f-stack/dpdk/drivers/net/cxgbe/sge.c

2668 lines
75 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2014-2018 Chelsio Communications.
* All rights reserved.
*/
#include <sys/queue.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <inttypes.h>
#include <netinet/in.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_interrupts.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_alarm.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_malloc.h>
#include <rte_random.h>
#include <rte_dev.h>
#include "base/common.h"
#include "base/t4_regs.h"
#include "base/t4_msg.h"
#include "cxgbe.h"
static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap,
struct sge_eth_txq *txq);
/*
* Max number of Rx buffers we replenish at a time.
*/
#define MAX_RX_REFILL 64U
#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
/*
* Max Tx descriptor space we allow for an Ethernet packet to be inlined
* into a WR.
*/
#define MAX_IMM_TX_PKT_LEN 256
/*
* Max size of a WR sent through a control Tx queue.
*/
#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
/*
* Rx buffer sizes for "usembufs" Free List buffers (one ingress packet
* per mbuf buffer). We currently only support two sizes for 1500- and
* 9000-byte MTUs. We could easily support more but there doesn't seem to be
* much need for that ...
*/
#define FL_MTU_SMALL 1500
#define FL_MTU_LARGE 9000
static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
unsigned int mtu)
{
struct sge *s = &adapter->sge;
return CXGBE_ALIGN(s->pktshift + RTE_ETHER_HDR_LEN + VLAN_HLEN + mtu,
s->fl_align);
}
#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
/*
* Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
* these to specify the buffer size as an index into the SGE Free List Buffer
* Size register array. We also use bit 4, when the buffer has been unmapped
* for DMA, but this is of course never sent to the hardware and is only used
* to prevent double unmappings. All of the above requires that the Free List
* Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
* 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
* Free List Buffer alignment is 32 bytes, this works out for us ...
*/
enum {
RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
/*
* XXX We shouldn't depend on being able to use these indices.
* XXX Especially when some other Master PF has initialized the
* XXX adapter or we use the Firmware Configuration File. We
* XXX should really search through the Host Buffer Size register
* XXX array for the appropriately sized buffer indices.
*/
RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
RX_LARGE_PG_BUF = 0x1, /* buffer large page buffer */
RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
};
/**
* txq_avail - return the number of available slots in a Tx queue
* @q: the Tx queue
*
* Returns the number of descriptors in a Tx queue available to write new
* packets.
*/
static inline unsigned int txq_avail(const struct sge_txq *q)
{
return q->size - 1 - q->in_use;
}
static int map_mbuf(struct rte_mbuf *mbuf, dma_addr_t *addr)
{
struct rte_mbuf *m = mbuf;
for (; m; m = m->next, addr++) {
*addr = m->buf_iova + rte_pktmbuf_headroom(m);
if (*addr == 0)
goto out_err;
}
return 0;
out_err:
return -ENOMEM;
}
/**
* free_tx_desc - reclaims Tx descriptors and their buffers
* @q: the Tx queue to reclaim descriptors from
* @n: the number of descriptors to reclaim
*
* Reclaims Tx descriptors from an SGE Tx queue and frees the associated
* Tx buffers. Called with the Tx queue lock held.
*/
static void free_tx_desc(struct sge_txq *q, unsigned int n)
{
struct tx_sw_desc *d;
unsigned int cidx = 0;
d = &q->sdesc[cidx];
while (n--) {
if (d->mbuf) { /* an SGL is present */
rte_pktmbuf_free(d->mbuf);
d->mbuf = NULL;
}
if (d->coalesce.idx) {
int i;
for (i = 0; i < d->coalesce.idx; i++) {
rte_pktmbuf_free(d->coalesce.mbuf[i]);
d->coalesce.mbuf[i] = NULL;
}
d->coalesce.idx = 0;
}
++d;
if (++cidx == q->size) {
cidx = 0;
d = q->sdesc;
}
RTE_MBUF_PREFETCH_TO_FREE(&q->sdesc->mbuf->pool);
}
}
static void reclaim_tx_desc(struct sge_txq *q, unsigned int n)
{
struct tx_sw_desc *d;
unsigned int cidx = q->cidx;
d = &q->sdesc[cidx];
while (n--) {
if (d->mbuf) { /* an SGL is present */
rte_pktmbuf_free(d->mbuf);
d->mbuf = NULL;
}
++d;
if (++cidx == q->size) {
cidx = 0;
d = q->sdesc;
}
}
q->cidx = cidx;
}
/**
* fl_cap - return the capacity of a free-buffer list
* @fl: the FL
*
* Returns the capacity of a free-buffer list. The capacity is less than
* the size because one descriptor needs to be left unpopulated, otherwise
* HW will think the FL is empty.
*/
static inline unsigned int fl_cap(const struct sge_fl *fl)
{
return fl->size - 8; /* 1 descriptor = 8 buffers */
}
/**
* fl_starving - return whether a Free List is starving.
* @adapter: pointer to the adapter
* @fl: the Free List
*
* Tests specified Free List to see whether the number of buffers
* available to the hardware has fallen below our "starvation"
* threshold.
*/
static inline bool fl_starving(const struct adapter *adapter,
const struct sge_fl *fl)
{
const struct sge *s = &adapter->sge;
return fl->avail - fl->pend_cred <= s->fl_starve_thres;
}
static inline unsigned int get_buf_size(struct adapter *adapter,
const struct rx_sw_desc *d)
{
unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
unsigned int buf_size = 0;
switch (rx_buf_size_idx) {
case RX_SMALL_MTU_BUF:
buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
break;
case RX_LARGE_MTU_BUF:
buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
break;
default:
BUG_ON(1);
/* NOT REACHED */
}
return buf_size;
}
/**
* free_rx_bufs - free the Rx buffers on an SGE free list
* @q: the SGE free list to free buffers from
* @n: how many buffers to free
*
* Release the next @n buffers on an SGE free-buffer Rx queue. The
* buffers must be made inaccessible to HW before calling this function.
*/
static void free_rx_bufs(struct sge_fl *q, int n)
{
unsigned int cidx = q->cidx;
struct rx_sw_desc *d;
d = &q->sdesc[cidx];
while (n--) {
if (d->buf) {
rte_pktmbuf_free(d->buf);
d->buf = NULL;
}
++d;
if (++cidx == q->size) {
cidx = 0;
d = q->sdesc;
}
q->avail--;
}
q->cidx = cidx;
}
/**
* unmap_rx_buf - unmap the current Rx buffer on an SGE free list
* @q: the SGE free list
*
* Unmap the current buffer on an SGE free-buffer Rx queue. The
* buffer must be made inaccessible to HW before calling this function.
*
* This is similar to @free_rx_bufs above but does not free the buffer.
* Do note that the FL still loses any further access to the buffer.
*/
static void unmap_rx_buf(struct sge_fl *q)
{
if (++q->cidx == q->size)
q->cidx = 0;
q->avail--;
}
static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
{
if (q->pend_cred >= 64) {
u32 val = adap->params.arch.sge_fl_db;
if (is_t4(adap->params.chip))
val |= V_PIDX(q->pend_cred / 8);
else
val |= V_PIDX_T5(q->pend_cred / 8);
/*
* Make sure all memory writes to the Free List queue are
* committed before we tell the hardware about them.
*/
wmb();
/*
* If we don't have access to the new User Doorbell (T5+), use
* the old doorbell mechanism; otherwise use the new BAR2
* mechanism.
*/
if (unlikely(!q->bar2_addr)) {
u32 reg = is_pf4(adap) ? MYPF_REG(A_SGE_PF_KDOORBELL) :
T4VF_SGE_BASE_ADDR +
A_SGE_VF_KDOORBELL;
t4_write_reg_relaxed(adap, reg,
val | V_QID(q->cntxt_id));
} else {
writel_relaxed(val | V_QID(q->bar2_qid),
(void *)((uintptr_t)q->bar2_addr +
SGE_UDB_KDOORBELL));
/*
* This Write memory Barrier will force the write to
* the User Doorbell area to be flushed.
*/
wmb();
}
q->pend_cred &= 7;
}
}
static inline void set_rx_sw_desc(struct rx_sw_desc *sd, void *buf,
dma_addr_t mapping)
{
sd->buf = buf;
sd->dma_addr = mapping; /* includes size low bits */
}
/**
* refill_fl_usembufs - refill an SGE Rx buffer ring with mbufs
* @adap: the adapter
* @q: the ring to refill
* @n: the number of new buffers to allocate
*
* (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
* allocated with the supplied gfp flags. The caller must assure that
* @n does not exceed the queue's capacity. If afterwards the queue is
* found critically low mark it as starving in the bitmap of starving FLs.
*
* Returns the number of buffers allocated.
*/
static unsigned int refill_fl_usembufs(struct adapter *adap, struct sge_fl *q,
int n)
{
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, fl);
unsigned int cred = q->avail;
__be64 *d = &q->desc[q->pidx];
struct rx_sw_desc *sd = &q->sdesc[q->pidx];
unsigned int buf_size_idx = RX_SMALL_MTU_BUF;
struct rte_mbuf *buf_bulk[n];
int ret, i;
struct rte_pktmbuf_pool_private *mbp_priv;
u8 jumbo_en = rxq->rspq.eth_dev->data->dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_JUMBO_FRAME;
/* Use jumbo mtu buffers if mbuf data room size can fit jumbo data. */
mbp_priv = rte_mempool_get_priv(rxq->rspq.mb_pool);
if (jumbo_en &&
((mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM) >= 9000))
buf_size_idx = RX_LARGE_MTU_BUF;
ret = rte_mempool_get_bulk(rxq->rspq.mb_pool, (void *)buf_bulk, n);
if (unlikely(ret != 0)) {
dev_debug(adap, "%s: failed to allocated fl entries in bulk ..\n",
__func__);
q->alloc_failed++;
rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++;
goto out;
}
for (i = 0; i < n; i++) {
struct rte_mbuf *mbuf = buf_bulk[i];
dma_addr_t mapping;
if (!mbuf) {
dev_debug(adap, "%s: mbuf alloc failed\n", __func__);
q->alloc_failed++;
rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++;
goto out;
}
rte_mbuf_refcnt_set(mbuf, 1);
mbuf->data_off =
(uint16_t)((char *)
RTE_PTR_ALIGN((char *)mbuf->buf_addr +
RTE_PKTMBUF_HEADROOM,
adap->sge.fl_align) -
(char *)mbuf->buf_addr);
mbuf->next = NULL;
mbuf->nb_segs = 1;
mbuf->port = rxq->rspq.port_id;
mapping = (dma_addr_t)RTE_ALIGN(mbuf->buf_iova +
mbuf->data_off,
adap->sge.fl_align);
mapping |= buf_size_idx;
*d++ = cpu_to_be64(mapping);
set_rx_sw_desc(sd, mbuf, mapping);
sd++;
q->avail++;
if (++q->pidx == q->size) {
q->pidx = 0;
sd = q->sdesc;
d = q->desc;
}
}
out: cred = q->avail - cred;
q->pend_cred += cred;
ring_fl_db(adap, q);
if (unlikely(fl_starving(adap, q))) {
/*
* Make sure data has been written to free list
*/
wmb();
q->low++;
}
return cred;
}
/**
* refill_fl - refill an SGE Rx buffer ring with mbufs
* @adap: the adapter
* @q: the ring to refill
* @n: the number of new buffers to allocate
*
* (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
* allocated with the supplied gfp flags. The caller must assure that
* @n does not exceed the queue's capacity. Returns the number of buffers
* allocated.
*/
static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n)
{
return refill_fl_usembufs(adap, q, n);
}
static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
{
refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail));
}
/*
* Return the number of reclaimable descriptors in a Tx queue.
*/
static inline int reclaimable(const struct sge_txq *q)
{
int hw_cidx = ntohs(q->stat->cidx);
hw_cidx -= q->cidx;
if (hw_cidx < 0)
return hw_cidx + q->size;
return hw_cidx;
}
/**
* reclaim_completed_tx - reclaims completed Tx descriptors
* @q: the Tx queue to reclaim completed descriptors from
*
* Reclaims Tx descriptors that the SGE has indicated it has processed.
*/
void reclaim_completed_tx(struct sge_txq *q)
{
unsigned int avail = reclaimable(q);
do {
/* reclaim as much as possible */
reclaim_tx_desc(q, avail);
q->in_use -= avail;
avail = reclaimable(q);
} while (avail);
}
/**
* sgl_len - calculates the size of an SGL of the given capacity
* @n: the number of SGL entries
*
* Calculates the number of flits needed for a scatter/gather list that
* can hold the given number of entries.
*/
static inline unsigned int sgl_len(unsigned int n)
{
/*
* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
* addresses. The DSGL Work Request starts off with a 32-bit DSGL
* ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
* repeated sequences of { Length[i], Length[i+1], Address[i],
* Address[i+1] } (this ensures that all addresses are on 64-bit
* boundaries). If N is even, then Length[N+1] should be set to 0 and
* Address[N+1] is omitted.
*
* The following calculation incorporates all of the above. It's
* somewhat hard to follow but, briefly: the "+2" accounts for the
* first two flits which include the DSGL header, Length0 and
* Address0; the "(3*(n-1))/2" covers the main body of list entries (3
* flits for every pair of the remaining N) +1 if (n-1) is odd; and
* finally the "+((n-1)&1)" adds the one remaining flit needed if
* (n-1) is odd ...
*/
n--;
return (3 * n) / 2 + (n & 1) + 2;
}
/**
* flits_to_desc - returns the num of Tx descriptors for the given flits
* @n: the number of flits
*
* Returns the number of Tx descriptors needed for the supplied number
* of flits.
*/
static inline unsigned int flits_to_desc(unsigned int n)
{
return DIV_ROUND_UP(n, 8);
}
/**
* is_eth_imm - can an Ethernet packet be sent as immediate data?
* @m: the packet
*
* Returns whether an Ethernet packet is small enough to fit as
* immediate data. Return value corresponds to the headroom required.
*/
static inline int is_eth_imm(const struct rte_mbuf *m)
{
unsigned int hdrlen = (m->ol_flags & PKT_TX_TCP_SEG) ?
sizeof(struct cpl_tx_pkt_lso_core) : 0;
hdrlen += sizeof(struct cpl_tx_pkt);
if (m->pkt_len <= MAX_IMM_TX_PKT_LEN - hdrlen)
return hdrlen;
return 0;
}
/**
* calc_tx_flits - calculate the number of flits for a packet Tx WR
* @m: the packet
* @adap: adapter structure pointer
*
* Returns the number of flits needed for a Tx WR for the given Ethernet
* packet, including the needed WR and CPL headers.
*/
static inline unsigned int calc_tx_flits(const struct rte_mbuf *m,
struct adapter *adap)
{
size_t wr_size = is_pf4(adap) ? sizeof(struct fw_eth_tx_pkt_wr) :
sizeof(struct fw_eth_tx_pkt_vm_wr);
unsigned int flits;
int hdrlen;
/*
* If the mbuf is small enough, we can pump it out as a work request
* with only immediate data. In that case we just have to have the
* TX Packet header plus the mbuf data in the Work Request.
*/
hdrlen = is_eth_imm(m);
if (hdrlen)
return DIV_ROUND_UP(m->pkt_len + hdrlen, sizeof(__be64));
/*
* Otherwise, we're going to have to construct a Scatter gather list
* of the mbuf body and fragments. We also include the flits necessary
* for the TX Packet Work Request and CPL. We always have a firmware
* Write Header (incorporated as part of the cpl_tx_pkt_lso and
* cpl_tx_pkt structures), followed by either a TX Packet Write CPL
* message or, if we're doing a Large Send Offload, an LSO CPL message
* with an embedded TX Packet Write CPL message.
*/
flits = sgl_len(m->nb_segs);
if (m->tso_segsz)
flits += (wr_size + sizeof(struct cpl_tx_pkt_lso_core) +
sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
else
flits += (wr_size +
sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
return flits;
}
/**
* write_sgl - populate a scatter/gather list for a packet
* @mbuf: the packet
* @q: the Tx queue we are writing into
* @sgl: starting location for writing the SGL
* @end: points right after the end of the SGL
* @start: start offset into mbuf main-body data to include in the SGL
* @addr: address of mapped region
*
* Generates a scatter/gather list for the buffers that make up a packet.
* The caller must provide adequate space for the SGL that will be written.
* The SGL includes all of the packet's page fragments and the data in its
* main body except for the first @start bytes. @sgl must be 16-byte
* aligned and within a Tx descriptor with available space. @end points
* write after the end of the SGL but does not account for any potential
* wrap around, i.e., @end > @sgl.
*/
static void write_sgl(struct rte_mbuf *mbuf, struct sge_txq *q,
struct ulptx_sgl *sgl, u64 *end, unsigned int start,
const dma_addr_t *addr)
{
unsigned int i, len;
struct ulptx_sge_pair *to;
struct rte_mbuf *m = mbuf;
unsigned int nfrags = m->nb_segs;
struct ulptx_sge_pair buf[nfrags / 2];
len = m->data_len - start;
sgl->len0 = htonl(len);
sgl->addr0 = rte_cpu_to_be_64(addr[0]);
sgl->cmd_nsge = htonl(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
V_ULPTX_NSGE(nfrags));
if (likely(--nfrags == 0))
return;
/*
* Most of the complexity below deals with the possibility we hit the
* end of the queue in the middle of writing the SGL. For this case
* only we create the SGL in a temporary buffer and then copy it.
*/
to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
for (i = 0; nfrags >= 2; nfrags -= 2, to++) {
m = m->next;
to->len[0] = rte_cpu_to_be_32(m->data_len);
to->addr[0] = rte_cpu_to_be_64(addr[++i]);
m = m->next;
to->len[1] = rte_cpu_to_be_32(m->data_len);
to->addr[1] = rte_cpu_to_be_64(addr[++i]);
}
if (nfrags) {
m = m->next;
to->len[0] = rte_cpu_to_be_32(m->data_len);
to->len[1] = rte_cpu_to_be_32(0);
to->addr[0] = rte_cpu_to_be_64(addr[i + 1]);
}
if (unlikely((u8 *)end > (u8 *)q->stat)) {
unsigned int part0 = RTE_PTR_DIFF((u8 *)q->stat,
(u8 *)sgl->sge);
unsigned int part1;
if (likely(part0))
memcpy(sgl->sge, buf, part0);
part1 = RTE_PTR_DIFF((u8 *)end, (u8 *)q->stat);
rte_memcpy(q->desc, RTE_PTR_ADD((u8 *)buf, part0), part1);
end = RTE_PTR_ADD((void *)q->desc, part1);
}
if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
*(u64 *)end = 0;
}
#define IDXDIFF(head, tail, wrap) \
((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head))
#define Q_IDXDIFF(q, idx) IDXDIFF((q)->pidx, (q)->idx, (q)->size)
#define R_IDXDIFF(q, idx) IDXDIFF((q)->cidx, (q)->idx, (q)->size)
#define PIDXDIFF(head, tail, wrap) \
((tail) >= (head) ? (tail) - (head) : (wrap) - (head) + (tail))
#define P_IDXDIFF(q, idx) PIDXDIFF((q)->cidx, idx, (q)->size)
/**
* ring_tx_db - ring a Tx queue's doorbell
* @adap: the adapter
* @q: the Tx queue
* @n: number of new descriptors to give to HW
*
* Ring the doorbell for a Tx queue.
*/
static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q)
{
int n = Q_IDXDIFF(q, dbidx);
/*
* Make sure that all writes to the TX Descriptors are committed
* before we tell the hardware about them.
*/
rte_wmb();
/*
* If we don't have access to the new User Doorbell (T5+), use the old
* doorbell mechanism; otherwise use the new BAR2 mechanism.
*/
if (unlikely(!q->bar2_addr)) {
u32 val = V_PIDX(n);
/*
* For T4 we need to participate in the Doorbell Recovery
* mechanism.
*/
if (!q->db_disabled)
t4_write_reg(adap, MYPF_REG(A_SGE_PF_KDOORBELL),
V_QID(q->cntxt_id) | val);
else
q->db_pidx_inc += n;
q->db_pidx = q->pidx;
} else {
u32 val = V_PIDX_T5(n);
/*
* T4 and later chips share the same PIDX field offset within
* the doorbell, but T5 and later shrank the field in order to
* gain a bit for Doorbell Priority. The field was absurdly
* large in the first place (14 bits) so we just use the T5
* and later limits and warn if a Queue ID is too large.
*/
WARN_ON(val & F_DBPRIO);
writel(val | V_QID(q->bar2_qid),
(void *)((uintptr_t)q->bar2_addr + SGE_UDB_KDOORBELL));
/*
* This Write Memory Barrier will force the write to the User
* Doorbell area to be flushed. This is needed to prevent
* writes on different CPUs for the same queue from hitting
* the adapter out of order. This is required when some Work
* Requests take the Write Combine Gather Buffer path (user
* doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
* take the traditional path where we simply increment the
* PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
* hardware DMA read the actual Work Request.
*/
rte_wmb();
}
q->dbidx = q->pidx;
}
/*
* Figure out what HW csum a packet wants and return the appropriate control
* bits.
*/
static u64 hwcsum(enum chip_type chip, const struct rte_mbuf *m)
{
int csum_type;
if (m->ol_flags & PKT_TX_IP_CKSUM) {
switch (m->ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_TCP_CKSUM:
csum_type = TX_CSUM_TCPIP;
break;
case PKT_TX_UDP_CKSUM:
csum_type = TX_CSUM_UDPIP;
break;
default:
goto nocsum;
}
} else {
goto nocsum;
}
if (likely(csum_type >= TX_CSUM_TCPIP)) {
u64 hdr_len = V_TXPKT_IPHDR_LEN(m->l3_len);
int eth_hdr_len = m->l2_len;
if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
hdr_len |= V_TXPKT_ETHHDR_LEN(eth_hdr_len);
else
hdr_len |= V_T6_TXPKT_ETHHDR_LEN(eth_hdr_len);
return V_TXPKT_CSUM_TYPE(csum_type) | hdr_len;
}
nocsum:
/*
* unknown protocol, disable HW csum
* and hope a bad packet is detected
*/
return F_TXPKT_L4CSUM_DIS;
}
static inline void txq_advance(struct sge_txq *q, unsigned int n)
{
q->in_use += n;
q->pidx += n;
if (q->pidx >= q->size)
q->pidx -= q->size;
}
#define MAX_COALESCE_LEN 64000
static inline bool wraps_around(struct sge_txq *q, int ndesc)
{
return (q->pidx + ndesc) > q->size ? true : false;
}
static void tx_timer_cb(void *data)
{
struct adapter *adap = (struct adapter *)data;
struct sge_eth_txq *txq = &adap->sge.ethtxq[0];
int i;
unsigned int coal_idx;
/* monitor any pending tx */
for (i = 0; i < adap->sge.max_ethqsets; i++, txq++) {
if (t4_os_trylock(&txq->txq_lock)) {
coal_idx = txq->q.coalesce.idx;
if (coal_idx) {
if (coal_idx == txq->q.last_coal_idx &&
txq->q.pidx == txq->q.last_pidx) {
ship_tx_pkt_coalesce_wr(adap, txq);
} else {
txq->q.last_coal_idx = coal_idx;
txq->q.last_pidx = txq->q.pidx;
}
}
t4_os_unlock(&txq->txq_lock);
}
}
rte_eal_alarm_set(50, tx_timer_cb, (void *)adap);
}
/**
* ship_tx_pkt_coalesce_wr - finalizes and ships a coalesce WR
* @ adap: adapter structure
* @txq: tx queue
*
* writes the different fields of the pkts WR and sends it.
*/
static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap,
struct sge_eth_txq *txq)
{
struct fw_eth_tx_pkts_vm_wr *vmwr;
const size_t fw_hdr_copy_len = (sizeof(vmwr->ethmacdst) +
sizeof(vmwr->ethmacsrc) +
sizeof(vmwr->ethtype) +
sizeof(vmwr->vlantci));
struct fw_eth_tx_pkts_wr *wr;
struct sge_txq *q = &txq->q;
unsigned int ndesc;
u32 wr_mid;
/* fill the pkts WR header */
wr = (void *)&q->desc[q->pidx];
vmwr = (void *)&q->desc[q->pidx];
wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(q->coalesce.flits, 2));
ndesc = flits_to_desc(q->coalesce.flits);
wr->equiq_to_len16 = htonl(wr_mid);
wr->plen = cpu_to_be16(q->coalesce.len);
wr->npkt = q->coalesce.idx;
wr->r3 = 0;
if (is_pf4(adap)) {
wr->type = q->coalesce.type;
if (likely(wr->type != 0))
wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR));
else
wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
} else {
wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
vmwr->r4 = 0;
memcpy((void *)vmwr->ethmacdst, (void *)q->coalesce.ethmacdst,
fw_hdr_copy_len);
}
/* zero out coalesce structure members */
memset((void *)&q->coalesce, 0, sizeof(struct eth_coalesce));
txq_advance(q, ndesc);
txq->stats.coal_wr++;
txq->stats.coal_pkts += wr->npkt;
if (Q_IDXDIFF(q, equeidx) >= q->size / 2) {
q->equeidx = q->pidx;
wr_mid |= F_FW_WR_EQUEQ;
wr->equiq_to_len16 = htonl(wr_mid);
}
ring_tx_db(adap, q);
}
/**
* should_tx_packet_coalesce - decides whether to coalesce an mbuf or not
* @txq: tx queue where the mbuf is sent
* @mbuf: mbuf to be sent
* @nflits: return value for number of flits needed
* @adap: adapter structure
*
* This function decides if a packet should be coalesced or not.
*/
static inline int should_tx_packet_coalesce(struct sge_eth_txq *txq,
struct rte_mbuf *mbuf,
unsigned int *nflits,
struct adapter *adap)
{
struct fw_eth_tx_pkts_vm_wr *wr;
const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
sizeof(wr->ethmacsrc) +
sizeof(wr->ethtype) +
sizeof(wr->vlantci));
struct sge_txq *q = &txq->q;
unsigned int flits, ndesc;
unsigned char type = 0;
int credits, wr_size;
/* use coal WR type 1 when no frags are present */
type = (mbuf->nb_segs == 1) ? 1 : 0;
if (!is_pf4(adap)) {
if (!type)
return 0;
if (q->coalesce.idx && memcmp((void *)q->coalesce.ethmacdst,
rte_pktmbuf_mtod(mbuf, void *),
fw_hdr_copy_len))
ship_tx_pkt_coalesce_wr(adap, txq);
}
if (unlikely(type != q->coalesce.type && q->coalesce.idx))
ship_tx_pkt_coalesce_wr(adap, txq);
/* calculate the number of flits required for coalescing this packet
* without the 2 flits of the WR header. These are added further down
* if we are just starting in new PKTS WR. sgl_len doesn't account for
* the possible 16 bytes alignment ULP TX commands so we do it here.
*/
flits = (sgl_len(mbuf->nb_segs) + 1) & ~1U;
if (type == 0)
flits += (sizeof(struct ulp_txpkt) +
sizeof(struct ulptx_idata)) / sizeof(__be64);
flits += sizeof(struct cpl_tx_pkt_core) / sizeof(__be64);
*nflits = flits;
/* If coalescing is on, the mbuf is added to a pkts WR */
if (q->coalesce.idx) {
ndesc = DIV_ROUND_UP(q->coalesce.flits + flits, 8);
credits = txq_avail(q) - ndesc;
if (unlikely(wraps_around(q, ndesc)))
return 0;
/* If we are wrapping or this is last mbuf then, send the
* already coalesced mbufs and let the non-coalesce pass
* handle the mbuf.
*/
if (unlikely(credits < 0)) {
ship_tx_pkt_coalesce_wr(adap, txq);
return -EBUSY;
}
/* If the max coalesce len or the max WR len is reached
* ship the WR and keep coalescing on.
*/
if (unlikely((q->coalesce.len + mbuf->pkt_len >
MAX_COALESCE_LEN) ||
(q->coalesce.flits + flits >
q->coalesce.max))) {
ship_tx_pkt_coalesce_wr(adap, txq);
goto new;
}
return 1;
}
new:
/* start a new pkts WR, the WR header is not filled below */
wr_size = is_pf4(adap) ? sizeof(struct fw_eth_tx_pkts_wr) :
sizeof(struct fw_eth_tx_pkts_vm_wr);
flits += wr_size / sizeof(__be64);
ndesc = flits_to_desc(q->coalesce.flits + flits);
credits = txq_avail(q) - ndesc;
if (unlikely(wraps_around(q, ndesc)))
return 0;
if (unlikely(credits < 0))
return -EBUSY;
q->coalesce.flits += wr_size / sizeof(__be64);
q->coalesce.type = type;
q->coalesce.ptr = (unsigned char *)&q->desc[q->pidx] +
q->coalesce.flits * sizeof(__be64);
if (!is_pf4(adap))
memcpy((void *)q->coalesce.ethmacdst,
rte_pktmbuf_mtod(mbuf, void *), fw_hdr_copy_len);
return 1;
}
/**
* tx_do_packet_coalesce - add an mbuf to a coalesce WR
* @txq: sge_eth_txq used send the mbuf
* @mbuf: mbuf to be sent
* @flits: flits needed for this mbuf
* @adap: adapter structure
* @pi: port_info structure
* @addr: mapped address of the mbuf
*
* Adds an mbuf to be sent as part of a coalesce WR by filling a
* ulp_tx_pkt command, ulp_tx_sc_imm command, cpl message and
* ulp_tx_sc_dsgl command.
*/
static inline int tx_do_packet_coalesce(struct sge_eth_txq *txq,
struct rte_mbuf *mbuf,
int flits, struct adapter *adap,
const struct port_info *pi,
dma_addr_t *addr, uint16_t nb_pkts)
{
u64 cntrl, *end;
struct sge_txq *q = &txq->q;
struct ulp_txpkt *mc;
struct ulptx_idata *sc_imm;
struct cpl_tx_pkt_core *cpl;
struct tx_sw_desc *sd;
unsigned int idx = q->coalesce.idx, len = mbuf->pkt_len;
if (q->coalesce.type == 0) {
mc = (struct ulp_txpkt *)q->coalesce.ptr;
mc->cmd_dest = htonl(V_ULPTX_CMD(4) | V_ULP_TXPKT_DEST(0) |
V_ULP_TXPKT_FID(adap->sge.fw_evtq.cntxt_id) |
F_ULP_TXPKT_RO);
mc->len = htonl(DIV_ROUND_UP(flits, 2));
sc_imm = (struct ulptx_idata *)(mc + 1);
sc_imm->cmd_more = htonl(V_ULPTX_CMD(ULP_TX_SC_IMM) |
F_ULP_TX_SC_MORE);
sc_imm->len = htonl(sizeof(*cpl));
end = (u64 *)mc + flits;
cpl = (struct cpl_tx_pkt_core *)(sc_imm + 1);
} else {
end = (u64 *)q->coalesce.ptr + flits;
cpl = (struct cpl_tx_pkt_core *)q->coalesce.ptr;
}
/* update coalesce structure for this txq */
q->coalesce.flits += flits;
q->coalesce.ptr += flits * sizeof(__be64);
q->coalesce.len += mbuf->pkt_len;
/* fill the cpl message, same as in t4_eth_xmit, this should be kept
* similar to t4_eth_xmit
*/
if (mbuf->ol_flags & PKT_TX_IP_CKSUM) {
cntrl = hwcsum(adap->params.chip, mbuf) |
F_TXPKT_IPCSUM_DIS;
txq->stats.tx_cso++;
} else {
cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
}
if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
txq->stats.vlan_ins++;
cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(mbuf->vlan_tci);
}
cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT));
if (is_pf4(adap))
cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->tx_chan) |
V_TXPKT_PF(adap->pf));
else
cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->port_id));
cpl->pack = htons(0);
cpl->len = htons(len);
cpl->ctrl1 = cpu_to_be64(cntrl);
write_sgl(mbuf, q, (struct ulptx_sgl *)(cpl + 1), end, 0, addr);
txq->stats.pkts++;
txq->stats.tx_bytes += len;
sd = &q->sdesc[q->pidx + (idx >> 1)];
if (!(idx & 1)) {
if (sd->coalesce.idx) {
int i;
for (i = 0; i < sd->coalesce.idx; i++) {
rte_pktmbuf_free(sd->coalesce.mbuf[i]);
sd->coalesce.mbuf[i] = NULL;
}
}
}
/* store pointers to the mbuf and the sgl used in free_tx_desc.
* each tx desc can hold two pointers corresponding to the value
* of ETH_COALESCE_PKT_PER_DESC
*/
sd->coalesce.mbuf[idx & 1] = mbuf;
sd->coalesce.sgl[idx & 1] = (struct ulptx_sgl *)(cpl + 1);
sd->coalesce.idx = (idx & 1) + 1;
/* Send the coalesced work request, only if max reached. However,
* if lower latency is preferred over throughput, then don't wait
* for coalescing the next Tx burst and send the packets now.
*/
q->coalesce.idx++;
if (q->coalesce.idx == adap->params.max_tx_coalesce_num ||
(adap->devargs.tx_mode_latency && q->coalesce.idx >= nb_pkts))
ship_tx_pkt_coalesce_wr(adap, txq);
return 0;
}
/**
* t4_eth_xmit - add a packet to an Ethernet Tx queue
* @txq: the egress queue
* @mbuf: the packet
*
* Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
*/
int t4_eth_xmit(struct sge_eth_txq *txq, struct rte_mbuf *mbuf,
uint16_t nb_pkts)
{
const struct port_info *pi;
struct cpl_tx_pkt_lso_core *lso;
struct adapter *adap;
struct rte_mbuf *m = mbuf;
struct fw_eth_tx_pkt_wr *wr;
struct fw_eth_tx_pkt_vm_wr *vmwr;
struct cpl_tx_pkt_core *cpl;
struct tx_sw_desc *d;
dma_addr_t addr[m->nb_segs];
unsigned int flits, ndesc, cflits;
int l3hdr_len, l4hdr_len, eth_xtra_len;
int len, last_desc;
int should_coal, credits;
u32 wr_mid;
u64 cntrl, *end;
bool v6;
u32 max_pkt_len = txq->data->dev_conf.rxmode.max_rx_pkt_len;
/* Reject xmit if queue is stopped */
if (unlikely(txq->flags & EQ_STOPPED))
return -(EBUSY);
/*
* The chip min packet length is 10 octets but play safe and reject
* anything shorter than an Ethernet header.
*/
if (unlikely(m->pkt_len < RTE_ETHER_HDR_LEN)) {
out_free:
rte_pktmbuf_free(m);
return 0;
}
if ((!(m->ol_flags & PKT_TX_TCP_SEG)) &&
(unlikely(m->pkt_len > max_pkt_len)))
goto out_free;
pi = txq->data->dev_private;
adap = pi->adapter;
cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
/* align the end of coalesce WR to a 512 byte boundary */
txq->q.coalesce.max = (8 - (txq->q.pidx & 7)) * 8;
if ((m->ol_flags & PKT_TX_TCP_SEG) == 0) {
should_coal = should_tx_packet_coalesce(txq, mbuf, &cflits, adap);
if (should_coal > 0) {
if (unlikely(map_mbuf(mbuf, addr) < 0)) {
dev_warn(adap, "%s: mapping err for coalesce\n",
__func__);
txq->stats.mapping_err++;
goto out_free;
}
return tx_do_packet_coalesce(txq, mbuf, cflits, adap,
pi, addr, nb_pkts);
} else if (should_coal < 0) {
return should_coal;
}
}
if (txq->q.coalesce.idx)
ship_tx_pkt_coalesce_wr(adap, txq);
flits = calc_tx_flits(m, adap);
ndesc = flits_to_desc(flits);
credits = txq_avail(&txq->q) - ndesc;
if (unlikely(credits < 0)) {
dev_debug(adap, "%s: Tx ring %u full; credits = %d\n",
__func__, txq->q.cntxt_id, credits);
return -EBUSY;
}
if (unlikely(map_mbuf(m, addr) < 0)) {
txq->stats.mapping_err++;
goto out_free;
}
wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
if (Q_IDXDIFF(&txq->q, equeidx) >= 64) {
txq->q.equeidx = txq->q.pidx;
wr_mid |= F_FW_WR_EQUEQ;
}
wr = (void *)&txq->q.desc[txq->q.pidx];
vmwr = (void *)&txq->q.desc[txq->q.pidx];
wr->equiq_to_len16 = htonl(wr_mid);
if (is_pf4(adap)) {
wr->r3 = rte_cpu_to_be_64(0);
end = (u64 *)wr + flits;
} else {
const size_t fw_hdr_copy_len = (sizeof(vmwr->ethmacdst) +
sizeof(vmwr->ethmacsrc) +
sizeof(vmwr->ethtype) +
sizeof(vmwr->vlantci));
vmwr->r3[0] = rte_cpu_to_be_32(0);
vmwr->r3[1] = rte_cpu_to_be_32(0);
memcpy((void *)vmwr->ethmacdst, rte_pktmbuf_mtod(m, void *),
fw_hdr_copy_len);
end = (u64 *)vmwr + flits;
}
len = sizeof(*cpl);
/* Coalescing skipped and we send through normal path */
if (!(m->ol_flags & PKT_TX_TCP_SEG)) {
wr->op_immdlen = htonl(V_FW_WR_OP(is_pf4(adap) ?
FW_ETH_TX_PKT_WR :
FW_ETH_TX_PKT_VM_WR) |
V_FW_WR_IMMDLEN(len));
if (is_pf4(adap))
cpl = (void *)(wr + 1);
else
cpl = (void *)(vmwr + 1);
if (m->ol_flags & PKT_TX_IP_CKSUM) {
cntrl = hwcsum(adap->params.chip, m) |
F_TXPKT_IPCSUM_DIS;
txq->stats.tx_cso++;
}
} else {
if (is_pf4(adap))
lso = (void *)(wr + 1);
else
lso = (void *)(vmwr + 1);
v6 = (m->ol_flags & PKT_TX_IPV6) != 0;
l3hdr_len = m->l3_len;
l4hdr_len = m->l4_len;
eth_xtra_len = m->l2_len - RTE_ETHER_HDR_LEN;
len += sizeof(*lso);
wr->op_immdlen = htonl(V_FW_WR_OP(is_pf4(adap) ?
FW_ETH_TX_PKT_WR :
FW_ETH_TX_PKT_VM_WR) |
V_FW_WR_IMMDLEN(len));
lso->lso_ctrl = htonl(V_LSO_OPCODE(CPL_TX_PKT_LSO) |
F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
V_LSO_IPV6(v6) |
V_LSO_ETHHDR_LEN(eth_xtra_len / 4) |
V_LSO_IPHDR_LEN(l3hdr_len / 4) |
V_LSO_TCPHDR_LEN(l4hdr_len / 4));
lso->ipid_ofst = htons(0);
lso->mss = htons(m->tso_segsz);
lso->seqno_offset = htonl(0);
if (is_t4(adap->params.chip))
lso->len = htonl(m->pkt_len);
else
lso->len = htonl(V_LSO_T5_XFER_SIZE(m->pkt_len));
cpl = (void *)(lso + 1);
if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
cntrl = V_TXPKT_ETHHDR_LEN(eth_xtra_len);
else
cntrl = V_T6_TXPKT_ETHHDR_LEN(eth_xtra_len);
cntrl |= V_TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 :
TX_CSUM_TCPIP) |
V_TXPKT_IPHDR_LEN(l3hdr_len);
txq->stats.tso++;
txq->stats.tx_cso += m->tso_segsz;
}
if (m->ol_flags & PKT_TX_VLAN_PKT) {
txq->stats.vlan_ins++;
cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->vlan_tci);
}
cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT));
if (is_pf4(adap))
cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->tx_chan) |
V_TXPKT_PF(adap->pf));
else
cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->port_id) |
V_TXPKT_PF(0));
cpl->pack = htons(0);
cpl->len = htons(m->pkt_len);
cpl->ctrl1 = cpu_to_be64(cntrl);
txq->stats.pkts++;
txq->stats.tx_bytes += m->pkt_len;
last_desc = txq->q.pidx + ndesc - 1;
if (last_desc >= (int)txq->q.size)
last_desc -= txq->q.size;
d = &txq->q.sdesc[last_desc];
if (d->coalesce.idx) {
int i;
for (i = 0; i < d->coalesce.idx; i++) {
rte_pktmbuf_free(d->coalesce.mbuf[i]);
d->coalesce.mbuf[i] = NULL;
}
d->coalesce.idx = 0;
}
write_sgl(m, &txq->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
addr);
txq->q.sdesc[last_desc].mbuf = m;
txq->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
txq_advance(&txq->q, ndesc);
ring_tx_db(adap, &txq->q);
return 0;
}
/**
* reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
* @q: the SGE control Tx queue
*
* This is a variant of reclaim_completed_tx() that is used for Tx queues
* that send only immediate data (presently just the control queues) and
* thus do not have any mbufs to release.
*/
static inline void reclaim_completed_tx_imm(struct sge_txq *q)
{
int hw_cidx = ntohs(q->stat->cidx);
int reclaim = hw_cidx - q->cidx;
if (reclaim < 0)
reclaim += q->size;
q->in_use -= reclaim;
q->cidx = hw_cidx;
}
/**
* is_imm - check whether a packet can be sent as immediate data
* @mbuf: the packet
*
* Returns true if a packet can be sent as a WR with immediate data.
*/
static inline int is_imm(const struct rte_mbuf *mbuf)
{
return mbuf->pkt_len <= MAX_CTRL_WR_LEN;
}
/**
* inline_tx_mbuf: inline a packet's data into TX descriptors
* @q: the TX queue where the packet will be inlined
* @from: pointer to data portion of packet
* @to: pointer after cpl where data has to be inlined
* @len: length of data to inline
*
* Inline a packet's contents directly to TX descriptors, starting at
* the given position within the TX DMA ring.
* Most of the complexity of this operation is dealing with wrap arounds
* in the middle of the packet we want to inline.
*/
static void inline_tx_mbuf(const struct sge_txq *q, caddr_t from, caddr_t *to,
int len)
{
int left = RTE_PTR_DIFF(q->stat, *to);
if (likely((uintptr_t)*to + len <= (uintptr_t)q->stat)) {
rte_memcpy(*to, from, len);
*to = RTE_PTR_ADD(*to, len);
} else {
rte_memcpy(*to, from, left);
from = RTE_PTR_ADD(from, left);
left = len - left;
rte_memcpy((void *)q->desc, from, left);
*to = RTE_PTR_ADD((void *)q->desc, left);
}
}
/**
* ctrl_xmit - send a packet through an SGE control Tx queue
* @q: the control queue
* @mbuf: the packet
*
* Send a packet through an SGE control Tx queue. Packets sent through
* a control queue must fit entirely as immediate data.
*/
static int ctrl_xmit(struct sge_ctrl_txq *q, struct rte_mbuf *mbuf)
{
unsigned int ndesc;
struct fw_wr_hdr *wr;
caddr_t dst;
if (unlikely(!is_imm(mbuf))) {
WARN_ON(1);
rte_pktmbuf_free(mbuf);
return -1;
}
reclaim_completed_tx_imm(&q->q);
ndesc = DIV_ROUND_UP(mbuf->pkt_len, sizeof(struct tx_desc));
t4_os_lock(&q->ctrlq_lock);
q->full = txq_avail(&q->q) < ndesc ? 1 : 0;
if (unlikely(q->full)) {
t4_os_unlock(&q->ctrlq_lock);
return -1;
}
wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
dst = (void *)wr;
inline_tx_mbuf(&q->q, rte_pktmbuf_mtod(mbuf, caddr_t),
&dst, mbuf->data_len);
txq_advance(&q->q, ndesc);
if (unlikely(txq_avail(&q->q) < 64))
wr->lo |= htonl(F_FW_WR_EQUEQ);
q->txp++;
ring_tx_db(q->adapter, &q->q);
t4_os_unlock(&q->ctrlq_lock);
rte_pktmbuf_free(mbuf);
return 0;
}
/**
* t4_mgmt_tx - send a management message
* @q: the control queue
* @mbuf: the packet containing the management message
*
* Send a management message through control queue.
*/
int t4_mgmt_tx(struct sge_ctrl_txq *q, struct rte_mbuf *mbuf)
{
return ctrl_xmit(q, mbuf);
}
/**
* alloc_ring - allocate resources for an SGE descriptor ring
* @dev: the port associated with the queue
* @z_name: memzone's name
* @queue_id: queue index
* @socket_id: preferred socket id for memory allocations
* @nelem: the number of descriptors
* @elem_size: the size of each descriptor
* @stat_size: extra space in HW ring for status information
* @sw_size: the size of the SW state associated with each ring element
* @phys: the physical address of the allocated ring
* @metadata: address of the array holding the SW state for the ring
*
* Allocates resources for an SGE descriptor ring, such as Tx queues,
* free buffer lists, or response queues. Each SGE ring requires
* space for its HW descriptors plus, optionally, space for the SW state
* associated with each HW entry (the metadata). The function returns
* three values: the virtual address for the HW ring (the return value
* of the function), the bus address of the HW ring, and the address
* of the SW ring.
*/
static void *alloc_ring(struct rte_eth_dev *dev, const char *z_name,
uint16_t queue_id, int socket_id, size_t nelem,
size_t elem_size, size_t stat_size, size_t sw_size,
dma_addr_t *phys, void *metadata)
{
size_t len = CXGBE_MAX_RING_DESC_SIZE * elem_size + stat_size;
char z_name_sw[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *tz;
void *s = NULL;
snprintf(z_name_sw, sizeof(z_name_sw), "eth_p%d_q%d_%s_sw_ring",
dev->data->port_id, queue_id, z_name);
dev_debug(adapter, "%s: nelem = %zu; elem_size = %zu; sw_size = %zu; "
"stat_size = %zu; queue_id = %u; socket_id = %d; z_name = %s;"
" z_name_sw = %s\n", __func__, nelem, elem_size, sw_size,
stat_size, queue_id, socket_id, z_name, z_name_sw);
/*
* Allocate TX/RX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
tz = rte_eth_dma_zone_reserve(dev, z_name, queue_id, len, 4096,
socket_id);
if (!tz)
return NULL;
memset(tz->addr, 0, len);
if (sw_size) {
s = rte_zmalloc_socket(z_name_sw, nelem * sw_size,
RTE_CACHE_LINE_SIZE, socket_id);
if (!s) {
dev_err(adapter, "%s: failed to get sw_ring memory\n",
__func__);
return NULL;
}
}
if (metadata)
*(void **)metadata = s;
*phys = (uint64_t)tz->iova;
return tz->addr;
}
#define CXGB4_MSG_AN ((void *)1)
/**
* rspq_next - advance to the next entry in a response queue
* @q: the queue
*
* Updates the state of a response queue to advance it to the next entry.
*/
static inline void rspq_next(struct sge_rspq *q)
{
q->cur_desc = (const __be64 *)((const char *)q->cur_desc + q->iqe_len);
if (unlikely(++q->cidx == q->size)) {
q->cidx = 0;
q->gen ^= 1;
q->cur_desc = q->desc;
}
}
static inline void cxgbe_set_mbuf_info(struct rte_mbuf *pkt, uint32_t ptype,
uint64_t ol_flags)
{
pkt->packet_type |= ptype;
pkt->ol_flags |= ol_flags;
}
static inline void cxgbe_fill_mbuf_info(struct adapter *adap,
const struct cpl_rx_pkt *cpl,
struct rte_mbuf *pkt)
{
bool csum_ok;
u16 err_vec;
if (adap->params.tp.rx_pkt_encap)
err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec));
else
err_vec = ntohs(cpl->err_vec);
csum_ok = cpl->csum_calc && !err_vec;
if (cpl->vlan_ex)
cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L2_ETHER_VLAN,
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
else
cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L2_ETHER, 0);
if (cpl->l2info & htonl(F_RXF_IP))
cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L3_IPV4,
csum_ok ? PKT_RX_IP_CKSUM_GOOD :
PKT_RX_IP_CKSUM_BAD);
else if (cpl->l2info & htonl(F_RXF_IP6))
cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L3_IPV6,
csum_ok ? PKT_RX_IP_CKSUM_GOOD :
PKT_RX_IP_CKSUM_BAD);
if (cpl->l2info & htonl(F_RXF_TCP))
cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L4_TCP,
csum_ok ? PKT_RX_L4_CKSUM_GOOD :
PKT_RX_L4_CKSUM_BAD);
else if (cpl->l2info & htonl(F_RXF_UDP))
cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L4_UDP,
csum_ok ? PKT_RX_L4_CKSUM_GOOD :
PKT_RX_L4_CKSUM_BAD);
}
/**
* process_responses - process responses from an SGE response queue
* @q: the ingress queue to process
* @budget: how many responses can be processed in this round
* @rx_pkts: mbuf to put the pkts
*
* Process responses from an SGE response queue up to the supplied budget.
* Responses include received packets as well as control messages from FW
* or HW.
*
* Additionally choose the interrupt holdoff time for the next interrupt
* on this queue. If the system is under memory shortage use a fairly
* long delay to help recovery.
*/
static int process_responses(struct sge_rspq *q, int budget,
struct rte_mbuf **rx_pkts)
{
int ret = 0, rsp_type;
int budget_left = budget;
const struct rsp_ctrl *rc;
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
while (likely(budget_left)) {
if (q->cidx == ntohs(q->stat->pidx))
break;
rc = (const struct rsp_ctrl *)
((const char *)q->cur_desc + (q->iqe_len - sizeof(*rc)));
/*
* Ensure response has been read
*/
rmb();
rsp_type = G_RSPD_TYPE(rc->u.type_gen);
if (likely(rsp_type == X_RSPD_TYPE_FLBUF)) {
struct sge *s = &q->adapter->sge;
unsigned int stat_pidx;
int stat_pidx_diff;
stat_pidx = ntohs(q->stat->pidx);
stat_pidx_diff = P_IDXDIFF(q, stat_pidx);
while (stat_pidx_diff && budget_left) {
const struct rx_sw_desc *rsd =
&rxq->fl.sdesc[rxq->fl.cidx];
const struct rss_header *rss_hdr =
(const void *)q->cur_desc;
const struct cpl_rx_pkt *cpl =
(const void *)&q->cur_desc[1];
struct rte_mbuf *pkt, *npkt;
u32 len, bufsz;
rc = (const struct rsp_ctrl *)
((const char *)q->cur_desc +
(q->iqe_len - sizeof(*rc)));
rsp_type = G_RSPD_TYPE(rc->u.type_gen);
if (unlikely(rsp_type != X_RSPD_TYPE_FLBUF))
break;
len = ntohl(rc->pldbuflen_qid);
BUG_ON(!(len & F_RSPD_NEWBUF));
pkt = rsd->buf;
npkt = pkt;
len = G_RSPD_LEN(len);
pkt->pkt_len = len;
/* Chain mbufs into len if necessary */
while (len) {
struct rte_mbuf *new_pkt = rsd->buf;
bufsz = min(get_buf_size(q->adapter,
rsd), len);
new_pkt->data_len = bufsz;
unmap_rx_buf(&rxq->fl);
len -= bufsz;
npkt->next = new_pkt;
npkt = new_pkt;
pkt->nb_segs++;
rsd = &rxq->fl.sdesc[rxq->fl.cidx];
}
npkt->next = NULL;
pkt->nb_segs--;
cxgbe_fill_mbuf_info(q->adapter, cpl, pkt);
if (!rss_hdr->filter_tid &&
rss_hdr->hash_type) {
pkt->ol_flags |= PKT_RX_RSS_HASH;
pkt->hash.rss =
ntohl(rss_hdr->hash_val);
}
if (cpl->vlan_ex)
pkt->vlan_tci = ntohs(cpl->vlan);
rte_pktmbuf_adj(pkt, s->pktshift);
rxq->stats.pkts++;
rxq->stats.rx_bytes += pkt->pkt_len;
rx_pkts[budget - budget_left] = pkt;
rspq_next(q);
budget_left--;
stat_pidx_diff--;
}
continue;
} else if (likely(rsp_type == X_RSPD_TYPE_CPL)) {
ret = q->handler(q, q->cur_desc, NULL);
} else {
ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
}
if (unlikely(ret)) {
/* couldn't process descriptor, back off for recovery */
q->next_intr_params = V_QINTR_TIMER_IDX(NOMEM_TMR_IDX);
break;
}
rspq_next(q);
budget_left--;
}
/*
* If this is a Response Queue with an associated Free List and
* there's room for another chunk of new Free List buffer pointers,
* refill the Free List.
*/
if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64)
__refill_fl(q->adapter, &rxq->fl);
return budget - budget_left;
}
int cxgbe_poll(struct sge_rspq *q, struct rte_mbuf **rx_pkts,
unsigned int budget, unsigned int *work_done)
{
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
unsigned int cidx_inc;
unsigned int params;
u32 val;
if (unlikely(rxq->flags & IQ_STOPPED)) {
*work_done = 0;
return 0;
}
*work_done = process_responses(q, budget, rx_pkts);
if (*work_done) {
cidx_inc = R_IDXDIFF(q, gts_idx);
if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64)
__refill_fl(q->adapter, &rxq->fl);
params = q->intr_params;
q->next_intr_params = params;
val = V_CIDXINC(cidx_inc) | V_SEINTARM(params);
if (unlikely(!q->bar2_addr)) {
u32 reg = is_pf4(q->adapter) ? MYPF_REG(A_SGE_PF_GTS) :
T4VF_SGE_BASE_ADDR +
A_SGE_VF_GTS;
t4_write_reg(q->adapter, reg,
val | V_INGRESSQID((u32)q->cntxt_id));
} else {
writel(val | V_INGRESSQID(q->bar2_qid),
(void *)((uintptr_t)q->bar2_addr + SGE_UDB_GTS));
/* This Write memory Barrier will force the
* write to the User Doorbell area to be
* flushed.
*/
wmb();
}
q->gts_idx = q->cidx;
}
return 0;
}
/**
* bar2_address - return the BAR2 address for an SGE Queue's Registers
* @adapter: the adapter
* @qid: the SGE Queue ID
* @qtype: the SGE Queue Type (Egress or Ingress)
* @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
*
* Returns the BAR2 address for the SGE Queue Registers associated with
* @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
* returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
* Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
* Registers are supported (e.g. the Write Combining Doorbell Buffer).
*/
static void __iomem *bar2_address(struct adapter *adapter, unsigned int qid,
enum t4_bar2_qtype qtype,
unsigned int *pbar2_qid)
{
u64 bar2_qoffset;
int ret;
ret = t4_bar2_sge_qregs(adapter, qid, qtype, &bar2_qoffset, pbar2_qid);
if (ret)
return NULL;
return adapter->bar2 + bar2_qoffset;
}
int t4_sge_eth_rxq_start(struct adapter *adap, struct sge_eth_rxq *rxq)
{
unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff;
rxq->flags &= ~IQ_STOPPED;
return t4_iq_start_stop(adap, adap->mbox, true, adap->pf, 0,
rxq->rspq.cntxt_id, fl_id, 0xffff);
}
int t4_sge_eth_rxq_stop(struct adapter *adap, struct sge_eth_rxq *rxq)
{
unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff;
rxq->flags |= IQ_STOPPED;
return t4_iq_start_stop(adap, adap->mbox, false, adap->pf, 0,
rxq->rspq.cntxt_id, fl_id, 0xffff);
}
/*
* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
* @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
*/
int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
struct rte_eth_dev *eth_dev, int intr_idx,
struct sge_fl *fl, rspq_handler_t hnd, int cong,
struct rte_mempool *mp, int queue_id, int socket_id)
{
int ret, flsz = 0;
struct fw_iq_cmd c;
struct sge *s = &adap->sge;
struct port_info *pi = eth_dev->data->dev_private;
unsigned int nb_refill;
u8 pciechan;
/* Size needs to be multiple of 16, including status entry. */
iq->size = cxgbe_roundup(iq->size, 16);
iq->desc = alloc_ring(eth_dev, fwevtq ? "fwq_ring" : "rx_ring",
queue_id, socket_id, iq->size, iq->iqe_len,
0, 0, &iq->phys_addr, NULL);
if (!iq->desc)
return -ENOMEM;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC);
if (is_pf4(adap)) {
pciechan = pi->tx_chan;
c.op_to_vfn |= htonl(V_FW_IQ_CMD_PFN(adap->pf) |
V_FW_IQ_CMD_VFN(0));
if (cong >= 0)
c.iqns_to_fl0congen =
htonl(F_FW_IQ_CMD_IQFLINTCONGEN |
V_FW_IQ_CMD_IQTYPE(cong ?
FW_IQ_IQTYPE_NIC :
FW_IQ_IQTYPE_OFLD) |
F_FW_IQ_CMD_IQRO);
} else {
pciechan = pi->port_id;
}
c.alloc_to_len16 = htonl(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
(sizeof(c) / 16));
c.type_to_iqandstindex =
htonl(V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
V_FW_IQ_CMD_IQASYNCH(fwevtq) |
V_FW_IQ_CMD_VIID(pi->viid) |
V_FW_IQ_CMD_IQANDST(intr_idx < 0) |
V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_STATUS_PAGE) |
V_FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
-intr_idx - 1));
c.iqdroprss_to_iqesize =
htons(V_FW_IQ_CMD_IQPCIECH(pciechan) |
F_FW_IQ_CMD_IQGTSMODE |
V_FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
V_FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
c.iqsize = htons(iq->size);
c.iqaddr = cpu_to_be64(iq->phys_addr);
if (fl) {
struct sge_eth_rxq *rxq = container_of(fl, struct sge_eth_rxq,
fl);
unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
/*
* Allocate the ring for the hardware free list (with space
* for its status page) along with the associated software
* descriptor ring. The free list size needs to be a multiple
* of the Egress Queue Unit and at least 2 Egress Units larger
* than the SGE's Egress Congestion Threshold
* (fl_starve_thres - 1).
*/
if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
fl->size = s->fl_starve_thres - 1 + 2 * 8;
fl->size = cxgbe_roundup(fl->size, 8);
fl->desc = alloc_ring(eth_dev, "fl_ring", queue_id, socket_id,
fl->size, sizeof(__be64), s->stat_len,
sizeof(struct rx_sw_desc),
&fl->addr, &fl->sdesc);
if (!fl->desc) {
ret = -ENOMEM;
goto err;
}
flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
c.iqns_to_fl0congen |=
htonl(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
(unlikely(rxq->usembufs) ?
0 : F_FW_IQ_CMD_FL0PACKEN) |
F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
F_FW_IQ_CMD_FL0PADEN);
if (is_pf4(adap) && cong >= 0)
c.iqns_to_fl0congen |=
htonl(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
F_FW_IQ_CMD_FL0CONGCIF |
F_FW_IQ_CMD_FL0CONGEN);
/* In T6, for egress queue type FL there is internal overhead
* of 16B for header going into FLM module.
* Hence maximum allowed burst size will be 448 bytes.
*/
c.fl0dcaen_to_fl0cidxfthresh =
htons(V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5 ?
X_FETCHBURSTMIN_128B :
X_FETCHBURSTMIN_64B) |
V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5 ?
X_FETCHBURSTMAX_512B :
X_FETCHBURSTMAX_256B));
c.fl0size = htons(flsz);
c.fl0addr = cpu_to_be64(fl->addr);
}
if (is_pf4(adap))
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
else
ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c);
if (ret)
goto err;
iq->cur_desc = iq->desc;
iq->cidx = 0;
iq->gts_idx = 0;
iq->gen = 1;
iq->next_intr_params = iq->intr_params;
iq->cntxt_id = ntohs(c.iqid);
iq->abs_id = ntohs(c.physiqid);
iq->bar2_addr = bar2_address(adap, iq->cntxt_id, T4_BAR2_QTYPE_INGRESS,
&iq->bar2_qid);
iq->size--; /* subtract status entry */
iq->stat = (void *)&iq->desc[iq->size * 8];
iq->eth_dev = eth_dev;
iq->handler = hnd;
iq->port_id = eth_dev->data->port_id;
iq->mb_pool = mp;
/* set offset to -1 to distinguish ingress queues without FL */
iq->offset = fl ? 0 : -1;
if (fl) {
fl->cntxt_id = ntohs(c.fl0id);
fl->avail = 0;
fl->pend_cred = 0;
fl->pidx = 0;
fl->cidx = 0;
fl->alloc_failed = 0;
/*
* Note, we must initialize the BAR2 Free List User Doorbell
* information before refilling the Free List!
*/
fl->bar2_addr = bar2_address(adap, fl->cntxt_id,
T4_BAR2_QTYPE_EGRESS,
&fl->bar2_qid);
nb_refill = refill_fl(adap, fl, fl_cap(fl));
if (nb_refill != fl_cap(fl)) {
ret = -ENOMEM;
dev_err(adap, "%s: mbuf alloc failed with error: %d\n",
__func__, ret);
goto refill_fl_err;
}
}
/*
* For T5 and later we attempt to set up the Congestion Manager values
* of the new RX Ethernet Queue. This should really be handled by
* firmware because it's more complex than any host driver wants to
* get involved with and it's different per chip and this is almost
* certainly wrong. Formware would be wrong as well, but it would be
* a lot easier to fix in one place ... For now we do something very
* simple (and hopefully less wrong).
*/
if (is_pf4(adap) && !is_t4(adap->params.chip) && cong >= 0) {
u8 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
u32 param, val, ch_map = 0;
int i;
param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
V_FW_PARAMS_PARAM_YZ(iq->cntxt_id));
if (cong == 0) {
val = V_CONMCTXT_CNGTPMODE(X_CONMCTXT_CNGTPMODE_QUEUE);
} else {
val = V_CONMCTXT_CNGTPMODE(
X_CONMCTXT_CNGTPMODE_CHANNEL);
for (i = 0; i < 4; i++) {
if (cong & (1 << i))
ch_map |= 1 << (i << cng_ch_bits_log);
}
val |= V_CONMCTXT_CNGCHMAP(ch_map);
}
ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
&param, &val);
if (ret)
dev_warn(adap->pdev_dev, "Failed to set Congestion Manager Context for Ingress Queue %d: %d\n",
iq->cntxt_id, -ret);
}
return 0;
refill_fl_err:
t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
iq->cntxt_id, fl->cntxt_id, 0xffff);
err:
iq->cntxt_id = 0;
iq->abs_id = 0;
if (iq->desc)
iq->desc = NULL;
if (fl && fl->desc) {
rte_free(fl->sdesc);
fl->cntxt_id = 0;
fl->sdesc = NULL;
fl->desc = NULL;
}
return ret;
}
static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id,
unsigned int abs_id)
{
q->cntxt_id = id;
q->abs_id = abs_id;
q->bar2_addr = bar2_address(adap, q->cntxt_id, T4_BAR2_QTYPE_EGRESS,
&q->bar2_qid);
q->cidx = 0;
q->pidx = 0;
q->dbidx = 0;
q->in_use = 0;
q->equeidx = 0;
q->coalesce.idx = 0;
q->coalesce.len = 0;
q->coalesce.flits = 0;
q->last_coal_idx = 0;
q->last_pidx = 0;
q->stat = (void *)&q->desc[q->size];
}
int t4_sge_eth_txq_start(struct sge_eth_txq *txq)
{
/*
* TODO: For flow-control, queue may be stopped waiting to reclaim
* credits.
* Ensure queue is in EQ_STOPPED state before starting it.
*/
if (!(txq->flags & EQ_STOPPED))
return -(EBUSY);
txq->flags &= ~EQ_STOPPED;
return 0;
}
int t4_sge_eth_txq_stop(struct sge_eth_txq *txq)
{
txq->flags |= EQ_STOPPED;
return 0;
}
int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
struct rte_eth_dev *eth_dev, uint16_t queue_id,
unsigned int iqid, int socket_id)
{
int ret, nentries;
struct fw_eq_eth_cmd c;
struct sge *s = &adap->sge;
struct port_info *pi = eth_dev->data->dev_private;
u8 pciechan;
/* Add status entries */
nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
txq->q.desc = alloc_ring(eth_dev, "tx_ring", queue_id, socket_id,
txq->q.size, sizeof(struct tx_desc),
s->stat_len, sizeof(struct tx_sw_desc),
&txq->q.phys_addr, &txq->q.sdesc);
if (!txq->q.desc)
return -ENOMEM;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC);
if (is_pf4(adap)) {
pciechan = pi->tx_chan;
c.op_to_vfn |= htonl(V_FW_EQ_ETH_CMD_PFN(adap->pf) |
V_FW_EQ_ETH_CMD_VFN(0));
} else {
pciechan = pi->port_id;
}
c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_ALLOC |
F_FW_EQ_ETH_CMD_EQSTART | (sizeof(c) / 16));
c.autoequiqe_to_viid = htonl(F_FW_EQ_ETH_CMD_AUTOEQUEQE |
V_FW_EQ_ETH_CMD_VIID(pi->viid));
c.fetchszm_to_iqid =
htonl(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
V_FW_EQ_ETH_CMD_PCIECHN(pciechan) |
F_FW_EQ_ETH_CMD_FETCHRO | V_FW_EQ_ETH_CMD_IQID(iqid));
c.dcaen_to_eqsize =
htonl(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_ETH_CMD_EQSIZE(nentries));
c.eqaddr = rte_cpu_to_be_64(txq->q.phys_addr);
if (is_pf4(adap))
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
else
ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c);
if (ret) {
rte_free(txq->q.sdesc);
txq->q.sdesc = NULL;
txq->q.desc = NULL;
return ret;
}
init_txq(adap, &txq->q, G_FW_EQ_ETH_CMD_EQID(ntohl(c.eqid_pkd)),
G_FW_EQ_ETH_CMD_PHYSEQID(ntohl(c.physeqid_pkd)));
txq->stats.tso = 0;
txq->stats.pkts = 0;
txq->stats.tx_cso = 0;
txq->stats.coal_wr = 0;
txq->stats.vlan_ins = 0;
txq->stats.tx_bytes = 0;
txq->stats.coal_pkts = 0;
txq->stats.mapping_err = 0;
txq->flags |= EQ_STOPPED;
txq->eth_dev = eth_dev;
txq->data = eth_dev->data;
t4_os_lock_init(&txq->txq_lock);
return 0;
}
int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
struct rte_eth_dev *eth_dev, uint16_t queue_id,
unsigned int iqid, int socket_id)
{
int ret, nentries;
struct fw_eq_ctrl_cmd c;
struct sge *s = &adap->sge;
struct port_info *pi = eth_dev->data->dev_private;
/* Add status entries */
nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
txq->q.desc = alloc_ring(eth_dev, "ctrl_tx_ring", queue_id,
socket_id, txq->q.size, sizeof(struct tx_desc),
0, 0, &txq->q.phys_addr, NULL);
if (!txq->q.desc)
return -ENOMEM;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC |
V_FW_EQ_CTRL_CMD_PFN(adap->pf) |
V_FW_EQ_CTRL_CMD_VFN(0));
c.alloc_to_len16 = htonl(F_FW_EQ_CTRL_CMD_ALLOC |
F_FW_EQ_CTRL_CMD_EQSTART | (sizeof(c) / 16));
c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(0));
c.physeqid_pkd = htonl(0);
c.fetchszm_to_iqid =
htonl(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
V_FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(iqid));
c.dcaen_to_eqsize =
htonl(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_CTRL_CMD_EQSIZE(nentries));
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
if (ret) {
txq->q.desc = NULL;
return ret;
}
init_txq(adap, &txq->q, G_FW_EQ_CTRL_CMD_EQID(ntohl(c.cmpliqid_eqid)),
G_FW_EQ_CTRL_CMD_EQID(ntohl(c. physeqid_pkd)));
txq->adapter = adap;
txq->full = 0;
return 0;
}
static void free_txq(struct sge_txq *q)
{
q->cntxt_id = 0;
q->sdesc = NULL;
q->desc = NULL;
}
static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
struct sge_fl *fl)
{
unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
rq->cntxt_id, fl_id, 0xffff);
rq->cntxt_id = 0;
rq->abs_id = 0;
rq->desc = NULL;
if (fl) {
free_rx_bufs(fl, fl->avail);
rte_free(fl->sdesc);
fl->sdesc = NULL;
fl->cntxt_id = 0;
fl->desc = NULL;
}
}
/*
* Clear all queues of the port
*
* Note: This function must only be called after rx and tx path
* of the port have been disabled.
*/
void t4_sge_eth_clear_queues(struct port_info *pi)
{
struct adapter *adap = pi->adapter;
struct sge_eth_rxq *rxq;
struct sge_eth_txq *txq;
int i;
rxq = &adap->sge.ethrxq[pi->first_rxqset];
for (i = 0; i < pi->n_rx_qsets; i++, rxq++) {
if (rxq->rspq.desc)
t4_sge_eth_rxq_stop(adap, rxq);
}
txq = &adap->sge.ethtxq[pi->first_txqset];
for (i = 0; i < pi->n_tx_qsets; i++, txq++) {
if (txq->q.desc) {
struct sge_txq *q = &txq->q;
t4_sge_eth_txq_stop(txq);
reclaim_completed_tx(q);
free_tx_desc(q, q->size);
q->equeidx = q->pidx;
}
}
}
void t4_sge_eth_rxq_release(struct adapter *adap, struct sge_eth_rxq *rxq)
{
if (rxq->rspq.desc) {
t4_sge_eth_rxq_stop(adap, rxq);
free_rspq_fl(adap, &rxq->rspq, rxq->fl.size ? &rxq->fl : NULL);
}
}
void t4_sge_eth_txq_release(struct adapter *adap, struct sge_eth_txq *txq)
{
if (txq->q.desc) {
t4_sge_eth_txq_stop(txq);
reclaim_completed_tx(&txq->q);
t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, txq->q.cntxt_id);
free_tx_desc(&txq->q, txq->q.size);
rte_free(txq->q.sdesc);
free_txq(&txq->q);
}
}
void t4_sge_eth_release_queues(struct port_info *pi)
{
struct adapter *adap = pi->adapter;
struct sge_eth_rxq *rxq;
struct sge_eth_txq *txq;
unsigned int i;
rxq = &adap->sge.ethrxq[pi->first_rxqset];
/* clean up Ethernet Tx/Rx queues */
for (i = 0; i < pi->n_rx_qsets; i++, rxq++) {
/* Free only the queues allocated */
if (rxq->rspq.desc) {
t4_sge_eth_rxq_release(adap, rxq);
rte_eth_dma_zone_free(rxq->rspq.eth_dev, "fl_ring", i);
rte_eth_dma_zone_free(rxq->rspq.eth_dev, "rx_ring", i);
rxq->rspq.eth_dev = NULL;
}
}
txq = &adap->sge.ethtxq[pi->first_txqset];
for (i = 0; i < pi->n_tx_qsets; i++, txq++) {
/* Free only the queues allocated */
if (txq->q.desc) {
t4_sge_eth_txq_release(adap, txq);
rte_eth_dma_zone_free(txq->eth_dev, "tx_ring", i);
txq->eth_dev = NULL;
}
}
}
void t4_sge_tx_monitor_start(struct adapter *adap)
{
rte_eal_alarm_set(50, tx_timer_cb, (void *)adap);
}
void t4_sge_tx_monitor_stop(struct adapter *adap)
{
rte_eal_alarm_cancel(tx_timer_cb, (void *)adap);
}
/**
* t4_free_sge_resources - free SGE resources
* @adap: the adapter
*
* Frees resources used by the SGE queue sets.
*/
void t4_free_sge_resources(struct adapter *adap)
{
unsigned int i;
/* clean up control Tx queues */
for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
if (cq->q.desc) {
reclaim_completed_tx_imm(&cq->q);
t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
cq->q.cntxt_id);
rte_eth_dma_zone_free(adap->eth_dev, "ctrl_tx_ring", i);
rte_mempool_free(cq->mb_pool);
free_txq(&cq->q);
}
}
/* clean up firmware event queue */
if (adap->sge.fw_evtq.desc) {
free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
rte_eth_dma_zone_free(adap->eth_dev, "fwq_ring", 0);
}
}
/**
* t4_sge_init - initialize SGE
* @adap: the adapter
*
* Performs SGE initialization needed every time after a chip reset.
* We do not initialize any of the queues here, instead the driver
* top-level must request those individually.
*
* Called in two different modes:
*
* 1. Perform actual hardware initialization and record hard-coded
* parameters which were used. This gets used when we're the
* Master PF and the Firmware Configuration File support didn't
* work for some reason.
*
* 2. We're not the Master PF or initialization was performed with
* a Firmware Configuration File. In this case we need to grab
* any of the SGE operating parameters that we need to have in
* order to do our job and make sure we can live with them ...
*/
static int t4_sge_init_soft(struct adapter *adap)
{
struct sge *s = &adap->sge;
u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
u32 ingress_rx_threshold;
/*
* Verify that CPL messages are going to the Ingress Queue for
* process_responses() and that only packet data is going to the
* Free Lists.
*/
if ((t4_read_reg(adap, A_SGE_CONTROL) & F_RXPKTCPLMODE) !=
V_RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
dev_err(adap, "bad SGE CPL MODE\n");
return -EINVAL;
}
/*
* Validate the Host Buffer Register Array indices that we want to
* use ...
*
* XXX Note that we should really read through the Host Buffer Size
* XXX register array and find the indices of the Buffer Sizes which
* XXX meet our needs!
*/
#define READ_FL_BUF(x) \
t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE0 + (x) * sizeof(u32))
fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
/*
* We only bother using the Large Page logic if the Large Page Buffer
* is larger than our Page Size Buffer.
*/
if (fl_large_pg <= fl_small_pg)
fl_large_pg = 0;
#undef READ_FL_BUF
/*
* The Page Size Buffer must be exactly equal to our Page Size and the
* Large Page Size Buffer should be 0 (per above) or a power of 2.
*/
if (fl_small_pg != CXGBE_PAGE_SIZE ||
(fl_large_pg & (fl_large_pg - 1)) != 0) {
dev_err(adap, "bad SGE FL page buffer sizes [%d, %d]\n",
fl_small_pg, fl_large_pg);
return -EINVAL;
}
if (fl_large_pg)
s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
if (adap->use_unpacked_mode) {
int err = 0;
if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap)) {
dev_err(adap, "bad SGE FL small MTU %d\n",
fl_small_mtu);
err = -EINVAL;
}
if (fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
dev_err(adap, "bad SGE FL large MTU %d\n",
fl_large_mtu);
err = -EINVAL;
}
if (err)
return err;
}
/*
* Retrieve our RX interrupt holdoff timer values and counter
* threshold values from the SGE parameters.
*/
timer_value_0_and_1 = t4_read_reg(adap, A_SGE_TIMER_VALUE_0_AND_1);
timer_value_2_and_3 = t4_read_reg(adap, A_SGE_TIMER_VALUE_2_AND_3);
timer_value_4_and_5 = t4_read_reg(adap, A_SGE_TIMER_VALUE_4_AND_5);
s->timer_val[0] = core_ticks_to_us(adap,
G_TIMERVALUE0(timer_value_0_and_1));
s->timer_val[1] = core_ticks_to_us(adap,
G_TIMERVALUE1(timer_value_0_and_1));
s->timer_val[2] = core_ticks_to_us(adap,
G_TIMERVALUE2(timer_value_2_and_3));
s->timer_val[3] = core_ticks_to_us(adap,
G_TIMERVALUE3(timer_value_2_and_3));
s->timer_val[4] = core_ticks_to_us(adap,
G_TIMERVALUE4(timer_value_4_and_5));
s->timer_val[5] = core_ticks_to_us(adap,
G_TIMERVALUE5(timer_value_4_and_5));
ingress_rx_threshold = t4_read_reg(adap, A_SGE_INGRESS_RX_THRESHOLD);
s->counter_val[0] = G_THRESHOLD_0(ingress_rx_threshold);
s->counter_val[1] = G_THRESHOLD_1(ingress_rx_threshold);
s->counter_val[2] = G_THRESHOLD_2(ingress_rx_threshold);
s->counter_val[3] = G_THRESHOLD_3(ingress_rx_threshold);
return 0;
}
int t4_sge_init(struct adapter *adap)
{
struct sge *s = &adap->sge;
u32 sge_control, sge_conm_ctrl;
int ret, egress_threshold;
/*
* Ingress Padding Boundary and Egress Status Page Size are set up by
* t4_fixup_host_params().
*/
sge_control = t4_read_reg(adap, A_SGE_CONTROL);
s->pktshift = G_PKTSHIFT(sge_control);
s->stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64;
s->fl_align = t4_fl_pkt_align(adap);
ret = t4_sge_init_soft(adap);
if (ret < 0) {
dev_err(adap, "%s: t4_sge_init_soft failed, error %d\n",
__func__, -ret);
return ret;
}
/*
* A FL with <= fl_starve_thres buffers is starving and a periodic
* timer will attempt to refill it. This needs to be larger than the
* SGE's Egress Congestion Threshold. If it isn't, then we can get
* stuck waiting for new packets while the SGE is waiting for us to
* give it more Free List entries. (Note that the SGE's Egress
* Congestion Threshold is in units of 2 Free List pointers.) For T4,
* there was only a single field to control this. For T5 there's the
* original field which now only applies to Unpacked Mode Free List
* buffers and a new field which only applies to Packed Mode Free List
* buffers.
*/
sge_conm_ctrl = t4_read_reg(adap, A_SGE_CONM_CTRL);
if (is_t4(adap->params.chip) || adap->use_unpacked_mode)
egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl);
else
egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl);
s->fl_starve_thres = 2 * egress_threshold + 1;
return 0;
}
int t4vf_sge_init(struct adapter *adap)
{
struct sge_params *sge_params = &adap->params.sge;
u32 sge_ingress_queues_per_page;
u32 sge_egress_queues_per_page;
u32 sge_control, sge_control2;
u32 fl_small_pg, fl_large_pg;
u32 sge_ingress_rx_threshold;
u32 sge_timer_value_0_and_1;
u32 sge_timer_value_2_and_3;
u32 sge_timer_value_4_and_5;
u32 sge_congestion_control;
struct sge *s = &adap->sge;
unsigned int s_hps, s_qpp;
u32 sge_host_page_size;
u32 params[7], vals[7];
int v;
/* query basic params from fw */
params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
V_FW_PARAMS_PARAM_XYZ(A_SGE_CONTROL));
params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
V_FW_PARAMS_PARAM_XYZ(A_SGE_HOST_PAGE_SIZE));
params[2] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
V_FW_PARAMS_PARAM_XYZ(A_SGE_FL_BUFFER_SIZE0));
params[3] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
V_FW_PARAMS_PARAM_XYZ(A_SGE_FL_BUFFER_SIZE1));
params[4] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_0_AND_1));
params[5] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_2_AND_3));
params[6] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_4_AND_5));
v = t4vf_query_params(adap, 7, params, vals);
if (v != FW_SUCCESS)
return v;
sge_control = vals[0];
sge_host_page_size = vals[1];
fl_small_pg = vals[2];
fl_large_pg = vals[3];
sge_timer_value_0_and_1 = vals[4];
sge_timer_value_2_and_3 = vals[5];
sge_timer_value_4_and_5 = vals[6];
/*
* Start by vetting the basic SGE parameters which have been set up by
* the Physical Function Driver.
*/
/* We only bother using the Large Page logic if the Large Page Buffer
* is larger than our Page Size Buffer.
*/
if (fl_large_pg <= fl_small_pg)
fl_large_pg = 0;
/* The Page Size Buffer must be exactly equal to our Page Size and the
* Large Page Size Buffer should be 0 (per above) or a power of 2.
*/
if (fl_small_pg != CXGBE_PAGE_SIZE ||
(fl_large_pg & (fl_large_pg - 1)) != 0) {
dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
fl_small_pg, fl_large_pg);
return -EINVAL;
}
if ((sge_control & F_RXPKTCPLMODE) !=
V_RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
return -EINVAL;
}
/* Grab ingress packing boundary from SGE_CONTROL2 for */
params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
V_FW_PARAMS_PARAM_XYZ(A_SGE_CONTROL2));
v = t4vf_query_params(adap, 1, params, vals);
if (v != FW_SUCCESS) {
dev_err(adapter, "Unable to get SGE Control2; "
"probably old firmware.\n");
return v;
}
sge_control2 = vals[0];
params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
V_FW_PARAMS_PARAM_XYZ(A_SGE_INGRESS_RX_THRESHOLD));
params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
V_FW_PARAMS_PARAM_XYZ(A_SGE_CONM_CTRL));
v = t4vf_query_params(adap, 2, params, vals);
if (v != FW_SUCCESS)
return v;
sge_ingress_rx_threshold = vals[0];
sge_congestion_control = vals[1];
params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
V_FW_PARAMS_PARAM_XYZ(A_SGE_EGRESS_QUEUES_PER_PAGE_VF));
params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
V_FW_PARAMS_PARAM_XYZ(A_SGE_INGRESS_QUEUES_PER_PAGE_VF));
v = t4vf_query_params(adap, 2, params, vals);
if (v != FW_SUCCESS) {
dev_warn(adap, "Unable to get VF SGE Queues/Page; "
"probably old firmware.\n");
return v;
}
sge_egress_queues_per_page = vals[0];
sge_ingress_queues_per_page = vals[1];
/*
* We need the Queues/Page for our VF. This is based on the
* PF from which we're instantiated and is indexed in the
* register we just read.
*/
s_hps = (S_HOSTPAGESIZEPF0 +
(S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adap->pf);
sge_params->hps =
((sge_host_page_size >> s_hps) & M_HOSTPAGESIZEPF0);
s_qpp = (S_QUEUESPERPAGEPF0 +
(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adap->pf);
sge_params->eq_qpp =
((sge_egress_queues_per_page >> s_qpp)
& M_QUEUESPERPAGEPF0);
sge_params->iq_qpp =
((sge_ingress_queues_per_page >> s_qpp)
& M_QUEUESPERPAGEPF0);
/*
* Now translate the queried parameters into our internal forms.
*/
if (fl_large_pg)
s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
s->stat_len = ((sge_control & F_EGRSTATUSPAGESIZE)
? 128 : 64);
s->pktshift = G_PKTSHIFT(sge_control);
s->fl_align = t4vf_fl_pkt_align(adap, sge_control, sge_control2);
/*
* A FL with <= fl_starve_thres buffers is starving and a periodic
* timer will attempt to refill it. This needs to be larger than the
* SGE's Egress Congestion Threshold. If it isn't, then we can get
* stuck waiting for new packets while the SGE is waiting for us to
* give it more Free List entries. (Note that the SGE's Egress
* Congestion Threshold is in units of 2 Free List pointers.)
*/
switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
case CHELSIO_T5:
s->fl_starve_thres =
G_EGRTHRESHOLDPACKING(sge_congestion_control);
break;
case CHELSIO_T6:
default:
s->fl_starve_thres =
G_T6_EGRTHRESHOLDPACKING(sge_congestion_control);
break;
}
s->fl_starve_thres = s->fl_starve_thres * 2 + 1;
/*
* Save RX interrupt holdoff timer values and counter
* threshold values from the SGE parameters.
*/
s->timer_val[0] = core_ticks_to_us(adap,
G_TIMERVALUE0(sge_timer_value_0_and_1));
s->timer_val[1] = core_ticks_to_us(adap,
G_TIMERVALUE1(sge_timer_value_0_and_1));
s->timer_val[2] = core_ticks_to_us(adap,
G_TIMERVALUE2(sge_timer_value_2_and_3));
s->timer_val[3] = core_ticks_to_us(adap,
G_TIMERVALUE3(sge_timer_value_2_and_3));
s->timer_val[4] = core_ticks_to_us(adap,
G_TIMERVALUE4(sge_timer_value_4_and_5));
s->timer_val[5] = core_ticks_to_us(adap,
G_TIMERVALUE5(sge_timer_value_4_and_5));
s->counter_val[0] = G_THRESHOLD_0(sge_ingress_rx_threshold);
s->counter_val[1] = G_THRESHOLD_1(sge_ingress_rx_threshold);
s->counter_val[2] = G_THRESHOLD_2(sge_ingress_rx_threshold);
s->counter_val[3] = G_THRESHOLD_3(sge_ingress_rx_threshold);
return 0;
}