f-stack/dpdk/app/test/test_ipfrag.c

326 lines
7.7 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Red Hat, Inc.
*/
#include <time.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_hexdump.h>
#include <rte_ip.h>
#include <rte_ip_frag.h>
#include <rte_mbuf.h>
#include <rte_memcpy.h>
#include <rte_random.h>
#include "test.h"
#define NUM_MBUFS 128
#define BURST 32
static struct rte_mempool *pkt_pool,
*direct_pool,
*indirect_pool;
static int
setup_buf_pool(void)
{
pkt_pool = rte_pktmbuf_pool_create("FRAG_MBUF_POOL",
NUM_MBUFS, BURST, 0,
RTE_MBUF_DEFAULT_BUF_SIZE,
SOCKET_ID_ANY);
if (pkt_pool == NULL) {
printf("%s: Error creating pkt mempool\n", __func__);
goto bad_setup;
}
direct_pool = rte_pktmbuf_pool_create("FRAG_D_MBUF_POOL",
NUM_MBUFS, BURST, 0,
RTE_MBUF_DEFAULT_BUF_SIZE,
SOCKET_ID_ANY);
if (direct_pool == NULL) {
printf("%s: Error creating direct mempool\n", __func__);
goto bad_setup;
}
indirect_pool = rte_pktmbuf_pool_create("FRAG_I_MBUF_POOL",
NUM_MBUFS, BURST, 0,
0, SOCKET_ID_ANY);
if (indirect_pool == NULL) {
printf("%s: Error creating indirect mempool\n", __func__);
goto bad_setup;
}
return TEST_SUCCESS;
bad_setup:
rte_mempool_free(pkt_pool);
pkt_pool = NULL;
rte_mempool_free(direct_pool);
direct_pool = NULL;
return TEST_FAILED;
}
static int testsuite_setup(void)
{
return setup_buf_pool();
}
static void testsuite_teardown(void)
{
rte_mempool_free(pkt_pool);
rte_mempool_free(direct_pool);
rte_mempool_free(indirect_pool);
pkt_pool = NULL;
direct_pool = NULL;
indirect_pool = NULL;
}
static int ut_setup(void)
{
return TEST_SUCCESS;
}
static void ut_teardown(void)
{
}
static void
v4_allocate_packet_of(struct rte_mbuf *b, int fill,
size_t s, int df, uint8_t mf, uint16_t off,
uint8_t ttl, uint8_t proto, uint16_t pktid)
{
/* Create a packet, 2k bytes long */
b->data_off = 0;
char *data = rte_pktmbuf_mtod(b, char *);
rte_be16_t fragment_offset = 0; /**< fragmentation offset */
memset(data, fill, sizeof(struct rte_ipv4_hdr) + s);
struct rte_ipv4_hdr *hdr = (struct rte_ipv4_hdr *)data;
hdr->version_ihl = 0x45; /* standard IP header... */
hdr->type_of_service = 0;
b->pkt_len = s + sizeof(struct rte_ipv4_hdr);
b->data_len = b->pkt_len;
hdr->total_length = rte_cpu_to_be_16(b->pkt_len);
hdr->packet_id = rte_cpu_to_be_16(pktid);
if (df)
fragment_offset |= 0x4000;
if (mf)
fragment_offset |= 0x2000;
if (off)
fragment_offset |= off;
hdr->fragment_offset = rte_cpu_to_be_16(fragment_offset);
if (!ttl)
ttl = 64; /* default to 64 */
if (!proto)
proto = 1; /* icmp */
hdr->time_to_live = ttl;
hdr->next_proto_id = proto;
hdr->hdr_checksum = 0;
hdr->src_addr = rte_cpu_to_be_32(0x8080808);
hdr->dst_addr = rte_cpu_to_be_32(0x8080404);
}
static void
v6_allocate_packet_of(struct rte_mbuf *b, int fill, size_t s, uint8_t ttl,
uint8_t proto, uint16_t pktid)
{
/* Create a packet, 2k bytes long */
b->data_off = 0;
char *data = rte_pktmbuf_mtod(b, char *);
memset(data, fill, sizeof(struct rte_ipv6_hdr) + s);
struct rte_ipv6_hdr *hdr = (struct rte_ipv6_hdr *)data;
b->pkt_len = s + sizeof(struct rte_ipv6_hdr);
b->data_len = b->pkt_len;
/* basic v6 header */
hdr->vtc_flow = rte_cpu_to_be_32(0x60 << 24 | pktid);
hdr->payload_len = rte_cpu_to_be_16(b->pkt_len);
hdr->proto = proto;
hdr->hop_limits = ttl;
memset(hdr->src_addr, 0x08, sizeof(hdr->src_addr));
memset(hdr->dst_addr, 0x04, sizeof(hdr->src_addr));
}
static inline void
test_free_fragments(struct rte_mbuf *mb[], uint32_t num)
{
uint32_t i;
for (i = 0; i < num; i++)
rte_pktmbuf_free(mb[i]);
}
static inline void
test_get_offset(struct rte_mbuf **mb, int32_t len,
uint16_t *offset, int ipv)
{
int32_t i;
for (i = 0; i < len; i++) {
if (ipv == 4) {
struct rte_ipv4_hdr *iph =
rte_pktmbuf_mtod(mb[i], struct rte_ipv4_hdr *);
offset[i] = iph->fragment_offset;
} else if (ipv == 6) {
struct ipv6_extension_fragment *fh =
rte_pktmbuf_mtod_offset(
mb[i],
struct ipv6_extension_fragment *,
sizeof(struct rte_ipv6_hdr));
offset[i] = fh->frag_data;
}
}
}
static int
test_ip_frag(void)
{
static const uint16_t RND_ID = UINT16_MAX;
int result = TEST_SUCCESS;
size_t i, j;
struct test_ip_frags {
int ipv;
size_t mtu_size;
size_t pkt_size;
int set_df;
uint8_t set_mf;
uint16_t set_of;
uint8_t ttl;
uint8_t proto;
uint16_t pkt_id;
int expected_frags;
uint16_t expected_fragment_offset[BURST];
} tests[] = {
{4, 1280, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID, 2,
{0x2000, 0x009D}},
{4, 1280, 1400, 0, 0, 0, 64, IPPROTO_ICMP, 0, 2,
{0x2000, 0x009D}},
{4, 600, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID, 3,
{0x2000, 0x2048, 0x0090}},
{4, 4, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID, -EINVAL},
{4, 600, 1400, 1, 0, 0, 64, IPPROTO_ICMP, RND_ID, -ENOTSUP},
{4, 600, 1400, 0, 0, 0, 0, IPPROTO_ICMP, RND_ID, 3,
{0x2000, 0x2048, 0x0090}},
{4, 68, 104, 0, 1, 13, 0, IPPROTO_ICMP, RND_ID, 3,
{0x200D, 0x2013, 0x2019}},
{6, 1280, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID, 2,
{0x0001, 0x04D0}},
{6, 1300, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID, 2,
{0x0001, 0x04E0}},
{6, 4, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID, -EINVAL},
{6, 1300, 1400, 0, 0, 0, 0, IPPROTO_ICMP, RND_ID, 2,
{0x0001, 0x04E0}},
};
for (i = 0; i < RTE_DIM(tests); i++) {
int32_t len = 0;
uint16_t fragment_offset[BURST];
uint16_t pktid = tests[i].pkt_id;
struct rte_mbuf *pkts_out[BURST];
struct rte_mbuf *b = rte_pktmbuf_alloc(pkt_pool);
RTE_TEST_ASSERT_NOT_EQUAL(b, NULL,
"Failed to allocate pkt.");
if (tests[i].pkt_id == RND_ID)
pktid = rte_rand_max(UINT16_MAX);
if (tests[i].ipv == 4) {
v4_allocate_packet_of(b, 0x41414141,
tests[i].pkt_size,
tests[i].set_df,
tests[i].set_mf,
tests[i].set_of,
tests[i].ttl,
tests[i].proto,
pktid);
} else if (tests[i].ipv == 6) {
v6_allocate_packet_of(b, 0x41414141,
tests[i].pkt_size,
tests[i].ttl,
tests[i].proto,
pktid);
}
if (tests[i].ipv == 4)
len = rte_ipv4_fragment_packet(b, pkts_out, BURST,
tests[i].mtu_size,
direct_pool,
indirect_pool);
else if (tests[i].ipv == 6)
len = rte_ipv6_fragment_packet(b, pkts_out, BURST,
tests[i].mtu_size,
direct_pool,
indirect_pool);
rte_pktmbuf_free(b);
if (len > 0) {
test_get_offset(pkts_out, len,
fragment_offset, tests[i].ipv);
test_free_fragments(pkts_out, len);
}
printf("%zd: checking %d with %d\n", i, len,
tests[i].expected_frags);
RTE_TEST_ASSERT_EQUAL(len, tests[i].expected_frags,
"Failed case %zd.\n", i);
if (len > 0) {
for (j = 0; j < (size_t)len; j++) {
printf("%zd-%zd: checking %d with %d\n",
i, j, fragment_offset[j],
rte_cpu_to_be_16(
tests[i].expected_fragment_offset[j]));
RTE_TEST_ASSERT_EQUAL(fragment_offset[j],
rte_cpu_to_be_16(
tests[i].expected_fragment_offset[j]),
"Failed case %zd.\n", i);
}
}
}
return result;
}
static struct unit_test_suite ipfrag_testsuite = {
.suite_name = "IP Frag Unit Test Suite",
.setup = testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(ut_setup, ut_teardown,
test_ip_frag),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
static int
test_ipfrag(void)
{
rte_log_set_global_level(RTE_LOG_DEBUG);
rte_log_set_level(RTE_LOGTYPE_EAL, RTE_LOG_DEBUG);
return unit_test_suite_runner(&ipfrag_testsuite);
}
REGISTER_TEST_COMMAND(ipfrag_autotest, test_ipfrag);