f-stack/freebsd/arm/arm/gic.c

1807 lines
46 KiB
C

/*-
* Copyright (c) 2011 The FreeBSD Foundation
* All rights reserved.
*
* Developed by Damjan Marion <damjan.marion@gmail.com>
*
* Based on OMAP4 GIC code by Ben Gray
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_platform.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/rman.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/cpuset.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/smp.h>
#ifdef INTRNG
#include <sys/sched.h>
#endif
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <machine/smp.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#ifdef INTRNG
#include "pic_if.h"
#include "msi_if.h"
#endif
#define GIC_DEBUG_SPURIOUS
/* We are using GICv2 register naming */
/* Distributor Registers */
#define GICD_CTLR 0x000 /* v1 ICDDCR */
#define GICD_TYPER 0x004 /* v1 ICDICTR */
#define GICD_IIDR 0x008 /* v1 ICDIIDR */
#define GICD_IGROUPR(n) (0x0080 + ((n) * 4)) /* v1 ICDISER */
#define GICD_ISENABLER(n) (0x0100 + ((n) * 4)) /* v1 ICDISER */
#define GICD_ICENABLER(n) (0x0180 + ((n) * 4)) /* v1 ICDICER */
#define GICD_ISPENDR(n) (0x0200 + ((n) * 4)) /* v1 ICDISPR */
#define GICD_ICPENDR(n) (0x0280 + ((n) * 4)) /* v1 ICDICPR */
#define GICD_ICACTIVER(n) (0x0380 + ((n) * 4)) /* v1 ICDABR */
#define GICD_IPRIORITYR(n) (0x0400 + ((n) * 4)) /* v1 ICDIPR */
#define GICD_ITARGETSR(n) (0x0800 + ((n) * 4)) /* v1 ICDIPTR */
#define GICD_ICFGR(n) (0x0C00 + ((n) * 4)) /* v1 ICDICFR */
#define GICD_SGIR(n) (0x0F00 + ((n) * 4)) /* v1 ICDSGIR */
#define GICD_SGI_TARGET_SHIFT 16
/* CPU Registers */
#define GICC_CTLR 0x0000 /* v1 ICCICR */
#define GICC_PMR 0x0004 /* v1 ICCPMR */
#define GICC_BPR 0x0008 /* v1 ICCBPR */
#define GICC_IAR 0x000C /* v1 ICCIAR */
#define GICC_EOIR 0x0010 /* v1 ICCEOIR */
#define GICC_RPR 0x0014 /* v1 ICCRPR */
#define GICC_HPPIR 0x0018 /* v1 ICCHPIR */
#define GICC_ABPR 0x001C /* v1 ICCABPR */
#define GICC_IIDR 0x00FC /* v1 ICCIIDR*/
#define GIC_FIRST_SGI 0 /* Irqs 0-15 are SGIs/IPIs. */
#define GIC_LAST_SGI 15
#define GIC_FIRST_PPI 16 /* Irqs 16-31 are private (per */
#define GIC_LAST_PPI 31 /* core) peripheral interrupts. */
#define GIC_FIRST_SPI 32 /* Irqs 32+ are shared peripherals. */
/* TYPER Registers */
#define GICD_TYPER_SECURITYEXT 0x400
#define GIC_SUPPORT_SECEXT(_sc) \
((_sc->typer & GICD_TYPER_SECURITYEXT) == GICD_TYPER_SECURITYEXT)
/* First bit is a polarity bit (0 - low, 1 - high) */
#define GICD_ICFGR_POL_LOW (0 << 0)
#define GICD_ICFGR_POL_HIGH (1 << 0)
#define GICD_ICFGR_POL_MASK 0x1
/* Second bit is a trigger bit (0 - level, 1 - edge) */
#define GICD_ICFGR_TRIG_LVL (0 << 1)
#define GICD_ICFGR_TRIG_EDGE (1 << 1)
#define GICD_ICFGR_TRIG_MASK 0x2
#ifndef GIC_DEFAULT_ICFGR_INIT
#define GIC_DEFAULT_ICFGR_INIT 0x00000000
#endif
#ifdef INTRNG
struct gic_irqsrc {
struct intr_irqsrc gi_isrc;
uint32_t gi_irq;
enum intr_polarity gi_pol;
enum intr_trigger gi_trig;
#define GI_FLAG_EARLY_EOI (1 << 0)
#define GI_FLAG_MSI (1 << 1) /* This interrupt source should only */
/* be used for MSI/MSI-X interrupts */
#define GI_FLAG_MSI_USED (1 << 2) /* This irq is already allocated */
/* for a MSI/MSI-X interrupt */
u_int gi_flags;
};
static u_int gic_irq_cpu;
static int arm_gic_intr(void *);
static int arm_gic_bind_intr(device_t dev, struct intr_irqsrc *isrc);
#ifdef SMP
static u_int sgi_to_ipi[GIC_LAST_SGI - GIC_FIRST_SGI + 1];
static u_int sgi_first_unused = GIC_FIRST_SGI;
#endif
#endif
#ifdef INTRNG
struct arm_gic_range {
uint64_t bus;
uint64_t host;
uint64_t size;
};
struct arm_gic_devinfo {
struct ofw_bus_devinfo obdinfo;
struct resource_list rl;
};
#endif
struct arm_gic_softc {
device_t gic_dev;
#ifdef INTRNG
void * gic_intrhand;
struct gic_irqsrc * gic_irqs;
#endif
struct resource * gic_res[3];
bus_space_tag_t gic_c_bst;
bus_space_tag_t gic_d_bst;
bus_space_handle_t gic_c_bsh;
bus_space_handle_t gic_d_bsh;
uint8_t ver;
struct mtx mutex;
uint32_t nirqs;
uint32_t typer;
#ifdef GIC_DEBUG_SPURIOUS
uint32_t last_irq[MAXCPU];
#endif
#ifdef INTRNG
/* FDT child data */
pcell_t addr_cells;
pcell_t size_cells;
int nranges;
struct arm_gic_range * ranges;
#endif
};
#ifdef INTRNG
#define GIC_INTR_ISRC(sc, irq) (&sc->gic_irqs[irq].gi_isrc)
#endif
static struct resource_spec arm_gic_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE }, /* Distributor registers */
{ SYS_RES_MEMORY, 1, RF_ACTIVE }, /* CPU Interrupt Intf. registers */
#ifdef INTRNG
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_OPTIONAL }, /* Parent interrupt */
#endif
{ -1, 0 }
};
static u_int arm_gic_map[MAXCPU];
static struct arm_gic_softc *gic_sc = NULL;
#define gic_c_read_4(_sc, _reg) \
bus_space_read_4((_sc)->gic_c_bst, (_sc)->gic_c_bsh, (_reg))
#define gic_c_write_4(_sc, _reg, _val) \
bus_space_write_4((_sc)->gic_c_bst, (_sc)->gic_c_bsh, (_reg), (_val))
#define gic_d_read_4(_sc, _reg) \
bus_space_read_4((_sc)->gic_d_bst, (_sc)->gic_d_bsh, (_reg))
#define gic_d_write_1(_sc, _reg, _val) \
bus_space_write_1((_sc)->gic_d_bst, (_sc)->gic_d_bsh, (_reg), (_val))
#define gic_d_write_4(_sc, _reg, _val) \
bus_space_write_4((_sc)->gic_d_bst, (_sc)->gic_d_bsh, (_reg), (_val))
#ifndef INTRNG
static int gic_config_irq(int irq, enum intr_trigger trig,
enum intr_polarity pol);
static void gic_post_filter(void *);
#endif
static struct ofw_compat_data compat_data[] = {
{"arm,gic", true}, /* Non-standard, used in FreeBSD dts. */
{"arm,gic-400", true},
{"arm,cortex-a15-gic", true},
{"arm,cortex-a9-gic", true},
{"arm,cortex-a7-gic", true},
{"arm,arm11mp-gic", true},
{"brcm,brahma-b15-gic", true},
{"qcom,msm-qgic2", true},
{NULL, false}
};
static int
arm_gic_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_search_compatible(dev, compat_data)->ocd_data)
return (ENXIO);
device_set_desc(dev, "ARM Generic Interrupt Controller");
return (BUS_PROBE_DEFAULT);
}
#ifdef INTRNG
static inline void
gic_irq_unmask(struct arm_gic_softc *sc, u_int irq)
{
gic_d_write_4(sc, GICD_ISENABLER(irq >> 5), (1UL << (irq & 0x1F)));
}
static inline void
gic_irq_mask(struct arm_gic_softc *sc, u_int irq)
{
gic_d_write_4(sc, GICD_ICENABLER(irq >> 5), (1UL << (irq & 0x1F)));
}
#endif
static uint8_t
gic_cpu_mask(struct arm_gic_softc *sc)
{
uint32_t mask;
int i;
/* Read the current cpuid mask by reading ITARGETSR{0..7} */
for (i = 0; i < 8; i++) {
mask = gic_d_read_4(sc, GICD_ITARGETSR(i));
if (mask != 0)
break;
}
/* No mask found, assume we are on CPU interface 0 */
if (mask == 0)
return (1);
/* Collect the mask in the lower byte */
mask |= mask >> 16;
mask |= mask >> 8;
return (mask);
}
#ifdef SMP
#ifdef INTRNG
static void
arm_gic_init_secondary(device_t dev)
{
struct arm_gic_softc *sc = device_get_softc(dev);
u_int irq, cpu;
/* Set the mask so we can find this CPU to send it IPIs */
cpu = PCPU_GET(cpuid);
arm_gic_map[cpu] = gic_cpu_mask(sc);
for (irq = 0; irq < sc->nirqs; irq += 4)
gic_d_write_4(sc, GICD_IPRIORITYR(irq >> 2), 0);
/* Set all the interrupts to be in Group 0 (secure) */
for (irq = 0; GIC_SUPPORT_SECEXT(sc) && irq < sc->nirqs; irq += 32) {
gic_d_write_4(sc, GICD_IGROUPR(irq >> 5), 0);
}
/* Enable CPU interface */
gic_c_write_4(sc, GICC_CTLR, 1);
/* Set priority mask register. */
gic_c_write_4(sc, GICC_PMR, 0xff);
/* Enable interrupt distribution */
gic_d_write_4(sc, GICD_CTLR, 0x01);
/* Unmask attached SGI interrupts. */
for (irq = GIC_FIRST_SGI; irq <= GIC_LAST_SGI; irq++)
if (intr_isrc_init_on_cpu(GIC_INTR_ISRC(sc, irq), cpu))
gic_irq_unmask(sc, irq);
/* Unmask attached PPI interrupts. */
for (irq = GIC_FIRST_PPI; irq <= GIC_LAST_PPI; irq++)
if (intr_isrc_init_on_cpu(GIC_INTR_ISRC(sc, irq), cpu))
gic_irq_unmask(sc, irq);
}
#else
static void
arm_gic_init_secondary(device_t dev)
{
struct arm_gic_softc *sc = device_get_softc(dev);
int i;
/* Set the mask so we can find this CPU to send it IPIs */
arm_gic_map[PCPU_GET(cpuid)] = gic_cpu_mask(sc);
for (i = 0; i < sc->nirqs; i += 4)
gic_d_write_4(sc, GICD_IPRIORITYR(i >> 2), 0);
/* Set all the interrupts to be in Group 0 (secure) */
for (i = 0; GIC_SUPPORT_SECEXT(sc) && i < sc->nirqs; i += 32) {
gic_d_write_4(sc, GICD_IGROUPR(i >> 5), 0);
}
/* Enable CPU interface */
gic_c_write_4(sc, GICC_CTLR, 1);
/* Set priority mask register. */
gic_c_write_4(sc, GICC_PMR, 0xff);
/* Enable interrupt distribution */
gic_d_write_4(sc, GICD_CTLR, 0x01);
/*
* Activate the timer interrupts: virtual, secure, and non-secure.
*/
gic_d_write_4(sc, GICD_ISENABLER(27 >> 5), (1UL << (27 & 0x1F)));
gic_d_write_4(sc, GICD_ISENABLER(29 >> 5), (1UL << (29 & 0x1F)));
gic_d_write_4(sc, GICD_ISENABLER(30 >> 5), (1UL << (30 & 0x1F)));
}
#endif /* INTRNG */
#endif /* SMP */
#ifndef INTRNG
int
gic_decode_fdt(phandle_t iparent, pcell_t *intr, int *interrupt,
int *trig, int *pol)
{
static u_int num_intr_cells;
static phandle_t self;
struct ofw_compat_data *ocd;
if (self == 0) {
for (ocd = compat_data; ocd->ocd_str != NULL; ocd++) {
if (fdt_is_compatible(iparent, ocd->ocd_str)) {
self = iparent;
break;
}
}
}
if (self != iparent)
return (ENXIO);
if (num_intr_cells == 0) {
if (OF_searchencprop(OF_node_from_xref(iparent),
"#interrupt-cells", &num_intr_cells,
sizeof(num_intr_cells)) == -1) {
num_intr_cells = 1;
}
}
if (num_intr_cells == 1) {
*interrupt = fdt32_to_cpu(intr[0]);
*trig = INTR_TRIGGER_CONFORM;
*pol = INTR_POLARITY_CONFORM;
} else {
if (fdt32_to_cpu(intr[0]) == 0)
*interrupt = fdt32_to_cpu(intr[1]) + GIC_FIRST_SPI;
else
*interrupt = fdt32_to_cpu(intr[1]) + GIC_FIRST_PPI;
/*
* In intr[2], bits[3:0] are trigger type and level flags.
* 1 = low-to-high edge triggered
* 2 = high-to-low edge triggered
* 4 = active high level-sensitive
* 8 = active low level-sensitive
* The hardware only supports active-high-level or rising-edge
* for SPIs
*/
if (*interrupt >= GIC_FIRST_SPI &&
fdt32_to_cpu(intr[2]) & 0x0a) {
printf("unsupported trigger/polarity configuration "
"0x%02x\n", fdt32_to_cpu(intr[2]) & 0x0f);
}
*pol = INTR_POLARITY_CONFORM;
if (fdt32_to_cpu(intr[2]) & 0x03)
*trig = INTR_TRIGGER_EDGE;
else
*trig = INTR_TRIGGER_LEVEL;
}
return (0);
}
#endif
#ifdef INTRNG
static inline intptr_t
gic_xref(device_t dev)
{
#ifdef FDT
return (OF_xref_from_node(ofw_bus_get_node(dev)));
#else
return (0);
#endif
}
static int
arm_gic_register_isrcs(struct arm_gic_softc *sc, uint32_t num)
{
int error;
uint32_t irq;
struct gic_irqsrc *irqs;
struct intr_irqsrc *isrc;
const char *name;
irqs = malloc(num * sizeof(struct gic_irqsrc), M_DEVBUF,
M_WAITOK | M_ZERO);
name = device_get_nameunit(sc->gic_dev);
for (irq = 0; irq < num; irq++) {
irqs[irq].gi_irq = irq;
irqs[irq].gi_pol = INTR_POLARITY_CONFORM;
irqs[irq].gi_trig = INTR_TRIGGER_CONFORM;
isrc = &irqs[irq].gi_isrc;
if (irq <= GIC_LAST_SGI) {
error = intr_isrc_register(isrc, sc->gic_dev,
INTR_ISRCF_IPI, "%s,i%u", name, irq - GIC_FIRST_SGI);
} else if (irq <= GIC_LAST_PPI) {
error = intr_isrc_register(isrc, sc->gic_dev,
INTR_ISRCF_PPI, "%s,p%u", name, irq - GIC_FIRST_PPI);
} else {
error = intr_isrc_register(isrc, sc->gic_dev, 0,
"%s,s%u", name, irq - GIC_FIRST_SPI);
}
if (error != 0) {
/* XXX call intr_isrc_deregister() */
free(irqs, M_DEVBUF);
return (error);
}
}
sc->gic_irqs = irqs;
sc->nirqs = num;
return (0);
}
static int
arm_gic_fill_ranges(phandle_t node, struct arm_gic_softc *sc)
{
pcell_t host_cells;
cell_t *base_ranges;
ssize_t nbase_ranges;
int i, j, k;
host_cells = 1;
OF_getencprop(OF_parent(node), "#address-cells", &host_cells,
sizeof(host_cells));
sc->addr_cells = 2;
OF_getencprop(node, "#address-cells", &sc->addr_cells,
sizeof(sc->addr_cells));
sc->size_cells = 2;
OF_getencprop(node, "#size-cells", &sc->size_cells,
sizeof(sc->size_cells));
nbase_ranges = OF_getproplen(node, "ranges");
if (nbase_ranges < 0)
return (-1);
sc->nranges = nbase_ranges / sizeof(cell_t) /
(sc->addr_cells + host_cells + sc->size_cells);
if (sc->nranges == 0)
return (0);
sc->ranges = malloc(sc->nranges * sizeof(sc->ranges[0]),
M_DEVBUF, M_WAITOK);
base_ranges = malloc(nbase_ranges, M_DEVBUF, M_WAITOK);
OF_getencprop(node, "ranges", base_ranges, nbase_ranges);
for (i = 0, j = 0; i < sc->nranges; i++) {
sc->ranges[i].bus = 0;
for (k = 0; k < sc->addr_cells; k++) {
sc->ranges[i].bus <<= 32;
sc->ranges[i].bus |= base_ranges[j++];
}
sc->ranges[i].host = 0;
for (k = 0; k < host_cells; k++) {
sc->ranges[i].host <<= 32;
sc->ranges[i].host |= base_ranges[j++];
}
sc->ranges[i].size = 0;
for (k = 0; k < sc->size_cells; k++) {
sc->ranges[i].size <<= 32;
sc->ranges[i].size |= base_ranges[j++];
}
}
free(base_ranges, M_DEVBUF);
return (sc->nranges);
}
static bool
arm_gic_add_children(device_t dev)
{
struct arm_gic_softc *sc;
struct arm_gic_devinfo *dinfo;
phandle_t child, node;
device_t cdev;
sc = device_get_softc(dev);
node = ofw_bus_get_node(dev);
/* If we have no children don't probe for them */
child = OF_child(node);
if (child == 0)
return (false);
if (arm_gic_fill_ranges(node, sc) < 0) {
device_printf(dev, "Have a child, but no ranges\n");
return (false);
}
for (; child != 0; child = OF_peer(child)) {
dinfo = malloc(sizeof(*dinfo), M_DEVBUF, M_WAITOK | M_ZERO);
if (ofw_bus_gen_setup_devinfo(&dinfo->obdinfo, child) != 0) {
free(dinfo, M_DEVBUF);
continue;
}
resource_list_init(&dinfo->rl);
ofw_bus_reg_to_rl(dev, child, sc->addr_cells,
sc->size_cells, &dinfo->rl);
cdev = device_add_child(dev, NULL, -1);
if (cdev == NULL) {
device_printf(dev, "<%s>: device_add_child failed\n",
dinfo->obdinfo.obd_name);
resource_list_free(&dinfo->rl);
ofw_bus_gen_destroy_devinfo(&dinfo->obdinfo);
free(dinfo, M_DEVBUF);
continue;
}
device_set_ivars(cdev, dinfo);
}
return (true);
}
static void
arm_gic_reserve_msi_range(device_t dev, u_int start, u_int count)
{
struct arm_gic_softc *sc;
int i;
sc = device_get_softc(dev);
KASSERT((start + count) < sc->nirqs,
("%s: Trying to allocate too many MSI IRQs: %d + %d > %d", __func__,
start, count, sc->nirqs));
for (i = 0; i < count; i++) {
KASSERT(sc->gic_irqs[start + i].gi_isrc.isrc_handlers == 0,
("%s: MSI interrupt %d already has a handler", __func__,
count + i));
KASSERT(sc->gic_irqs[start + i].gi_pol == INTR_POLARITY_CONFORM,
("%s: MSI interrupt %d already has a polarity", __func__,
count + i));
KASSERT(sc->gic_irqs[start + i].gi_trig == INTR_TRIGGER_CONFORM,
("%s: MSI interrupt %d already has a trigger", __func__,
count + i));
sc->gic_irqs[start + i].gi_pol = INTR_POLARITY_HIGH;
sc->gic_irqs[start + i].gi_trig = INTR_TRIGGER_EDGE;
sc->gic_irqs[start + i].gi_flags |= GI_FLAG_MSI;
}
}
#endif
static int
arm_gic_attach(device_t dev)
{
struct arm_gic_softc *sc;
int i;
uint32_t icciidr, mask, nirqs;
#ifdef INTRNG
phandle_t pxref;
intptr_t xref = gic_xref(dev);
#endif
if (gic_sc)
return (ENXIO);
sc = device_get_softc(dev);
if (bus_alloc_resources(dev, arm_gic_spec, sc->gic_res)) {
device_printf(dev, "could not allocate resources\n");
return (ENXIO);
}
sc->gic_dev = dev;
gic_sc = sc;
/* Initialize mutex */
mtx_init(&sc->mutex, "GIC lock", "", MTX_SPIN);
/* Distributor Interface */
sc->gic_d_bst = rman_get_bustag(sc->gic_res[0]);
sc->gic_d_bsh = rman_get_bushandle(sc->gic_res[0]);
/* CPU Interface */
sc->gic_c_bst = rman_get_bustag(sc->gic_res[1]);
sc->gic_c_bsh = rman_get_bushandle(sc->gic_res[1]);
/* Disable interrupt forwarding to the CPU interface */
gic_d_write_4(sc, GICD_CTLR, 0x00);
/* Get the number of interrupts */
sc->typer = gic_d_read_4(sc, GICD_TYPER);
nirqs = 32 * ((sc->typer & 0x1f) + 1);
#ifdef INTRNG
if (arm_gic_register_isrcs(sc, nirqs)) {
device_printf(dev, "could not register irqs\n");
goto cleanup;
}
#else
sc->nirqs = nirqs;
/* Set up function pointers */
arm_post_filter = gic_post_filter;
arm_config_irq = gic_config_irq;
#endif
icciidr = gic_c_read_4(sc, GICC_IIDR);
device_printf(dev,"pn 0x%x, arch 0x%x, rev 0x%x, implementer 0x%x irqs %u\n",
icciidr>>20, (icciidr>>16) & 0xF, (icciidr>>12) & 0xf,
(icciidr & 0xfff), sc->nirqs);
/* Set all global interrupts to be level triggered, active low. */
for (i = 32; i < sc->nirqs; i += 16) {
gic_d_write_4(sc, GICD_ICFGR(i >> 4), GIC_DEFAULT_ICFGR_INIT);
}
/* Disable all interrupts. */
for (i = 32; i < sc->nirqs; i += 32) {
gic_d_write_4(sc, GICD_ICENABLER(i >> 5), 0xFFFFFFFF);
}
/* Find the current cpu mask */
mask = gic_cpu_mask(sc);
/* Set the mask so we can find this CPU to send it IPIs */
arm_gic_map[PCPU_GET(cpuid)] = mask;
/* Set all four targets to this cpu */
mask |= mask << 8;
mask |= mask << 16;
for (i = 0; i < sc->nirqs; i += 4) {
gic_d_write_4(sc, GICD_IPRIORITYR(i >> 2), 0);
if (i > 32) {
gic_d_write_4(sc, GICD_ITARGETSR(i >> 2), mask);
}
}
/* Set all the interrupts to be in Group 0 (secure) */
for (i = 0; GIC_SUPPORT_SECEXT(sc) && i < sc->nirqs; i += 32) {
gic_d_write_4(sc, GICD_IGROUPR(i >> 5), 0);
}
/* Enable CPU interface */
gic_c_write_4(sc, GICC_CTLR, 1);
/* Set priority mask register. */
gic_c_write_4(sc, GICC_PMR, 0xff);
/* Enable interrupt distribution */
gic_d_write_4(sc, GICD_CTLR, 0x01);
#ifndef INTRNG
return (0);
#else
/*
* Now, when everything is initialized, it's right time to
* register interrupt controller to interrupt framefork.
*/
if (intr_pic_register(dev, xref) == NULL) {
device_printf(dev, "could not register PIC\n");
goto cleanup;
}
/*
* Controller is root if:
* - doesn't have interrupt parent
* - his interrupt parent is this controller
*/
pxref = ofw_bus_find_iparent(ofw_bus_get_node(dev));
if (pxref == 0 || xref == pxref) {
if (intr_pic_claim_root(dev, xref, arm_gic_intr, sc,
GIC_LAST_SGI - GIC_FIRST_SGI + 1) != 0) {
device_printf(dev, "could not set PIC as a root\n");
intr_pic_deregister(dev, xref);
goto cleanup;
}
} else {
if (sc->gic_res[2] == NULL) {
device_printf(dev,
"not root PIC must have defined interrupt\n");
intr_pic_deregister(dev, xref);
goto cleanup;
}
if (bus_setup_intr(dev, sc->gic_res[2], INTR_TYPE_CLK,
arm_gic_intr, NULL, sc, &sc->gic_intrhand)) {
device_printf(dev, "could not setup irq handler\n");
intr_pic_deregister(dev, xref);
goto cleanup;
}
}
OF_device_register_xref(xref, dev);
/* If we have children probe and attach them */
if (arm_gic_add_children(dev)) {
bus_generic_probe(dev);
return (bus_generic_attach(dev));
}
return (0);
cleanup:
/*
* XXX - not implemented arm_gic_detach() should be called !
*/
if (sc->gic_irqs != NULL)
free(sc->gic_irqs, M_DEVBUF);
bus_release_resources(dev, arm_gic_spec, sc->gic_res);
return(ENXIO);
#endif
}
#ifdef INTRNG
static struct resource *
arm_gic_alloc_resource(device_t bus, device_t child, int type, int *rid,
rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
{
struct arm_gic_softc *sc;
struct arm_gic_devinfo *di;
struct resource_list_entry *rle;
int j;
KASSERT(type == SYS_RES_MEMORY, ("Invalid resoure type %x", type));
sc = device_get_softc(bus);
/*
* Request for the default allocation with a given rid: use resource
* list stored in the local device info.
*/
if (RMAN_IS_DEFAULT_RANGE(start, end)) {
if ((di = device_get_ivars(child)) == NULL)
return (NULL);
if (type == SYS_RES_IOPORT)
type = SYS_RES_MEMORY;
rle = resource_list_find(&di->rl, type, *rid);
if (rle == NULL) {
if (bootverbose)
device_printf(bus, "no default resources for "
"rid = %d, type = %d\n", *rid, type);
return (NULL);
}
start = rle->start;
end = rle->end;
count = rle->count;
}
/* Remap through ranges property */
for (j = 0; j < sc->nranges; j++) {
if (start >= sc->ranges[j].bus && end <
sc->ranges[j].bus + sc->ranges[j].size) {
start -= sc->ranges[j].bus;
start += sc->ranges[j].host;
end -= sc->ranges[j].bus;
end += sc->ranges[j].host;
break;
}
}
if (j == sc->nranges && sc->nranges != 0) {
if (bootverbose)
device_printf(bus, "Could not map resource "
"%#jx-%#jx\n", (uintmax_t)start, (uintmax_t)end);
return (NULL);
}
return (bus_generic_alloc_resource(bus, child, type, rid, start, end,
count, flags));
}
static const struct ofw_bus_devinfo *
arm_gic_ofw_get_devinfo(device_t bus __unused, device_t child)
{
struct arm_gic_devinfo *di;
di = device_get_ivars(child);
return (&di->obdinfo);
}
static int
arm_gic_intr(void *arg)
{
struct arm_gic_softc *sc = arg;
struct gic_irqsrc *gi;
uint32_t irq_active_reg, irq;
struct trapframe *tf;
irq_active_reg = gic_c_read_4(sc, GICC_IAR);
irq = irq_active_reg & 0x3FF;
/*
* 1. We do EOI here because recent read value from active interrupt
* register must be used for it. Another approach is to save this
* value into associated interrupt source.
* 2. EOI must be done on same CPU where interrupt has fired. Thus
* we must ensure that interrupted thread does not migrate to
* another CPU.
* 3. EOI cannot be delayed by any preemption which could happen on
* critical_exit() used in MI intr code, when interrupt thread is
* scheduled. See next point.
* 4. IPI_RENDEZVOUS assumes that no preemption is permitted during
* an action and any use of critical_exit() could break this
* assumption. See comments within smp_rendezvous_action().
* 5. We always return FILTER_HANDLED as this is an interrupt
* controller dispatch function. Otherwise, in cascaded interrupt
* case, the whole interrupt subtree would be masked.
*/
if (irq >= sc->nirqs) {
#ifdef GIC_DEBUG_SPURIOUS
device_printf(sc->gic_dev,
"Spurious interrupt detected: last irq: %d on CPU%d\n",
sc->last_irq[PCPU_GET(cpuid)], PCPU_GET(cpuid));
#endif
return (FILTER_HANDLED);
}
tf = curthread->td_intr_frame;
dispatch_irq:
gi = sc->gic_irqs + irq;
/*
* Note that GIC_FIRST_SGI is zero and is not used in 'if' statement
* as compiler complains that comparing u_int >= 0 is always true.
*/
if (irq <= GIC_LAST_SGI) {
#ifdef SMP
/* Call EOI for all IPI before dispatch. */
gic_c_write_4(sc, GICC_EOIR, irq_active_reg);
intr_ipi_dispatch(sgi_to_ipi[gi->gi_irq], tf);
goto next_irq;
#else
device_printf(sc->gic_dev, "SGI %u on UP system detected\n",
irq - GIC_FIRST_SGI);
gic_c_write_4(sc, GICC_EOIR, irq_active_reg);
goto next_irq;
#endif
}
#ifdef GIC_DEBUG_SPURIOUS
sc->last_irq[PCPU_GET(cpuid)] = irq;
#endif
if ((gi->gi_flags & GI_FLAG_EARLY_EOI) == GI_FLAG_EARLY_EOI)
gic_c_write_4(sc, GICC_EOIR, irq_active_reg);
if (intr_isrc_dispatch(&gi->gi_isrc, tf) != 0) {
gic_irq_mask(sc, irq);
if ((gi->gi_flags & GI_FLAG_EARLY_EOI) != GI_FLAG_EARLY_EOI)
gic_c_write_4(sc, GICC_EOIR, irq_active_reg);
device_printf(sc->gic_dev, "Stray irq %u disabled\n", irq);
}
next_irq:
arm_irq_memory_barrier(irq);
irq_active_reg = gic_c_read_4(sc, GICC_IAR);
irq = irq_active_reg & 0x3FF;
if (irq < sc->nirqs)
goto dispatch_irq;
return (FILTER_HANDLED);
}
static void
gic_config(struct arm_gic_softc *sc, u_int irq, enum intr_trigger trig,
enum intr_polarity pol)
{
uint32_t reg;
uint32_t mask;
if (irq < GIC_FIRST_SPI)
return;
mtx_lock_spin(&sc->mutex);
reg = gic_d_read_4(sc, GICD_ICFGR(irq >> 4));
mask = (reg >> 2*(irq % 16)) & 0x3;
if (pol == INTR_POLARITY_LOW) {
mask &= ~GICD_ICFGR_POL_MASK;
mask |= GICD_ICFGR_POL_LOW;
} else if (pol == INTR_POLARITY_HIGH) {
mask &= ~GICD_ICFGR_POL_MASK;
mask |= GICD_ICFGR_POL_HIGH;
}
if (trig == INTR_TRIGGER_LEVEL) {
mask &= ~GICD_ICFGR_TRIG_MASK;
mask |= GICD_ICFGR_TRIG_LVL;
} else if (trig == INTR_TRIGGER_EDGE) {
mask &= ~GICD_ICFGR_TRIG_MASK;
mask |= GICD_ICFGR_TRIG_EDGE;
}
/* Set mask */
reg = reg & ~(0x3 << 2*(irq % 16));
reg = reg | (mask << 2*(irq % 16));
gic_d_write_4(sc, GICD_ICFGR(irq >> 4), reg);
mtx_unlock_spin(&sc->mutex);
}
static int
gic_bind(struct arm_gic_softc *sc, u_int irq, cpuset_t *cpus)
{
uint32_t cpu, end, mask;
end = min(mp_ncpus, 8);
for (cpu = end; cpu < MAXCPU; cpu++)
if (CPU_ISSET(cpu, cpus))
return (EINVAL);
for (mask = 0, cpu = 0; cpu < end; cpu++)
if (CPU_ISSET(cpu, cpus))
mask |= arm_gic_map[cpu];
gic_d_write_1(sc, GICD_ITARGETSR(0) + irq, mask);
return (0);
}
#ifdef FDT
static int
gic_map_fdt(device_t dev, u_int ncells, pcell_t *cells, u_int *irqp,
enum intr_polarity *polp, enum intr_trigger *trigp)
{
if (ncells == 1) {
*irqp = cells[0];
*polp = INTR_POLARITY_CONFORM;
*trigp = INTR_TRIGGER_CONFORM;
return (0);
}
if (ncells == 3) {
u_int irq, tripol;
/*
* The 1st cell is the interrupt type:
* 0 = SPI
* 1 = PPI
* The 2nd cell contains the interrupt number:
* [0 - 987] for SPI
* [0 - 15] for PPI
* The 3rd cell is the flags, encoded as follows:
* bits[3:0] trigger type and level flags
* 1 = low-to-high edge triggered
* 2 = high-to-low edge triggered
* 4 = active high level-sensitive
* 8 = active low level-sensitive
* bits[15:8] PPI interrupt cpu mask
* Each bit corresponds to each of the 8 possible cpus
* attached to the GIC. A bit set to '1' indicated
* the interrupt is wired to that CPU.
*/
switch (cells[0]) {
case 0:
irq = GIC_FIRST_SPI + cells[1];
/* SPI irq is checked later. */
break;
case 1:
irq = GIC_FIRST_PPI + cells[1];
if (irq > GIC_LAST_PPI) {
device_printf(dev, "unsupported PPI interrupt "
"number %u\n", cells[1]);
return (EINVAL);
}
break;
default:
device_printf(dev, "unsupported interrupt type "
"configuration %u\n", cells[0]);
return (EINVAL);
}
tripol = cells[2] & 0xff;
if (tripol & 0xf0 || (tripol & 0x0a && cells[0] == 0))
device_printf(dev, "unsupported trigger/polarity "
"configuration 0x%02x\n", tripol);
*irqp = irq;
*polp = INTR_POLARITY_CONFORM;
*trigp = tripol & 0x03 ? INTR_TRIGGER_EDGE : INTR_TRIGGER_LEVEL;
return (0);
}
return (EINVAL);
}
#endif
static int
gic_map_intr(device_t dev, struct intr_map_data *data, u_int *irqp,
enum intr_polarity *polp, enum intr_trigger *trigp)
{
u_int irq;
enum intr_polarity pol;
enum intr_trigger trig;
struct arm_gic_softc *sc;
#ifdef FDT
struct intr_map_data_fdt *daf;
#endif
sc = device_get_softc(dev);
switch (data->type) {
#ifdef FDT
case INTR_MAP_DATA_FDT:
daf = (struct intr_map_data_fdt *)data;
if (gic_map_fdt(dev, daf->ncells, daf->cells, &irq, &pol,
&trig) != 0)
return (EINVAL);
KASSERT(irq >= sc->nirqs ||
(sc->gic_irqs[irq].gi_flags & GI_FLAG_MSI) == 0,
("%s: Attempting to map a MSI interrupt from FDT",
__func__));
break;
#endif
default:
return (ENOTSUP);
}
if (irq >= sc->nirqs)
return (EINVAL);
if (pol != INTR_POLARITY_CONFORM && pol != INTR_POLARITY_LOW &&
pol != INTR_POLARITY_HIGH)
return (EINVAL);
if (trig != INTR_TRIGGER_CONFORM && trig != INTR_TRIGGER_EDGE &&
trig != INTR_TRIGGER_LEVEL)
return (EINVAL);
*irqp = irq;
if (polp != NULL)
*polp = pol;
if (trigp != NULL)
*trigp = trig;
return (0);
}
static int
arm_gic_map_intr(device_t dev, struct intr_map_data *data,
struct intr_irqsrc **isrcp)
{
int error;
u_int irq;
struct arm_gic_softc *sc;
error = gic_map_intr(dev, data, &irq, NULL, NULL);
if (error == 0) {
sc = device_get_softc(dev);
*isrcp = GIC_INTR_ISRC(sc, irq);
}
return (error);
}
static int
arm_gic_setup_intr(device_t dev, struct intr_irqsrc *isrc,
struct resource *res, struct intr_map_data *data)
{
struct arm_gic_softc *sc = device_get_softc(dev);
struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc;
enum intr_trigger trig;
enum intr_polarity pol;
if ((gi->gi_flags & GI_FLAG_MSI) == GI_FLAG_MSI) {
pol = gi->gi_pol;
trig = gi->gi_trig;
KASSERT(pol == INTR_POLARITY_HIGH,
("%s: MSI interrupts must be active-high", __func__));
KASSERT(trig == INTR_TRIGGER_EDGE,
("%s: MSI interrupts must be edge triggered", __func__));
} else if (data != NULL) {
u_int irq;
/* Get config for resource. */
if (gic_map_intr(dev, data, &irq, &pol, &trig) ||
gi->gi_irq != irq)
return (EINVAL);
} else {
pol = INTR_POLARITY_CONFORM;
trig = INTR_TRIGGER_CONFORM;
}
/* Compare config if this is not first setup. */
if (isrc->isrc_handlers != 0) {
if ((pol != INTR_POLARITY_CONFORM && pol != gi->gi_pol) ||
(trig != INTR_TRIGGER_CONFORM && trig != gi->gi_trig))
return (EINVAL);
else
return (0);
}
/* For MSI/MSI-X we should have already configured these */
if ((gi->gi_flags & GI_FLAG_MSI) == 0) {
if (pol == INTR_POLARITY_CONFORM)
pol = INTR_POLARITY_LOW; /* just pick some */
if (trig == INTR_TRIGGER_CONFORM)
trig = INTR_TRIGGER_EDGE; /* just pick some */
gi->gi_pol = pol;
gi->gi_trig = trig;
/* Edge triggered interrupts need an early EOI sent */
if (gi->gi_pol == INTR_TRIGGER_EDGE)
gi->gi_flags |= GI_FLAG_EARLY_EOI;
}
/*
* XXX - In case that per CPU interrupt is going to be enabled in time
* when SMP is already started, we need some IPI call which
* enables it on others CPUs. Further, it's more complicated as
* pic_enable_source() and pic_disable_source() should act on
* per CPU basis only. Thus, it should be solved here somehow.
*/
if (isrc->isrc_flags & INTR_ISRCF_PPI)
CPU_SET(PCPU_GET(cpuid), &isrc->isrc_cpu);
gic_config(sc, gi->gi_irq, gi->gi_trig, gi->gi_pol);
arm_gic_bind_intr(dev, isrc);
return (0);
}
static int
arm_gic_teardown_intr(device_t dev, struct intr_irqsrc *isrc,
struct resource *res, struct intr_map_data *data)
{
struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc;
if (isrc->isrc_handlers == 0 && (gi->gi_flags & GI_FLAG_MSI) == 0) {
gi->gi_pol = INTR_POLARITY_CONFORM;
gi->gi_trig = INTR_TRIGGER_CONFORM;
}
return (0);
}
static void
arm_gic_enable_intr(device_t dev, struct intr_irqsrc *isrc)
{
struct arm_gic_softc *sc = device_get_softc(dev);
struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc;
arm_irq_memory_barrier(gi->gi_irq);
gic_irq_unmask(sc, gi->gi_irq);
}
static void
arm_gic_disable_intr(device_t dev, struct intr_irqsrc *isrc)
{
struct arm_gic_softc *sc = device_get_softc(dev);
struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc;
gic_irq_mask(sc, gi->gi_irq);
}
static void
arm_gic_pre_ithread(device_t dev, struct intr_irqsrc *isrc)
{
struct arm_gic_softc *sc = device_get_softc(dev);
struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc;
arm_gic_disable_intr(dev, isrc);
gic_c_write_4(sc, GICC_EOIR, gi->gi_irq);
}
static void
arm_gic_post_ithread(device_t dev, struct intr_irqsrc *isrc)
{
arm_irq_memory_barrier(0);
arm_gic_enable_intr(dev, isrc);
}
static void
arm_gic_post_filter(device_t dev, struct intr_irqsrc *isrc)
{
struct arm_gic_softc *sc = device_get_softc(dev);
struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc;
/* EOI for edge-triggered done earlier. */
if ((gi->gi_flags & GI_FLAG_EARLY_EOI) == GI_FLAG_EARLY_EOI)
return;
arm_irq_memory_barrier(0);
gic_c_write_4(sc, GICC_EOIR, gi->gi_irq);
}
static int
arm_gic_bind_intr(device_t dev, struct intr_irqsrc *isrc)
{
struct arm_gic_softc *sc = device_get_softc(dev);
struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc;
if (gi->gi_irq < GIC_FIRST_SPI)
return (EINVAL);
if (CPU_EMPTY(&isrc->isrc_cpu)) {
gic_irq_cpu = intr_irq_next_cpu(gic_irq_cpu, &all_cpus);
CPU_SETOF(gic_irq_cpu, &isrc->isrc_cpu);
}
return (gic_bind(sc, gi->gi_irq, &isrc->isrc_cpu));
}
#ifdef SMP
static void
arm_gic_ipi_send(device_t dev, struct intr_irqsrc *isrc, cpuset_t cpus,
u_int ipi)
{
struct arm_gic_softc *sc = device_get_softc(dev);
struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc;
uint32_t val = 0, i;
for (i = 0; i < MAXCPU; i++)
if (CPU_ISSET(i, &cpus))
val |= arm_gic_map[i] << GICD_SGI_TARGET_SHIFT;
gic_d_write_4(sc, GICD_SGIR(0), val | gi->gi_irq);
}
static int
arm_gic_ipi_setup(device_t dev, u_int ipi, struct intr_irqsrc **isrcp)
{
struct intr_irqsrc *isrc;
struct arm_gic_softc *sc = device_get_softc(dev);
if (sgi_first_unused > GIC_LAST_SGI)
return (ENOSPC);
isrc = GIC_INTR_ISRC(sc, sgi_first_unused);
sgi_to_ipi[sgi_first_unused++] = ipi;
CPU_SET(PCPU_GET(cpuid), &isrc->isrc_cpu);
*isrcp = isrc;
return (0);
}
#endif
#else
static int
arm_gic_next_irq(struct arm_gic_softc *sc, int last_irq)
{
uint32_t active_irq;
active_irq = gic_c_read_4(sc, GICC_IAR);
/*
* Immediately EOIR the SGIs, because doing so requires the other
* bits (ie CPU number), not just the IRQ number, and we do not
* have this information later.
*/
if ((active_irq & 0x3ff) <= GIC_LAST_SGI)
gic_c_write_4(sc, GICC_EOIR, active_irq);
active_irq &= 0x3FF;
if (active_irq == 0x3FF) {
if (last_irq == -1)
device_printf(sc->gic_dev,
"Spurious interrupt detected\n");
return -1;
}
return active_irq;
}
static int
arm_gic_config(device_t dev, int irq, enum intr_trigger trig,
enum intr_polarity pol)
{
struct arm_gic_softc *sc = device_get_softc(dev);
uint32_t reg;
uint32_t mask;
/* Function is public-accessible, so validate input arguments */
if ((irq < 0) || (irq >= sc->nirqs))
goto invalid_args;
if ((trig != INTR_TRIGGER_EDGE) && (trig != INTR_TRIGGER_LEVEL) &&
(trig != INTR_TRIGGER_CONFORM))
goto invalid_args;
if ((pol != INTR_POLARITY_HIGH) && (pol != INTR_POLARITY_LOW) &&
(pol != INTR_POLARITY_CONFORM))
goto invalid_args;
mtx_lock_spin(&sc->mutex);
reg = gic_d_read_4(sc, GICD_ICFGR(irq >> 4));
mask = (reg >> 2*(irq % 16)) & 0x3;
if (pol == INTR_POLARITY_LOW) {
mask &= ~GICD_ICFGR_POL_MASK;
mask |= GICD_ICFGR_POL_LOW;
} else if (pol == INTR_POLARITY_HIGH) {
mask &= ~GICD_ICFGR_POL_MASK;
mask |= GICD_ICFGR_POL_HIGH;
}
if (trig == INTR_TRIGGER_LEVEL) {
mask &= ~GICD_ICFGR_TRIG_MASK;
mask |= GICD_ICFGR_TRIG_LVL;
} else if (trig == INTR_TRIGGER_EDGE) {
mask &= ~GICD_ICFGR_TRIG_MASK;
mask |= GICD_ICFGR_TRIG_EDGE;
}
/* Set mask */
reg = reg & ~(0x3 << 2*(irq % 16));
reg = reg | (mask << 2*(irq % 16));
gic_d_write_4(sc, GICD_ICFGR(irq >> 4), reg);
mtx_unlock_spin(&sc->mutex);
return (0);
invalid_args:
device_printf(dev, "gic_config_irg, invalid parameters\n");
return (EINVAL);
}
static void
arm_gic_mask(device_t dev, int irq)
{
struct arm_gic_softc *sc = device_get_softc(dev);
gic_d_write_4(sc, GICD_ICENABLER(irq >> 5), (1UL << (irq & 0x1F)));
gic_c_write_4(sc, GICC_EOIR, irq); /* XXX - not allowed */
}
static void
arm_gic_unmask(device_t dev, int irq)
{
struct arm_gic_softc *sc = device_get_softc(dev);
if (irq > GIC_LAST_SGI)
arm_irq_memory_barrier(irq);
gic_d_write_4(sc, GICD_ISENABLER(irq >> 5), (1UL << (irq & 0x1F)));
}
#ifdef SMP
static void
arm_gic_ipi_send(device_t dev, cpuset_t cpus, u_int ipi)
{
struct arm_gic_softc *sc = device_get_softc(dev);
uint32_t val = 0, i;
for (i = 0; i < MAXCPU; i++)
if (CPU_ISSET(i, &cpus))
val |= arm_gic_map[i] << GICD_SGI_TARGET_SHIFT;
gic_d_write_4(sc, GICD_SGIR(0), val | ipi);
}
static int
arm_gic_ipi_read(device_t dev, int i)
{
if (i != -1) {
/*
* The intr code will automagically give the frame pointer
* if the interrupt argument is 0.
*/
if ((unsigned int)i > 16)
return (0);
return (i);
}
return (0x3ff);
}
static void
arm_gic_ipi_clear(device_t dev, int ipi)
{
/* no-op */
}
#endif
static void
gic_post_filter(void *arg)
{
struct arm_gic_softc *sc = gic_sc;
uintptr_t irq = (uintptr_t) arg;
if (irq > GIC_LAST_SGI)
arm_irq_memory_barrier(irq);
gic_c_write_4(sc, GICC_EOIR, irq);
}
static int
gic_config_irq(int irq, enum intr_trigger trig, enum intr_polarity pol)
{
return (arm_gic_config(gic_sc->gic_dev, irq, trig, pol));
}
void
arm_mask_irq(uintptr_t nb)
{
arm_gic_mask(gic_sc->gic_dev, nb);
}
void
arm_unmask_irq(uintptr_t nb)
{
arm_gic_unmask(gic_sc->gic_dev, nb);
}
int
arm_get_next_irq(int last_irq)
{
return (arm_gic_next_irq(gic_sc, last_irq));
}
#ifdef SMP
void
intr_pic_init_secondary(void)
{
arm_gic_init_secondary(gic_sc->gic_dev);
}
void
pic_ipi_send(cpuset_t cpus, u_int ipi)
{
arm_gic_ipi_send(gic_sc->gic_dev, cpus, ipi);
}
int
pic_ipi_read(int i)
{
return (arm_gic_ipi_read(gic_sc->gic_dev, i));
}
void
pic_ipi_clear(int ipi)
{
arm_gic_ipi_clear(gic_sc->gic_dev, ipi);
}
#endif
#endif /* INTRNG */
static device_method_t arm_gic_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, arm_gic_probe),
DEVMETHOD(device_attach, arm_gic_attach),
#ifdef INTRNG
/* Bus interface */
DEVMETHOD(bus_add_child, bus_generic_add_child),
DEVMETHOD(bus_alloc_resource, arm_gic_alloc_resource),
DEVMETHOD(bus_release_resource, bus_generic_release_resource),
DEVMETHOD(bus_activate_resource,bus_generic_activate_resource),
/* ofw_bus interface */
DEVMETHOD(ofw_bus_get_devinfo, arm_gic_ofw_get_devinfo),
DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat),
DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model),
DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name),
DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node),
DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type),
/* Interrupt controller interface */
DEVMETHOD(pic_disable_intr, arm_gic_disable_intr),
DEVMETHOD(pic_enable_intr, arm_gic_enable_intr),
DEVMETHOD(pic_map_intr, arm_gic_map_intr),
DEVMETHOD(pic_setup_intr, arm_gic_setup_intr),
DEVMETHOD(pic_teardown_intr, arm_gic_teardown_intr),
DEVMETHOD(pic_post_filter, arm_gic_post_filter),
DEVMETHOD(pic_post_ithread, arm_gic_post_ithread),
DEVMETHOD(pic_pre_ithread, arm_gic_pre_ithread),
#ifdef SMP
DEVMETHOD(pic_bind_intr, arm_gic_bind_intr),
DEVMETHOD(pic_init_secondary, arm_gic_init_secondary),
DEVMETHOD(pic_ipi_send, arm_gic_ipi_send),
DEVMETHOD(pic_ipi_setup, arm_gic_ipi_setup),
#endif
#endif
{ 0, 0 }
};
static driver_t arm_gic_driver = {
"gic",
arm_gic_methods,
sizeof(struct arm_gic_softc),
};
static devclass_t arm_gic_devclass;
EARLY_DRIVER_MODULE(gic, simplebus, arm_gic_driver, arm_gic_devclass, 0, 0,
BUS_PASS_INTERRUPT + BUS_PASS_ORDER_MIDDLE);
EARLY_DRIVER_MODULE(gic, ofwbus, arm_gic_driver, arm_gic_devclass, 0, 0,
BUS_PASS_INTERRUPT + BUS_PASS_ORDER_MIDDLE);
#ifdef INTRNG
/*
* GICv2m support -- the GICv2 MSI/MSI-X controller.
*/
#define GICV2M_MSI_TYPER 0x008
#define MSI_TYPER_SPI_BASE(x) (((x) >> 16) & 0x3ff)
#define MSI_TYPER_SPI_COUNT(x) (((x) >> 0) & 0x3ff)
#define GICv2M_MSI_SETSPI_NS 0x040
#define GICV2M_MSI_IIDR 0xFCC
struct arm_gicv2m_softc {
struct resource *sc_mem;
struct mtx sc_mutex;
u_int sc_spi_start;
u_int sc_spi_end;
u_int sc_spi_count;
};
static struct ofw_compat_data gicv2m_compat_data[] = {
{"arm,gic-v2m-frame", true},
{NULL, false}
};
static int
arm_gicv2m_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_search_compatible(dev, gicv2m_compat_data)->ocd_data)
return (ENXIO);
device_set_desc(dev, "ARM Generic Interrupt Controller MSI/MSIX");
return (BUS_PROBE_DEFAULT);
}
static int
arm_gicv2m_attach(device_t dev)
{
struct arm_gicv2m_softc *sc;
struct arm_gic_softc *psc;
uint32_t typer;
int rid;
psc = device_get_softc(device_get_parent(dev));
sc = device_get_softc(dev);
rid = 0;
sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->sc_mem == NULL) {
device_printf(dev, "Unable to allocate resources\n");
return (ENXIO);
}
typer = bus_read_4(sc->sc_mem, GICV2M_MSI_TYPER);
sc->sc_spi_start = MSI_TYPER_SPI_BASE(typer);
sc->sc_spi_count = MSI_TYPER_SPI_COUNT(typer);
sc->sc_spi_end = sc->sc_spi_start + sc->sc_spi_count;
/* Reserve these interrupts for MSI/MSI-X use */
arm_gic_reserve_msi_range(device_get_parent(dev), sc->sc_spi_start,
sc->sc_spi_count);
mtx_init(&sc->sc_mutex, "GICv2m lock", "", MTX_DEF);
intr_msi_register(dev, gic_xref(dev));
if (bootverbose)
device_printf(dev, "using spi %u to %u\n", sc->sc_spi_start,
sc->sc_spi_start + sc->sc_spi_count - 1);
return (0);
}
static int
arm_gicv2m_alloc_msi(device_t dev, device_t child, int count, int maxcount,
device_t *pic, struct intr_irqsrc **srcs)
{
struct arm_gic_softc *psc;
struct arm_gicv2m_softc *sc;
int i, irq, end_irq;
bool found;
KASSERT(powerof2(count), ("%s: bad count", __func__));
KASSERT(powerof2(maxcount), ("%s: bad maxcount", __func__));
psc = device_get_softc(device_get_parent(dev));
sc = device_get_softc(dev);
mtx_lock(&sc->sc_mutex);
found = false;
for (irq = sc->sc_spi_start; irq < sc->sc_spi_end && !found; irq++) {
/* Start on an aligned interrupt */
if ((irq & (maxcount - 1)) != 0)
continue;
/* Assume we found a valid range until shown otherwise */
found = true;
/* Check this range is valid */
for (end_irq = irq; end_irq != irq + count - 1; end_irq++) {
/* No free interrupts */
if (end_irq == sc->sc_spi_end) {
found = false;
break;
}
KASSERT((psc->gic_irqs[irq].gi_flags & GI_FLAG_MSI)!= 0,
("%s: Non-MSI interrupt found", __func__));
/* This is already used */
if ((psc->gic_irqs[irq].gi_flags & GI_FLAG_MSI_USED) ==
GI_FLAG_MSI_USED) {
found = false;
break;
}
}
}
/* Not enough interrupts were found */
if (!found || irq == sc->sc_spi_end) {
mtx_unlock(&sc->sc_mutex);
return (ENXIO);
}
for (i = 0; i < count; i++) {
/* Mark the interrupt as used */
psc->gic_irqs[irq + i].gi_flags |= GI_FLAG_MSI_USED;
}
mtx_unlock(&sc->sc_mutex);
for (i = 0; i < count; i++)
srcs[i] = (struct intr_irqsrc *)&psc->gic_irqs[irq + i];
*pic = device_get_parent(dev);
return (0);
}
static int
arm_gicv2m_release_msi(device_t dev, device_t child, int count,
struct intr_irqsrc **isrc)
{
struct arm_gicv2m_softc *sc;
struct gic_irqsrc *gi;
int i;
sc = device_get_softc(dev);
mtx_lock(&sc->sc_mutex);
for (i = 0; i < count; i++) {
gi = (struct gic_irqsrc *)isrc;
KASSERT((gi->gi_flags & GI_FLAG_MSI_USED) == GI_FLAG_MSI_USED,
("%s: Trying to release an unused MSI-X interrupt",
__func__));
gi->gi_flags &= ~GI_FLAG_MSI_USED;
mtx_unlock(&sc->sc_mutex);
}
return (0);
}
static int
arm_gicv2m_alloc_msix(device_t dev, device_t child, device_t *pic,
struct intr_irqsrc **isrcp)
{
struct arm_gicv2m_softc *sc;
struct arm_gic_softc *psc;
int irq;
psc = device_get_softc(device_get_parent(dev));
sc = device_get_softc(dev);
mtx_lock(&sc->sc_mutex);
/* Find an unused interrupt */
for (irq = sc->sc_spi_start; irq < sc->sc_spi_end; irq++) {
KASSERT((psc->gic_irqs[irq].gi_flags & GI_FLAG_MSI) != 0,
("%s: Non-MSI interrupt found", __func__));
if ((psc->gic_irqs[irq].gi_flags & GI_FLAG_MSI_USED) == 0)
break;
}
/* No free interrupt was found */
if (irq == sc->sc_spi_end) {
mtx_unlock(&sc->sc_mutex);
return (ENXIO);
}
/* Mark the interrupt as used */
psc->gic_irqs[irq].gi_flags |= GI_FLAG_MSI_USED;
mtx_unlock(&sc->sc_mutex);
*isrcp = (struct intr_irqsrc *)&psc->gic_irqs[irq];
*pic = device_get_parent(dev);
return (0);
}
static int
arm_gicv2m_release_msix(device_t dev, device_t child, struct intr_irqsrc *isrc)
{
struct arm_gicv2m_softc *sc;
struct gic_irqsrc *gi;
sc = device_get_softc(dev);
gi = (struct gic_irqsrc *)isrc;
KASSERT((gi->gi_flags & GI_FLAG_MSI_USED) == GI_FLAG_MSI_USED,
("%s: Trying to release an unused MSI-X interrupt", __func__));
mtx_lock(&sc->sc_mutex);
gi->gi_flags &= ~GI_FLAG_MSI_USED;
mtx_unlock(&sc->sc_mutex);
return (0);
}
static int
arm_gicv2m_map_msi(device_t dev, device_t child, struct intr_irqsrc *isrc,
uint64_t *addr, uint32_t *data)
{
struct arm_gicv2m_softc *sc = device_get_softc(dev);
struct gic_irqsrc *gi = (struct gic_irqsrc *)isrc;
*addr = vtophys(rman_get_virtual(sc->sc_mem)) + GICv2M_MSI_SETSPI_NS;
*data = gi->gi_irq;
return (0);
}
static device_method_t arm_gicv2m_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, arm_gicv2m_probe),
DEVMETHOD(device_attach, arm_gicv2m_attach),
/* MSI/MSI-X */
DEVMETHOD(msi_alloc_msi, arm_gicv2m_alloc_msi),
DEVMETHOD(msi_release_msi, arm_gicv2m_release_msi),
DEVMETHOD(msi_alloc_msix, arm_gicv2m_alloc_msix),
DEVMETHOD(msi_release_msix, arm_gicv2m_release_msix),
DEVMETHOD(msi_map_msi, arm_gicv2m_map_msi),
/* End */
DEVMETHOD_END
};
DEFINE_CLASS_0(gicv2m, arm_gicv2m_driver, arm_gicv2m_methods,
sizeof(struct arm_gicv2m_softc));
static devclass_t arm_gicv2m_devclass;
EARLY_DRIVER_MODULE(gicv2m, gic, arm_gicv2m_driver,
arm_gicv2m_devclass, 0, 0, BUS_PASS_INTERRUPT + BUS_PASS_ORDER_MIDDLE);
#endif