue_full_cnt++;
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
/*
* If packet length is less than minimum packet length supported
* by hardware in Tx direction, driver need to pad it to avoid
* error.
*/
if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) <
txq->min_tx_pkt_len)) {
uint16_t add_len;
char *appended;
add_len = txq->min_tx_pkt_len -
rte_pktmbuf_pkt_len(tx_pkt);
appended = rte_pktmbuf_append(tx_pkt, add_len);
if (appended == NULL) {
txq->pkt_padding_fail_cnt++;
break;
}
memset(appended, 0, add_len);
}
m_seg = tx_pkt;
if (hns3_check_non_tso_pkt(nb_buf, &m_seg, tx_pkt, txq))
goto end_of_tx;
if (hns3_parse_cksum(txq, tx_next_use, m_seg))
goto end_of_tx;
i = 0;
desc = &tx_ring[tx_next_use];
/*
* If the packet is divided into multiple Tx Buffer Descriptors,
* only need to fill vlan, paylen and tso into the first Tx
* Buffer Descriptor.
*/
hns3_fill_first_desc(txq, desc, m_seg);
do {
desc = &tx_ring[tx_next_use];
/*
* Fill valid bits, DMA address and data length for each
* Tx Buffer Descriptor.
*/
hns3_fill_per_desc(desc, m_seg);
tx_bak_pkt->mbuf = m_seg;
m_seg = m_seg->next;
tx_next_use++;
tx_bak_pkt++;
if (tx_next_use >= tx_bd_max) {
tx_next_use = 0;
tx_bak_pkt = txq->sw_ring;
}
i++;
} while (m_seg != NULL);
/* Add end flag for the last Tx Buffer Descriptor */
desc->tx.tp_fe_sc_vld_ra_ri |=
rte_cpu_to_le_16(BIT(HNS3_TXD_FE_B));
nb_hold += i;
txq->next_to_use = tx_next_use;
txq->tx_bd_ready -= i;
}
end_of_tx:
if (likely(nb_tx))
hns3_write_reg_opt(txq->io_tail_reg, nb_hold);
return nb_tx;
}
int __rte_weak
hns3_tx_check_vec_support(__rte_unused struct rte_eth_dev *dev)
{
return -ENOTSUP;
}
uint16_t __rte_weak
hns3_xmit_pkts_vec(__rte_unused void *tx_queue,
__rte_unused struct rte_mbuf **tx_pkts,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
uint16_t __rte_weak
hns3_xmit_pkts_vec_sve(void __rte_unused * tx_queue,
struct rte_mbuf __rte_unused **tx_pkts,
uint16_t __rte_unused nb_pkts)
{
return 0;
}
int
hns3_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
struct rte_eth_burst_mode *mode)
{
eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
const char *info = NULL;
if (pkt_burst == hns3_xmit_pkts_simple)
info = "Scalar Simple";
else if (pkt_burst == hns3_xmit_pkts)
info = "Scalar";
else if (pkt_burst == hns3_xmit_pkts_vec)
info = "Vector Neon";
else if (pkt_burst == hns3_xmit_pkts_vec_sve)
info = "Vector Sve";
if (info == NULL)
return -EINVAL;
snprintf(mode->info, sizeof(mode->info), "%s", info);
return 0;
}
static eth_tx_burst_t
hns3_get_tx_function(struct rte_eth_dev *dev, eth_tx_prep_t *prep)
{
uint64_t offloads = dev->data->dev_conf.txmode.offloads;
struct hns3_adapter *hns = dev->data->dev_private;
if (hns->tx_vec_allowed && hns3_tx_check_vec_support(dev) == 0) {
*prep = NULL;
if (hns3_get_default_vec_support())
return hns3_xmit_pkts_vec;
else if (hns3_check_sve_support())
return hns3_xmit_pkts_vec_sve;
}
if (hns->tx_simple_allowed &&
offloads == (offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE)) {
*prep = NULL;
return hns3_xmit_pkts_simple;
}
*prep = hns3_prep_pkts;
return hns3_xmit_pkts;
}
static uint16_t
hns3_dummy_rxtx_burst(void *dpdk_txq __rte_unused,
struct rte_mbuf **pkts __rte_unused,
uint16_t pkts_n __rte_unused)
{
return 0;
}
void hns3_set_rxtx_function(struct rte_eth_dev *eth_dev)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
eth_tx_prep_t prep = NULL;
if (hns->hw.adapter_state == HNS3_NIC_STARTED &&
rte_atomic16_read(&hns->hw.reset.resetting) == 0) {
eth_dev->rx_pkt_burst = hns3_get_rx_function(eth_dev);
eth_dev->tx_pkt_burst = hns3_get_tx_function(eth_dev, &prep);
eth_dev->tx_pkt_prepare = prep;
} else {
eth_dev->rx_pkt_burst = hns3_dummy_rxtx_burst;
eth_dev->tx_pkt_burst = hns3_dummy_rxtx_burst;
eth_dev->tx_pkt_prepare = NULL;
}
}
void
hns3_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct hns3_rx_queue *rxq = dev->data->rx_queues[queue_id];
qinfo->mp = rxq->mb_pool;
qinfo->nb_desc = rxq->nb_rx_desc;
qinfo->scattered_rx = dev->data->scattered_rx;
/* Report the HW Rx buffer length to user */
qinfo->rx_buf_size = rxq->rx_buf_len;
/*
* If there are no available Rx buffer descriptors, incoming packets
* are always dropped by hardware based on hns3 network engine.
*/
qinfo->conf.rx_drop_en = 1;
qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
}
void
hns3_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_txq_info *qinfo)
{
struct hns3_tx_queue *txq = dev->data->tx_queues[queue_id];
qinfo->nb_desc = txq->nb_tx_desc;
qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads;
qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
}
int
hns3_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id];
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
int ret;
if (!hns3_dev_indep_txrx_supported(hw))
return -ENOTSUP;
rte_spinlock_lock(&hw->lock);
ret = hns3_reset_queue(hw, rx_queue_id, HNS3_RING_TYPE_RX);
if (ret) {
hns3_err(hw, "fail to reset Rx queue %u, ret = %d.",
rx_queue_id, ret);
rte_spinlock_unlock(&hw->lock);
return ret;
}
ret = hns3_init_rxq(hns, rx_queue_id);
if (ret) {
hns3_err(hw, "fail to init Rx queue %u, ret = %d.",
rx_queue_id, ret);
rte_spinlock_unlock(&hw->lock);
return ret;
}
hns3_enable_rxq(rxq, true);
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
rte_spinlock_unlock(&hw->lock);
return ret;
}
static void
hns3_reset_sw_rxq(struct hns3_rx_queue *rxq)
{
rxq->next_to_use = 0;
rxq->rx_rearm_start = 0;
rxq->rx_free_hold = 0;
rxq->rx_rearm_nb = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
memset(&rxq->rx_ring[0], 0, rxq->nb_rx_desc * sizeof(struct hns3_desc));
hns3_rxq_vec_setup(rxq);
}
int
hns3_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id];
if (!hns3_dev_indep_txrx_supported(hw))
return -ENOTSUP;
rte_spinlock_lock(&hw->lock);
hns3_enable_rxq(rxq, false);
hns3_rx_queue_release_mbufs(rxq);
hns3_reset_sw_rxq(rxq);
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
rte_spinlock_unlock(&hw->lock);
return 0;
}
int
hns3_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id];
int ret;
if (!hns3_dev_indep_txrx_supported(hw))
return -ENOTSUP;
rte_spinlock_lock(&hw->lock);
ret = hns3_reset_queue(hw, tx_queue_id, HNS3_RING_TYPE_TX);
if (ret) {
hns3_err(hw, "fail to reset Tx queue %u, ret = %d.",
tx_queue_id, ret);
rte_spinlock_unlock(&hw->lock);
return ret;
}
hns3_init_txq(txq);
hns3_enable_txq(txq, true);
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
rte_spinlock_unlock(&hw->lock);
return ret;
}
int
hns3_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id];
if (!hns3_dev_indep_txrx_supported(hw))
return -ENOTSUP;
rte_spinlock_lock(&hw->lock);
hns3_enable_txq(txq, false);
hns3_tx_queue_release_mbufs(txq);
/*
* All the mbufs in sw_ring are released and all the pointers in sw_ring
* are set to NULL. If this queue is still called by upper layer,
* residual SW status of this txq may cause these pointers in sw_ring
* which have been set to NULL to be released again. To avoid it,
* reinit the txq.
*/
hns3_init_txq(txq);
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
rte_spinlock_unlock(&hw->lock);
return 0;
}
uint32_t
hns3_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
/*
* Number of BDs that have been processed by the driver
* but have not been notified to the hardware.
*/
uint32_t driver_hold_bd_num;
struct hns3_rx_queue *rxq;
uint32_t fbd_num;
rxq = dev->data->rx_queues[rx_queue_id];
fbd_num = hns3_read_dev(rxq, HNS3_RING_RX_FBDNUM_REG);
if (dev->rx_pkt_burst == hns3_recv_pkts_vec ||
dev->rx_pkt_burst == hns3_recv_pkts_vec_sve)
driver_hold_bd_num = rxq->rx_rearm_nb;
else
driver_hold_bd_num = rxq->rx_free_hold;
if (fbd_num <= driver_hold_bd_num)
return 0;
else
return fbd_num - driver_hold_bd_num;
}