f-stack/dpdk/drivers/bus/pci/pci_common.c

772 lines
18 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation.
* Copyright 2013-2014 6WIND S.A.
*/
#include <string.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/queue.h>
#include <rte_errno.h>
#include <rte_interrupts.h>
#include <rte_log.h>
#include <rte_bus.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_eal_paging.h>
#include <rte_string_fns.h>
#include <rte_common.h>
#include <rte_devargs.h>
#include <rte_vfio.h>
#include "private.h"
#define SYSFS_PCI_DEVICES "/sys/bus/pci/devices"
const char *rte_pci_get_sysfs_path(void)
{
const char *path = NULL;
#ifdef RTE_EXEC_ENV_LINUX
path = getenv("SYSFS_PCI_DEVICES");
if (path == NULL)
return SYSFS_PCI_DEVICES;
#endif
return path;
}
static struct rte_devargs *
pci_devargs_lookup(const struct rte_pci_addr *pci_addr)
{
struct rte_devargs *devargs;
struct rte_pci_addr addr;
RTE_EAL_DEVARGS_FOREACH("pci", devargs) {
devargs->bus->parse(devargs->name, &addr);
if (!rte_pci_addr_cmp(pci_addr, &addr))
return devargs;
}
return NULL;
}
void
pci_name_set(struct rte_pci_device *dev)
{
struct rte_devargs *devargs;
/* Each device has its internal, canonical name set. */
rte_pci_device_name(&dev->addr,
dev->name, sizeof(dev->name));
devargs = pci_devargs_lookup(&dev->addr);
dev->device.devargs = devargs;
/* When using a blocklist, only blocked devices will have
* an rte_devargs. Allowed devices won't have one.
*/
if (devargs != NULL)
/* If an rte_devargs exists, the generic rte_device uses the
* given name as its name.
*/
dev->device.name = dev->device.devargs->name;
else
/* Otherwise, it uses the internal, canonical form. */
dev->device.name = dev->name;
}
/* map a particular resource from a file */
void *
pci_map_resource(void *requested_addr, int fd, off_t offset, size_t size,
int additional_flags)
{
void *mapaddr;
/* Map the PCI memory resource of device */
mapaddr = rte_mem_map(requested_addr, size,
RTE_PROT_READ | RTE_PROT_WRITE,
RTE_MAP_SHARED | additional_flags, fd, offset);
if (mapaddr == NULL) {
RTE_LOG(ERR, EAL,
"%s(): cannot map resource(%d, %p, 0x%zx, 0x%llx): %s (%p)\n",
__func__, fd, requested_addr, size,
(unsigned long long)offset,
rte_strerror(rte_errno), mapaddr);
} else
RTE_LOG(DEBUG, EAL, " PCI memory mapped at %p\n", mapaddr);
return mapaddr;
}
/* unmap a particular resource */
void
pci_unmap_resource(void *requested_addr, size_t size)
{
if (requested_addr == NULL)
return;
/* Unmap the PCI memory resource of device */
if (rte_mem_unmap(requested_addr, size)) {
RTE_LOG(ERR, EAL, "%s(): cannot mem unmap(%p, %#zx): %s\n",
__func__, requested_addr, size,
rte_strerror(rte_errno));
} else
RTE_LOG(DEBUG, EAL, " PCI memory unmapped at %p\n",
requested_addr);
}
/*
* Match the PCI Driver and Device using the ID Table
*/
int
rte_pci_match(const struct rte_pci_driver *pci_drv,
const struct rte_pci_device *pci_dev)
{
const struct rte_pci_id *id_table;
for (id_table = pci_drv->id_table; id_table->vendor_id != 0;
id_table++) {
/* check if device's identifiers match the driver's ones */
if (id_table->vendor_id != pci_dev->id.vendor_id &&
id_table->vendor_id != PCI_ANY_ID)
continue;
if (id_table->device_id != pci_dev->id.device_id &&
id_table->device_id != PCI_ANY_ID)
continue;
if (id_table->subsystem_vendor_id !=
pci_dev->id.subsystem_vendor_id &&
id_table->subsystem_vendor_id != PCI_ANY_ID)
continue;
if (id_table->subsystem_device_id !=
pci_dev->id.subsystem_device_id &&
id_table->subsystem_device_id != PCI_ANY_ID)
continue;
if (id_table->class_id != pci_dev->id.class_id &&
id_table->class_id != RTE_CLASS_ANY_ID)
continue;
return 1;
}
return 0;
}
/*
* If vendor/device ID match, call the probe() function of the
* driver.
*/
static int
rte_pci_probe_one_driver(struct rte_pci_driver *dr,
struct rte_pci_device *dev)
{
int ret;
bool already_probed;
struct rte_pci_addr *loc;
if ((dr == NULL) || (dev == NULL))
return -EINVAL;
loc = &dev->addr;
/* The device is not blocked; Check if driver supports it */
if (!rte_pci_match(dr, dev))
/* Match of device and driver failed */
return 1;
RTE_LOG(DEBUG, EAL, "PCI device "PCI_PRI_FMT" on NUMA socket %i\n",
loc->domain, loc->bus, loc->devid, loc->function,
dev->device.numa_node);
/* no initialization when marked as blocked, return without error */
if (dev->device.devargs != NULL &&
dev->device.devargs->policy == RTE_DEV_BLOCKED) {
RTE_LOG(INFO, EAL, " Device is blocked, not initializing\n");
return 1;
}
if (dev->device.numa_node < 0) {
if (rte_socket_count() > 1)
RTE_LOG(INFO, EAL, "Device %s is not NUMA-aware, defaulting socket to 0\n",
dev->name);
dev->device.numa_node = 0;
}
already_probed = rte_dev_is_probed(&dev->device);
if (already_probed && !(dr->drv_flags & RTE_PCI_DRV_PROBE_AGAIN)) {
RTE_LOG(DEBUG, EAL, "Device %s is already probed\n",
dev->device.name);
return -EEXIST;
}
RTE_LOG(DEBUG, EAL, " probe driver: %x:%x %s\n", dev->id.vendor_id,
dev->id.device_id, dr->driver.name);
/*
* reference driver structure
* This needs to be before rte_pci_map_device(), as it enables to use
* driver flags for adjusting configuration.
*/
if (!already_probed) {
enum rte_iova_mode dev_iova_mode;
enum rte_iova_mode iova_mode;
dev_iova_mode = pci_device_iova_mode(dr, dev);
iova_mode = rte_eal_iova_mode();
if (dev_iova_mode != RTE_IOVA_DC &&
dev_iova_mode != iova_mode) {
RTE_LOG(ERR, EAL, " Expecting '%s' IOVA mode but current mode is '%s', not initializing\n",
dev_iova_mode == RTE_IOVA_PA ? "PA" : "VA",
iova_mode == RTE_IOVA_PA ? "PA" : "VA");
return -EINVAL;
}
dev->driver = dr;
}
if (!already_probed && (dr->drv_flags & RTE_PCI_DRV_NEED_MAPPING)) {
/* map resources for devices that use igb_uio */
ret = rte_pci_map_device(dev);
if (ret != 0) {
dev->driver = NULL;
return ret;
}
}
RTE_LOG(INFO, EAL, "Probe PCI driver: %s (%x:%x) device: "PCI_PRI_FMT" (socket %i)\n",
dr->driver.name, dev->id.vendor_id, dev->id.device_id,
loc->domain, loc->bus, loc->devid, loc->function,
dev->device.numa_node);
/* call the driver probe() function */
ret = dr->probe(dr, dev);
if (already_probed)
return ret; /* no rollback if already succeeded earlier */
if (ret) {
dev->driver = NULL;
if ((dr->drv_flags & RTE_PCI_DRV_NEED_MAPPING) &&
/* Don't unmap if device is unsupported and
* driver needs mapped resources.
*/
!(ret > 0 &&
(dr->drv_flags & RTE_PCI_DRV_KEEP_MAPPED_RES)))
rte_pci_unmap_device(dev);
} else {
dev->device.driver = &dr->driver;
}
return ret;
}
/*
* If vendor/device ID match, call the remove() function of the
* driver.
*/
static int
rte_pci_detach_dev(struct rte_pci_device *dev)
{
struct rte_pci_addr *loc;
struct rte_pci_driver *dr;
int ret = 0;
if (dev == NULL)
return -EINVAL;
dr = dev->driver;
loc = &dev->addr;
RTE_LOG(DEBUG, EAL, "PCI device "PCI_PRI_FMT" on NUMA socket %i\n",
loc->domain, loc->bus, loc->devid,
loc->function, dev->device.numa_node);
RTE_LOG(DEBUG, EAL, " remove driver: %x:%x %s\n", dev->id.vendor_id,
dev->id.device_id, dr->driver.name);
if (dr->remove) {
ret = dr->remove(dev);
if (ret < 0)
return ret;
}
/* clear driver structure */
dev->driver = NULL;
dev->device.driver = NULL;
if (dr->drv_flags & RTE_PCI_DRV_NEED_MAPPING)
/* unmap resources for devices that use igb_uio */
rte_pci_unmap_device(dev);
return 0;
}
/*
* If vendor/device ID match, call the probe() function of all
* registered driver for the given device. Return < 0 if initialization
* failed, return 1 if no driver is found for this device.
*/
static int
pci_probe_all_drivers(struct rte_pci_device *dev)
{
struct rte_pci_driver *dr = NULL;
int rc = 0;
if (dev == NULL)
return -EINVAL;
FOREACH_DRIVER_ON_PCIBUS(dr) {
rc = rte_pci_probe_one_driver(dr, dev);
if (rc < 0)
/* negative value is an error */
return rc;
if (rc > 0)
/* positive value means driver doesn't support it */
continue;
return 0;
}
return 1;
}
/*
* Scan the content of the PCI bus, and call the probe() function for
* all registered drivers that have a matching entry in its id_table
* for discovered devices.
*/
static int
pci_probe(void)
{
struct rte_pci_device *dev = NULL;
size_t probed = 0, failed = 0;
int ret = 0;
FOREACH_DEVICE_ON_PCIBUS(dev) {
probed++;
ret = pci_probe_all_drivers(dev);
if (ret < 0) {
if (ret != -EEXIST) {
RTE_LOG(ERR, EAL, "Requested device "
PCI_PRI_FMT " cannot be used\n",
dev->addr.domain, dev->addr.bus,
dev->addr.devid, dev->addr.function);
rte_errno = errno;
failed++;
}
ret = 0;
}
}
return (probed && probed == failed) ? -1 : 0;
}
/* dump one device */
static int
pci_dump_one_device(FILE *f, struct rte_pci_device *dev)
{
int i;
fprintf(f, PCI_PRI_FMT, dev->addr.domain, dev->addr.bus,
dev->addr.devid, dev->addr.function);
fprintf(f, " - vendor:%x device:%x\n", dev->id.vendor_id,
dev->id.device_id);
for (i = 0; i != sizeof(dev->mem_resource) /
sizeof(dev->mem_resource[0]); i++) {
fprintf(f, " %16.16"PRIx64" %16.16"PRIx64"\n",
dev->mem_resource[i].phys_addr,
dev->mem_resource[i].len);
}
return 0;
}
/* dump devices on the bus */
void
rte_pci_dump(FILE *f)
{
struct rte_pci_device *dev = NULL;
FOREACH_DEVICE_ON_PCIBUS(dev) {
pci_dump_one_device(f, dev);
}
}
static int
pci_parse(const char *name, void *addr)
{
struct rte_pci_addr *out = addr;
struct rte_pci_addr pci_addr;
bool parse;
parse = (rte_pci_addr_parse(name, &pci_addr) == 0);
if (parse && addr != NULL)
*out = pci_addr;
return parse == false;
}
/* register a driver */
void
rte_pci_register(struct rte_pci_driver *driver)
{
TAILQ_INSERT_TAIL(&rte_pci_bus.driver_list, driver, next);
driver->bus = &rte_pci_bus;
}
/* unregister a driver */
void
rte_pci_unregister(struct rte_pci_driver *driver)
{
TAILQ_REMOVE(&rte_pci_bus.driver_list, driver, next);
driver->bus = NULL;
}
/* Add a device to PCI bus */
void
rte_pci_add_device(struct rte_pci_device *pci_dev)
{
TAILQ_INSERT_TAIL(&rte_pci_bus.device_list, pci_dev, next);
}
/* Insert a device into a predefined position in PCI bus */
void
rte_pci_insert_device(struct rte_pci_device *exist_pci_dev,
struct rte_pci_device *new_pci_dev)
{
TAILQ_INSERT_BEFORE(exist_pci_dev, new_pci_dev, next);
}
/* Remove a device from PCI bus */
static void
rte_pci_remove_device(struct rte_pci_device *pci_dev)
{
TAILQ_REMOVE(&rte_pci_bus.device_list, pci_dev, next);
}
static struct rte_device *
pci_find_device(const struct rte_device *start, rte_dev_cmp_t cmp,
const void *data)
{
const struct rte_pci_device *pstart;
struct rte_pci_device *pdev;
if (start != NULL) {
pstart = RTE_DEV_TO_PCI_CONST(start);
pdev = TAILQ_NEXT(pstart, next);
} else {
pdev = TAILQ_FIRST(&rte_pci_bus.device_list);
}
while (pdev != NULL) {
if (cmp(&pdev->device, data) == 0)
return &pdev->device;
pdev = TAILQ_NEXT(pdev, next);
}
return NULL;
}
/*
* find the device which encounter the failure, by iterate over all device on
* PCI bus to check if the memory failure address is located in the range
* of the BARs of the device.
*/
static struct rte_pci_device *
pci_find_device_by_addr(const void *failure_addr)
{
struct rte_pci_device *pdev = NULL;
uint64_t check_point, start, end, len;
int i;
check_point = (uint64_t)(uintptr_t)failure_addr;
FOREACH_DEVICE_ON_PCIBUS(pdev) {
for (i = 0; i != RTE_DIM(pdev->mem_resource); i++) {
start = (uint64_t)(uintptr_t)pdev->mem_resource[i].addr;
len = pdev->mem_resource[i].len;
end = start + len;
if (check_point >= start && check_point < end) {
RTE_LOG(DEBUG, EAL, "Failure address %16.16"
PRIx64" belongs to device %s!\n",
check_point, pdev->device.name);
return pdev;
}
}
}
return NULL;
}
static int
pci_hot_unplug_handler(struct rte_device *dev)
{
struct rte_pci_device *pdev = NULL;
int ret = 0;
pdev = RTE_DEV_TO_PCI(dev);
if (!pdev)
return -1;
switch (pdev->kdrv) {
#ifdef HAVE_VFIO_DEV_REQ_INTERFACE
case RTE_PCI_KDRV_VFIO:
/*
* vfio kernel module guaranty the pci device would not be
* deleted until the user space release the resource, so no
* need to remap BARs resource here, just directly notify
* the req event to the user space to handle it.
*/
rte_dev_event_callback_process(dev->name,
RTE_DEV_EVENT_REMOVE);
break;
#endif
case RTE_PCI_KDRV_IGB_UIO:
case RTE_PCI_KDRV_UIO_GENERIC:
case RTE_PCI_KDRV_NIC_UIO:
/* BARs resource is invalid, remap it to be safe. */
ret = pci_uio_remap_resource(pdev);
break;
default:
RTE_LOG(DEBUG, EAL,
"Not managed by a supported kernel driver, skipped\n");
ret = -1;
break;
}
return ret;
}
static int
pci_sigbus_handler(const void *failure_addr)
{
struct rte_pci_device *pdev = NULL;
int ret = 0;
pdev = pci_find_device_by_addr(failure_addr);
if (!pdev) {
/* It is a generic sigbus error, no bus would handle it. */
ret = 1;
} else {
/* The sigbus error is caused of hot-unplug. */
ret = pci_hot_unplug_handler(&pdev->device);
if (ret) {
RTE_LOG(ERR, EAL,
"Failed to handle hot-unplug for device %s",
pdev->name);
ret = -1;
}
}
return ret;
}
static int
pci_plug(struct rte_device *dev)
{
return pci_probe_all_drivers(RTE_DEV_TO_PCI(dev));
}
static int
pci_unplug(struct rte_device *dev)
{
struct rte_pci_device *pdev;
int ret;
pdev = RTE_DEV_TO_PCI(dev);
ret = rte_pci_detach_dev(pdev);
if (ret == 0) {
rte_pci_remove_device(pdev);
rte_devargs_remove(dev->devargs);
free(pdev);
}
return ret;
}
static int
pci_dma_map(struct rte_device *dev, void *addr, uint64_t iova, size_t len)
{
struct rte_pci_device *pdev = RTE_DEV_TO_PCI(dev);
if (!pdev || !pdev->driver) {
rte_errno = EINVAL;
return -1;
}
if (pdev->driver->dma_map)
return pdev->driver->dma_map(pdev, addr, iova, len);
/**
* In case driver don't provides any specific mapping
* try fallback to VFIO.
*/
if (pdev->kdrv == RTE_PCI_KDRV_VFIO)
return rte_vfio_container_dma_map
(RTE_VFIO_DEFAULT_CONTAINER_FD, (uintptr_t)addr,
iova, len);
rte_errno = ENOTSUP;
return -1;
}
static int
pci_dma_unmap(struct rte_device *dev, void *addr, uint64_t iova, size_t len)
{
struct rte_pci_device *pdev = RTE_DEV_TO_PCI(dev);
if (!pdev || !pdev->driver) {
rte_errno = EINVAL;
return -1;
}
if (pdev->driver->dma_unmap)
return pdev->driver->dma_unmap(pdev, addr, iova, len);
/**
* In case driver don't provides any specific mapping
* try fallback to VFIO.
*/
if (pdev->kdrv == RTE_PCI_KDRV_VFIO)
return rte_vfio_container_dma_unmap
(RTE_VFIO_DEFAULT_CONTAINER_FD, (uintptr_t)addr,
iova, len);
rte_errno = ENOTSUP;
return -1;
}
bool
rte_pci_ignore_device(const struct rte_pci_addr *pci_addr)
{
struct rte_devargs *devargs = pci_devargs_lookup(pci_addr);
switch (rte_pci_bus.bus.conf.scan_mode) {
case RTE_BUS_SCAN_ALLOWLIST:
if (devargs && devargs->policy == RTE_DEV_ALLOWED)
return false;
break;
case RTE_BUS_SCAN_UNDEFINED:
case RTE_BUS_SCAN_BLOCKLIST:
if (devargs == NULL || devargs->policy != RTE_DEV_BLOCKED)
return false;
break;
}
return true;
}
enum rte_iova_mode
rte_pci_get_iommu_class(void)
{
enum rte_iova_mode iova_mode = RTE_IOVA_DC;
const struct rte_pci_device *dev;
const struct rte_pci_driver *drv;
bool devices_want_va = false;
bool devices_want_pa = false;
int iommu_no_va = -1;
FOREACH_DEVICE_ON_PCIBUS(dev) {
/*
* We can check this only once, because the IOMMU hardware is
* the same for all of them.
*/
if (iommu_no_va == -1)
iommu_no_va = pci_device_iommu_support_va(dev)
? 0 : 1;
if (dev->kdrv == RTE_PCI_KDRV_UNKNOWN ||
dev->kdrv == RTE_PCI_KDRV_NONE)
continue;
FOREACH_DRIVER_ON_PCIBUS(drv) {
enum rte_iova_mode dev_iova_mode;
if (!rte_pci_match(drv, dev))
continue;
dev_iova_mode = pci_device_iova_mode(drv, dev);
RTE_LOG(DEBUG, EAL, "PCI driver %s for device "
PCI_PRI_FMT " wants IOVA as '%s'\n",
drv->driver.name,
dev->addr.domain, dev->addr.bus,
dev->addr.devid, dev->addr.function,
dev_iova_mode == RTE_IOVA_DC ? "DC" :
(dev_iova_mode == RTE_IOVA_PA ? "PA" : "VA"));
if (dev_iova_mode == RTE_IOVA_PA)
devices_want_pa = true;
else if (dev_iova_mode == RTE_IOVA_VA)
devices_want_va = true;
}
}
if (iommu_no_va == 1) {
iova_mode = RTE_IOVA_PA;
if (devices_want_va) {
RTE_LOG(WARNING, EAL, "Some devices want 'VA' but IOMMU does not support 'VA'.\n");
RTE_LOG(WARNING, EAL, "The devices that want 'VA' won't initialize.\n");
}
} else if (devices_want_va && !devices_want_pa) {
iova_mode = RTE_IOVA_VA;
} else if (devices_want_pa && !devices_want_va) {
iova_mode = RTE_IOVA_PA;
} else {
iova_mode = RTE_IOVA_DC;
if (devices_want_va) {
RTE_LOG(WARNING, EAL, "Some devices want 'VA' but forcing 'DC' because other devices want 'PA'.\n");
RTE_LOG(WARNING, EAL, "Depending on the final decision by the EAL, not all devices may be able to initialize.\n");
}
}
return iova_mode;
}
off_t
rte_pci_find_ext_capability(struct rte_pci_device *dev, uint32_t cap)
{
off_t offset = RTE_PCI_CFG_SPACE_SIZE;
uint32_t header;
int ttl;
/* minimum 8 bytes per capability */
ttl = (RTE_PCI_CFG_SPACE_EXP_SIZE - RTE_PCI_CFG_SPACE_SIZE) / 8;
if (rte_pci_read_config(dev, &header, 4, offset) < 0) {
RTE_LOG(ERR, EAL, "error in reading extended capabilities\n");
return -1;
}
/*
* If we have no capabilities, this is indicated by cap ID,
* cap version and next pointer all being 0.
*/
if (header == 0)
return 0;
while (ttl != 0) {
if (RTE_PCI_EXT_CAP_ID(header) == cap)
return offset;
offset = RTE_PCI_EXT_CAP_NEXT(header);
if (offset < RTE_PCI_CFG_SPACE_SIZE)
break;
if (rte_pci_read_config(dev, &header, 4, offset) < 0) {
RTE_LOG(ERR, EAL,
"error in reading extended capabilities\n");
return -1;
}
ttl--;
}
return 0;
}
struct rte_pci_bus rte_pci_bus = {
.bus = {
.scan = rte_pci_scan,
.probe = pci_probe,
.find_device = pci_find_device,
.plug = pci_plug,
.unplug = pci_unplug,
.parse = pci_parse,
.dma_map = pci_dma_map,
.dma_unmap = pci_dma_unmap,
.get_iommu_class = rte_pci_get_iommu_class,
.dev_iterate = rte_pci_dev_iterate,
.hot_unplug_handler = pci_hot_unplug_handler,
.sigbus_handler = pci_sigbus_handler,
},
.device_list = TAILQ_HEAD_INITIALIZER(rte_pci_bus.device_list),
.driver_list = TAILQ_HEAD_INITIALIZER(rte_pci_bus.driver_list),
};
RTE_REGISTER_BUS(pci, rte_pci_bus.bus);