f-stack/dpdk/drivers/crypto/scheduler/scheduler_failover.c

225 lines
5.4 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <rte_cryptodev.h>
#include <rte_malloc.h>
#include "rte_cryptodev_scheduler_operations.h"
#include "scheduler_pmd_private.h"
#define PRIMARY_WORKER_IDX 0
#define SECONDARY_WORKER_IDX 1
#define NB_FAILOVER_WORKERS 2
#define WORKER_SWITCH_MASK (0x01)
struct fo_scheduler_qp_ctx {
struct scheduler_worker primary_worker;
struct scheduler_worker secondary_worker;
uint8_t deq_idx;
};
static __rte_always_inline uint16_t
failover_worker_enqueue(struct scheduler_worker *worker,
struct rte_crypto_op **ops, uint16_t nb_ops)
{
uint16_t i, processed_ops;
for (i = 0; i < nb_ops && i < 4; i++)
rte_prefetch0(ops[i]->sym->session);
processed_ops = rte_cryptodev_enqueue_burst(worker->dev_id,
worker->qp_id, ops, nb_ops);
worker->nb_inflight_cops += processed_ops;
return processed_ops;
}
static uint16_t
schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct fo_scheduler_qp_ctx *qp_ctx =
((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
uint16_t enqueued_ops;
if (unlikely(nb_ops == 0))
return 0;
enqueued_ops = failover_worker_enqueue(&qp_ctx->primary_worker,
ops, nb_ops);
if (enqueued_ops < nb_ops)
enqueued_ops += failover_worker_enqueue(
&qp_ctx->secondary_worker,
&ops[enqueued_ops],
nb_ops - enqueued_ops);
return enqueued_ops;
}
static uint16_t
schedule_enqueue_ordering(void *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct rte_ring *order_ring =
((struct scheduler_qp_ctx *)qp)->order_ring;
uint16_t nb_ops_to_enq = get_max_enqueue_order_count(order_ring,
nb_ops);
uint16_t nb_ops_enqd = schedule_enqueue(qp, ops,
nb_ops_to_enq);
scheduler_order_insert(order_ring, ops, nb_ops_enqd);
return nb_ops_enqd;
}
static uint16_t
schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct fo_scheduler_qp_ctx *qp_ctx =
((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
struct scheduler_worker *workers[NB_FAILOVER_WORKERS] = {
&qp_ctx->primary_worker, &qp_ctx->secondary_worker};
struct scheduler_worker *worker = workers[qp_ctx->deq_idx];
uint16_t nb_deq_ops = 0, nb_deq_ops2 = 0;
if (worker->nb_inflight_cops) {
nb_deq_ops = rte_cryptodev_dequeue_burst(worker->dev_id,
worker->qp_id, ops, nb_ops);
worker->nb_inflight_cops -= nb_deq_ops;
}
qp_ctx->deq_idx = (~qp_ctx->deq_idx) & WORKER_SWITCH_MASK;
if (nb_deq_ops == nb_ops)
return nb_deq_ops;
worker = workers[qp_ctx->deq_idx];
if (worker->nb_inflight_cops) {
nb_deq_ops2 = rte_cryptodev_dequeue_burst(worker->dev_id,
worker->qp_id, &ops[nb_deq_ops], nb_ops - nb_deq_ops);
worker->nb_inflight_cops -= nb_deq_ops2;
}
return nb_deq_ops + nb_deq_ops2;
}
static uint16_t
schedule_dequeue_ordering(void *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct rte_ring *order_ring =
((struct scheduler_qp_ctx *)qp)->order_ring;
schedule_dequeue(qp, ops, nb_ops);
return scheduler_order_drain(order_ring, ops, nb_ops);
}
static int
worker_attach(__rte_unused struct rte_cryptodev *dev,
__rte_unused uint8_t worker_id)
{
return 0;
}
static int
worker_detach(__rte_unused struct rte_cryptodev *dev,
__rte_unused uint8_t worker_id)
{
return 0;
}
static int
scheduler_start(struct rte_cryptodev *dev)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
uint16_t i;
if (sched_ctx->nb_workers < 2) {
CR_SCHED_LOG(ERR, "Number of workers shall no less than 2");
return -ENOMEM;
}
if (sched_ctx->reordering_enabled) {
dev->enqueue_burst = schedule_enqueue_ordering;
dev->dequeue_burst = schedule_dequeue_ordering;
} else {
dev->enqueue_burst = schedule_enqueue;
dev->dequeue_burst = schedule_dequeue;
}
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
struct fo_scheduler_qp_ctx *qp_ctx =
((struct scheduler_qp_ctx *)
dev->data->queue_pairs[i])->private_qp_ctx;
sched_ctx->workers[PRIMARY_WORKER_IDX].qp_id = i;
sched_ctx->workers[SECONDARY_WORKER_IDX].qp_id = i;
rte_memcpy(&qp_ctx->primary_worker,
&sched_ctx->workers[PRIMARY_WORKER_IDX],
sizeof(struct scheduler_worker));
rte_memcpy(&qp_ctx->secondary_worker,
&sched_ctx->workers[SECONDARY_WORKER_IDX],
sizeof(struct scheduler_worker));
}
return 0;
}
static int
scheduler_stop(__rte_unused struct rte_cryptodev *dev)
{
return 0;
}
static int
scheduler_config_qp(struct rte_cryptodev *dev, uint16_t qp_id)
{
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id];
struct fo_scheduler_qp_ctx *fo_qp_ctx;
fo_qp_ctx = rte_zmalloc_socket(NULL, sizeof(*fo_qp_ctx), 0,
rte_socket_id());
if (!fo_qp_ctx) {
CR_SCHED_LOG(ERR, "failed allocate memory for private queue pair");
return -ENOMEM;
}
qp_ctx->private_qp_ctx = (void *)fo_qp_ctx;
return 0;
}
static int
scheduler_create_private_ctx(__rte_unused struct rte_cryptodev *dev)
{
return 0;
}
static struct rte_cryptodev_scheduler_ops scheduler_fo_ops = {
worker_attach,
worker_detach,
scheduler_start,
scheduler_stop,
scheduler_config_qp,
scheduler_create_private_ctx,
NULL, /* option_set */
NULL /*option_get */
};
static struct rte_cryptodev_scheduler fo_scheduler = {
.name = "failover-scheduler",
.description = "scheduler which enqueues to the primary worker, "
"and only then enqueues to the secondary worker "
"upon failing on enqueuing to primary",
.mode = CDEV_SCHED_MODE_FAILOVER,
.ops = &scheduler_fo_ops
};
struct rte_cryptodev_scheduler *crypto_scheduler_failover = &fo_scheduler;