mirror of https://github.com/F-Stack/f-stack.git
2945 lines
71 KiB
C
2945 lines
71 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright(c) 2019-2021 Xilinx, Inc.
|
|
* Copyright(c) 2012-2019 Solarflare Communications Inc.
|
|
*/
|
|
|
|
#include "efx.h"
|
|
#include "efx_impl.h"
|
|
#if EFSYS_OPT_MON_MCDI
|
|
#include "mcdi_mon.h"
|
|
#endif
|
|
|
|
#if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
|
|
|
|
#include "ef10_tlv_layout.h"
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_get_port_assignment(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *portp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN,
|
|
MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
|
|
|
|
req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN;
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
*portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT);
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_get_port_modes(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *modesp,
|
|
__out_opt uint32_t *current_modep,
|
|
__out_opt uint32_t *default_modep)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_MODES_IN_LEN,
|
|
MC_CMD_GET_PORT_MODES_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
|
|
|
|
req.emr_cmd = MC_CMD_GET_PORT_MODES;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN;
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
/*
|
|
* Require only Modes and DefaultMode fields, unless the current mode
|
|
* was requested (CurrentMode field was added for Medford).
|
|
*/
|
|
if (req.emr_out_length_used <
|
|
MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
if ((current_modep != NULL) && (req.emr_out_length_used <
|
|
MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) {
|
|
rc = EMSGSIZE;
|
|
goto fail3;
|
|
}
|
|
|
|
*modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES);
|
|
|
|
if (current_modep != NULL) {
|
|
*current_modep = MCDI_OUT_DWORD(req,
|
|
GET_PORT_MODES_OUT_CURRENT_MODE);
|
|
}
|
|
|
|
if (default_modep != NULL) {
|
|
*default_modep = MCDI_OUT_DWORD(req,
|
|
GET_PORT_MODES_OUT_DEFAULT_MODE);
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_get_port_mode_bandwidth(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *bandwidth_mbpsp)
|
|
{
|
|
uint32_t port_modes;
|
|
uint32_t current_mode;
|
|
efx_port_t *epp = &(enp->en_port);
|
|
|
|
uint32_t single_lane;
|
|
uint32_t dual_lane;
|
|
uint32_t quad_lane;
|
|
uint32_t bandwidth;
|
|
efx_rc_t rc;
|
|
|
|
if ((rc = efx_mcdi_get_port_modes(enp, &port_modes,
|
|
¤t_mode, NULL)) != 0) {
|
|
/* No port mode info available. */
|
|
goto fail1;
|
|
}
|
|
|
|
if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_25000FDX))
|
|
single_lane = 25000;
|
|
else
|
|
single_lane = 10000;
|
|
|
|
if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_50000FDX))
|
|
dual_lane = 50000;
|
|
else
|
|
dual_lane = 20000;
|
|
|
|
if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_100000FDX))
|
|
quad_lane = 100000;
|
|
else
|
|
quad_lane = 40000;
|
|
|
|
switch (current_mode) {
|
|
case TLV_PORT_MODE_1x1_NA: /* mode 0 */
|
|
bandwidth = single_lane;
|
|
break;
|
|
case TLV_PORT_MODE_1x2_NA: /* mode 10 */
|
|
case TLV_PORT_MODE_NA_1x2: /* mode 11 */
|
|
bandwidth = dual_lane;
|
|
break;
|
|
case TLV_PORT_MODE_1x1_1x1: /* mode 2 */
|
|
bandwidth = single_lane + single_lane;
|
|
break;
|
|
case TLV_PORT_MODE_4x1_NA: /* mode 4 */
|
|
case TLV_PORT_MODE_NA_4x1: /* mode 8 */
|
|
bandwidth = 4 * single_lane;
|
|
break;
|
|
case TLV_PORT_MODE_2x1_2x1: /* mode 5 */
|
|
bandwidth = (2 * single_lane) + (2 * single_lane);
|
|
break;
|
|
case TLV_PORT_MODE_1x2_1x2: /* mode 12 */
|
|
bandwidth = dual_lane + dual_lane;
|
|
break;
|
|
case TLV_PORT_MODE_1x2_2x1: /* mode 17 */
|
|
case TLV_PORT_MODE_2x1_1x2: /* mode 18 */
|
|
bandwidth = dual_lane + (2 * single_lane);
|
|
break;
|
|
/* Legacy Medford-only mode. Do not use (see bug63270) */
|
|
case TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2: /* mode 9 */
|
|
bandwidth = 4 * single_lane;
|
|
break;
|
|
case TLV_PORT_MODE_1x4_NA: /* mode 1 */
|
|
case TLV_PORT_MODE_NA_1x4: /* mode 22 */
|
|
bandwidth = quad_lane;
|
|
break;
|
|
case TLV_PORT_MODE_2x2_NA: /* mode 13 */
|
|
case TLV_PORT_MODE_NA_2x2: /* mode 14 */
|
|
bandwidth = 2 * dual_lane;
|
|
break;
|
|
case TLV_PORT_MODE_1x4_2x1: /* mode 6 */
|
|
case TLV_PORT_MODE_2x1_1x4: /* mode 7 */
|
|
bandwidth = quad_lane + (2 * single_lane);
|
|
break;
|
|
case TLV_PORT_MODE_1x4_1x2: /* mode 15 */
|
|
case TLV_PORT_MODE_1x2_1x4: /* mode 16 */
|
|
bandwidth = quad_lane + dual_lane;
|
|
break;
|
|
case TLV_PORT_MODE_1x4_1x4: /* mode 3 */
|
|
bandwidth = quad_lane + quad_lane;
|
|
break;
|
|
default:
|
|
rc = EINVAL;
|
|
goto fail2;
|
|
}
|
|
|
|
*bandwidth_mbpsp = bandwidth;
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#endif /* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
|
|
|
|
#if EFX_OPTS_EF10()
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_vadaptor_alloc(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t port_id)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_ALLOC_IN_LEN,
|
|
MC_CMD_VADAPTOR_ALLOC_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
req.emr_cmd = MC_CMD_VADAPTOR_ALLOC;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN;
|
|
|
|
MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
|
|
MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS,
|
|
VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED,
|
|
enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_vadaptor_free(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t port_id)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_FREE_IN_LEN,
|
|
MC_CMD_VADAPTOR_FREE_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
req.emr_cmd = MC_CMD_VADAPTOR_FREE;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN;
|
|
|
|
MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#endif /* EFX_OPTS_EF10() */
|
|
|
|
#if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_get_mac_address_pf(
|
|
__in efx_nic_t *enp,
|
|
__out_ecount_opt(6) uint8_t mac_addrp[6])
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_MAC_ADDRESSES_IN_LEN,
|
|
MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
|
|
|
|
req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN;
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) {
|
|
rc = ENOENT;
|
|
goto fail3;
|
|
}
|
|
|
|
if (mac_addrp != NULL) {
|
|
uint8_t *addrp;
|
|
|
|
addrp = MCDI_OUT2(req, uint8_t,
|
|
GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE);
|
|
|
|
EFX_MAC_ADDR_COPY(mac_addrp, addrp);
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_get_mac_address_vf(
|
|
__in efx_nic_t *enp,
|
|
__out_ecount_opt(6) uint8_t mac_addrp[6])
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN,
|
|
MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
|
|
|
|
req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX;
|
|
|
|
MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
|
|
EVB_PORT_ID_ASSIGNED);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used <
|
|
MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
if (MCDI_OUT_DWORD(req,
|
|
VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) {
|
|
rc = ENOENT;
|
|
goto fail3;
|
|
}
|
|
|
|
if (mac_addrp != NULL) {
|
|
uint8_t *addrp;
|
|
|
|
addrp = MCDI_OUT2(req, uint8_t,
|
|
VPORT_GET_MAC_ADDRESSES_OUT_MACADDR);
|
|
|
|
EFX_MAC_ADDR_COPY(mac_addrp, addrp);
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_get_clock(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *sys_freqp,
|
|
__out uint32_t *dpcpu_freqp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CLOCK_IN_LEN,
|
|
MC_CMD_GET_CLOCK_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
|
|
|
|
req.emr_cmd = MC_CMD_GET_CLOCK;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN;
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
*sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ);
|
|
if (*sys_freqp == 0) {
|
|
rc = EINVAL;
|
|
goto fail3;
|
|
}
|
|
*dpcpu_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_DPCPU_FREQ);
|
|
if (*dpcpu_freqp == 0) {
|
|
rc = EINVAL;
|
|
goto fail4;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_get_rxdp_config(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *end_paddingp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RXDP_CONFIG_IN_LEN,
|
|
MC_CMD_GET_RXDP_CONFIG_OUT_LEN);
|
|
uint32_t end_padding;
|
|
efx_rc_t rc;
|
|
|
|
req.emr_cmd = MC_CMD_GET_RXDP_CONFIG;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_RXDP_CONFIG_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_RXDP_CONFIG_OUT_LEN;
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_RXDP_CONFIG_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
if (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
|
|
GET_RXDP_CONFIG_OUT_PAD_HOST_DMA) == 0) {
|
|
/* RX DMA end padding is disabled */
|
|
end_padding = 0;
|
|
} else {
|
|
switch (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
|
|
GET_RXDP_CONFIG_OUT_PAD_HOST_LEN)) {
|
|
case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_64:
|
|
end_padding = 64;
|
|
break;
|
|
case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_128:
|
|
end_padding = 128;
|
|
break;
|
|
case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_256:
|
|
end_padding = 256;
|
|
break;
|
|
default:
|
|
rc = ENOTSUP;
|
|
goto fail3;
|
|
}
|
|
}
|
|
|
|
*end_paddingp = end_padding;
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_get_vector_cfg(
|
|
__in efx_nic_t *enp,
|
|
__out_opt uint32_t *vec_basep,
|
|
__out_opt uint32_t *pf_nvecp,
|
|
__out_opt uint32_t *vf_nvecp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_VECTOR_CFG_IN_LEN,
|
|
MC_CMD_GET_VECTOR_CFG_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
req.emr_cmd = MC_CMD_GET_VECTOR_CFG;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN;
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
if (vec_basep != NULL)
|
|
*vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE);
|
|
if (pf_nvecp != NULL)
|
|
*pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF);
|
|
if (vf_nvecp != NULL)
|
|
*vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF);
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_alloc_vis(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t min_vi_count,
|
|
__in uint32_t max_vi_count,
|
|
__out uint32_t *vi_basep,
|
|
__out uint32_t *vi_countp,
|
|
__out uint32_t *vi_shiftp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_VIS_IN_LEN,
|
|
MC_CMD_ALLOC_VIS_EXT_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
if (vi_countp == NULL) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
req.emr_cmd = MC_CMD_ALLOC_VIS;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_ALLOC_VIS_EXT_OUT_LEN;
|
|
|
|
MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count);
|
|
MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail2;
|
|
}
|
|
|
|
if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail3;
|
|
}
|
|
|
|
*vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE);
|
|
*vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT);
|
|
|
|
/* Report VI_SHIFT if available (always zero for Huntington) */
|
|
if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN)
|
|
*vi_shiftp = 0;
|
|
else
|
|
*vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT);
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_free_vis(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
efx_rc_t rc;
|
|
|
|
EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0);
|
|
EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0);
|
|
|
|
req.emr_cmd = MC_CMD_FREE_VIS;
|
|
req.emr_in_buf = NULL;
|
|
req.emr_in_length = 0;
|
|
req.emr_out_buf = NULL;
|
|
req.emr_out_length = 0;
|
|
|
|
efx_mcdi_execute_quiet(enp, &req);
|
|
|
|
/* Ignore ELREADY (no allocated VIs, so nothing to free) */
|
|
if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#endif /* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
|
|
|
|
#if EFX_OPTS_EF10()
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_alloc_piobuf(
|
|
__in efx_nic_t *enp,
|
|
__out efx_piobuf_handle_t *handlep)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_PIOBUF_IN_LEN,
|
|
MC_CMD_ALLOC_PIOBUF_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
if (handlep == NULL) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
req.emr_cmd = MC_CMD_ALLOC_PIOBUF;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN;
|
|
|
|
efx_mcdi_execute_quiet(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail2;
|
|
}
|
|
|
|
if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail3;
|
|
}
|
|
|
|
*handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_free_piobuf(
|
|
__in efx_nic_t *enp,
|
|
__in efx_piobuf_handle_t handle)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FREE_PIOBUF_IN_LEN,
|
|
MC_CMD_FREE_PIOBUF_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
req.emr_cmd = MC_CMD_FREE_PIOBUF;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN;
|
|
|
|
MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle);
|
|
|
|
efx_mcdi_execute_quiet(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_link_piobuf(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t vi_index,
|
|
__in efx_piobuf_handle_t handle)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LINK_PIOBUF_IN_LEN,
|
|
MC_CMD_LINK_PIOBUF_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
req.emr_cmd = MC_CMD_LINK_PIOBUF;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN;
|
|
|
|
MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle);
|
|
MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_unlink_piobuf(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t vi_index)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_UNLINK_PIOBUF_IN_LEN,
|
|
MC_CMD_UNLINK_PIOBUF_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
req.emr_cmd = MC_CMD_UNLINK_PIOBUF;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN;
|
|
|
|
MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
|
|
|
|
efx_mcdi_execute_quiet(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static void
|
|
ef10_nic_alloc_piobufs(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t max_piobuf_count)
|
|
{
|
|
efx_piobuf_handle_t *handlep;
|
|
unsigned int i;
|
|
|
|
EFSYS_ASSERT3U(max_piobuf_count, <=,
|
|
EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle));
|
|
|
|
enp->en_arch.ef10.ena_piobuf_count = 0;
|
|
|
|
for (i = 0; i < max_piobuf_count; i++) {
|
|
handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
|
|
|
|
if (efx_mcdi_alloc_piobuf(enp, handlep) != 0)
|
|
goto fail1;
|
|
|
|
enp->en_arch.ef10.ena_pio_alloc_map[i] = 0;
|
|
enp->en_arch.ef10.ena_piobuf_count++;
|
|
}
|
|
|
|
return;
|
|
|
|
fail1:
|
|
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
|
|
handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
|
|
|
|
(void) efx_mcdi_free_piobuf(enp, *handlep);
|
|
*handlep = EFX_PIOBUF_HANDLE_INVALID;
|
|
}
|
|
enp->en_arch.ef10.ena_piobuf_count = 0;
|
|
}
|
|
|
|
|
|
static void
|
|
ef10_nic_free_piobufs(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_piobuf_handle_t *handlep;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
|
|
handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
|
|
|
|
(void) efx_mcdi_free_piobuf(enp, *handlep);
|
|
*handlep = EFX_PIOBUF_HANDLE_INVALID;
|
|
}
|
|
enp->en_arch.ef10.ena_piobuf_count = 0;
|
|
}
|
|
|
|
/* Sub-allocate a block from a piobuf */
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_pio_alloc(
|
|
__inout efx_nic_t *enp,
|
|
__out uint32_t *bufnump,
|
|
__out efx_piobuf_handle_t *handlep,
|
|
__out uint32_t *blknump,
|
|
__out uint32_t *offsetp,
|
|
__out size_t *sizep)
|
|
{
|
|
efx_nic_cfg_t *encp = &enp->en_nic_cfg;
|
|
efx_drv_cfg_t *edcp = &enp->en_drv_cfg;
|
|
uint32_t blk_per_buf;
|
|
uint32_t buf, blk;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
|
|
EFSYS_ASSERT(bufnump);
|
|
EFSYS_ASSERT(handlep);
|
|
EFSYS_ASSERT(blknump);
|
|
EFSYS_ASSERT(offsetp);
|
|
EFSYS_ASSERT(sizep);
|
|
|
|
if ((edcp->edc_pio_alloc_size == 0) ||
|
|
(enp->en_arch.ef10.ena_piobuf_count == 0)) {
|
|
rc = ENOMEM;
|
|
goto fail1;
|
|
}
|
|
blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size;
|
|
|
|
for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) {
|
|
uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf];
|
|
|
|
if (~(*map) == 0)
|
|
continue;
|
|
|
|
EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map)));
|
|
for (blk = 0; blk < blk_per_buf; blk++) {
|
|
if ((*map & (1u << blk)) == 0) {
|
|
*map |= (1u << blk);
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
rc = ENOMEM;
|
|
goto fail2;
|
|
|
|
done:
|
|
*handlep = enp->en_arch.ef10.ena_piobuf_handle[buf];
|
|
*bufnump = buf;
|
|
*blknump = blk;
|
|
*sizep = edcp->edc_pio_alloc_size;
|
|
*offsetp = blk * (*sizep);
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/* Free a piobuf sub-allocated block */
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_pio_free(
|
|
__inout efx_nic_t *enp,
|
|
__in uint32_t bufnum,
|
|
__in uint32_t blknum)
|
|
{
|
|
uint32_t *map;
|
|
efx_rc_t rc;
|
|
|
|
if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) ||
|
|
(blknum >= (8 * sizeof (*map)))) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum];
|
|
if ((*map & (1u << blknum)) == 0) {
|
|
rc = ENOENT;
|
|
goto fail2;
|
|
}
|
|
*map &= ~(1u << blknum);
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_pio_link(
|
|
__inout efx_nic_t *enp,
|
|
__in uint32_t vi_index,
|
|
__in efx_piobuf_handle_t handle)
|
|
{
|
|
return (efx_mcdi_link_piobuf(enp, vi_index, handle));
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_pio_unlink(
|
|
__inout efx_nic_t *enp,
|
|
__in uint32_t vi_index)
|
|
{
|
|
return (efx_mcdi_unlink_piobuf(enp, vi_index));
|
|
}
|
|
|
|
#endif /* EFX_OPTS_EF10() */
|
|
|
|
#if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
|
|
|
|
static __checkReturn efx_rc_t
|
|
ef10_mcdi_get_pf_count(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *pf_countp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PF_COUNT_IN_LEN,
|
|
MC_CMD_GET_PF_COUNT_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
req.emr_cmd = MC_CMD_GET_PF_COUNT;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_PF_COUNT_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_PF_COUNT_OUT_LEN;
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_PF_COUNT_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
*pf_countp = *MCDI_OUT(req, uint8_t,
|
|
MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST);
|
|
|
|
EFSYS_ASSERT(*pf_countp != 0);
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
ef10_get_datapath_caps(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
|
|
MC_CMD_GET_CAPABILITIES_V9_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
req.emr_cmd = MC_CMD_GET_CAPABILITIES;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_CAPABILITIES_V9_OUT_LEN;
|
|
|
|
efx_mcdi_execute_quiet(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
#define CAP_FLAGS1(_req, _flag) \
|
|
(MCDI_OUT_DWORD((_req), GET_CAPABILITIES_OUT_FLAGS1) & \
|
|
(1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN)))
|
|
|
|
#define CAP_FLAGS2(_req, _flag) \
|
|
(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) && \
|
|
(MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V2_OUT_FLAGS2) & \
|
|
(1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN))))
|
|
|
|
#define CAP_FLAGS3(_req, _flag) \
|
|
(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V7_OUT_LEN) && \
|
|
(MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V7_OUT_FLAGS3) & \
|
|
(1u << (MC_CMD_GET_CAPABILITIES_V7_OUT_ ## _flag ## _LBN))))
|
|
|
|
/* Check if RXDP firmware inserts 14 byte prefix */
|
|
if (CAP_FLAGS1(req, RX_PREFIX_LEN_14))
|
|
encp->enc_rx_prefix_size = 14;
|
|
else
|
|
encp->enc_rx_prefix_size = 0;
|
|
|
|
#if EFSYS_OPT_RX_SCALE
|
|
/* Check if the firmware supports additional RSS modes */
|
|
if (CAP_FLAGS1(req, ADDITIONAL_RSS_MODES))
|
|
encp->enc_rx_scale_additional_modes_supported = B_TRUE;
|
|
else
|
|
encp->enc_rx_scale_additional_modes_supported = B_FALSE;
|
|
#endif /* EFSYS_OPT_RX_SCALE */
|
|
|
|
/* Check if the firmware supports TSO */
|
|
if (CAP_FLAGS1(req, TX_TSO))
|
|
encp->enc_fw_assisted_tso_enabled = B_TRUE;
|
|
else
|
|
encp->enc_fw_assisted_tso_enabled = B_FALSE;
|
|
|
|
/* Check if the firmware supports FATSOv2 */
|
|
if (CAP_FLAGS2(req, TX_TSO_V2)) {
|
|
encp->enc_fw_assisted_tso_v2_enabled = B_TRUE;
|
|
encp->enc_fw_assisted_tso_v2_n_contexts = MCDI_OUT_WORD(req,
|
|
GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS);
|
|
} else {
|
|
encp->enc_fw_assisted_tso_v2_enabled = B_FALSE;
|
|
encp->enc_fw_assisted_tso_v2_n_contexts = 0;
|
|
}
|
|
|
|
/* Check if the firmware supports FATSOv2 encap */
|
|
if (CAP_FLAGS2(req, TX_TSO_V2_ENCAP))
|
|
encp->enc_fw_assisted_tso_v2_encap_enabled = B_TRUE;
|
|
else
|
|
encp->enc_fw_assisted_tso_v2_encap_enabled = B_FALSE;
|
|
|
|
/* Check if TSOv3 is supported */
|
|
if (CAP_FLAGS2(req, TX_TSO_V3))
|
|
encp->enc_tso_v3_enabled = B_TRUE;
|
|
else
|
|
encp->enc_tso_v3_enabled = B_FALSE;
|
|
|
|
/* Check if the firmware has vadapter/vport/vswitch support */
|
|
if (CAP_FLAGS1(req, EVB))
|
|
encp->enc_datapath_cap_evb = B_TRUE;
|
|
else
|
|
encp->enc_datapath_cap_evb = B_FALSE;
|
|
|
|
/* Check if the firmware supports vport reconfiguration */
|
|
if (CAP_FLAGS1(req, VPORT_RECONFIGURE))
|
|
encp->enc_vport_reconfigure_supported = B_TRUE;
|
|
else
|
|
encp->enc_vport_reconfigure_supported = B_FALSE;
|
|
|
|
/* Check if the firmware supports VLAN insertion */
|
|
if (CAP_FLAGS1(req, TX_VLAN_INSERTION))
|
|
encp->enc_hw_tx_insert_vlan_enabled = B_TRUE;
|
|
else
|
|
encp->enc_hw_tx_insert_vlan_enabled = B_FALSE;
|
|
|
|
/* Check if the firmware supports RX event batching */
|
|
if (CAP_FLAGS1(req, RX_BATCHING))
|
|
encp->enc_rx_batching_enabled = B_TRUE;
|
|
else
|
|
encp->enc_rx_batching_enabled = B_FALSE;
|
|
|
|
/*
|
|
* Even if batching isn't reported as supported, we may still get
|
|
* batched events (see bug61153).
|
|
*/
|
|
encp->enc_rx_batch_max = 16;
|
|
|
|
/* Check if the firmware supports disabling scatter on RXQs */
|
|
if (CAP_FLAGS1(req, RX_DISABLE_SCATTER))
|
|
encp->enc_rx_disable_scatter_supported = B_TRUE;
|
|
else
|
|
encp->enc_rx_disable_scatter_supported = B_FALSE;
|
|
|
|
/* No limit on maximum number of Rx scatter elements per packet. */
|
|
encp->enc_rx_scatter_max = -1;
|
|
|
|
/* Check if the firmware supports packed stream mode */
|
|
if (CAP_FLAGS1(req, RX_PACKED_STREAM))
|
|
encp->enc_rx_packed_stream_supported = B_TRUE;
|
|
else
|
|
encp->enc_rx_packed_stream_supported = B_FALSE;
|
|
|
|
/*
|
|
* Check if the firmware supports configurable buffer sizes
|
|
* for packed stream mode (otherwise buffer size is 1Mbyte)
|
|
*/
|
|
if (CAP_FLAGS1(req, RX_PACKED_STREAM_VAR_BUFFERS))
|
|
encp->enc_rx_var_packed_stream_supported = B_TRUE;
|
|
else
|
|
encp->enc_rx_var_packed_stream_supported = B_FALSE;
|
|
|
|
/* Check if the firmware supports equal stride super-buffer mode */
|
|
if (CAP_FLAGS2(req, EQUAL_STRIDE_SUPER_BUFFER))
|
|
encp->enc_rx_es_super_buffer_supported = B_TRUE;
|
|
else
|
|
encp->enc_rx_es_super_buffer_supported = B_FALSE;
|
|
|
|
/* Check if the firmware supports FW subvariant w/o Tx checksumming */
|
|
if (CAP_FLAGS2(req, FW_SUBVARIANT_NO_TX_CSUM))
|
|
encp->enc_fw_subvariant_no_tx_csum_supported = B_TRUE;
|
|
else
|
|
encp->enc_fw_subvariant_no_tx_csum_supported = B_FALSE;
|
|
|
|
/* Check if the firmware supports set mac with running filters */
|
|
if (CAP_FLAGS1(req, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED))
|
|
encp->enc_allow_set_mac_with_installed_filters = B_TRUE;
|
|
else
|
|
encp->enc_allow_set_mac_with_installed_filters = B_FALSE;
|
|
|
|
/*
|
|
* Check if firmware supports the extended MC_CMD_SET_MAC, which allows
|
|
* specifying which parameters to configure.
|
|
*/
|
|
if (CAP_FLAGS1(req, SET_MAC_ENHANCED))
|
|
encp->enc_enhanced_set_mac_supported = B_TRUE;
|
|
else
|
|
encp->enc_enhanced_set_mac_supported = B_FALSE;
|
|
|
|
/*
|
|
* Check if firmware supports version 2 of MC_CMD_INIT_EVQ, which allows
|
|
* us to let the firmware choose the settings to use on an EVQ.
|
|
*/
|
|
if (CAP_FLAGS2(req, INIT_EVQ_V2))
|
|
encp->enc_init_evq_v2_supported = B_TRUE;
|
|
else
|
|
encp->enc_init_evq_v2_supported = B_FALSE;
|
|
|
|
/*
|
|
* Check if firmware supports extended width event queues, which have
|
|
* a different event descriptor layout.
|
|
*/
|
|
if (CAP_FLAGS3(req, EXTENDED_WIDTH_EVQS_SUPPORTED))
|
|
encp->enc_init_evq_extended_width_supported = B_TRUE;
|
|
else
|
|
encp->enc_init_evq_extended_width_supported = B_FALSE;
|
|
|
|
/*
|
|
* Check if the NO_CONT_EV mode for RX events is supported.
|
|
*/
|
|
if (CAP_FLAGS2(req, INIT_RXQ_NO_CONT_EV))
|
|
encp->enc_no_cont_ev_mode_supported = B_TRUE;
|
|
else
|
|
encp->enc_no_cont_ev_mode_supported = B_FALSE;
|
|
|
|
/*
|
|
* Check if buffer size may and must be specified on INIT_RXQ.
|
|
* It may be always specified to efx_rx_qcreate(), but will be
|
|
* just kept libefx internal if MCDI does not support it.
|
|
*/
|
|
if (CAP_FLAGS2(req, INIT_RXQ_WITH_BUFFER_SIZE))
|
|
encp->enc_init_rxq_with_buffer_size = B_TRUE;
|
|
else
|
|
encp->enc_init_rxq_with_buffer_size = B_FALSE;
|
|
|
|
/*
|
|
* Check if firmware-verified NVRAM updates must be used.
|
|
*
|
|
* The firmware trusted installer requires all NVRAM updates to use
|
|
* version 2 of MC_CMD_NVRAM_UPDATE_START (to enable verified update)
|
|
* and version 2 of MC_CMD_NVRAM_UPDATE_FINISH (to verify the updated
|
|
* partition and report the result).
|
|
*/
|
|
if (CAP_FLAGS2(req, NVRAM_UPDATE_REPORT_VERIFY_RESULT))
|
|
encp->enc_nvram_update_verify_result_supported = B_TRUE;
|
|
else
|
|
encp->enc_nvram_update_verify_result_supported = B_FALSE;
|
|
|
|
if (CAP_FLAGS2(req, NVRAM_UPDATE_POLL_VERIFY_RESULT))
|
|
encp->enc_nvram_update_poll_verify_result_supported = B_TRUE;
|
|
else
|
|
encp->enc_nvram_update_poll_verify_result_supported = B_FALSE;
|
|
|
|
/*
|
|
* Check if firmware update via the BUNDLE partition is supported
|
|
*/
|
|
if (CAP_FLAGS2(req, BUNDLE_UPDATE))
|
|
encp->enc_nvram_bundle_update_supported = B_TRUE;
|
|
else
|
|
encp->enc_nvram_bundle_update_supported = B_FALSE;
|
|
|
|
/*
|
|
* Check if firmware provides packet memory and Rx datapath
|
|
* counters.
|
|
*/
|
|
if (CAP_FLAGS1(req, PM_AND_RXDP_COUNTERS))
|
|
encp->enc_pm_and_rxdp_counters = B_TRUE;
|
|
else
|
|
encp->enc_pm_and_rxdp_counters = B_FALSE;
|
|
|
|
/*
|
|
* Check if the 40G MAC hardware is capable of reporting
|
|
* statistics for Tx size bins.
|
|
*/
|
|
if (CAP_FLAGS2(req, MAC_STATS_40G_TX_SIZE_BINS))
|
|
encp->enc_mac_stats_40g_tx_size_bins = B_TRUE;
|
|
else
|
|
encp->enc_mac_stats_40g_tx_size_bins = B_FALSE;
|
|
|
|
/*
|
|
* Check if firmware supports VXLAN and NVGRE tunnels.
|
|
* The capability indicates Geneve protocol support as well.
|
|
*/
|
|
if (CAP_FLAGS1(req, VXLAN_NVGRE)) {
|
|
encp->enc_tunnel_encapsulations_supported =
|
|
(1u << EFX_TUNNEL_PROTOCOL_VXLAN) |
|
|
(1u << EFX_TUNNEL_PROTOCOL_GENEVE) |
|
|
(1u << EFX_TUNNEL_PROTOCOL_NVGRE);
|
|
|
|
EFX_STATIC_ASSERT(EFX_TUNNEL_MAXNENTRIES ==
|
|
MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
|
|
encp->enc_tunnel_config_udp_entries_max =
|
|
EFX_TUNNEL_MAXNENTRIES;
|
|
} else {
|
|
encp->enc_tunnel_config_udp_entries_max = 0;
|
|
}
|
|
|
|
/*
|
|
* Check if firmware reports the VI window mode.
|
|
* Medford2 has a variable VI window size (8K, 16K or 64K).
|
|
* Medford and Huntington have a fixed 8K VI window size.
|
|
*/
|
|
if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
|
|
uint8_t mode =
|
|
MCDI_OUT_BYTE(req, GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
|
|
|
|
switch (mode) {
|
|
case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
|
|
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
|
|
break;
|
|
case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
|
|
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_16K;
|
|
break;
|
|
case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
|
|
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_64K;
|
|
break;
|
|
default:
|
|
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
|
|
break;
|
|
}
|
|
} else if ((enp->en_family == EFX_FAMILY_HUNTINGTON) ||
|
|
(enp->en_family == EFX_FAMILY_MEDFORD)) {
|
|
/* Huntington and Medford have fixed 8K window size */
|
|
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
|
|
} else {
|
|
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
|
|
}
|
|
|
|
/* Check if firmware supports extended MAC stats. */
|
|
if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
|
|
/* Extended stats buffer supported */
|
|
encp->enc_mac_stats_nstats = MCDI_OUT_WORD(req,
|
|
GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
|
|
} else {
|
|
/* Use Siena-compatible legacy MAC stats */
|
|
encp->enc_mac_stats_nstats = MC_CMD_MAC_NSTATS;
|
|
}
|
|
|
|
if (encp->enc_mac_stats_nstats >= MC_CMD_MAC_NSTATS_V2)
|
|
encp->enc_fec_counters = B_TRUE;
|
|
else
|
|
encp->enc_fec_counters = B_FALSE;
|
|
|
|
/* Check if the firmware provides head-of-line blocking counters */
|
|
if (CAP_FLAGS2(req, RXDP_HLB_IDLE))
|
|
encp->enc_hlb_counters = B_TRUE;
|
|
else
|
|
encp->enc_hlb_counters = B_FALSE;
|
|
|
|
#if EFSYS_OPT_RX_SCALE
|
|
if (CAP_FLAGS1(req, RX_RSS_LIMITED)) {
|
|
/* Only one exclusive RSS context is available per port. */
|
|
encp->enc_rx_scale_max_exclusive_contexts = 1;
|
|
|
|
switch (enp->en_family) {
|
|
case EFX_FAMILY_MEDFORD2:
|
|
encp->enc_rx_scale_hash_alg_mask =
|
|
(1U << EFX_RX_HASHALG_TOEPLITZ);
|
|
break;
|
|
|
|
case EFX_FAMILY_MEDFORD:
|
|
case EFX_FAMILY_HUNTINGTON:
|
|
/*
|
|
* Packed stream firmware variant maintains a
|
|
* non-standard algorithm for hash computation.
|
|
* It implies explicit XORing together
|
|
* source + destination IP addresses (or last
|
|
* four bytes in the case of IPv6) and using the
|
|
* resulting value as the input to a Toeplitz hash.
|
|
*/
|
|
encp->enc_rx_scale_hash_alg_mask =
|
|
(1U << EFX_RX_HASHALG_PACKED_STREAM);
|
|
break;
|
|
|
|
default:
|
|
rc = EINVAL;
|
|
goto fail3;
|
|
}
|
|
|
|
/* Port numbers cannot contribute to the hash value */
|
|
encp->enc_rx_scale_l4_hash_supported = B_FALSE;
|
|
} else {
|
|
/*
|
|
* Maximum number of exclusive RSS contexts.
|
|
* EF10 hardware supports 64 in total, but 6 are reserved
|
|
* for shared contexts. They are a global resource so
|
|
* not all may be available.
|
|
*/
|
|
encp->enc_rx_scale_max_exclusive_contexts = 64 - 6;
|
|
|
|
encp->enc_rx_scale_hash_alg_mask =
|
|
(1U << EFX_RX_HASHALG_TOEPLITZ);
|
|
|
|
/*
|
|
* It is possible to use port numbers as
|
|
* the input data for hash computation.
|
|
*/
|
|
encp->enc_rx_scale_l4_hash_supported = B_TRUE;
|
|
}
|
|
|
|
if (CAP_FLAGS3(req, RSS_SELECTABLE_TABLE_SIZE))
|
|
encp->enc_rx_scale_tbl_entry_count_is_selectable = B_TRUE;
|
|
else
|
|
encp->enc_rx_scale_tbl_entry_count_is_selectable = B_FALSE;
|
|
#endif /* EFSYS_OPT_RX_SCALE */
|
|
|
|
/* Check if the firmware supports "FLAG" and "MARK" filter actions */
|
|
if (CAP_FLAGS2(req, FILTER_ACTION_FLAG))
|
|
encp->enc_filter_action_flag_supported = B_TRUE;
|
|
else
|
|
encp->enc_filter_action_flag_supported = B_FALSE;
|
|
|
|
if (CAP_FLAGS2(req, FILTER_ACTION_MARK))
|
|
encp->enc_filter_action_mark_supported = B_TRUE;
|
|
else
|
|
encp->enc_filter_action_mark_supported = B_FALSE;
|
|
|
|
/* Get maximum supported value for "MARK" filter action */
|
|
if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V5_OUT_LEN)
|
|
encp->enc_filter_action_mark_max = MCDI_OUT_DWORD(req,
|
|
GET_CAPABILITIES_V5_OUT_FILTER_ACTION_MARK_MAX);
|
|
else
|
|
encp->enc_filter_action_mark_max = 0;
|
|
|
|
#if EFSYS_OPT_MAE
|
|
/*
|
|
* Check support for EF100 Match Action Engine (MAE).
|
|
* MAE hardware is present on Riverhead boards (from R2),
|
|
* and on Keystone, and requires support in firmware.
|
|
*
|
|
* MAE control operations require MAE control privilege,
|
|
* which is not available for VFs.
|
|
*
|
|
* Privileges can change dynamically at runtime: we assume
|
|
* MAE support requires the privilege is granted initially,
|
|
* and ignore later dynamic changes.
|
|
*/
|
|
if (CAP_FLAGS3(req, MAE_SUPPORTED)) {
|
|
encp->enc_mae_supported = B_TRUE;
|
|
if (EFX_MCDI_HAVE_PRIVILEGE(encp->enc_privilege_mask, MAE))
|
|
encp->enc_mae_admin = B_TRUE;
|
|
else
|
|
encp->enc_mae_admin = B_FALSE;
|
|
} else {
|
|
encp->enc_mae_supported = B_FALSE;
|
|
encp->enc_mae_admin = B_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Check support for MAE action set v2 features.
|
|
* These provide support for packet edits.
|
|
*/
|
|
if (CAP_FLAGS3(req, MAE_ACTION_SET_ALLOC_V2_SUPPORTED))
|
|
encp->enc_mae_aset_v2_supported = B_TRUE;
|
|
else
|
|
encp->enc_mae_aset_v2_supported = B_FALSE;
|
|
#else
|
|
encp->enc_mae_supported = B_FALSE;
|
|
encp->enc_mae_admin = B_FALSE;
|
|
#endif /* EFSYS_OPT_MAE */
|
|
|
|
#if EFSYS_OPT_RX_SCALE
|
|
if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V9_OUT_LEN) {
|
|
encp->enc_rx_scale_indirection_max_nqueues =
|
|
MCDI_OUT_DWORD(req,
|
|
GET_CAPABILITIES_V9_OUT_RSS_MAX_INDIRECTION_QUEUES);
|
|
encp->enc_rx_scale_tbl_min_nentries =
|
|
MCDI_OUT_DWORD(req,
|
|
GET_CAPABILITIES_V9_OUT_RSS_MIN_INDIRECTION_TABLE_SIZE);
|
|
encp->enc_rx_scale_tbl_max_nentries =
|
|
MCDI_OUT_DWORD(req,
|
|
GET_CAPABILITIES_V9_OUT_RSS_MAX_INDIRECTION_TABLE_SIZE);
|
|
|
|
if (CAP_FLAGS3(req, RSS_EVEN_SPREADING)) {
|
|
#define RSS_MAX_EVEN_SPREADING_QUEUES \
|
|
GET_CAPABILITIES_V9_OUT_RSS_MAX_EVEN_SPREADING_QUEUES
|
|
/*
|
|
* The even spreading mode distributes traffic across
|
|
* the specified number of queues without the need to
|
|
* allocate precious indirection entry pool resources.
|
|
*/
|
|
encp->enc_rx_scale_even_spread_max_nqueues =
|
|
MCDI_OUT_DWORD(req, RSS_MAX_EVEN_SPREADING_QUEUES);
|
|
#undef RSS_MAX_EVEN_SPREADING_QUEUES
|
|
} else {
|
|
/* There is no support for the even spread contexts. */
|
|
encp->enc_rx_scale_even_spread_max_nqueues = 0;
|
|
}
|
|
} else {
|
|
encp->enc_rx_scale_indirection_max_nqueues = EFX_MAXRSS;
|
|
encp->enc_rx_scale_tbl_min_nentries = EFX_RSS_TBL_SIZE;
|
|
encp->enc_rx_scale_tbl_max_nentries = EFX_RSS_TBL_SIZE;
|
|
|
|
/*
|
|
* Assume that there is no support
|
|
* for the even spread contexts.
|
|
*/
|
|
encp->enc_rx_scale_even_spread_max_nqueues = 0;
|
|
}
|
|
#endif /* EFSYS_OPT_RX_SCALE */
|
|
|
|
#undef CAP_FLAGS1
|
|
#undef CAP_FLAGS2
|
|
#undef CAP_FLAGS3
|
|
|
|
return (0);
|
|
|
|
#if EFSYS_OPT_RX_SCALE
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
#endif /* EFSYS_OPT_RX_SCALE */
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
#define EF10_LEGACY_PF_PRIVILEGE_MASK \
|
|
(MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS)
|
|
|
|
#define EF10_LEGACY_VF_PRIVILEGE_MASK 0
|
|
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_get_privilege_mask(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *maskp)
|
|
{
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
uint32_t mask;
|
|
efx_rc_t rc;
|
|
|
|
if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf,
|
|
&mask)) != 0) {
|
|
if (rc != ENOTSUP)
|
|
goto fail1;
|
|
|
|
/* Fallback for old firmware without privilege mask support */
|
|
if (EFX_PCI_FUNCTION_IS_PF(encp)) {
|
|
/* Assume PF has admin privilege */
|
|
mask = EF10_LEGACY_PF_PRIVILEGE_MASK;
|
|
} else {
|
|
/* VF is always unprivileged by default */
|
|
mask = EF10_LEGACY_VF_PRIVILEGE_MASK;
|
|
}
|
|
}
|
|
|
|
*maskp = mask;
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
#define EFX_EXT_PORT_MAX 4
|
|
#define EFX_EXT_PORT_NA 0xFF
|
|
|
|
/*
|
|
* Table of mapping schemes from port number to external number.
|
|
*
|
|
* Each port number ultimately corresponds to a connector: either as part of
|
|
* a cable assembly attached to a module inserted in an SFP+/QSFP+ cage on
|
|
* the board, or fixed to the board (e.g. 10GBASE-T magjack on SFN5121T
|
|
* "Salina"). In general:
|
|
*
|
|
* Port number (0-based)
|
|
* |
|
|
* port mapping (n:1)
|
|
* |
|
|
* v
|
|
* External port number (1-based)
|
|
* |
|
|
* fixed (1:1) or cable assembly (1:m)
|
|
* |
|
|
* v
|
|
* Connector
|
|
*
|
|
* The external numbering refers to the cages or magjacks on the board,
|
|
* as visibly annotated on the board or back panel. This table describes
|
|
* how to determine which external cage/magjack corresponds to the port
|
|
* numbers used by the driver.
|
|
*
|
|
* The count of consecutive port numbers that map to each external number,
|
|
* is determined by the chip family and the current port mode.
|
|
*
|
|
* For the Huntington family, the current port mode cannot be discovered,
|
|
* but a single mapping is used by all modes for a given chip variant,
|
|
* so the mapping used is instead the last match in the table to the full
|
|
* set of port modes to which the NIC can be configured. Therefore the
|
|
* ordering of entries in the mapping table is significant.
|
|
*/
|
|
static struct ef10_external_port_map_s {
|
|
efx_family_t family;
|
|
uint32_t modes_mask;
|
|
uint8_t base_port[EFX_EXT_PORT_MAX];
|
|
} __ef10_external_port_mappings[] = {
|
|
/*
|
|
* Modes used by Huntington family controllers where each port
|
|
* number maps to a separate cage.
|
|
* SFN7x22F (Torino):
|
|
* port 0 -> cage 1
|
|
* port 1 -> cage 2
|
|
* SFN7xx4F (Pavia):
|
|
* port 0 -> cage 1
|
|
* port 1 -> cage 2
|
|
* port 2 -> cage 3
|
|
* port 3 -> cage 4
|
|
*/
|
|
{
|
|
EFX_FAMILY_HUNTINGTON,
|
|
(1U << TLV_PORT_MODE_10G) | /* mode 0 */
|
|
(1U << TLV_PORT_MODE_10G_10G) | /* mode 2 */
|
|
(1U << TLV_PORT_MODE_10G_10G_10G_10G), /* mode 4 */
|
|
{ 0, 1, 2, 3 }
|
|
},
|
|
/*
|
|
* Modes which for Huntington identify a chip variant where 2
|
|
* adjacent port numbers map to each cage.
|
|
* SFN7x42Q (Monza):
|
|
* port 0 -> cage 1
|
|
* port 1 -> cage 1
|
|
* port 2 -> cage 2
|
|
* port 3 -> cage 2
|
|
*/
|
|
{
|
|
EFX_FAMILY_HUNTINGTON,
|
|
(1U << TLV_PORT_MODE_40G) | /* mode 1 */
|
|
(1U << TLV_PORT_MODE_40G_40G) | /* mode 3 */
|
|
(1U << TLV_PORT_MODE_40G_10G_10G) | /* mode 6 */
|
|
(1U << TLV_PORT_MODE_10G_10G_40G), /* mode 7 */
|
|
{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
|
|
},
|
|
/*
|
|
* Modes that on Medford allocate each port number to a separate
|
|
* cage.
|
|
* port 0 -> cage 1
|
|
* port 1 -> cage 2
|
|
* port 2 -> cage 3
|
|
* port 3 -> cage 4
|
|
*/
|
|
{
|
|
EFX_FAMILY_MEDFORD,
|
|
(1U << TLV_PORT_MODE_1x1_NA) | /* mode 0 */
|
|
(1U << TLV_PORT_MODE_1x4_NA) | /* mode 1 */
|
|
(1U << TLV_PORT_MODE_1x1_1x1), /* mode 2 */
|
|
{ 0, 1, 2, 3 }
|
|
},
|
|
/*
|
|
* Modes that on Medford allocate 2 adjacent port numbers to each
|
|
* cage.
|
|
* port 0 -> cage 1
|
|
* port 1 -> cage 1
|
|
* port 2 -> cage 2
|
|
* port 3 -> cage 2
|
|
*/
|
|
{
|
|
EFX_FAMILY_MEDFORD,
|
|
(1U << TLV_PORT_MODE_1x4_1x4) | /* mode 3 */
|
|
(1U << TLV_PORT_MODE_2x1_2x1) | /* mode 5 */
|
|
(1U << TLV_PORT_MODE_1x4_2x1) | /* mode 6 */
|
|
(1U << TLV_PORT_MODE_2x1_1x4) | /* mode 7 */
|
|
/* Do not use 10G_10G_10G_10G_Q1_Q2 (see bug63270) */
|
|
(1U << TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2), /* mode 9 */
|
|
{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
|
|
},
|
|
/*
|
|
* Modes that on Medford allocate 4 adjacent port numbers to
|
|
* cage 1.
|
|
* port 0 -> cage 1
|
|
* port 1 -> cage 1
|
|
* port 2 -> cage 1
|
|
* port 3 -> cage 1
|
|
*/
|
|
{
|
|
EFX_FAMILY_MEDFORD,
|
|
/* Do not use 10G_10G_10G_10G_Q1 (see bug63270) */
|
|
(1U << TLV_PORT_MODE_4x1_NA), /* mode 4 */
|
|
{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
|
|
},
|
|
/*
|
|
* Modes that on Medford allocate 4 adjacent port numbers to
|
|
* cage 2.
|
|
* port 0 -> cage 2
|
|
* port 1 -> cage 2
|
|
* port 2 -> cage 2
|
|
* port 3 -> cage 2
|
|
*/
|
|
{
|
|
EFX_FAMILY_MEDFORD,
|
|
(1U << TLV_PORT_MODE_NA_4x1), /* mode 8 */
|
|
{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
|
|
},
|
|
/*
|
|
* Modes that on Medford2 allocate each port number to a separate
|
|
* cage.
|
|
* port 0 -> cage 1
|
|
* port 1 -> cage 2
|
|
* port 2 -> cage 3
|
|
* port 3 -> cage 4
|
|
*/
|
|
{
|
|
EFX_FAMILY_MEDFORD2,
|
|
(1U << TLV_PORT_MODE_1x1_NA) | /* mode 0 */
|
|
(1U << TLV_PORT_MODE_1x4_NA) | /* mode 1 */
|
|
(1U << TLV_PORT_MODE_1x1_1x1) | /* mode 2 */
|
|
(1U << TLV_PORT_MODE_1x4_1x4) | /* mode 3 */
|
|
(1U << TLV_PORT_MODE_1x2_NA) | /* mode 10 */
|
|
(1U << TLV_PORT_MODE_1x2_1x2) | /* mode 12 */
|
|
(1U << TLV_PORT_MODE_1x4_1x2) | /* mode 15 */
|
|
(1U << TLV_PORT_MODE_1x2_1x4), /* mode 16 */
|
|
{ 0, 1, 2, 3 }
|
|
},
|
|
/*
|
|
* Modes that on Medford2 allocate 1 port to cage 1 and the rest
|
|
* to cage 2.
|
|
* port 0 -> cage 1
|
|
* port 1 -> cage 2
|
|
* port 2 -> cage 2
|
|
*/
|
|
{
|
|
EFX_FAMILY_MEDFORD2,
|
|
(1U << TLV_PORT_MODE_1x2_2x1) | /* mode 17 */
|
|
(1U << TLV_PORT_MODE_1x4_2x1), /* mode 6 */
|
|
{ 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
|
|
},
|
|
/*
|
|
* Modes that on Medford2 allocate 2 adjacent port numbers to cage 1
|
|
* and the rest to cage 2.
|
|
* port 0 -> cage 1
|
|
* port 1 -> cage 1
|
|
* port 2 -> cage 2
|
|
* port 3 -> cage 2
|
|
*/
|
|
{
|
|
EFX_FAMILY_MEDFORD2,
|
|
(1U << TLV_PORT_MODE_2x1_2x1) | /* mode 4 */
|
|
(1U << TLV_PORT_MODE_2x1_1x4) | /* mode 7 */
|
|
(1U << TLV_PORT_MODE_2x2_NA) | /* mode 13 */
|
|
(1U << TLV_PORT_MODE_2x1_1x2), /* mode 18 */
|
|
{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
|
|
},
|
|
/*
|
|
* Modes that on Medford2 allocate up to 4 adjacent port numbers
|
|
* to cage 1.
|
|
* port 0 -> cage 1
|
|
* port 1 -> cage 1
|
|
* port 2 -> cage 1
|
|
* port 3 -> cage 1
|
|
*/
|
|
{
|
|
EFX_FAMILY_MEDFORD2,
|
|
(1U << TLV_PORT_MODE_4x1_NA), /* mode 5 */
|
|
{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
|
|
},
|
|
/*
|
|
* Modes that on Medford2 allocate up to 4 adjacent port numbers
|
|
* to cage 2.
|
|
* port 0 -> cage 2
|
|
* port 1 -> cage 2
|
|
* port 2 -> cage 2
|
|
* port 3 -> cage 2
|
|
*/
|
|
{
|
|
EFX_FAMILY_MEDFORD2,
|
|
(1U << TLV_PORT_MODE_NA_4x1) | /* mode 8 */
|
|
(1U << TLV_PORT_MODE_NA_1x2) | /* mode 11 */
|
|
(1U << TLV_PORT_MODE_NA_2x2), /* mode 14 */
|
|
{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
|
|
},
|
|
/*
|
|
* Modes that on Riverhead allocate each port number to a separate
|
|
* cage.
|
|
* port 0 -> cage 1
|
|
* port 1 -> cage 2
|
|
*/
|
|
{
|
|
EFX_FAMILY_RIVERHEAD,
|
|
(1U << TLV_PORT_MODE_1x1_NA) | /* mode 0 */
|
|
(1U << TLV_PORT_MODE_1x4_NA) | /* mode 1 */
|
|
(1U << TLV_PORT_MODE_1x1_1x1), /* mode 2 */
|
|
{ 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
|
|
},
|
|
};
|
|
|
|
static __checkReturn efx_rc_t
|
|
ef10_external_port_mapping(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t port,
|
|
__out uint8_t *external_portp)
|
|
{
|
|
efx_rc_t rc;
|
|
int i;
|
|
uint32_t port_modes;
|
|
uint32_t matches;
|
|
uint32_t current;
|
|
struct ef10_external_port_map_s *mapp = NULL;
|
|
int ext_index = port; /* Default 1-1 mapping */
|
|
|
|
if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, ¤t,
|
|
NULL)) != 0) {
|
|
/*
|
|
* No current port mode information (i.e. Huntington)
|
|
* - infer mapping from available modes
|
|
*/
|
|
if ((rc = efx_mcdi_get_port_modes(enp,
|
|
&port_modes, NULL, NULL)) != 0) {
|
|
/*
|
|
* No port mode information available
|
|
* - use default mapping
|
|
*/
|
|
goto out;
|
|
}
|
|
} else {
|
|
/* Only need to scan the current mode */
|
|
port_modes = 1 << current;
|
|
}
|
|
|
|
/*
|
|
* Infer the internal port -> external number mapping from
|
|
* the possible port modes for this NIC.
|
|
*/
|
|
for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) {
|
|
struct ef10_external_port_map_s *eepmp =
|
|
&__ef10_external_port_mappings[i];
|
|
if (eepmp->family != enp->en_family)
|
|
continue;
|
|
matches = (eepmp->modes_mask & port_modes);
|
|
if (matches != 0) {
|
|
/*
|
|
* Some modes match. For some Huntington boards
|
|
* there will be multiple matches. The mapping on the
|
|
* last match is used.
|
|
*/
|
|
mapp = eepmp;
|
|
port_modes &= ~matches;
|
|
}
|
|
}
|
|
|
|
if (port_modes != 0) {
|
|
/* Some advertised modes are not supported */
|
|
rc = ENOTSUP;
|
|
goto fail1;
|
|
}
|
|
|
|
out:
|
|
if (mapp != NULL) {
|
|
/*
|
|
* External ports are assigned a sequence of consecutive
|
|
* port numbers, so find the one with the closest base_port.
|
|
*/
|
|
uint32_t delta = EFX_EXT_PORT_NA;
|
|
|
|
for (i = 0; i < EFX_EXT_PORT_MAX; i++) {
|
|
uint32_t base = mapp->base_port[i];
|
|
if ((base != EFX_EXT_PORT_NA) && (base <= port)) {
|
|
if ((port - base) < delta) {
|
|
delta = (port - base);
|
|
ext_index = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
*external_portp = (uint8_t)(ext_index + 1);
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_get_nic_addr_caps(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
uint32_t mapping_type;
|
|
efx_rc_t rc;
|
|
|
|
rc = efx_mcdi_get_nic_addr_info(enp, &mapping_type);
|
|
if (rc != 0) {
|
|
if (rc == ENOTSUP) {
|
|
encp->enc_dma_mapping = EFX_NIC_DMA_MAPPING_FLAT;
|
|
goto out;
|
|
}
|
|
goto fail1;
|
|
}
|
|
|
|
switch (mapping_type) {
|
|
case MC_CMD_GET_DESC_ADDR_INFO_OUT_MAPPING_FLAT:
|
|
encp->enc_dma_mapping = EFX_NIC_DMA_MAPPING_FLAT;
|
|
break;
|
|
case MC_CMD_GET_DESC_ADDR_INFO_OUT_MAPPING_REGIONED:
|
|
encp->enc_dma_mapping = EFX_NIC_DMA_MAPPING_REGIONED;
|
|
rc = efx_mcdi_get_nic_addr_regions(enp,
|
|
&enp->en_dma.end_u.endu_region_info);
|
|
if (rc != 0)
|
|
goto fail2;
|
|
break;
|
|
default:
|
|
goto fail3;
|
|
}
|
|
|
|
out:
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_nic_board_cfg(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
ef10_link_state_t els;
|
|
efx_port_t *epp = &(enp->en_port);
|
|
efx_pcie_interface_t intf;
|
|
uint32_t board_type = 0;
|
|
uint32_t base, nvec;
|
|
uint32_t port;
|
|
uint32_t mask;
|
|
uint32_t pf;
|
|
uint32_t vf;
|
|
uint8_t mac_addr[6] = { 0 };
|
|
efx_rc_t rc;
|
|
|
|
/* Get the (zero-based) MCDI port number */
|
|
if ((rc = efx_mcdi_get_port_assignment(enp, &port)) != 0)
|
|
goto fail1;
|
|
|
|
/* EFX MCDI interface uses one-based port numbers */
|
|
emip->emi_port = port + 1;
|
|
|
|
encp->enc_assigned_port = port;
|
|
|
|
if ((rc = ef10_external_port_mapping(enp, port,
|
|
&encp->enc_external_port)) != 0)
|
|
goto fail2;
|
|
|
|
/*
|
|
* Get PCIe function number from firmware (used for
|
|
* per-function privilege and dynamic config info).
|
|
* - PCIe PF: pf = PF number, vf = 0xffff.
|
|
* - PCIe VF: pf = parent PF, vf = VF number.
|
|
*/
|
|
if ((rc = efx_mcdi_get_function_info(enp, &pf, &vf, &intf)) != 0)
|
|
goto fail3;
|
|
|
|
encp->enc_pf = pf;
|
|
encp->enc_vf = vf;
|
|
encp->enc_intf = intf;
|
|
|
|
if ((rc = ef10_mcdi_get_pf_count(enp, &encp->enc_hw_pf_count)) != 0)
|
|
goto fail4;
|
|
|
|
rc = efx_mcdi_client_mac_addr_get(enp, CLIENT_HANDLE_SELF, mac_addr);
|
|
if ((rc != 0) && EFX_PCI_FUNCTION_IS_PF(encp)) {
|
|
/* Fallback for legacy MAC address get approach (PF) */
|
|
rc = efx_mcdi_get_mac_address_pf(enp, mac_addr);
|
|
#if EFSYS_OPT_ALLOW_UNCONFIGURED_NIC
|
|
/*
|
|
* Disable static config checking, ONLY for manufacturing test
|
|
* and setup at the factory, to allow the static config to be
|
|
* installed.
|
|
*/
|
|
#else /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
|
|
if ((rc == 0) && (mac_addr[0] & 0x02)) {
|
|
/*
|
|
* If the static config does not include a global MAC
|
|
* address pool then the board may return a locally
|
|
* administered MAC address (this should only happen on
|
|
* incorrectly programmed boards).
|
|
*/
|
|
rc = EINVAL;
|
|
}
|
|
#endif /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
|
|
} else if (rc != 0) {
|
|
/* Fallback for legacy MAC address get approach (VF) */
|
|
rc = efx_mcdi_get_mac_address_vf(enp, mac_addr);
|
|
}
|
|
|
|
if (rc != 0)
|
|
goto fail5;
|
|
|
|
EFX_MAC_ADDR_COPY(encp->enc_mac_addr, mac_addr);
|
|
|
|
/*
|
|
* Get the current privilege mask. Note that this may be modified
|
|
* dynamically, so for most cases the value is informational only.
|
|
* If the privilege being discovered can't be granted dynamically,
|
|
* it's fine to rely on the value. In all other cases, DO NOT use
|
|
* the privilege mask to check for sufficient privileges, as that
|
|
* can result in time-of-check/time-of-use bugs.
|
|
*/
|
|
if ((rc = ef10_get_privilege_mask(enp, &mask)) != 0)
|
|
goto fail6;
|
|
encp->enc_privilege_mask = mask;
|
|
|
|
/* Board configuration (legacy) */
|
|
rc = efx_mcdi_get_board_cfg(enp, &board_type, NULL, NULL);
|
|
if (rc != 0) {
|
|
/* Unprivileged functions may not be able to read board cfg */
|
|
if (rc == EACCES)
|
|
board_type = 0;
|
|
else
|
|
goto fail7;
|
|
}
|
|
|
|
encp->enc_board_type = board_type;
|
|
|
|
/* Fill out fields in enp->en_port and enp->en_nic_cfg from MCDI */
|
|
if ((rc = efx_mcdi_get_phy_cfg(enp)) != 0)
|
|
goto fail8;
|
|
|
|
/*
|
|
* Firmware with support for *_FEC capability bits does not
|
|
* report that the corresponding *_FEC_REQUESTED bits are supported.
|
|
* Add them here so that drivers understand that they are supported.
|
|
*/
|
|
if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_BASER_FEC))
|
|
epp->ep_phy_cap_mask |=
|
|
(1u << EFX_PHY_CAP_BASER_FEC_REQUESTED);
|
|
if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_RS_FEC))
|
|
epp->ep_phy_cap_mask |=
|
|
(1u << EFX_PHY_CAP_RS_FEC_REQUESTED);
|
|
if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_25G_BASER_FEC))
|
|
epp->ep_phy_cap_mask |=
|
|
(1u << EFX_PHY_CAP_25G_BASER_FEC_REQUESTED);
|
|
|
|
/* Obtain the default PHY advertised capabilities */
|
|
if ((rc = ef10_phy_get_link(enp, &els)) != 0)
|
|
goto fail9;
|
|
epp->ep_default_adv_cap_mask = els.epls.epls_adv_cap_mask;
|
|
epp->ep_adv_cap_mask = els.epls.epls_adv_cap_mask;
|
|
|
|
/* Check capabilities of running datapath firmware */
|
|
if ((rc = ef10_get_datapath_caps(enp)) != 0)
|
|
goto fail10;
|
|
|
|
/* Get interrupt vector limits */
|
|
if ((rc = efx_mcdi_get_vector_cfg(enp, &base, &nvec, NULL)) != 0) {
|
|
if (EFX_PCI_FUNCTION_IS_PF(encp))
|
|
goto fail11;
|
|
|
|
/* Ignore error (cannot query vector limits from a VF). */
|
|
base = 0;
|
|
nvec = 1024;
|
|
}
|
|
encp->enc_intr_vec_base = base;
|
|
encp->enc_intr_limit = nvec;
|
|
|
|
rc = efx_mcdi_get_nic_addr_caps(enp);
|
|
if (rc != 0)
|
|
goto fail12;
|
|
|
|
return (0);
|
|
|
|
fail12:
|
|
EFSYS_PROBE(fail12);
|
|
fail11:
|
|
EFSYS_PROBE(fail11);
|
|
fail10:
|
|
EFSYS_PROBE(fail10);
|
|
fail9:
|
|
EFSYS_PROBE(fail9);
|
|
fail8:
|
|
EFSYS_PROBE(fail8);
|
|
fail7:
|
|
EFSYS_PROBE(fail7);
|
|
fail6:
|
|
EFSYS_PROBE(fail6);
|
|
fail5:
|
|
EFSYS_PROBE(fail5);
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_entity_reset(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ENTITY_RESET_IN_LEN,
|
|
MC_CMD_ENTITY_RESET_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
req.emr_cmd = MC_CMD_ENTITY_RESET;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN;
|
|
|
|
MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG,
|
|
ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#endif /* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
|
|
|
|
#if EFX_OPTS_EF10()
|
|
|
|
static __checkReturn efx_rc_t
|
|
ef10_set_workaround_bug26807(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
uint32_t flags;
|
|
efx_rc_t rc;
|
|
|
|
/*
|
|
* If the bug26807 workaround is enabled, then firmware has enabled
|
|
* support for chained multicast filters. Firmware will reset (FLR)
|
|
* functions which have filters in the hardware filter table when the
|
|
* workaround is enabled/disabled.
|
|
*
|
|
* We must recheck if the workaround is enabled after inserting the
|
|
* first hardware filter, in case it has been changed since this check.
|
|
*/
|
|
rc = efx_mcdi_set_workaround(enp, MC_CMD_WORKAROUND_BUG26807,
|
|
B_TRUE, &flags);
|
|
if (rc == 0) {
|
|
encp->enc_bug26807_workaround = B_TRUE;
|
|
if (flags & (1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN)) {
|
|
/*
|
|
* Other functions had installed filters before the
|
|
* workaround was enabled, and they have been reset
|
|
* by firmware.
|
|
*/
|
|
EFSYS_PROBE(bug26807_workaround_flr_done);
|
|
/* FIXME: bump MC warm boot count ? */
|
|
}
|
|
} else if (rc == EACCES) {
|
|
/*
|
|
* Unprivileged functions cannot enable the workaround in older
|
|
* firmware.
|
|
*/
|
|
encp->enc_bug26807_workaround = B_FALSE;
|
|
} else if ((rc == ENOTSUP) || (rc == ENOENT)) {
|
|
encp->enc_bug26807_workaround = B_FALSE;
|
|
} else {
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
ef10_nic_board_cfg(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
efx_rc_t rc;
|
|
|
|
if ((rc = efx_mcdi_nic_board_cfg(enp)) != 0)
|
|
goto fail1;
|
|
|
|
/*
|
|
* Huntington RXDP firmware inserts a 0 or 14 byte prefix.
|
|
* We only support the 14 byte prefix here.
|
|
*/
|
|
if (encp->enc_rx_prefix_size != 14) {
|
|
rc = ENOTSUP;
|
|
goto fail2;
|
|
}
|
|
|
|
encp->enc_clk_mult = 1; /* not used for EF10 */
|
|
|
|
/* Alignment for WPTR updates */
|
|
encp->enc_rx_push_align = EF10_RX_WPTR_ALIGN;
|
|
|
|
encp->enc_rx_dma_desc_size_max = EFX_MASK32(ESF_DZ_RX_KER_BYTE_CNT);
|
|
encp->enc_tx_dma_desc_size_max = EFX_MASK32(ESF_DZ_TX_KER_BYTE_CNT);
|
|
/* No boundary crossing limits */
|
|
encp->enc_tx_dma_desc_boundary = 0;
|
|
|
|
/*
|
|
* Maximum number of bytes into the frame the TCP header can start for
|
|
* firmware assisted TSO to work.
|
|
*/
|
|
encp->enc_tx_tso_tcp_header_offset_limit = EF10_TCP_HEADER_OFFSET_LIMIT;
|
|
|
|
/* EF10 TSO engine demands that packet header be contiguous. */
|
|
encp->enc_tx_tso_max_header_ndescs = 1;
|
|
|
|
/* The overall TSO header length is not limited. */
|
|
encp->enc_tx_tso_max_header_length = UINT32_MAX;
|
|
|
|
/*
|
|
* There are no specific limitations on the number of
|
|
* TSO payload descriptors.
|
|
*/
|
|
encp->enc_tx_tso_max_payload_ndescs = UINT32_MAX;
|
|
|
|
/* TSO superframe payload length is not limited. */
|
|
encp->enc_tx_tso_max_payload_length = UINT32_MAX;
|
|
|
|
/*
|
|
* Limitation on the maximum number of outgoing packets per
|
|
* TSO transaction described in SF-108452-SW.
|
|
*/
|
|
encp->enc_tx_tso_max_nframes = 32767;
|
|
|
|
/*
|
|
* Set resource limits for MC_CMD_ALLOC_VIS. Note that we cannot use
|
|
* MC_CMD_GET_RESOURCE_LIMITS here as that reports the available
|
|
* resources (allocated to this PCIe function), which is zero until
|
|
* after we have allocated VIs.
|
|
*/
|
|
encp->enc_evq_limit = 1024;
|
|
encp->enc_rxq_limit = EFX_RXQ_LIMIT_TARGET;
|
|
encp->enc_txq_limit = EFX_TXQ_LIMIT_TARGET;
|
|
|
|
encp->enc_buftbl_limit = UINT32_MAX;
|
|
|
|
if ((rc = ef10_set_workaround_bug26807(enp)) != 0)
|
|
goto fail3;
|
|
|
|
/* Get remaining controller-specific board config */
|
|
if ((rc = enop->eno_board_cfg(enp)) != 0)
|
|
if (rc != EACCES)
|
|
goto fail4;
|
|
|
|
return (0);
|
|
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_probe(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
|
|
|
|
/* Read and clear any assertion state */
|
|
if ((rc = efx_mcdi_read_assertion(enp)) != 0)
|
|
goto fail1;
|
|
|
|
/* Exit the assertion handler */
|
|
if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
|
|
if (rc != EACCES)
|
|
goto fail2;
|
|
|
|
if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0)
|
|
goto fail3;
|
|
|
|
if ((rc = ef10_nic_board_cfg(enp)) != 0)
|
|
goto fail4;
|
|
|
|
/*
|
|
* Set default driver config limits (based on board config).
|
|
*
|
|
* FIXME: For now allocate a fixed number of VIs which is likely to be
|
|
* sufficient and small enough to allow multiple functions on the same
|
|
* port.
|
|
*/
|
|
edcp->edc_min_vi_count = edcp->edc_max_vi_count =
|
|
MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit));
|
|
|
|
/* The client driver must configure and enable PIO buffer support */
|
|
edcp->edc_max_piobuf_count = 0;
|
|
edcp->edc_pio_alloc_size = 0;
|
|
|
|
#if EFSYS_OPT_MAC_STATS
|
|
/* Wipe the MAC statistics */
|
|
if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0)
|
|
goto fail5;
|
|
#endif
|
|
|
|
#if EFSYS_OPT_LOOPBACK
|
|
if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0)
|
|
goto fail6;
|
|
#endif
|
|
|
|
#if EFSYS_OPT_MON_STATS
|
|
if ((rc = mcdi_mon_cfg_build(enp)) != 0) {
|
|
/* Unprivileged functions do not have access to sensors */
|
|
if (rc != EACCES)
|
|
goto fail7;
|
|
}
|
|
#endif
|
|
|
|
return (0);
|
|
|
|
#if EFSYS_OPT_MON_STATS
|
|
fail7:
|
|
EFSYS_PROBE(fail7);
|
|
#endif
|
|
#if EFSYS_OPT_LOOPBACK
|
|
fail6:
|
|
EFSYS_PROBE(fail6);
|
|
#endif
|
|
#if EFSYS_OPT_MAC_STATS
|
|
fail5:
|
|
EFSYS_PROBE(fail5);
|
|
#endif
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_set_drv_limits(
|
|
__inout efx_nic_t *enp,
|
|
__in efx_drv_limits_t *edlp)
|
|
{
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
|
|
uint32_t min_evq_count, max_evq_count;
|
|
uint32_t min_rxq_count, max_rxq_count;
|
|
uint32_t min_txq_count, max_txq_count;
|
|
efx_rc_t rc;
|
|
|
|
if (edlp == NULL) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
/* Get minimum required and maximum usable VI limits */
|
|
min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit);
|
|
min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit);
|
|
min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit);
|
|
|
|
edcp->edc_min_vi_count =
|
|
MAX(min_evq_count, MAX(min_rxq_count, min_txq_count));
|
|
|
|
max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit);
|
|
max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit);
|
|
max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit);
|
|
|
|
edcp->edc_max_vi_count =
|
|
MAX(max_evq_count, MAX(max_rxq_count, max_txq_count));
|
|
|
|
/*
|
|
* Check limits for sub-allocated piobuf blocks.
|
|
* PIO is optional, so don't fail if the limits are incorrect.
|
|
*/
|
|
if ((encp->enc_piobuf_size == 0) ||
|
|
(encp->enc_piobuf_limit == 0) ||
|
|
(edlp->edl_min_pio_alloc_size == 0) ||
|
|
(edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) {
|
|
/* Disable PIO */
|
|
edcp->edc_max_piobuf_count = 0;
|
|
edcp->edc_pio_alloc_size = 0;
|
|
} else {
|
|
uint32_t blk_size, blk_count, blks_per_piobuf;
|
|
|
|
blk_size =
|
|
MAX(edlp->edl_min_pio_alloc_size,
|
|
encp->enc_piobuf_min_alloc_size);
|
|
|
|
blks_per_piobuf = encp->enc_piobuf_size / blk_size;
|
|
EFSYS_ASSERT3U(blks_per_piobuf, <=, 32);
|
|
|
|
blk_count = (encp->enc_piobuf_limit * blks_per_piobuf);
|
|
|
|
/* A zero max pio alloc count means unlimited */
|
|
if ((edlp->edl_max_pio_alloc_count > 0) &&
|
|
(edlp->edl_max_pio_alloc_count < blk_count)) {
|
|
blk_count = edlp->edl_max_pio_alloc_count;
|
|
}
|
|
|
|
edcp->edc_pio_alloc_size = blk_size;
|
|
edcp->edc_max_piobuf_count =
|
|
(blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_reset(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_rc_t rc;
|
|
|
|
/* ef10_nic_reset() is called to recover from BADASSERT failures. */
|
|
if ((rc = efx_mcdi_read_assertion(enp)) != 0)
|
|
goto fail1;
|
|
if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
|
|
goto fail2;
|
|
|
|
if ((rc = efx_mcdi_entity_reset(enp)) != 0)
|
|
goto fail3;
|
|
|
|
/* Clear RX/TX DMA queue errors */
|
|
enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR);
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#endif /* EFX_OPTS_EF10() */
|
|
|
|
#if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_upstream_port_vadaptor_alloc(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
uint32_t retry;
|
|
uint32_t delay_us;
|
|
efx_rc_t rc;
|
|
|
|
/*
|
|
* On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF
|
|
* driver has yet to bring up the EVB port. See bug 56147. In this case,
|
|
* retry the request several times after waiting a while. The wait time
|
|
* between retries starts small (10ms) and exponentially increases.
|
|
* Total wait time is a little over two seconds. Retry logic in the
|
|
* client driver may mean this whole loop is repeated if it continues to
|
|
* fail.
|
|
*/
|
|
retry = 0;
|
|
delay_us = 10000;
|
|
while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) {
|
|
if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) ||
|
|
(rc != ENOENT)) {
|
|
/*
|
|
* Do not retry alloc for PF, or for other errors on
|
|
* a VF.
|
|
*/
|
|
goto fail1;
|
|
}
|
|
|
|
/* VF startup before PF is ready. Retry allocation. */
|
|
if (retry > 5) {
|
|
/* Too many attempts */
|
|
rc = EINVAL;
|
|
goto fail2;
|
|
}
|
|
EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry);
|
|
EFSYS_SLEEP(delay_us);
|
|
retry++;
|
|
if (delay_us < 500000)
|
|
delay_us <<= 2;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#endif /* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
|
|
|
|
#if EFX_OPTS_EF10()
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_init(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
|
|
uint32_t min_vi_count, max_vi_count;
|
|
uint32_t vi_count, vi_base, vi_shift;
|
|
uint32_t i;
|
|
uint32_t vi_window_size;
|
|
efx_rc_t rc;
|
|
boolean_t alloc_vadaptor = B_TRUE;
|
|
|
|
EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
|
|
|
|
/* Enable reporting of some events (e.g. link change) */
|
|
if ((rc = efx_mcdi_log_ctrl(enp)) != 0)
|
|
goto fail1;
|
|
|
|
/* Allocate (optional) on-chip PIO buffers */
|
|
ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count);
|
|
|
|
/*
|
|
* For best performance, PIO writes should use a write-combined
|
|
* (WC) memory mapping. Using a separate WC mapping for the PIO
|
|
* aperture of each VI would be a burden to drivers (and not
|
|
* possible if the host page size is >4Kbyte).
|
|
*
|
|
* To avoid this we use a single uncached (UC) mapping for VI
|
|
* register access, and a single WC mapping for extra VIs used
|
|
* for PIO writes.
|
|
*
|
|
* Each piobuf must be linked to a VI in the WC mapping, and to
|
|
* each VI that is using a sub-allocated block from the piobuf.
|
|
*/
|
|
min_vi_count = edcp->edc_min_vi_count;
|
|
max_vi_count =
|
|
edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count;
|
|
|
|
/* Ensure that the previously attached driver's VIs are freed */
|
|
if ((rc = efx_mcdi_free_vis(enp)) != 0)
|
|
goto fail2;
|
|
|
|
/*
|
|
* Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this
|
|
* fails then retrying the request for fewer VI resources may succeed.
|
|
*/
|
|
vi_count = 0;
|
|
if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count,
|
|
&vi_base, &vi_count, &vi_shift)) != 0)
|
|
goto fail3;
|
|
|
|
EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count);
|
|
|
|
if (vi_count < min_vi_count) {
|
|
rc = ENOMEM;
|
|
goto fail4;
|
|
}
|
|
|
|
enp->en_arch.ef10.ena_vi_base = vi_base;
|
|
enp->en_arch.ef10.ena_vi_count = vi_count;
|
|
enp->en_arch.ef10.ena_vi_shift = vi_shift;
|
|
|
|
if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) {
|
|
/* Not enough extra VIs to map piobufs */
|
|
ef10_nic_free_piobufs(enp);
|
|
}
|
|
|
|
enp->en_arch.ef10.ena_pio_write_vi_base =
|
|
vi_count - enp->en_arch.ef10.ena_piobuf_count;
|
|
|
|
EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, !=,
|
|
EFX_VI_WINDOW_SHIFT_INVALID);
|
|
EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, <=,
|
|
EFX_VI_WINDOW_SHIFT_64K);
|
|
vi_window_size = 1U << enp->en_nic_cfg.enc_vi_window_shift;
|
|
|
|
/* Save UC memory mapping details */
|
|
enp->en_arch.ef10.ena_uc_mem_map_offset = 0;
|
|
if (enp->en_arch.ef10.ena_piobuf_count > 0) {
|
|
enp->en_arch.ef10.ena_uc_mem_map_size =
|
|
(vi_window_size *
|
|
enp->en_arch.ef10.ena_pio_write_vi_base);
|
|
} else {
|
|
enp->en_arch.ef10.ena_uc_mem_map_size =
|
|
(vi_window_size *
|
|
enp->en_arch.ef10.ena_vi_count);
|
|
}
|
|
|
|
/* Save WC memory mapping details */
|
|
enp->en_arch.ef10.ena_wc_mem_map_offset =
|
|
enp->en_arch.ef10.ena_uc_mem_map_offset +
|
|
enp->en_arch.ef10.ena_uc_mem_map_size;
|
|
|
|
enp->en_arch.ef10.ena_wc_mem_map_size =
|
|
(vi_window_size *
|
|
enp->en_arch.ef10.ena_piobuf_count);
|
|
|
|
/* Link piobufs to extra VIs in WC mapping */
|
|
if (enp->en_arch.ef10.ena_piobuf_count > 0) {
|
|
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
|
|
rc = efx_mcdi_link_piobuf(enp,
|
|
enp->en_arch.ef10.ena_pio_write_vi_base + i,
|
|
enp->en_arch.ef10.ena_piobuf_handle[i]);
|
|
if (rc != 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For SR-IOV use case, vAdaptor is allocated for PF and associated VFs
|
|
* during NIC initialization when vSwitch is created and vports are
|
|
* allocated. Hence, skip vAdaptor allocation for EVB and update vport
|
|
* id in NIC structure with the one allocated for PF.
|
|
*/
|
|
|
|
enp->en_vport_id = EVB_PORT_ID_ASSIGNED;
|
|
#if EFSYS_OPT_EVB
|
|
if ((enp->en_vswitchp != NULL) && (enp->en_vswitchp->ev_evcp != NULL)) {
|
|
/* For EVB use vport allocated on vswitch */
|
|
enp->en_vport_id = enp->en_vswitchp->ev_evcp->evc_vport_id;
|
|
alloc_vadaptor = B_FALSE;
|
|
}
|
|
#endif
|
|
if (alloc_vadaptor != B_FALSE) {
|
|
/* Allocate a vAdaptor attached to our upstream vPort/pPort */
|
|
if ((rc = ef10_upstream_port_vadaptor_alloc(enp)) != 0)
|
|
goto fail5;
|
|
}
|
|
enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2;
|
|
|
|
return (0);
|
|
|
|
fail5:
|
|
EFSYS_PROBE(fail5);
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
|
|
ef10_nic_free_piobufs(enp);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_get_vi_pool(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *vi_countp)
|
|
{
|
|
EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
|
|
|
|
/*
|
|
* Report VIs that the client driver can use.
|
|
* Do not include VIs used for PIO buffer writes.
|
|
*/
|
|
*vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base;
|
|
|
|
return (0);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_get_bar_region(
|
|
__in efx_nic_t *enp,
|
|
__in efx_nic_region_t region,
|
|
__out uint32_t *offsetp,
|
|
__out size_t *sizep)
|
|
{
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
|
|
|
|
/*
|
|
* TODO: Specify host memory mapping alignment and granularity
|
|
* in efx_drv_limits_t so that they can be taken into account
|
|
* when allocating extra VIs for PIO writes.
|
|
*/
|
|
switch (region) {
|
|
case EFX_REGION_VI:
|
|
/* UC mapped memory BAR region for VI registers */
|
|
*offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset;
|
|
*sizep = enp->en_arch.ef10.ena_uc_mem_map_size;
|
|
break;
|
|
|
|
case EFX_REGION_PIO_WRITE_VI:
|
|
/* WC mapped memory BAR region for piobuf writes */
|
|
*offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset;
|
|
*sizep = enp->en_arch.ef10.ena_wc_mem_map_size;
|
|
break;
|
|
|
|
default:
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn boolean_t
|
|
ef10_nic_hw_unavailable(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_dword_t dword;
|
|
|
|
if (enp->en_reset_flags & EFX_RESET_HW_UNAVAIL)
|
|
return (B_TRUE);
|
|
|
|
EFX_BAR_READD(enp, ER_DZ_BIU_MC_SFT_STATUS_REG, &dword, B_FALSE);
|
|
if (EFX_DWORD_FIELD(dword, EFX_DWORD_0) == 0xffffffff)
|
|
goto unavail;
|
|
|
|
return (B_FALSE);
|
|
|
|
unavail:
|
|
ef10_nic_set_hw_unavailable(enp);
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
void
|
|
ef10_nic_set_hw_unavailable(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
EFSYS_PROBE(hw_unavail);
|
|
enp->en_reset_flags |= EFX_RESET_HW_UNAVAIL;
|
|
}
|
|
|
|
|
|
void
|
|
ef10_nic_fini(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
uint32_t i;
|
|
efx_rc_t rc;
|
|
boolean_t do_vadaptor_free = B_TRUE;
|
|
|
|
#if EFSYS_OPT_EVB
|
|
if (enp->en_vswitchp != NULL) {
|
|
/*
|
|
* For SR-IOV the vAdaptor is freed with the vswitch,
|
|
* so do not free it here.
|
|
*/
|
|
do_vadaptor_free = B_FALSE;
|
|
}
|
|
#endif
|
|
if (do_vadaptor_free != B_FALSE) {
|
|
(void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id);
|
|
enp->en_vport_id = EVB_PORT_ID_NULL;
|
|
}
|
|
|
|
/* Unlink piobufs from extra VIs in WC mapping */
|
|
if (enp->en_arch.ef10.ena_piobuf_count > 0) {
|
|
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
|
|
rc = efx_mcdi_unlink_piobuf(enp,
|
|
enp->en_arch.ef10.ena_pio_write_vi_base + i);
|
|
if (rc != 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
ef10_nic_free_piobufs(enp);
|
|
|
|
(void) efx_mcdi_free_vis(enp);
|
|
enp->en_arch.ef10.ena_vi_count = 0;
|
|
}
|
|
|
|
void
|
|
ef10_nic_unprobe(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
#if EFSYS_OPT_MON_STATS
|
|
mcdi_mon_cfg_free(enp);
|
|
#endif /* EFSYS_OPT_MON_STATS */
|
|
(void) efx_mcdi_drv_attach(enp, B_FALSE);
|
|
}
|
|
|
|
#if EFSYS_OPT_DIAG
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_register_test(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_rc_t rc;
|
|
|
|
/* FIXME */
|
|
_NOTE(ARGUNUSED(enp))
|
|
_NOTE(CONSTANTCONDITION)
|
|
if (B_FALSE) {
|
|
rc = ENOTSUP;
|
|
goto fail1;
|
|
}
|
|
/* FIXME */
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#endif /* EFSYS_OPT_DIAG */
|
|
|
|
#if EFSYS_OPT_FW_SUBVARIANT_AWARE
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_get_nic_global(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t key,
|
|
__out uint32_t *valuep)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_NIC_GLOBAL_IN_LEN,
|
|
MC_CMD_GET_NIC_GLOBAL_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
req.emr_cmd = MC_CMD_GET_NIC_GLOBAL;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_NIC_GLOBAL_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_NIC_GLOBAL_OUT_LEN;
|
|
|
|
MCDI_IN_SET_DWORD(req, GET_NIC_GLOBAL_IN_KEY, key);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used != MC_CMD_GET_NIC_GLOBAL_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
*valuep = MCDI_OUT_DWORD(req, GET_NIC_GLOBAL_OUT_VALUE);
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_set_nic_global(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t key,
|
|
__in uint32_t value)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SET_NIC_GLOBAL_IN_LEN, 0);
|
|
efx_rc_t rc;
|
|
|
|
req.emr_cmd = MC_CMD_SET_NIC_GLOBAL;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_SET_NIC_GLOBAL_IN_LEN;
|
|
req.emr_out_buf = NULL;
|
|
req.emr_out_length = 0;
|
|
|
|
MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_KEY, key);
|
|
MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_VALUE, value);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#endif /* EFSYS_OPT_FW_SUBVARIANT_AWARE */
|
|
|
|
#endif /* EFX_OPTS_EF10() */
|