f-stack/dpdk/app/test/test_ring_perf.c

583 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
* Copyright(c) 2019 Arm Limited
*/
#include <stdio.h>
#include <inttypes.h>
#include <rte_ring.h>
#include <rte_cycles.h>
#include <rte_launch.h>
#include <rte_pause.h>
#include <string.h>
#include "test.h"
#include "test_ring.h"
/*
* Ring performance test cases, measures performance of various operations
* using rdtsc for legacy and 16B size ring elements.
*/
#define RING_NAME "RING_PERF"
#define RING_SIZE 4096
#define MAX_BURST 32
/*
* the sizes to enqueue and dequeue in testing
* (marked volatile so they won't be seen as compile-time constants)
*/
static const volatile unsigned bulk_sizes[] = { 8, 32 };
struct lcore_pair {
unsigned c1, c2;
};
static volatile unsigned lcore_count = 0;
static void
test_ring_print_test_string(unsigned int api_type, int esize,
unsigned int bsz, double value)
{
if (esize == -1)
printf("legacy APIs");
else
printf("elem APIs: element size %dB", esize);
if (api_type == TEST_RING_IGNORE_API_TYPE)
return;
if ((api_type & TEST_RING_THREAD_DEF) == TEST_RING_THREAD_DEF)
printf(": default enqueue/dequeue: ");
else if ((api_type & TEST_RING_THREAD_SPSC) == TEST_RING_THREAD_SPSC)
printf(": SP/SC: ");
else if ((api_type & TEST_RING_THREAD_MPMC) == TEST_RING_THREAD_MPMC)
printf(": MP/MC: ");
if ((api_type & TEST_RING_ELEM_SINGLE) == TEST_RING_ELEM_SINGLE)
printf("single: ");
else if ((api_type & TEST_RING_ELEM_BULK) == TEST_RING_ELEM_BULK)
printf("bulk (size: %u): ", bsz);
else if ((api_type & TEST_RING_ELEM_BURST) == TEST_RING_ELEM_BURST)
printf("burst (size: %u): ", bsz);
printf("%.2F\n", value);
}
/**** Functions to analyse our core mask to get cores for different tests ***/
static int
get_two_hyperthreads(struct lcore_pair *lcp)
{
unsigned id1, id2;
unsigned c1, c2, s1, s2;
RTE_LCORE_FOREACH(id1) {
/* inner loop just re-reads all id's. We could skip the first few
* elements, but since number of cores is small there is little point
*/
RTE_LCORE_FOREACH(id2) {
if (id1 == id2)
continue;
c1 = rte_lcore_to_cpu_id(id1);
c2 = rte_lcore_to_cpu_id(id2);
s1 = rte_lcore_to_socket_id(id1);
s2 = rte_lcore_to_socket_id(id2);
if ((c1 == c2) && (s1 == s2)){
lcp->c1 = id1;
lcp->c2 = id2;
return 0;
}
}
}
return 1;
}
static int
get_two_cores(struct lcore_pair *lcp)
{
unsigned id1, id2;
unsigned c1, c2, s1, s2;
RTE_LCORE_FOREACH(id1) {
RTE_LCORE_FOREACH(id2) {
if (id1 == id2)
continue;
c1 = rte_lcore_to_cpu_id(id1);
c2 = rte_lcore_to_cpu_id(id2);
s1 = rte_lcore_to_socket_id(id1);
s2 = rte_lcore_to_socket_id(id2);
if ((c1 != c2) && (s1 == s2)){
lcp->c1 = id1;
lcp->c2 = id2;
return 0;
}
}
}
return 1;
}
static int
get_two_sockets(struct lcore_pair *lcp)
{
unsigned id1, id2;
unsigned s1, s2;
RTE_LCORE_FOREACH(id1) {
RTE_LCORE_FOREACH(id2) {
if (id1 == id2)
continue;
s1 = rte_lcore_to_socket_id(id1);
s2 = rte_lcore_to_socket_id(id2);
if (s1 != s2){
lcp->c1 = id1;
lcp->c2 = id2;
return 0;
}
}
}
return 1;
}
/* Get cycle counts for dequeuing from an empty ring. Should be 2 or 3 cycles */
static void
test_empty_dequeue(struct rte_ring *r, const int esize,
const unsigned int api_type)
{
const unsigned int iter_shift = 26;
const unsigned int iterations = 1 << iter_shift;
unsigned int i = 0;
void *burst[MAX_BURST];
const uint64_t start = rte_rdtsc();
for (i = 0; i < iterations; i++)
test_ring_dequeue(r, burst, esize, bulk_sizes[0], api_type);
const uint64_t end = rte_rdtsc();
test_ring_print_test_string(api_type, esize, bulk_sizes[0],
((double)(end - start)) / iterations);
}
/*
* for the separate enqueue and dequeue threads they take in one param
* and return two. Input = burst size, output = cycle average for sp/sc & mp/mc
*/
struct thread_params {
struct rte_ring *r;
unsigned size; /* input value, the burst size */
double spsc, mpmc; /* output value, the single or multi timings */
};
/*
* Helper function to call bulk SP/MP enqueue functions.
* flag == 0 -> enqueue
* flag == 1 -> dequeue
*/
static __rte_always_inline int
enqueue_dequeue_bulk_helper(const unsigned int flag, const int esize,
struct thread_params *p)
{
int ret;
const unsigned int iter_shift = 15;
const unsigned int iterations = 1 << iter_shift;
struct rte_ring *r = p->r;
unsigned int bsize = p->size;
unsigned int i;
void *burst = NULL;
#ifdef RTE_USE_C11_MEM_MODEL
if (__atomic_add_fetch(&lcore_count, 1, __ATOMIC_RELAXED) != 2)
#else
if (__sync_add_and_fetch(&lcore_count, 1) != 2)
#endif
while(lcore_count != 2)
rte_pause();
burst = test_ring_calloc(MAX_BURST, esize);
if (burst == NULL)
return -1;
const uint64_t sp_start = rte_rdtsc();
for (i = 0; i < iterations; i++)
do {
if (flag == 0)
ret = test_ring_enqueue(r, burst, esize, bsize,
TEST_RING_THREAD_SPSC |
TEST_RING_ELEM_BULK);
else if (flag == 1)
ret = test_ring_dequeue(r, burst, esize, bsize,
TEST_RING_THREAD_SPSC |
TEST_RING_ELEM_BULK);
if (ret == 0)
rte_pause();
} while (!ret);
const uint64_t sp_end = rte_rdtsc();
const uint64_t mp_start = rte_rdtsc();
for (i = 0; i < iterations; i++)
do {
if (flag == 0)
ret = test_ring_enqueue(r, burst, esize, bsize,
TEST_RING_THREAD_MPMC |
TEST_RING_ELEM_BULK);
else if (flag == 1)
ret = test_ring_dequeue(r, burst, esize, bsize,
TEST_RING_THREAD_MPMC |
TEST_RING_ELEM_BULK);
if (ret == 0)
rte_pause();
} while (!ret);
const uint64_t mp_end = rte_rdtsc();
p->spsc = ((double)(sp_end - sp_start))/(iterations * bsize);
p->mpmc = ((double)(mp_end - mp_start))/(iterations * bsize);
return 0;
}
/*
* Function that uses rdtsc to measure timing for ring enqueue. Needs pair
* thread running dequeue_bulk function
*/
static int
enqueue_bulk(void *p)
{
struct thread_params *params = p;
return enqueue_dequeue_bulk_helper(0, -1, params);
}
static int
enqueue_bulk_16B(void *p)
{
struct thread_params *params = p;
return enqueue_dequeue_bulk_helper(0, 16, params);
}
/*
* Function that uses rdtsc to measure timing for ring dequeue. Needs pair
* thread running enqueue_bulk function
*/
static int
dequeue_bulk(void *p)
{
struct thread_params *params = p;
return enqueue_dequeue_bulk_helper(1, -1, params);
}
static int
dequeue_bulk_16B(void *p)
{
struct thread_params *params = p;
return enqueue_dequeue_bulk_helper(1, 16, params);
}
/*
* Function that calls the enqueue and dequeue bulk functions on pairs of cores.
* used to measure ring perf between hyperthreads, cores and sockets.
*/
static int
run_on_core_pair(struct lcore_pair *cores, struct rte_ring *r, const int esize)
{
lcore_function_t *f1, *f2;
struct thread_params param1 = {0}, param2 = {0};
unsigned i;
if (esize == -1) {
f1 = enqueue_bulk;
f2 = dequeue_bulk;
} else {
f1 = enqueue_bulk_16B;
f2 = dequeue_bulk_16B;
}
for (i = 0; i < RTE_DIM(bulk_sizes); i++) {
lcore_count = 0;
param1.size = param2.size = bulk_sizes[i];
param1.r = param2.r = r;
if (cores->c1 == rte_get_main_lcore()) {
rte_eal_remote_launch(f2, &param2, cores->c2);
f1(&param1);
rte_eal_wait_lcore(cores->c2);
} else {
rte_eal_remote_launch(f1, &param1, cores->c1);
rte_eal_remote_launch(f2, &param2, cores->c2);
if (rte_eal_wait_lcore(cores->c1) < 0)
return -1;
if (rte_eal_wait_lcore(cores->c2) < 0)
return -1;
}
test_ring_print_test_string(
TEST_RING_THREAD_SPSC | TEST_RING_ELEM_BULK,
esize, bulk_sizes[i], param1.spsc + param2.spsc);
test_ring_print_test_string(
TEST_RING_THREAD_MPMC | TEST_RING_ELEM_BULK,
esize, bulk_sizes[i], param1.mpmc + param2.mpmc);
}
return 0;
}
static uint32_t synchro;
static uint64_t queue_count[RTE_MAX_LCORE];
#define TIME_MS 100
static int
load_loop_fn_helper(struct thread_params *p, const int esize)
{
uint64_t time_diff = 0;
uint64_t begin = 0;
uint64_t hz = rte_get_timer_hz();
uint64_t lcount = 0;
const unsigned int lcore = rte_lcore_id();
struct thread_params *params = p;
void *burst = NULL;
burst = test_ring_calloc(MAX_BURST, esize);
if (burst == NULL)
return -1;
/* wait synchro for workers */
if (lcore != rte_get_main_lcore())
rte_wait_until_equal_32(&synchro, 1, __ATOMIC_RELAXED);
begin = rte_get_timer_cycles();
while (time_diff < hz * TIME_MS / 1000) {
test_ring_enqueue(params->r, burst, esize, params->size,
TEST_RING_THREAD_MPMC | TEST_RING_ELEM_BULK);
test_ring_dequeue(params->r, burst, esize, params->size,
TEST_RING_THREAD_MPMC | TEST_RING_ELEM_BULK);
lcount++;
time_diff = rte_get_timer_cycles() - begin;
}
queue_count[lcore] = lcount;
rte_free(burst);
return 0;
}
static int
load_loop_fn(void *p)
{
struct thread_params *params = p;
return load_loop_fn_helper(params, -1);
}
static int
load_loop_fn_16B(void *p)
{
struct thread_params *params = p;
return load_loop_fn_helper(params, 16);
}
static int
run_on_all_cores(struct rte_ring *r, const int esize)
{
uint64_t total;
struct thread_params param;
lcore_function_t *lcore_f;
unsigned int i, c;
if (esize == -1)
lcore_f = load_loop_fn;
else
lcore_f = load_loop_fn_16B;
memset(&param, 0, sizeof(struct thread_params));
for (i = 0; i < RTE_DIM(bulk_sizes); i++) {
total = 0;
printf("\nBulk enq/dequeue count on size %u\n", bulk_sizes[i]);
param.size = bulk_sizes[i];
param.r = r;
/* clear synchro and start workers */
__atomic_store_n(&synchro, 0, __ATOMIC_RELAXED);
if (rte_eal_mp_remote_launch(lcore_f, &param, SKIP_MAIN) < 0)
return -1;
/* start synchro and launch test on main */
__atomic_store_n(&synchro, 1, __ATOMIC_RELAXED);
lcore_f(&param);
rte_eal_mp_wait_lcore();
RTE_LCORE_FOREACH(c) {
printf("Core [%u] count = %"PRIu64"\n",
c, queue_count[c]);
total += queue_count[c];
}
printf("Total count (size: %u): %"PRIu64"\n",
bulk_sizes[i], total);
}
return 0;
}
/*
* Test function that determines how long an enqueue + dequeue of a single item
* takes on a single lcore. Result is for comparison with the bulk enq+deq.
*/
static int
test_single_enqueue_dequeue(struct rte_ring *r, const int esize,
const unsigned int api_type)
{
const unsigned int iter_shift = 24;
const unsigned int iterations = 1 << iter_shift;
unsigned int i = 0;
void *burst = NULL;
/* alloc dummy object pointers */
burst = test_ring_calloc(1, esize);
if (burst == NULL)
return -1;
const uint64_t start = rte_rdtsc();
for (i = 0; i < iterations; i++) {
test_ring_enqueue(r, burst, esize, 1, api_type);
test_ring_dequeue(r, burst, esize, 1, api_type);
}
const uint64_t end = rte_rdtsc();
test_ring_print_test_string(api_type, esize, 1,
((double)(end - start)) / iterations);
rte_free(burst);
return 0;
}
/*
* Test that does both enqueue and dequeue on a core using the burst/bulk API
* calls Results should be the same as for the bulk function called on a
* single lcore.
*/
static int
test_burst_bulk_enqueue_dequeue(struct rte_ring *r, const int esize,
const unsigned int api_type)
{
const unsigned int iter_shift = 23;
const unsigned int iterations = 1 << iter_shift;
unsigned int sz, i = 0;
void **burst = NULL;
burst = test_ring_calloc(MAX_BURST, esize);
if (burst == NULL)
return -1;
for (sz = 0; sz < RTE_DIM(bulk_sizes); sz++) {
const uint64_t start = rte_rdtsc();
for (i = 0; i < iterations; i++) {
test_ring_enqueue(r, burst, esize, bulk_sizes[sz],
api_type);
test_ring_dequeue(r, burst, esize, bulk_sizes[sz],
api_type);
}
const uint64_t end = rte_rdtsc();
test_ring_print_test_string(api_type, esize, bulk_sizes[sz],
((double)(end - start)) / iterations);
}
rte_free(burst);
return 0;
}
/* Run all tests for a given element size */
static __rte_always_inline int
test_ring_perf_esize(const int esize)
{
struct lcore_pair cores;
struct rte_ring *r = NULL;
/*
* Performance test for legacy/_elem APIs
* SP-SC/MP-MC, single
*/
r = test_ring_create(RING_NAME, esize, RING_SIZE, rte_socket_id(), 0);
if (r == NULL)
goto test_fail;
printf("\n### Testing single element enq/deq ###\n");
if (test_single_enqueue_dequeue(r, esize,
TEST_RING_THREAD_SPSC | TEST_RING_ELEM_SINGLE) < 0)
goto test_fail;
if (test_single_enqueue_dequeue(r, esize,
TEST_RING_THREAD_MPMC | TEST_RING_ELEM_SINGLE) < 0)
goto test_fail;
printf("\n### Testing burst enq/deq ###\n");
if (test_burst_bulk_enqueue_dequeue(r, esize,
TEST_RING_THREAD_SPSC | TEST_RING_ELEM_BURST) < 0)
goto test_fail;
if (test_burst_bulk_enqueue_dequeue(r, esize,
TEST_RING_THREAD_MPMC | TEST_RING_ELEM_BURST) < 0)
goto test_fail;
printf("\n### Testing bulk enq/deq ###\n");
if (test_burst_bulk_enqueue_dequeue(r, esize,
TEST_RING_THREAD_SPSC | TEST_RING_ELEM_BULK) < 0)
goto test_fail;
if (test_burst_bulk_enqueue_dequeue(r, esize,
TEST_RING_THREAD_MPMC | TEST_RING_ELEM_BULK) < 0)
goto test_fail;
printf("\n### Testing empty bulk deq ###\n");
test_empty_dequeue(r, esize,
TEST_RING_THREAD_SPSC | TEST_RING_ELEM_BULK);
test_empty_dequeue(r, esize,
TEST_RING_THREAD_MPMC | TEST_RING_ELEM_BULK);
if (get_two_hyperthreads(&cores) == 0) {
printf("\n### Testing using two hyperthreads ###\n");
if (run_on_core_pair(&cores, r, esize) < 0)
goto test_fail;
}
if (get_two_cores(&cores) == 0) {
printf("\n### Testing using two physical cores ###\n");
if (run_on_core_pair(&cores, r, esize) < 0)
goto test_fail;
}
if (get_two_sockets(&cores) == 0) {
printf("\n### Testing using two NUMA nodes ###\n");
if (run_on_core_pair(&cores, r, esize) < 0)
goto test_fail;
}
printf("\n### Testing using all worker nodes ###\n");
if (run_on_all_cores(r, esize) < 0)
goto test_fail;
rte_ring_free(r);
return 0;
test_fail:
rte_ring_free(r);
return -1;
}
static int
test_ring_perf(void)
{
/* Run all the tests for different element sizes */
if (test_ring_perf_esize(-1) == -1)
return -1;
if (test_ring_perf_esize(16) == -1)
return -1;
return 0;
}
REGISTER_TEST_COMMAND(ring_perf_autotest, test_ring_perf);