f-stack/dpdk/drivers/common/idpf/base/idpf_osdep.h

365 lines
8.2 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2001-2022 Intel Corporation
*/
#ifndef _IDPF_OSDEP_H_
#define _IDPF_OSDEP_H_
#include <string.h>
#include <stdint.h>
#include <stdio.h>
#include <stdarg.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <stdbool.h>
#include <rte_common.h>
#include <rte_memcpy.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_byteorder.h>
#include <rte_cycles.h>
#include <rte_spinlock.h>
#include <rte_log.h>
#include <rte_random.h>
#include <rte_io.h>
#define INLINE inline
#define STATIC static
typedef uint8_t u8;
typedef int8_t s8;
typedef uint16_t u16;
typedef int16_t s16;
typedef uint32_t u32;
typedef int32_t s32;
typedef uint64_t u64;
typedef uint64_t s64;
typedef struct idpf_lock idpf_lock;
#define __iomem
#define hw_dbg(hw, S, A...) do {} while (0)
#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
#define lower_32_bits(n) ((u32)(n))
#define low_16_bits(x) ((x) & 0xFFFF)
#define high_16_bits(x) (((x) & 0xFFFF0000) >> 16)
#ifndef ETH_ADDR_LEN
#define ETH_ADDR_LEN 6
#endif
#ifndef __le16
#define __le16 uint16_t
#endif
#ifndef __le32
#define __le32 uint32_t
#endif
#ifndef __le64
#define __le64 uint64_t
#endif
#ifndef __be16
#define __be16 uint16_t
#endif
#ifndef __be32
#define __be32 uint32_t
#endif
#ifndef __be64
#define __be64 uint64_t
#endif
#ifndef BIT_ULL
#define BIT_ULL(a) RTE_BIT64(a)
#endif
#ifndef BIT
#define BIT(a) RTE_BIT32(a)
#endif
#define FALSE 0
#define TRUE 1
#define false 0
#define true 1
/* Avoid macro redefinition warning on Windows */
#ifdef RTE_EXEC_ENV_WINDOWS
#ifdef min
#undef min
#endif
#ifdef max
#undef max
#endif
#endif
#define min(a, b) RTE_MIN(a, b)
#define max(a, b) RTE_MAX(a, b)
#define ARRAY_SIZE(arr) RTE_DIM(arr)
#define FIELD_SIZEOF(t, f) (sizeof(((t *)0)->(f)))
#define MAKEMASK(m, s) ((m) << (s))
extern int idpf_common_logger;
#define DEBUGOUT(S) rte_log(RTE_LOG_DEBUG, idpf_common_logger, S)
#define DEBUGOUT2(S, A...) rte_log(RTE_LOG_DEBUG, idpf_common_logger, S, ##A)
#define DEBUGFUNC(F) DEBUGOUT(F "\n")
#define idpf_debug(h, m, s, ...) \
do { \
if (((m) & (h)->debug_mask)) \
PMD_DRV_LOG_RAW(DEBUG, "idpf %02x.%x " s, \
(h)->bus.device, (h)->bus.func, \
##__VA_ARGS__); \
} while (0)
#define idpf_info(hw, fmt, args...) idpf_debug(hw, IDPF_DBG_ALL, fmt, ##args)
#define idpf_warn(hw, fmt, args...) idpf_debug(hw, IDPF_DBG_ALL, fmt, ##args)
#define idpf_debug_array(hw, type, rowsize, groupsize, buf, len) \
do { \
struct idpf_hw *hw_l = hw; \
u16 len_l = len; \
u8 *buf_l = buf; \
int i; \
for (i = 0; i < len_l; i += 8) \
idpf_debug(hw_l, type, \
"0x%04X 0x%016"PRIx64"\n", \
i, *((u64 *)((buf_l) + i))); \
} while (0)
#define idpf_snprintf snprintf
#ifndef SNPRINTF
#define SNPRINTF idpf_snprintf
#endif
#define IDPF_PCI_REG(reg) rte_read32(reg)
#define IDPF_PCI_REG_ADDR(a, reg) \
((volatile uint32_t *)((char *)(a)->hw_addr + (reg)))
#define IDPF_PCI_REG64(reg) rte_read64(reg)
#define IDPF_PCI_REG_ADDR64(a, reg) \
((volatile uint64_t *)((char *)(a)->hw_addr + (reg)))
#define idpf_wmb() rte_io_wmb()
#define idpf_rmb() rte_io_rmb()
#define idpf_mb() rte_io_mb()
static inline uint32_t idpf_read_addr(volatile void *addr)
{
return rte_le_to_cpu_32(IDPF_PCI_REG(addr));
}
static inline uint64_t idpf_read_addr64(volatile void *addr)
{
return rte_le_to_cpu_64(IDPF_PCI_REG64(addr));
}
#define IDPF_PCI_REG_WRITE(reg, value) \
rte_write32((rte_cpu_to_le_32(value)), reg)
#define IDPF_PCI_REG_WRITE64(reg, value) \
rte_write64((rte_cpu_to_le_64(value)), reg)
#define IDPF_READ_REG(hw, reg) idpf_read_addr(IDPF_PCI_REG_ADDR((hw), (reg)))
#define IDPF_WRITE_REG(hw, reg, value) \
IDPF_PCI_REG_WRITE(IDPF_PCI_REG_ADDR((hw), (reg)), (value))
#define rd32(a, reg) idpf_read_addr(IDPF_PCI_REG_ADDR((a), (reg)))
#define wr32(a, reg, value) \
IDPF_PCI_REG_WRITE(IDPF_PCI_REG_ADDR((a), (reg)), (value))
#define div64_long(n, d) ((n) / (d))
#define rd64(a, reg) idpf_read_addr64(IDPF_PCI_REG_ADDR64((a), (reg)))
#define BITS_PER_BYTE 8
/* memory allocation tracking */
struct idpf_dma_mem {
void *va;
u64 pa;
u32 size;
const void *zone;
} __rte_packed;
struct idpf_virt_mem {
void *va;
u32 size;
} __rte_packed;
#define idpf_malloc(h, s) rte_zmalloc(NULL, s, 0)
#define idpf_calloc(h, c, s) rte_zmalloc(NULL, (c) * (s), 0)
#define idpf_free(h, m) rte_free(m)
#define idpf_memset(a, b, c, d) memset((a), (b), (c))
#define idpf_memcpy(a, b, c, d) rte_memcpy((a), (b), (c))
#define idpf_memdup(a, b, c, d) rte_memcpy(idpf_malloc(a, c), b, c)
#define CPU_TO_BE16(o) rte_cpu_to_be_16(o)
#define CPU_TO_BE32(o) rte_cpu_to_be_32(o)
#define CPU_TO_BE64(o) rte_cpu_to_be_64(o)
#define CPU_TO_LE16(o) rte_cpu_to_le_16(o)
#define CPU_TO_LE32(s) rte_cpu_to_le_32(s)
#define CPU_TO_LE64(h) rte_cpu_to_le_64(h)
#define LE16_TO_CPU(a) rte_le_to_cpu_16(a)
#define LE32_TO_CPU(c) rte_le_to_cpu_32(c)
#define LE64_TO_CPU(k) rte_le_to_cpu_64(k)
#define NTOHS(a) rte_be_to_cpu_16(a)
#define NTOHL(a) rte_be_to_cpu_32(a)
#define HTONS(a) rte_cpu_to_be_16(a)
#define HTONL(a) rte_cpu_to_be_32(a)
/* SW spinlock */
struct idpf_lock {
rte_spinlock_t spinlock;
};
static inline void
idpf_init_lock(struct idpf_lock *sp)
{
rte_spinlock_init(&sp->spinlock);
}
static inline void
idpf_acquire_lock(struct idpf_lock *sp)
{
rte_spinlock_lock(&sp->spinlock);
}
static inline void
idpf_release_lock(struct idpf_lock *sp)
{
rte_spinlock_unlock(&sp->spinlock);
}
static inline void
idpf_destroy_lock(__rte_unused struct idpf_lock *sp)
{
}
struct idpf_hw;
static inline void *
idpf_alloc_dma_mem(__rte_unused struct idpf_hw *hw,
struct idpf_dma_mem *mem, u64 size)
{
const struct rte_memzone *mz = NULL;
char z_name[RTE_MEMZONE_NAMESIZE];
if (!mem)
return NULL;
snprintf(z_name, sizeof(z_name), "idpf_dma_%"PRIu64, rte_rand());
mz = rte_memzone_reserve_aligned(z_name, size, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG, RTE_PGSIZE_4K);
if (!mz)
return NULL;
mem->size = size;
mem->va = mz->addr;
mem->pa = mz->iova;
mem->zone = (const void *)mz;
memset(mem->va, 0, size);
return mem->va;
}
static inline void
idpf_free_dma_mem(__rte_unused struct idpf_hw *hw,
struct idpf_dma_mem *mem)
{
rte_memzone_free((const struct rte_memzone *)mem->zone);
mem->size = 0;
mem->va = NULL;
mem->pa = 0;
}
static inline u8
idpf_hweight8(u32 num)
{
u8 bits = 0;
u32 i;
for (i = 0; i < 8; i++) {
bits += (u8)(num & 0x1);
num >>= 1;
}
return bits;
}
static inline u8
idpf_hweight32(u32 num)
{
u8 bits = 0;
u32 i;
for (i = 0; i < 32; i++) {
bits += (u8)(num & 0x1);
num >>= 1;
}
return bits;
}
#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
#define DELAY(x) rte_delay_us(x)
#define idpf_usec_delay(x) rte_delay_us(x)
#define idpf_msec_delay(x, y) rte_delay_us(1000 * (x))
#define udelay(x) DELAY(x)
#define msleep(x) DELAY(1000 * (x))
#define usleep_range(min, max) msleep(DIV_ROUND_UP(min, 1000))
#ifndef IDPF_DBG_TRACE
#define IDPF_DBG_TRACE BIT_ULL(0)
#endif
#ifndef DIVIDE_AND_ROUND_UP
#define DIVIDE_AND_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
#endif
#ifndef IDPF_INTEL_VENDOR_ID
#define IDPF_INTEL_VENDOR_ID 0x8086
#endif
#ifndef IS_UNICAST_ETHER_ADDR
#define IS_UNICAST_ETHER_ADDR(addr) \
((bool)((((u8 *)(addr))[0] % ((u8)0x2)) == 0))
#endif
#ifndef IS_MULTICAST_ETHER_ADDR
#define IS_MULTICAST_ETHER_ADDR(addr) \
((bool)((((u8 *)(addr))[0] % ((u8)0x2)) == 1))
#endif
#ifndef IS_BROADCAST_ETHER_ADDR
/* Check whether an address is broadcast. */
#define IS_BROADCAST_ETHER_ADDR(addr) \
((bool)((((u16 *)(addr))[0] == ((u16)0xffff))))
#endif
#ifndef IS_ZERO_ETHER_ADDR
#define IS_ZERO_ETHER_ADDR(addr) \
(((bool)((((u16 *)(addr))[0] == ((u16)0x0)))) && \
((bool)((((u16 *)(addr))[1] == ((u16)0x0)))) && \
((bool)((((u16 *)(addr))[2] == ((u16)0x0)))))
#endif
#ifndef LIST_HEAD_TYPE
#define LIST_HEAD_TYPE(list_name, type) LIST_HEAD(list_name, type)
#endif
#ifndef LIST_ENTRY_TYPE
#define LIST_ENTRY_TYPE(type) LIST_ENTRY(type)
#endif
#ifndef LIST_FOR_EACH_ENTRY_SAFE
#define LIST_FOR_EACH_ENTRY_SAFE(pos, temp, head, entry_type, list) \
LIST_FOREACH(pos, head, list)
#endif
#ifndef LIST_FOR_EACH_ENTRY
#define LIST_FOR_EACH_ENTRY(pos, head, entry_type, list) \
LIST_FOREACH(pos, head, list)
#endif
#endif /* _IDPF_OSDEP_H_ */