f-stack/dpdk/drivers/crypto/scheduler/scheduler_pmd_private.h

226 lines
5.9 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#ifndef _SCHEDULER_PMD_PRIVATE_H
#define _SCHEDULER_PMD_PRIVATE_H
#include "rte_cryptodev_scheduler.h"
#define CRYPTODEV_NAME_SCHEDULER_PMD crypto_scheduler
/**< Scheduler Crypto PMD device name */
#define PER_WORKER_BUFF_SIZE (256)
extern int scheduler_logtype_driver;
#define CR_SCHED_LOG(level, fmt, args...) \
rte_log(RTE_LOG_ ## level, scheduler_logtype_driver, \
"%s() line %u: "fmt "\n", __func__, __LINE__, ##args)
struct scheduler_worker {
uint8_t dev_id;
uint16_t qp_id;
uint32_t nb_inflight_cops;
uint8_t driver_id;
};
struct scheduler_ctx {
void *private_ctx;
/**< private scheduler context pointer */
struct rte_cryptodev_capabilities *capabilities;
uint32_t nb_capabilities;
uint32_t max_nb_queue_pairs;
struct scheduler_worker workers[RTE_CRYPTODEV_SCHEDULER_MAX_NB_WORKERS];
uint32_t nb_workers;
/* reference count when the workers are incremented/decremented */
uint32_t ref_cnt;
enum rte_cryptodev_scheduler_mode mode;
struct rte_cryptodev_scheduler_ops ops;
uint8_t reordering_enabled;
char name[RTE_CRYPTODEV_SCHEDULER_NAME_MAX_LEN];
char description[RTE_CRYPTODEV_SCHEDULER_DESC_MAX_LEN];
uint16_t wc_pool[RTE_MAX_LCORE];
uint16_t nb_wc;
char *init_worker_names[RTE_CRYPTODEV_SCHEDULER_MAX_NB_WORKERS];
int nb_init_workers;
} __rte_cache_aligned;
struct scheduler_qp_ctx {
void *private_qp_ctx;
uint32_t max_nb_objs;
struct rte_ring *order_ring;
} __rte_cache_aligned;
struct scheduler_session_ctx {
uint32_t ref_cnt;
struct rte_cryptodev_sym_session *worker_sess[
RTE_CRYPTODEV_SCHEDULER_MAX_NB_WORKERS];
};
extern uint8_t cryptodev_scheduler_driver_id;
static __rte_always_inline uint16_t
get_max_enqueue_order_count(struct rte_ring *order_ring, uint16_t nb_ops)
{
uint32_t count = rte_ring_free_count(order_ring);
return count > nb_ops ? nb_ops : count;
}
static __rte_always_inline void
scheduler_order_insert(struct rte_ring *order_ring,
struct rte_crypto_op **ops, uint16_t nb_ops)
{
rte_ring_sp_enqueue_burst(order_ring, (void **)ops, nb_ops, NULL);
}
static __rte_always_inline uint16_t
scheduler_order_drain(struct rte_ring *order_ring,
struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct rte_crypto_op *op;
uint32_t nb_objs, nb_ops_to_deq;
nb_objs = rte_ring_dequeue_burst_start(order_ring, (void **)ops,
nb_ops, NULL);
if (nb_objs == 0)
return 0;
for (nb_ops_to_deq = 0; nb_ops_to_deq != nb_objs; nb_ops_to_deq++) {
op = ops[nb_ops_to_deq];
if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
break;
}
rte_ring_dequeue_finish(order_ring, nb_ops_to_deq);
return nb_ops_to_deq;
}
static __rte_always_inline void
scheduler_set_worker_session(struct rte_crypto_op **ops, uint16_t nb_ops,
uint8_t worker_index)
{
struct rte_crypto_op **op = ops;
uint16_t n = nb_ops;
if (n >= 4) {
rte_prefetch0(op[0]->sym->session);
rte_prefetch0(op[1]->sym->session);
rte_prefetch0(op[2]->sym->session);
rte_prefetch0(op[3]->sym->session);
}
while (n >= 4) {
if (n >= 8) {
rte_prefetch0(op[4]->sym->session);
rte_prefetch0(op[5]->sym->session);
rte_prefetch0(op[6]->sym->session);
rte_prefetch0(op[7]->sym->session);
}
if (op[0]->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
struct scheduler_session_ctx *sess_ctx =
CRYPTODEV_GET_SYM_SESS_PRIV(op[0]->sym->session);
op[0]->sym->session =
sess_ctx->worker_sess[worker_index];
}
if (op[1]->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
struct scheduler_session_ctx *sess_ctx =
CRYPTODEV_GET_SYM_SESS_PRIV(op[1]->sym->session);
op[1]->sym->session =
sess_ctx->worker_sess[worker_index];
}
if (op[2]->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
struct scheduler_session_ctx *sess_ctx =
CRYPTODEV_GET_SYM_SESS_PRIV(op[2]->sym->session);
op[2]->sym->session =
sess_ctx->worker_sess[worker_index];
}
if (op[3]->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
struct scheduler_session_ctx *sess_ctx =
CRYPTODEV_GET_SYM_SESS_PRIV(op[3]->sym->session);
op[3]->sym->session =
sess_ctx->worker_sess[worker_index];
}
op += 4;
n -= 4;
}
while (n--) {
if (op[0]->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
struct scheduler_session_ctx *sess_ctx =
CRYPTODEV_GET_SYM_SESS_PRIV(op[0]->sym->session);
op[0]->sym->session =
sess_ctx->worker_sess[worker_index];
op++;
}
}
}
static __rte_always_inline void
scheduler_retrieve_session(struct rte_crypto_op **ops, uint16_t nb_ops)
{
uint16_t n = nb_ops;
struct rte_crypto_op **op = ops;
if (n >= 4) {
rte_prefetch0(op[0]->sym->session);
rte_prefetch0(op[1]->sym->session);
rte_prefetch0(op[2]->sym->session);
rte_prefetch0(op[3]->sym->session);
}
while (n >= 4) {
if (n >= 8) {
rte_prefetch0(op[4]->sym->session);
rte_prefetch0(op[5]->sym->session);
rte_prefetch0(op[6]->sym->session);
rte_prefetch0(op[7]->sym->session);
}
if (op[0]->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
op[0]->sym->session = (void *)(uintptr_t)
rte_cryptodev_sym_session_opaque_data_get(op[0]->sym->session);
if (op[1]->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
op[1]->sym->session = (void *)(uintptr_t)
rte_cryptodev_sym_session_opaque_data_get(op[1]->sym->session);
if (op[2]->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
op[2]->sym->session = (void *)(uintptr_t)
rte_cryptodev_sym_session_opaque_data_get(op[2]->sym->session);
if (op[3]->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
op[3]->sym->session = (void *)(uintptr_t)
rte_cryptodev_sym_session_opaque_data_get(op[3]->sym->session);
op += 4;
n -= 4;
}
while (n--) {
if (op[0]->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
op[0]->sym->session = (void *)(uintptr_t)
rte_cryptodev_sym_session_opaque_data_get(op[0]->sym->session);
op++;
}
}
/** device specific operations function pointer structure */
extern struct rte_cryptodev_ops *rte_crypto_scheduler_pmd_ops;
#endif /* _SCHEDULER_PMD_PRIVATE_H */