f-stack/dpdk/app/test/test_lpm_perf.c

767 lines
20 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
* Copyright(c) 2020 Arm Limited
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <math.h>
#include <rte_cycles.h>
#include <rte_random.h>
#include <rte_branch_prediction.h>
#include <rte_malloc.h>
#include <rte_ip.h>
#include <rte_lpm.h>
#include "test.h"
#include "test_xmmt_ops.h"
struct rte_lpm *lpm;
static struct rte_rcu_qsbr *rv;
static volatile uint8_t writer_done;
static volatile uint32_t thr_id;
static uint64_t gwrite_cycles;
static uint32_t num_writers;
/* LPM APIs are not thread safe, use mutex to provide thread safety */
static pthread_mutex_t lpm_mutex = PTHREAD_MUTEX_INITIALIZER;
/* Report quiescent state interval every 1024 lookups. Larger critical
* sections in reader will result in writer polling multiple times.
*/
#define QSBR_REPORTING_INTERVAL 1024
#define TEST_LPM_ASSERT(cond) do { \
if (!(cond)) { \
printf("Error at line %d: \n", __LINE__); \
return -1; \
} \
} while(0)
#define ITERATIONS (1 << 10)
#define RCU_ITERATIONS 10
#define BATCH_SIZE (1 << 12)
#define BULK_SIZE 32
#define MAX_RULE_NUM (1200000)
struct route_rule {
uint32_t ip;
uint8_t depth;
};
static struct route_rule large_route_table[MAX_RULE_NUM];
/* Route table for routes with depth > 24 */
struct route_rule large_ldepth_route_table[MAX_RULE_NUM];
static uint32_t num_route_entries;
static uint32_t num_ldepth_route_entries;
#define NUM_ROUTE_ENTRIES num_route_entries
#define NUM_LDEPTH_ROUTE_ENTRIES num_ldepth_route_entries
#define TOTAL_WRITES (RCU_ITERATIONS * NUM_LDEPTH_ROUTE_ENTRIES)
enum {
IP_CLASS_A,
IP_CLASS_B,
IP_CLASS_C
};
/* struct route_rule_count defines the total number of rules in following a/b/c
* each item in a[]/b[]/c[] is the number of common IP address class A/B/C, not
* including the ones for private local network.
*/
struct route_rule_count {
uint32_t a[RTE_LPM_MAX_DEPTH];
uint32_t b[RTE_LPM_MAX_DEPTH];
uint32_t c[RTE_LPM_MAX_DEPTH];
};
/* All following numbers of each depth of each common IP class are just
* got from previous large constant table in app/test/test_lpm_routes.h .
* In order to match similar performance, they keep same depth and IP
* address coverage as previous constant table. These numbers don't
* include any private local IP address. As previous large const rule
* table was just dumped from a real router, there are no any IP address
* in class C or D.
*/
static struct route_rule_count rule_count = {
.a = { /* IP class A in which the most significant bit is 0 */
0, /* depth = 1 */
0, /* depth = 2 */
1, /* depth = 3 */
0, /* depth = 4 */
2, /* depth = 5 */
1, /* depth = 6 */
3, /* depth = 7 */
185, /* depth = 8 */
26, /* depth = 9 */
16, /* depth = 10 */
39, /* depth = 11 */
144, /* depth = 12 */
233, /* depth = 13 */
528, /* depth = 14 */
866, /* depth = 15 */
3856, /* depth = 16 */
3268, /* depth = 17 */
5662, /* depth = 18 */
17301, /* depth = 19 */
22226, /* depth = 20 */
11147, /* depth = 21 */
16746, /* depth = 22 */
17120, /* depth = 23 */
77578, /* depth = 24 */
401, /* depth = 25 */
656, /* depth = 26 */
1107, /* depth = 27 */
1121, /* depth = 28 */
2316, /* depth = 29 */
717, /* depth = 30 */
10, /* depth = 31 */
66 /* depth = 32 */
},
.b = { /* IP class A in which the most 2 significant bits are 10 */
0, /* depth = 1 */
0, /* depth = 2 */
0, /* depth = 3 */
0, /* depth = 4 */
1, /* depth = 5 */
1, /* depth = 6 */
1, /* depth = 7 */
3, /* depth = 8 */
3, /* depth = 9 */
30, /* depth = 10 */
25, /* depth = 11 */
168, /* depth = 12 */
305, /* depth = 13 */
569, /* depth = 14 */
1129, /* depth = 15 */
50800, /* depth = 16 */
1645, /* depth = 17 */
1820, /* depth = 18 */
3506, /* depth = 19 */
3258, /* depth = 20 */
3424, /* depth = 21 */
4971, /* depth = 22 */
6885, /* depth = 23 */
39771, /* depth = 24 */
424, /* depth = 25 */
170, /* depth = 26 */
433, /* depth = 27 */
92, /* depth = 28 */
366, /* depth = 29 */
377, /* depth = 30 */
2, /* depth = 31 */
200 /* depth = 32 */
},
.c = { /* IP class A in which the most 3 significant bits are 110 */
0, /* depth = 1 */
0, /* depth = 2 */
0, /* depth = 3 */
0, /* depth = 4 */
0, /* depth = 5 */
0, /* depth = 6 */
0, /* depth = 7 */
12, /* depth = 8 */
8, /* depth = 9 */
9, /* depth = 10 */
33, /* depth = 11 */
69, /* depth = 12 */
237, /* depth = 13 */
1007, /* depth = 14 */
1717, /* depth = 15 */
14663, /* depth = 16 */
8070, /* depth = 17 */
16185, /* depth = 18 */
48261, /* depth = 19 */
36870, /* depth = 20 */
33960, /* depth = 21 */
50638, /* depth = 22 */
61422, /* depth = 23 */
466549, /* depth = 24 */
1829, /* depth = 25 */
4824, /* depth = 26 */
4927, /* depth = 27 */
5914, /* depth = 28 */
10254, /* depth = 29 */
4905, /* depth = 30 */
1, /* depth = 31 */
716 /* depth = 32 */
}
};
static void generate_random_rule_prefix(uint32_t ip_class, uint8_t depth)
{
/* IP address class A, the most significant bit is 0 */
#define IP_HEAD_MASK_A 0x00000000
#define IP_HEAD_BIT_NUM_A 1
/* IP address class B, the most significant 2 bits are 10 */
#define IP_HEAD_MASK_B 0x80000000
#define IP_HEAD_BIT_NUM_B 2
/* IP address class C, the most significant 3 bits are 110 */
#define IP_HEAD_MASK_C 0xC0000000
#define IP_HEAD_BIT_NUM_C 3
uint32_t class_depth;
uint32_t range;
uint32_t mask;
uint32_t step;
uint32_t start;
uint32_t fixed_bit_num;
uint32_t ip_head_mask;
uint32_t rule_num;
uint32_t k;
struct route_rule *ptr_rule, *ptr_ldepth_rule;
if (ip_class == IP_CLASS_A) { /* IP Address class A */
fixed_bit_num = IP_HEAD_BIT_NUM_A;
ip_head_mask = IP_HEAD_MASK_A;
rule_num = rule_count.a[depth - 1];
} else if (ip_class == IP_CLASS_B) { /* IP Address class B */
fixed_bit_num = IP_HEAD_BIT_NUM_B;
ip_head_mask = IP_HEAD_MASK_B;
rule_num = rule_count.b[depth - 1];
} else { /* IP Address class C */
fixed_bit_num = IP_HEAD_BIT_NUM_C;
ip_head_mask = IP_HEAD_MASK_C;
rule_num = rule_count.c[depth - 1];
}
if (rule_num == 0)
return;
/* the number of rest bits which don't include the most significant
* fixed bits for this IP address class
*/
class_depth = depth - fixed_bit_num;
/* range is the maximum number of rules for this depth and
* this IP address class
*/
range = 1 << class_depth;
/* only mask the most depth significant generated bits
* except fixed bits for IP address class
*/
mask = range - 1;
/* Widen coverage of IP address in generated rules */
if (range <= rule_num)
step = 1;
else
step = round((double)range / rule_num);
/* Only generate rest bits except the most significant
* fixed bits for IP address class
*/
start = lrand48() & mask;
ptr_rule = &large_route_table[num_route_entries];
ptr_ldepth_rule = &large_ldepth_route_table[num_ldepth_route_entries];
for (k = 0; k < rule_num; k++) {
ptr_rule->ip = (start << (RTE_LPM_MAX_DEPTH - depth))
| ip_head_mask;
ptr_rule->depth = depth;
/* If the depth of the route is more than 24, store it
* in another table as well.
*/
if (depth > 24) {
ptr_ldepth_rule->ip = ptr_rule->ip;
ptr_ldepth_rule->depth = ptr_rule->depth;
ptr_ldepth_rule++;
num_ldepth_route_entries++;
}
ptr_rule++;
start = (start + step) & mask;
}
num_route_entries += rule_num;
}
static void insert_rule_in_random_pos(uint32_t ip, uint8_t depth)
{
uint32_t pos;
int try_count = 0;
struct route_rule tmp;
do {
pos = lrand48();
try_count++;
} while ((try_count < 10) && (pos > num_route_entries));
if ((pos > num_route_entries) || (pos >= MAX_RULE_NUM))
pos = num_route_entries >> 1;
tmp = large_route_table[pos];
large_route_table[pos].ip = ip;
large_route_table[pos].depth = depth;
if (num_route_entries < MAX_RULE_NUM)
large_route_table[num_route_entries++] = tmp;
}
static void generate_large_route_rule_table(void)
{
uint32_t ip_class;
uint8_t depth;
num_route_entries = 0;
num_ldepth_route_entries = 0;
memset(large_route_table, 0, sizeof(large_route_table));
for (ip_class = IP_CLASS_A; ip_class <= IP_CLASS_C; ip_class++) {
for (depth = 1; depth <= RTE_LPM_MAX_DEPTH; depth++) {
generate_random_rule_prefix(ip_class, depth);
}
}
/* Add following rules to keep same as previous large constant table,
* they are 4 rules with private local IP address and 1 all-zeros prefix
* with depth = 8.
*/
insert_rule_in_random_pos(RTE_IPV4(0, 0, 0, 0), 8);
insert_rule_in_random_pos(RTE_IPV4(10, 2, 23, 147), 32);
insert_rule_in_random_pos(RTE_IPV4(192, 168, 100, 10), 24);
insert_rule_in_random_pos(RTE_IPV4(192, 168, 25, 100), 24);
insert_rule_in_random_pos(RTE_IPV4(192, 168, 129, 124), 32);
}
static void
print_route_distribution(const struct route_rule *table, uint32_t n)
{
unsigned i, j;
printf("Route distribution per prefix width: \n");
printf("DEPTH QUANTITY (PERCENT)\n");
printf("--------------------------- \n");
/* Count depths. */
for (i = 1; i <= 32; i++) {
unsigned depth_counter = 0;
double percent_hits;
for (j = 0; j < n; j++)
if (table[j].depth == (uint8_t) i)
depth_counter++;
percent_hits = ((double)depth_counter)/((double)n) * 100;
printf("%.2u%15u (%.2f)\n", i, depth_counter, percent_hits);
}
printf("\n");
}
/* Check condition and return an error if true. */
static uint16_t enabled_core_ids[RTE_MAX_LCORE];
static unsigned int num_cores;
/* Simple way to allocate thread ids in 0 to RTE_MAX_LCORE space */
static inline uint32_t
alloc_thread_id(void)
{
uint32_t tmp_thr_id;
tmp_thr_id = __atomic_fetch_add(&thr_id, 1, __ATOMIC_RELAXED);
if (tmp_thr_id >= RTE_MAX_LCORE)
printf("Invalid thread id %u\n", tmp_thr_id);
return tmp_thr_id;
}
/*
* Reader thread using rte_lpm data structure without RCU.
*/
static int
test_lpm_reader(void *arg)
{
int i;
uint32_t ip_batch[QSBR_REPORTING_INTERVAL];
uint32_t next_hop_return = 0;
RTE_SET_USED(arg);
do {
for (i = 0; i < QSBR_REPORTING_INTERVAL; i++)
ip_batch[i] = rte_rand();
for (i = 0; i < QSBR_REPORTING_INTERVAL; i++)
rte_lpm_lookup(lpm, ip_batch[i], &next_hop_return);
} while (!writer_done);
return 0;
}
/*
* Reader thread using rte_lpm data structure with RCU.
*/
static int
test_lpm_rcu_qsbr_reader(void *arg)
{
int i;
uint32_t thread_id = alloc_thread_id();
uint32_t ip_batch[QSBR_REPORTING_INTERVAL];
uint32_t next_hop_return = 0;
RTE_SET_USED(arg);
/* Register this thread to report quiescent state */
rte_rcu_qsbr_thread_register(rv, thread_id);
rte_rcu_qsbr_thread_online(rv, thread_id);
do {
for (i = 0; i < QSBR_REPORTING_INTERVAL; i++)
ip_batch[i] = rte_rand();
for (i = 0; i < QSBR_REPORTING_INTERVAL; i++)
rte_lpm_lookup(lpm, ip_batch[i], &next_hop_return);
/* Update quiescent state */
rte_rcu_qsbr_quiescent(rv, thread_id);
} while (!writer_done);
rte_rcu_qsbr_thread_offline(rv, thread_id);
rte_rcu_qsbr_thread_unregister(rv, thread_id);
return 0;
}
/*
* Writer thread using rte_lpm data structure with RCU.
*/
static int
test_lpm_rcu_qsbr_writer(void *arg)
{
unsigned int i, j, si, ei;
uint64_t begin, total_cycles;
uint32_t next_hop_add = 0xAA;
uint8_t pos_core = (uint8_t)((uintptr_t)arg);
si = (pos_core * NUM_LDEPTH_ROUTE_ENTRIES) / num_writers;
ei = ((pos_core + 1) * NUM_LDEPTH_ROUTE_ENTRIES) / num_writers;
/* Measure add/delete. */
begin = rte_rdtsc_precise();
for (i = 0; i < RCU_ITERATIONS; i++) {
/* Add all the entries */
for (j = si; j < ei; j++) {
if (num_writers > 1)
pthread_mutex_lock(&lpm_mutex);
if (rte_lpm_add(lpm, large_ldepth_route_table[j].ip,
large_ldepth_route_table[j].depth,
next_hop_add) != 0) {
printf("Failed to add iteration %d, route# %d\n",
i, j);
goto error;
}
if (num_writers > 1)
pthread_mutex_unlock(&lpm_mutex);
}
/* Delete all the entries */
for (j = si; j < ei; j++) {
if (num_writers > 1)
pthread_mutex_lock(&lpm_mutex);
if (rte_lpm_delete(lpm, large_ldepth_route_table[j].ip,
large_ldepth_route_table[j].depth) != 0) {
printf("Failed to delete iteration %d, route# %d\n",
i, j);
goto error;
}
if (num_writers > 1)
pthread_mutex_unlock(&lpm_mutex);
}
}
total_cycles = rte_rdtsc_precise() - begin;
__atomic_fetch_add(&gwrite_cycles, total_cycles, __ATOMIC_RELAXED);
return 0;
error:
if (num_writers > 1)
pthread_mutex_unlock(&lpm_mutex);
return -1;
}
/*
* Functional test:
* 1/2 writers, rest are readers
*/
static int
test_lpm_rcu_perf_multi_writer(uint8_t use_rcu)
{
struct rte_lpm_config config;
size_t sz;
unsigned int i, j;
uint16_t core_id;
struct rte_lpm_rcu_config rcu_cfg = {0};
int (*reader_f)(void *arg) = NULL;
if (rte_lcore_count() < 3) {
printf("Not enough cores for lpm_rcu_perf_autotest, expecting at least 3\n");
return TEST_SKIPPED;
}
num_cores = 0;
RTE_LCORE_FOREACH_WORKER(core_id) {
enabled_core_ids[num_cores] = core_id;
num_cores++;
}
for (j = 1; j < 3; j++) {
if (use_rcu)
printf("\nPerf test: %d writer(s), %d reader(s),"
" RCU integration enabled\n", j, num_cores - j);
else
printf("\nPerf test: %d writer(s), %d reader(s),"
" RCU integration disabled\n", j, num_cores - j);
num_writers = j;
/* Create LPM table */
config.max_rules = NUM_LDEPTH_ROUTE_ENTRIES;
config.number_tbl8s = NUM_LDEPTH_ROUTE_ENTRIES;
config.flags = 0;
lpm = rte_lpm_create(__func__, SOCKET_ID_ANY, &config);
TEST_LPM_ASSERT(lpm != NULL);
/* Init RCU variable */
if (use_rcu) {
sz = rte_rcu_qsbr_get_memsize(num_cores);
rv = (struct rte_rcu_qsbr *)rte_zmalloc("rcu0", sz,
RTE_CACHE_LINE_SIZE);
rte_rcu_qsbr_init(rv, num_cores);
rcu_cfg.v = rv;
/* Assign the RCU variable to LPM */
if (rte_lpm_rcu_qsbr_add(lpm, &rcu_cfg) != 0) {
printf("RCU variable assignment failed\n");
goto error;
}
reader_f = test_lpm_rcu_qsbr_reader;
} else
reader_f = test_lpm_reader;
writer_done = 0;
__atomic_store_n(&gwrite_cycles, 0, __ATOMIC_RELAXED);
__atomic_store_n(&thr_id, 0, __ATOMIC_SEQ_CST);
/* Launch reader threads */
for (i = j; i < num_cores; i++)
rte_eal_remote_launch(reader_f, NULL,
enabled_core_ids[i]);
/* Launch writer threads */
for (i = 0; i < j; i++)
rte_eal_remote_launch(test_lpm_rcu_qsbr_writer,
(void *)(uintptr_t)i,
enabled_core_ids[i]);
/* Wait for writer threads */
for (i = 0; i < j; i++)
if (rte_eal_wait_lcore(enabled_core_ids[i]) < 0)
goto error;
printf("Total LPM Adds: %d\n", TOTAL_WRITES);
printf("Total LPM Deletes: %d\n", TOTAL_WRITES);
printf("Average LPM Add/Del: %"PRIu64" cycles\n",
__atomic_load_n(&gwrite_cycles, __ATOMIC_RELAXED)
/ TOTAL_WRITES);
writer_done = 1;
/* Wait until all readers have exited */
for (i = j; i < num_cores; i++)
rte_eal_wait_lcore(enabled_core_ids[i]);
rte_lpm_free(lpm);
rte_free(rv);
lpm = NULL;
rv = NULL;
}
return 0;
error:
writer_done = 1;
/* Wait until all readers have exited */
rte_eal_mp_wait_lcore();
rte_lpm_free(lpm);
rte_free(rv);
return -1;
}
static int
test_lpm_perf(void)
{
struct rte_lpm_config config;
config.max_rules = 2000000;
config.number_tbl8s = 2048;
config.flags = 0;
uint64_t begin, total_time, lpm_used_entries = 0;
unsigned i, j;
uint32_t next_hop_add = 0xAA, next_hop_return = 0;
int status = 0;
uint64_t cache_line_counter = 0;
int64_t count = 0;
rte_srand(rte_rdtsc());
generate_large_route_rule_table();
printf("No. routes = %u\n", (unsigned) NUM_ROUTE_ENTRIES);
print_route_distribution(large_route_table, (uint32_t) NUM_ROUTE_ENTRIES);
lpm = rte_lpm_create(__func__, SOCKET_ID_ANY, &config);
TEST_LPM_ASSERT(lpm != NULL);
/* Measure add. */
begin = rte_rdtsc();
for (i = 0; i < NUM_ROUTE_ENTRIES; i++) {
if (rte_lpm_add(lpm, large_route_table[i].ip,
large_route_table[i].depth, next_hop_add) == 0)
status++;
}
/* End Timer. */
total_time = rte_rdtsc() - begin;
printf("Unique added entries = %d\n", status);
/* Obtain add statistics. */
for (i = 0; i < RTE_LPM_TBL24_NUM_ENTRIES; i++) {
if (lpm->tbl24[i].valid)
lpm_used_entries++;
if (i % 32 == 0) {
if ((uint64_t)count < lpm_used_entries) {
cache_line_counter++;
count = lpm_used_entries;
}
}
}
printf("Used table 24 entries = %u (%g%%)\n",
(unsigned) lpm_used_entries,
(lpm_used_entries * 100.0) / RTE_LPM_TBL24_NUM_ENTRIES);
printf("64 byte Cache entries used = %u (%u bytes)\n",
(unsigned) cache_line_counter, (unsigned) cache_line_counter * 64);
printf("Average LPM Add: %g cycles\n",
(double)total_time / NUM_ROUTE_ENTRIES);
/* Measure single Lookup */
total_time = 0;
count = 0;
for (i = 0; i < ITERATIONS; i++) {
static uint32_t ip_batch[BATCH_SIZE];
for (j = 0; j < BATCH_SIZE; j++)
ip_batch[j] = rte_rand();
/* Lookup per batch */
begin = rte_rdtsc();
for (j = 0; j < BATCH_SIZE; j++) {
if (rte_lpm_lookup(lpm, ip_batch[j], &next_hop_return) != 0)
count++;
}
total_time += rte_rdtsc() - begin;
}
printf("Average LPM Lookup: %.1f cycles (fails = %.1f%%)\n",
(double)total_time / ((double)ITERATIONS * BATCH_SIZE),
(count * 100.0) / (double)(ITERATIONS * BATCH_SIZE));
/* Measure bulk Lookup */
total_time = 0;
count = 0;
for (i = 0; i < ITERATIONS; i++) {
static uint32_t ip_batch[BATCH_SIZE];
uint32_t next_hops[BULK_SIZE];
/* Create array of random IP addresses */
for (j = 0; j < BATCH_SIZE; j++)
ip_batch[j] = rte_rand();
/* Lookup per batch */
begin = rte_rdtsc();
for (j = 0; j < BATCH_SIZE; j += BULK_SIZE) {
unsigned k;
rte_lpm_lookup_bulk(lpm, &ip_batch[j], next_hops, BULK_SIZE);
for (k = 0; k < BULK_SIZE; k++)
if (unlikely(!(next_hops[k] & RTE_LPM_LOOKUP_SUCCESS)))
count++;
}
total_time += rte_rdtsc() - begin;
}
printf("BULK LPM Lookup: %.1f cycles (fails = %.1f%%)\n",
(double)total_time / ((double)ITERATIONS * BATCH_SIZE),
(count * 100.0) / (double)(ITERATIONS * BATCH_SIZE));
/* Measure LookupX4 */
total_time = 0;
count = 0;
for (i = 0; i < ITERATIONS; i++) {
static uint32_t ip_batch[BATCH_SIZE];
uint32_t next_hops[4];
/* Create array of random IP addresses */
for (j = 0; j < BATCH_SIZE; j++)
ip_batch[j] = rte_rand();
/* Lookup per batch */
begin = rte_rdtsc();
for (j = 0; j < BATCH_SIZE; j += RTE_DIM(next_hops)) {
unsigned k;
xmm_t ipx4;
ipx4 = vect_loadu_sil128((xmm_t *)(ip_batch + j));
ipx4 = *(xmm_t *)(ip_batch + j);
rte_lpm_lookupx4(lpm, ipx4, next_hops, UINT32_MAX);
for (k = 0; k < RTE_DIM(next_hops); k++)
if (unlikely(next_hops[k] == UINT32_MAX))
count++;
}
total_time += rte_rdtsc() - begin;
}
printf("LPM LookupX4: %.1f cycles (fails = %.1f%%)\n",
(double)total_time / ((double)ITERATIONS * BATCH_SIZE),
(count * 100.0) / (double)(ITERATIONS * BATCH_SIZE));
/* Measure Delete */
status = 0;
begin = rte_rdtsc();
for (i = 0; i < NUM_ROUTE_ENTRIES; i++) {
/* rte_lpm_delete(lpm, ip, depth) */
status += rte_lpm_delete(lpm, large_route_table[i].ip,
large_route_table[i].depth);
}
total_time = rte_rdtsc() - begin;
printf("Average LPM Delete: %g cycles\n",
(double)total_time / NUM_ROUTE_ENTRIES);
rte_lpm_delete_all(lpm);
rte_lpm_free(lpm);
if (test_lpm_rcu_perf_multi_writer(0) < 0)
return -1;
if (test_lpm_rcu_perf_multi_writer(1) < 0)
return -1;
return 0;
}
REGISTER_TEST_COMMAND(lpm_perf_autotest, test_lpm_perf);