f-stack/freebsd/mips/cavium/cryptocteon/cryptocteon.c

425 lines
10 KiB
C

/*
* Octeon Crypto for OCF
*
* Written by David McCullough <david_mccullough@securecomputing.com>
* Copyright (C) 2009 David McCullough
*
* LICENSE TERMS
*
* The free distribution and use of this software in both source and binary
* form is allowed (with or without changes) provided that:
*
* 1. distributions of this source code include the above copyright
* notice, this list of conditions and the following disclaimer;
*
* 2. distributions in binary form include the above copyright
* notice, this list of conditions and the following disclaimer
* in the documentation and/or other associated materials;
*
* 3. the copyright holder's name is not used to endorse products
* built using this software without specific written permission.
*
* DISCLAIMER
*
* This software is provided 'as is' with no explicit or implied warranties
* in respect of its properties, including, but not limited to, correctness
* and/or fitness for purpose.
* ---------------------------------------------------------------------------
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/uio.h>
#include <opencrypto/cryptodev.h>
#include <contrib/octeon-sdk/cvmx.h>
#include <mips/cavium/cryptocteon/cryptocteonvar.h>
#include "cryptodev_if.h"
struct cryptocteon_softc {
int32_t sc_cid; /* opencrypto id */
};
int cryptocteon_debug = 0;
TUNABLE_INT("hw.cryptocteon.debug", &cryptocteon_debug);
static void cryptocteon_identify(driver_t *, device_t);
static int cryptocteon_probe(device_t);
static int cryptocteon_attach(device_t);
static int cryptocteon_process(device_t, struct cryptop *, int);
static int cryptocteon_probesession(device_t,
const struct crypto_session_params *);
static int cryptocteon_newsession(device_t, crypto_session_t,
const struct crypto_session_params *);
static void
cryptocteon_identify(driver_t *drv, device_t parent)
{
if (octeon_has_feature(OCTEON_FEATURE_CRYPTO))
BUS_ADD_CHILD(parent, 0, "cryptocteon", 0);
}
static int
cryptocteon_probe(device_t dev)
{
device_set_desc(dev, "Octeon Secure Coprocessor");
return (0);
}
static int
cryptocteon_attach(device_t dev)
{
struct cryptocteon_softc *sc;
sc = device_get_softc(dev);
sc->sc_cid = crypto_get_driverid(dev, sizeof(struct octo_sess),
CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_SYNC |
CRYPTOCAP_F_ACCEL_SOFTWARE);
if (sc->sc_cid < 0) {
device_printf(dev, "crypto_get_driverid ret %d\n", sc->sc_cid);
return (ENXIO);
}
return (0);
}
static bool
cryptocteon_auth_supported(const struct crypto_session_params *csp)
{
u_int hash_len;
switch (csp->csp_auth_alg) {
case CRYPTO_SHA1_HMAC:
hash_len = SHA1_HASH_LEN;
break;
default:
return (false);
}
if (csp->csp_auth_klen > hash_len)
return (false);
return (true);
}
static bool
cryptocteon_cipher_supported(const struct crypto_session_params *csp)
{
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_CBC:
if (csp->csp_ivlen != 16)
return (false);
if (csp->csp_cipher_klen != 16 &&
csp->csp_cipher_klen != 24 &&
csp->csp_cipher_klen != 32)
return (false);
break;
default:
return (false);
}
return (true);
}
static int
cryptocteon_probesession(device_t dev, const struct crypto_session_params *csp)
{
if (csp->csp_flags != 0)
return (EINVAL);
switch (csp->csp_mode) {
case CSP_MODE_DIGEST:
if (!cryptocteon_auth_supported(csp))
return (EINVAL);
break;
case CSP_MODE_CIPHER:
if (!cryptocteon_cipher_supported(csp))
return (EINVAL);
break;
case CSP_MODE_ETA:
if (!cryptocteon_auth_supported(csp) ||
!cryptocteon_cipher_supported(csp))
return (EINVAL);
break;
default:
return (EINVAL);
}
return (CRYPTODEV_PROBE_ACCEL_SOFTWARE);
}
static void
cryptocteon_calc_hash(const struct crypto_session_params *csp, const char *key,
struct octo_sess *ocd)
{
char hash_key[SHA1_HASH_LEN];
memset(hash_key, 0, sizeof(hash_key));
memcpy(hash_key, key, csp->csp_auth_klen);
octo_calc_hash(csp->csp_auth_alg == CRYPTO_SHA1_HMAC, hash_key,
ocd->octo_hminner, ocd->octo_hmouter);
}
/* Generate a new octo session. */
static int
cryptocteon_newsession(device_t dev, crypto_session_t cses,
const struct crypto_session_params *csp)
{
struct cryptocteon_softc *sc;
struct octo_sess *ocd;
sc = device_get_softc(dev);
ocd = crypto_get_driver_session(cses);
ocd->octo_encklen = csp->csp_cipher_klen;
if (csp->csp_cipher_key != NULL)
memcpy(ocd->octo_enckey, csp->csp_cipher_key,
ocd->octo_encklen);
if (csp->csp_auth_key != NULL)
cryptocteon_calc_hash(csp, csp->csp_auth_key, ocd);
ocd->octo_mlen = csp->csp_auth_mlen;
if (csp->csp_auth_mlen == 0) {
switch (csp->csp_auth_alg) {
case CRYPTO_SHA1_HMAC:
ocd->octo_mlen = SHA1_HASH_LEN;
break;
}
}
switch (csp->csp_mode) {
case CSP_MODE_DIGEST:
switch (csp->csp_auth_alg) {
case CRYPTO_SHA1_HMAC:
ocd->octo_encrypt = octo_null_sha1_encrypt;
ocd->octo_decrypt = octo_null_sha1_encrypt;
break;
}
break;
case CSP_MODE_CIPHER:
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_CBC:
ocd->octo_encrypt = octo_aes_cbc_encrypt;
ocd->octo_decrypt = octo_aes_cbc_decrypt;
break;
}
break;
case CSP_MODE_ETA:
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_CBC:
switch (csp->csp_auth_alg) {
case CRYPTO_SHA1_HMAC:
ocd->octo_encrypt = octo_aes_cbc_sha1_encrypt;
ocd->octo_decrypt = octo_aes_cbc_sha1_decrypt;
break;
}
break;
}
break;
}
KASSERT(ocd->octo_encrypt != NULL && ocd->octo_decrypt != NULL,
("%s: missing function pointers", __func__));
return (0);
}
/*
* Process a request.
*/
static int
cryptocteon_process(device_t dev, struct cryptop *crp, int hint)
{
const struct crypto_session_params *csp;
struct octo_sess *od;
size_t iovcnt, iovlen;
struct mbuf *m = NULL;
struct uio *uiop = NULL;
unsigned char *ivp = NULL;
unsigned char iv_data[16];
unsigned char icv[SHA1_HASH_LEN], icv2[SHA1_HASH_LEN];
int auth_off, auth_len, crypt_off, crypt_len;
struct cryptocteon_softc *sc;
sc = device_get_softc(dev);
crp->crp_etype = 0;
od = crypto_get_driver_session(crp->crp_session);
csp = crypto_get_params(crp->crp_session);
/*
* The crypto routines assume that the regions to auth and
* cipher are exactly 8 byte multiples and aligned on 8
* byte logical boundaries within the iovecs.
*/
if (crp->crp_aad_length % 8 != 0 || crp->crp_payload_length % 8 != 0) {
crp->crp_etype = EFBIG;
goto done;
}
/*
* As currently written, the crypto routines assume the AAD and
* payload are adjacent.
*/
if (crp->crp_aad_length != 0 && crp->crp_payload_start !=
crp->crp_aad_start + crp->crp_aad_length) {
crp->crp_etype = EFBIG;
goto done;
}
crypt_off = crp->crp_payload_start;
crypt_len = crp->crp_payload_length;
if (crp->crp_aad_length != 0) {
auth_off = crp->crp_aad_start;
auth_len = crp->crp_aad_length + crp->crp_payload_length;
} else {
auth_off = crypt_off;
auth_len = crypt_len;
}
/*
* do some error checking outside of the loop for m and IOV processing
* this leaves us with valid m or uiop pointers for later
*/
switch (crp->crp_buf.cb_type) {
case CRYPTO_BUF_MBUF:
{
unsigned frags;
m = crp->crp_buf.cb_mbuf;
for (frags = 0; m != NULL; frags++)
m = m->m_next;
if (frags >= UIO_MAXIOV) {
printf("%s,%d: %d frags > UIO_MAXIOV", __FILE__, __LINE__, frags);
crp->crp_etype = EFBIG;
goto done;
}
m = crp->crp_buf.cb_mbuf;
break;
}
case CRYPTO_BUF_UIO:
uiop = crp->crp_buf.cb_uio;
if (uiop->uio_iovcnt > UIO_MAXIOV) {
printf("%s,%d: %d uio_iovcnt > UIO_MAXIOV", __FILE__, __LINE__,
uiop->uio_iovcnt);
crp->crp_etype = EFBIG;
goto done;
}
break;
default:
break;
}
if (csp->csp_cipher_alg != 0) {
if (crp->crp_flags & CRYPTO_F_IV_SEPARATE)
ivp = crp->crp_iv;
else {
crypto_copydata(crp, crp->crp_iv_start, csp->csp_ivlen,
iv_data);
ivp = iv_data;
}
}
/*
* setup the I/O vector to cover the buffer
*/
switch (crp->crp_buf.cb_type) {
case CRYPTO_BUF_MBUF:
iovcnt = 0;
iovlen = 0;
while (m != NULL) {
od->octo_iov[iovcnt].iov_base = mtod(m, void *);
od->octo_iov[iovcnt].iov_len = m->m_len;
m = m->m_next;
iovlen += od->octo_iov[iovcnt++].iov_len;
}
break;
case CRYPTO_BUF_UIO:
iovlen = 0;
for (iovcnt = 0; iovcnt < uiop->uio_iovcnt; iovcnt++) {
od->octo_iov[iovcnt].iov_base = uiop->uio_iov[iovcnt].iov_base;
od->octo_iov[iovcnt].iov_len = uiop->uio_iov[iovcnt].iov_len;
iovlen += od->octo_iov[iovcnt].iov_len;
}
break;
case CRYPTO_BUF_CONTIG:
iovlen = crp->crp_buf.cb_buf_len;
od->octo_iov[0].iov_base = crp->crp_buf.cb_buf;
od->octo_iov[0].iov_len = crp->crp_buf.cb_buf_len;
iovcnt = 1;
break;
default:
panic("can't happen");
}
/*
* setup a new explicit key
*/
if (crp->crp_cipher_key != NULL)
memcpy(od->octo_enckey, crp->crp_cipher_key, od->octo_encklen);
if (crp->crp_auth_key != NULL)
cryptocteon_calc_hash(csp, crp->crp_auth_key, od);
if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op))
(*od->octo_encrypt)(od, od->octo_iov, iovcnt, iovlen,
auth_off, auth_len, crypt_off, crypt_len, icv, ivp);
else
(*od->octo_decrypt)(od, od->octo_iov, iovcnt, iovlen,
auth_off, auth_len, crypt_off, crypt_len, icv, ivp);
if (csp->csp_auth_alg != 0) {
if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
crypto_copydata(crp, crp->crp_digest_start,
od->octo_mlen, icv2);
if (timingsafe_bcmp(icv, icv2, od->octo_mlen) != 0)
crp->crp_etype = EBADMSG;
} else
crypto_copyback(crp, crp->crp_digest_start,
od->octo_mlen, icv);
}
done:
crypto_done(crp);
return (0);
}
static device_method_t cryptocteon_methods[] = {
/* device methods */
DEVMETHOD(device_identify, cryptocteon_identify),
DEVMETHOD(device_probe, cryptocteon_probe),
DEVMETHOD(device_attach, cryptocteon_attach),
/* crypto device methods */
DEVMETHOD(cryptodev_probesession, cryptocteon_probesession),
DEVMETHOD(cryptodev_newsession, cryptocteon_newsession),
DEVMETHOD(cryptodev_process, cryptocteon_process),
{ 0, 0 }
};
static driver_t cryptocteon_driver = {
"cryptocteon",
cryptocteon_methods,
sizeof (struct cryptocteon_softc),
};
static devclass_t cryptocteon_devclass;
DRIVER_MODULE(cryptocteon, nexus, cryptocteon_driver, cryptocteon_devclass, 0, 0);