f-stack/freebsd/arm64/nvidia/tegra210/tegra210_cpufreq.c

503 lines
12 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright 2020 Michal Meloun <mmel@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <dev/extres/clk/clk.h>
#include <dev/extres/regulator/regulator.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <arm/nvidia/tegra_efuse.h>
#include "cpufreq_if.h"
/* CPU voltage table entry */
struct speedo_entry {
uint64_t freq; /* Frequency point */
int c0; /* Coeeficient values for */
int c1; /* quadratic equation: */
int c2; /* c2 * speedo^2 + c1 * speedo + c0 */
};
struct cpu_volt_def {
int min_uvolt; /* Min allowed CPU voltage */
int max_uvolt; /* Max allowed CPU voltage */
int step_uvolt; /* Step of CPU voltage */
int speedo_scale; /* Scaling factor for cvt */
int speedo_nitems; /* Size of speedo table */
struct speedo_entry *speedo_tbl; /* CPU voltage table */
};
struct cpu_speed_point {
uint64_t freq; /* Frequecy */
int uvolt; /* Requested voltage */
};
static struct speedo_entry tegra210_speedo_tbl[] =
{
{204000000UL, 1007452, -23865, 370},
{306000000UL, 1052709, -24875, 370},
{408000000UL, 1099069, -25895, 370},
{510000000UL, 1146534, -26905, 370},
{612000000UL, 1195102, -27915, 370},
{714000000UL, 1244773, -28925, 370},
{816000000UL, 1295549, -29935, 370},
{918000000UL, 1347428, -30955, 370},
{1020000000UL, 1400411, -31965, 370},
{1122000000UL, 1454497, -32975, 370},
{1224000000UL, 1509687, -33985, 370},
{1326000000UL, 1565981, -35005, 370},
{1428000000UL, 1623379, -36015, 370},
{1530000000UL, 1681880, -37025, 370},
{1632000000UL, 1741485, -38035, 370},
{1734000000UL, 1802194, -39055, 370},
{1836000000UL, 1864006, -40065, 370},
{1912500000UL, 1910780, -40815, 370},
{2014500000UL, 1227000, 0, 0},
{2218500000UL, 1227000, 0, 0},
};
static struct cpu_volt_def tegra210_cpu_volt_def =
{
.min_uvolt = 900000, /* 0.9 V */
.max_uvolt = 1227000, /* 1.227 */
.step_uvolt = 10000, /* 10 mV */
.speedo_scale = 100,
.speedo_nitems = nitems(tegra210_speedo_tbl),
.speedo_tbl = tegra210_speedo_tbl,
};
static uint64_t cpu_max_freq[] = {
1912500000UL,
1912500000UL,
2218500000UL,
1785000000UL,
1632000000UL,
1912500000UL,
2014500000UL,
1734000000UL,
1683000000UL,
1555500000UL,
1504500000UL,
};
static uint64_t cpu_freq_tbl[] = {
204000000UL,
306000000UL,
408000000UL,
510000000UL,
612000000UL,
714000000UL,
816000000UL,
918000000UL,
1020000000UL,
1122000000UL,
1224000000UL,
1326000000UL,
1428000000UL,
1530000000UL,
1632000000UL,
1734000000UL,
1836000000UL,
1912500000UL,
2014500000UL,
2218500000UL,
};
struct tegra210_cpufreq_softc {
device_t dev;
phandle_t node;
clk_t clk_cpu_g;
clk_t clk_pll_x;
clk_t clk_pll_p;
clk_t clk_dfll;
int process_id;
int speedo_id;
int speedo_value;
uint64_t cpu_max_freq;
struct cpu_volt_def *cpu_def;
struct cpu_speed_point *speed_points;
int nspeed_points;
struct cpu_speed_point *act_speed_point;
int latency;
};
static int cpufreq_lowest_freq = 1;
TUNABLE_INT("hw.tegra210.cpufreq.lowest_freq", &cpufreq_lowest_freq);
#define DIV_ROUND_CLOSEST(val, div) (((val) + ((div) / 2)) / (div))
#define ROUND_UP(val, div) roundup(val, div)
#define ROUND_DOWN(val, div) rounddown(val, div)
/*
* Compute requesetd voltage for given frequency and SoC process variations,
* - compute base voltage from speedo value using speedo table
* - round up voltage to next regulator step
* - clamp it to regulator limits
*/
static int
freq_to_voltage(struct tegra210_cpufreq_softc *sc, uint64_t freq)
{
int uv, scale, min_uvolt, max_uvolt, step_uvolt;
struct speedo_entry *ent;
int i;
/* Get speedo entry with higher frequency */
ent = NULL;
for (i = 0; i < sc->cpu_def->speedo_nitems; i++) {
if (sc->cpu_def->speedo_tbl[i].freq >= freq) {
ent = &sc->cpu_def->speedo_tbl[i];
break;
}
}
if (ent == NULL)
ent = &sc->cpu_def->speedo_tbl[sc->cpu_def->speedo_nitems - 1];
scale = sc->cpu_def->speedo_scale;
/* uV = (c2 * speedo / scale + c1) * speedo / scale + c0) */
uv = DIV_ROUND_CLOSEST(ent->c2 * sc->speedo_value, scale);
uv = DIV_ROUND_CLOSEST((uv + ent->c1) * sc->speedo_value, scale) +
ent->c0;
step_uvolt = sc->cpu_def->step_uvolt;
/* Round up it to next regulator step */
uv = ROUND_UP(uv, step_uvolt);
/* Clamp result */
min_uvolt = ROUND_UP(sc->cpu_def->min_uvolt, step_uvolt);
max_uvolt = ROUND_DOWN(sc->cpu_def->max_uvolt, step_uvolt);
if (uv < min_uvolt)
uv = min_uvolt;
if (uv > max_uvolt)
uv = max_uvolt;
return (uv);
}
static void
build_speed_points(struct tegra210_cpufreq_softc *sc) {
int i;
sc->nspeed_points = nitems(cpu_freq_tbl);
sc->speed_points = malloc(sizeof(struct cpu_speed_point) *
sc->nspeed_points, M_DEVBUF, M_NOWAIT);
for (i = 0; i < sc->nspeed_points; i++) {
sc->speed_points[i].freq = cpu_freq_tbl[i];
sc->speed_points[i].uvolt = freq_to_voltage(sc,
cpu_freq_tbl[i]);
}
}
static struct cpu_speed_point *
get_speed_point(struct tegra210_cpufreq_softc *sc, uint64_t freq)
{
int i;
if (sc->speed_points[0].freq >= freq)
return (sc->speed_points + 0);
for (i = 0; i < sc->nspeed_points - 1; i++) {
if (sc->speed_points[i + 1].freq > freq)
return (sc->speed_points + i);
}
return (sc->speed_points + sc->nspeed_points - 1);
}
static int
tegra210_cpufreq_settings(device_t dev, struct cf_setting *sets, int *count)
{
struct tegra210_cpufreq_softc *sc;
int i, j, max_cnt;
if (sets == NULL || count == NULL)
return (EINVAL);
sc = device_get_softc(dev);
memset(sets, CPUFREQ_VAL_UNKNOWN, sizeof(*sets) * (*count));
max_cnt = min(sc->nspeed_points, *count);
for (i = 0, j = sc->nspeed_points - 1; j >= 0; j--) {
if (sc->cpu_max_freq < sc->speed_points[j].freq)
continue;
sets[i].freq = sc->speed_points[j].freq / 1000000;
sets[i].volts = sc->speed_points[j].uvolt / 1000;
sets[i].lat = sc->latency;
sets[i].dev = dev;
i++;
}
*count = i;
return (0);
}
static int
set_cpu_freq(struct tegra210_cpufreq_softc *sc, uint64_t freq)
{
struct cpu_speed_point *point;
int rv;
point = get_speed_point(sc, freq);
/* Set PLLX frequency */
rv = clk_set_freq(sc->clk_pll_x, point->freq, CLK_SET_ROUND_DOWN);
if (rv != 0) {
device_printf(sc->dev, "Can't set CPU clock frequency\n");
return (rv);
}
sc->act_speed_point = point;
return (0);
}
static int
tegra210_cpufreq_set(device_t dev, const struct cf_setting *cf)
{
struct tegra210_cpufreq_softc *sc;
uint64_t freq;
int rv;
if (cf == NULL || cf->freq < 0)
return (EINVAL);
sc = device_get_softc(dev);
freq = cf->freq;
if (freq < cpufreq_lowest_freq)
freq = cpufreq_lowest_freq;
freq *= 1000000;
if (freq >= sc->cpu_max_freq)
freq = sc->cpu_max_freq;
rv = set_cpu_freq(sc, freq);
return (rv);
}
static int
tegra210_cpufreq_get(device_t dev, struct cf_setting *cf)
{
struct tegra210_cpufreq_softc *sc;
if (cf == NULL)
return (EINVAL);
sc = device_get_softc(dev);
memset(cf, CPUFREQ_VAL_UNKNOWN, sizeof(*cf));
cf->dev = NULL;
cf->freq = sc->act_speed_point->freq / 1000000;
cf->volts = sc->act_speed_point->uvolt / 1000;
/* Transition latency in us. */
cf->lat = sc->latency;
/* Driver providing this setting. */
cf->dev = dev;
return (0);
}
static int
tegra210_cpufreq_type(device_t dev, int *type)
{
if (type == NULL)
return (EINVAL);
*type = CPUFREQ_TYPE_ABSOLUTE;
return (0);
}
static int
get_fdt_resources(struct tegra210_cpufreq_softc *sc, phandle_t node)
{
int rv;
device_t parent_dev;
parent_dev = device_get_parent(sc->dev);
rv = clk_get_by_ofw_name(parent_dev, 0, "cpu_g", &sc->clk_cpu_g);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'cpu_g' clock: %d\n", rv);
return (ENXIO);
}
rv = clk_get_by_ofw_name(parent_dev, 0, "pll_x", &sc->clk_pll_x);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'pll_x' clock\n");
return (ENXIO);
}
rv = clk_get_by_ofw_name(parent_dev, 0, "pll_p", &sc->clk_pll_p);
if (rv != 0) {
device_printf(parent_dev, "Cannot get 'pll_p' clock\n");
return (ENXIO);
}
rv = clk_get_by_ofw_name(parent_dev, 0, "dfll", &sc->clk_dfll);
/* XXX DPLL is not implemented yet */
#if 0
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'dfll' clock\n");
return (ENXIO);
}
#endif
return (0);
}
static void
tegra210_cpufreq_identify(driver_t *driver, device_t parent)
{
phandle_t root;
root = OF_finddevice("/");
if (!ofw_bus_node_is_compatible(root, "nvidia,tegra210"))
return;
if (device_get_unit(parent) != 0)
return;
if (device_find_child(parent, "tegra210_cpufreq", -1) != NULL)
return;
if (BUS_ADD_CHILD(parent, 0, "tegra210_cpufreq", -1) == NULL)
device_printf(parent, "add child failed\n");
}
static int
tegra210_cpufreq_probe(device_t dev)
{
device_set_desc(dev, "CPU Frequency Control");
return (0);
}
static int
tegra210_cpufreq_attach(device_t dev)
{
struct tegra210_cpufreq_softc *sc;
uint64_t freq;
int rv;
sc = device_get_softc(dev);
sc->dev = dev;
sc->node = ofw_bus_get_node(device_get_parent(dev));
sc->process_id = tegra_sku_info.cpu_process_id;
sc->speedo_id = tegra_sku_info.cpu_speedo_id;
sc->speedo_value = tegra_sku_info.cpu_speedo_value;
sc->cpu_def = &tegra210_cpu_volt_def;
rv = get_fdt_resources(sc, sc->node);
if (rv != 0) {
return (rv);
}
build_speed_points(sc);
rv = clk_get_freq(sc->clk_cpu_g, &freq);
if (rv != 0) {
device_printf(dev, "Can't get CPU clock frequency\n");
return (rv);
}
if (sc->speedo_id < nitems(cpu_max_freq))
sc->cpu_max_freq = cpu_max_freq[sc->speedo_id];
else
sc->cpu_max_freq = cpu_max_freq[0];
sc->act_speed_point = get_speed_point(sc, freq);
/* Set safe startup CPU frequency. */
rv = set_cpu_freq(sc, 1632000000);
if (rv != 0) {
device_printf(dev, "Can't set initial CPU clock frequency\n");
return (rv);
}
/* This device is controlled by cpufreq(4). */
cpufreq_register(dev);
return (0);
}
static int
tegra210_cpufreq_detach(device_t dev)
{
struct tegra210_cpufreq_softc *sc;
sc = device_get_softc(dev);
cpufreq_unregister(dev);
if (sc->clk_cpu_g != NULL)
clk_release(sc->clk_cpu_g);
if (sc->clk_pll_x != NULL)
clk_release(sc->clk_pll_x);
if (sc->clk_pll_p != NULL)
clk_release(sc->clk_pll_p);
if (sc->clk_dfll != NULL)
clk_release(sc->clk_dfll);
return (0);
}
static device_method_t tegra210_cpufreq_methods[] = {
/* Device interface */
DEVMETHOD(device_identify, tegra210_cpufreq_identify),
DEVMETHOD(device_probe, tegra210_cpufreq_probe),
DEVMETHOD(device_attach, tegra210_cpufreq_attach),
DEVMETHOD(device_detach, tegra210_cpufreq_detach),
/* cpufreq interface */
DEVMETHOD(cpufreq_drv_set, tegra210_cpufreq_set),
DEVMETHOD(cpufreq_drv_get, tegra210_cpufreq_get),
DEVMETHOD(cpufreq_drv_settings, tegra210_cpufreq_settings),
DEVMETHOD(cpufreq_drv_type, tegra210_cpufreq_type),
DEVMETHOD_END
};
static devclass_t tegra210_cpufreq_devclass;
static DEFINE_CLASS_0(tegra210_cpufreq, tegra210_cpufreq_driver,
tegra210_cpufreq_methods, sizeof(struct tegra210_cpufreq_softc));
DRIVER_MODULE(tegra210_cpufreq, cpu, tegra210_cpufreq_driver,
tegra210_cpufreq_devclass, NULL, NULL);