f-stack/dpdk/drivers/bus/dpaa/base/qbman/qman.h

947 lines
25 KiB
C

/*-
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* BSD LICENSE
*
* Copyright 2008-2016 Freescale Semiconductor Inc.
* Copyright 2017 NXP.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the above-listed copyright holders nor the
* names of any contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* GPL LICENSE SUMMARY
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "qman_priv.h"
/***************************/
/* Portal register assists */
/***************************/
#define QM_REG_EQCR_PI_CINH 0x3000
#define QM_REG_EQCR_CI_CINH 0x3040
#define QM_REG_EQCR_ITR 0x3080
#define QM_REG_DQRR_PI_CINH 0x3100
#define QM_REG_DQRR_CI_CINH 0x3140
#define QM_REG_DQRR_ITR 0x3180
#define QM_REG_DQRR_DCAP 0x31C0
#define QM_REG_DQRR_SDQCR 0x3200
#define QM_REG_DQRR_VDQCR 0x3240
#define QM_REG_DQRR_PDQCR 0x3280
#define QM_REG_MR_PI_CINH 0x3300
#define QM_REG_MR_CI_CINH 0x3340
#define QM_REG_MR_ITR 0x3380
#define QM_REG_CFG 0x3500
#define QM_REG_ISR 0x3600
#define QM_REG_IIR 0x36C0
#define QM_REG_ITPR 0x3740
/* Cache-enabled register offsets */
#define QM_CL_EQCR 0x0000
#define QM_CL_DQRR 0x1000
#define QM_CL_MR 0x2000
#define QM_CL_EQCR_PI_CENA 0x3000
#define QM_CL_EQCR_CI_CENA 0x3040
#define QM_CL_DQRR_PI_CENA 0x3100
#define QM_CL_DQRR_CI_CENA 0x3140
#define QM_CL_MR_PI_CENA 0x3300
#define QM_CL_MR_CI_CENA 0x3340
#define QM_CL_CR 0x3800
#define QM_CL_RR0 0x3900
#define QM_CL_RR1 0x3940
/* BTW, the drivers (and h/w programming model) already obtain the required
* synchronisation for portal accesses via lwsync(), hwsync(), and
* data-dependencies. Use of barrier()s or other order-preserving primitives
* simply degrade performance. Hence the use of the __raw_*() interfaces, which
* simply ensure that the compiler treats the portal registers as volatile (ie.
* non-coherent).
*/
/* Cache-inhibited register access. */
#define __qm_in(qm, o) be32_to_cpu(__raw_readl((qm)->ci + (o)))
#define __qm_out(qm, o, val) __raw_writel((cpu_to_be32(val)), \
(qm)->ci + (o))
#define qm_in(reg) __qm_in(&portal->addr, QM_REG_##reg)
#define qm_out(reg, val) __qm_out(&portal->addr, QM_REG_##reg, val)
/* Cache-enabled (index) register access */
#define __qm_cl_touch_ro(qm, o) dcbt_ro((qm)->ce + (o))
#define __qm_cl_touch_rw(qm, o) dcbt_rw((qm)->ce + (o))
#define __qm_cl_in(qm, o) be32_to_cpu(__raw_readl((qm)->ce + (o)))
#define __qm_cl_out(qm, o, val) \
do { \
u32 *__tmpclout = (qm)->ce + (o); \
__raw_writel(cpu_to_be32(val), __tmpclout); \
dcbf(__tmpclout); \
} while (0)
#define __qm_cl_invalidate(qm, o) dccivac((qm)->ce + (o))
#define qm_cl_touch_ro(reg) __qm_cl_touch_ro(&portal->addr, QM_CL_##reg##_CENA)
#define qm_cl_touch_rw(reg) __qm_cl_touch_rw(&portal->addr, QM_CL_##reg##_CENA)
#define qm_cl_in(reg) __qm_cl_in(&portal->addr, QM_CL_##reg##_CENA)
#define qm_cl_out(reg, val) __qm_cl_out(&portal->addr, QM_CL_##reg##_CENA, val)
#define qm_cl_invalidate(reg)\
__qm_cl_invalidate(&portal->addr, QM_CL_##reg##_CENA)
/* Cache-enabled ring access */
#define qm_cl(base, idx) ((void *)base + ((idx) << 6))
/* Cyclic helper for rings. FIXME: once we are able to do fine-grain perf
* analysis, look at using the "extra" bit in the ring index registers to avoid
* cyclic issues.
*/
static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last)
{
/* 'first' is included, 'last' is excluded */
if (first <= last)
return last - first;
return ringsize + last - first;
}
/* Portal modes.
* Enum types;
* pmode == production mode
* cmode == consumption mode,
* dmode == h/w dequeue mode.
* Enum values use 3 letter codes. First letter matches the portal mode,
* remaining two letters indicate;
* ci == cache-inhibited portal register
* ce == cache-enabled portal register
* vb == in-band valid-bit (cache-enabled)
* dc == DCA (Discrete Consumption Acknowledgment), DQRR-only
* As for "enum qm_dqrr_dmode", it should be self-explanatory.
*/
enum qm_eqcr_pmode { /* matches QCSP_CFG::EPM */
qm_eqcr_pci = 0, /* PI index, cache-inhibited */
qm_eqcr_pce = 1, /* PI index, cache-enabled */
qm_eqcr_pvb = 2 /* valid-bit */
};
enum qm_dqrr_dmode { /* matches QCSP_CFG::DP */
qm_dqrr_dpush = 0, /* SDQCR + VDQCR */
qm_dqrr_dpull = 1 /* PDQCR */
};
enum qm_dqrr_pmode { /* s/w-only */
qm_dqrr_pci, /* reads DQRR_PI_CINH */
qm_dqrr_pce, /* reads DQRR_PI_CENA */
qm_dqrr_pvb /* reads valid-bit */
};
enum qm_dqrr_cmode { /* matches QCSP_CFG::DCM */
qm_dqrr_cci = 0, /* CI index, cache-inhibited */
qm_dqrr_cce = 1, /* CI index, cache-enabled */
qm_dqrr_cdc = 2 /* Discrete Consumption Acknowledgment */
};
enum qm_mr_pmode { /* s/w-only */
qm_mr_pci, /* reads MR_PI_CINH */
qm_mr_pce, /* reads MR_PI_CENA */
qm_mr_pvb /* reads valid-bit */
};
enum qm_mr_cmode { /* matches QCSP_CFG::MM */
qm_mr_cci = 0, /* CI index, cache-inhibited */
qm_mr_cce = 1 /* CI index, cache-enabled */
};
/* ------------------------- */
/* --- Portal structures --- */
#define QM_EQCR_SIZE 8
#define QM_DQRR_SIZE 16
#define QM_MR_SIZE 8
struct qm_eqcr {
struct qm_eqcr_entry *ring, *cursor;
u8 ci, available, ithresh, vbit;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
u32 busy;
enum qm_eqcr_pmode pmode;
#endif
};
struct qm_dqrr {
const struct qm_dqrr_entry *ring, *cursor;
u8 pi, ci, fill, ithresh, vbit;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
enum qm_dqrr_dmode dmode;
enum qm_dqrr_pmode pmode;
enum qm_dqrr_cmode cmode;
#endif
};
struct qm_mr {
const struct qm_mr_entry *ring, *cursor;
u8 pi, ci, fill, ithresh, vbit;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
enum qm_mr_pmode pmode;
enum qm_mr_cmode cmode;
#endif
};
struct qm_mc {
struct qm_mc_command *cr;
struct qm_mc_result *rr;
u8 rridx, vbit;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
enum {
/* Can be _mc_start()ed */
qman_mc_idle,
/* Can be _mc_commit()ed or _mc_abort()ed */
qman_mc_user,
/* Can only be _mc_retry()ed */
qman_mc_hw
} state;
#endif
};
#define QM_PORTAL_ALIGNMENT ____cacheline_aligned
struct qm_addr {
void __iomem *ce; /* cache-enabled */
void __iomem *ci; /* cache-inhibited */
};
struct qm_portal {
struct qm_addr addr;
struct qm_eqcr eqcr;
struct qm_dqrr dqrr;
struct qm_mr mr;
struct qm_mc mc;
} QM_PORTAL_ALIGNMENT;
/* Bit-wise logic to wrap a ring pointer by clearing the "carry bit" */
#define EQCR_CARRYCLEAR(p) \
(void *)((unsigned long)(p) & (~(unsigned long)(QM_EQCR_SIZE << 6)))
extern dma_addr_t rte_mem_virt2iova(const void *addr);
/* Bit-wise logic to convert a ring pointer to a ring index */
static inline u8 EQCR_PTR2IDX(struct qm_eqcr_entry *e)
{
return ((uintptr_t)e >> 6) & (QM_EQCR_SIZE - 1);
}
/* Increment the 'cursor' ring pointer, taking 'vbit' into account */
static inline void EQCR_INC(struct qm_eqcr *eqcr)
{
/* NB: this is odd-looking, but experiments show that it generates fast
* code with essentially no branching overheads. We increment to the
* next EQCR pointer and handle overflow and 'vbit'.
*/
struct qm_eqcr_entry *partial = eqcr->cursor + 1;
eqcr->cursor = EQCR_CARRYCLEAR(partial);
if (partial != eqcr->cursor)
eqcr->vbit ^= QM_EQCR_VERB_VBIT;
}
static inline struct qm_eqcr_entry *qm_eqcr_start_no_stash(struct qm_portal
*portal)
{
register struct qm_eqcr *eqcr = &portal->eqcr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(!eqcr->busy);
#endif
if (!eqcr->available)
return NULL;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
eqcr->busy = 1;
#endif
return eqcr->cursor;
}
static inline struct qm_eqcr_entry *qm_eqcr_start_stash(struct qm_portal
*portal)
{
register struct qm_eqcr *eqcr = &portal->eqcr;
u8 diff, old_ci;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(!eqcr->busy);
#endif
if (!eqcr->available) {
old_ci = eqcr->ci;
eqcr->ci = qm_cl_in(EQCR_CI) & (QM_EQCR_SIZE - 1);
diff = qm_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
eqcr->available += diff;
if (!diff)
return NULL;
}
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
eqcr->busy = 1;
#endif
return eqcr->cursor;
}
static inline void qm_eqcr_abort(struct qm_portal *portal)
{
__maybe_unused register struct qm_eqcr *eqcr = &portal->eqcr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(eqcr->busy);
eqcr->busy = 0;
#endif
}
static inline struct qm_eqcr_entry *qm_eqcr_pend_and_next(
struct qm_portal *portal, u8 myverb)
{
register struct qm_eqcr *eqcr = &portal->eqcr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(eqcr->busy);
DPAA_ASSERT(eqcr->pmode != qm_eqcr_pvb);
#endif
if (eqcr->available == 1)
return NULL;
eqcr->cursor->__dont_write_directly__verb = myverb | eqcr->vbit;
dcbf(eqcr->cursor);
EQCR_INC(eqcr);
eqcr->available--;
return eqcr->cursor;
}
#define EQCR_COMMIT_CHECKS(eqcr) \
do { \
DPAA_ASSERT(eqcr->busy); \
DPAA_ASSERT(eqcr->cursor->orp == (eqcr->cursor->orp & 0x00ffffff)); \
DPAA_ASSERT(eqcr->cursor->fqid == (eqcr->cursor->fqid & 0x00ffffff)); \
} while (0)
static inline void qm_eqcr_pci_commit(struct qm_portal *portal, u8 myverb)
{
register struct qm_eqcr *eqcr = &portal->eqcr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
EQCR_COMMIT_CHECKS(eqcr);
DPAA_ASSERT(eqcr->pmode == qm_eqcr_pci);
#endif
eqcr->cursor->__dont_write_directly__verb = myverb | eqcr->vbit;
EQCR_INC(eqcr);
eqcr->available--;
dcbf(eqcr->cursor);
hwsync();
qm_out(EQCR_PI_CINH, EQCR_PTR2IDX(eqcr->cursor));
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
eqcr->busy = 0;
#endif
}
static inline void qm_eqcr_pce_prefetch(struct qm_portal *portal)
{
__maybe_unused register struct qm_eqcr *eqcr = &portal->eqcr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(eqcr->pmode == qm_eqcr_pce);
#endif
qm_cl_invalidate(EQCR_PI);
qm_cl_touch_rw(EQCR_PI);
}
static inline void qm_eqcr_pce_commit(struct qm_portal *portal, u8 myverb)
{
register struct qm_eqcr *eqcr = &portal->eqcr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
EQCR_COMMIT_CHECKS(eqcr);
DPAA_ASSERT(eqcr->pmode == qm_eqcr_pce);
#endif
eqcr->cursor->__dont_write_directly__verb = myverb | eqcr->vbit;
EQCR_INC(eqcr);
eqcr->available--;
dcbf(eqcr->cursor);
lwsync();
qm_cl_out(EQCR_PI, EQCR_PTR2IDX(eqcr->cursor));
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
eqcr->busy = 0;
#endif
}
static inline void qm_eqcr_pvb_commit(struct qm_portal *portal, u8 myverb)
{
register struct qm_eqcr *eqcr = &portal->eqcr;
struct qm_eqcr_entry *eqcursor;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
EQCR_COMMIT_CHECKS(eqcr);
DPAA_ASSERT(eqcr->pmode == qm_eqcr_pvb);
#endif
lwsync();
eqcursor = eqcr->cursor;
eqcursor->__dont_write_directly__verb = myverb | eqcr->vbit;
dcbf(eqcursor);
EQCR_INC(eqcr);
eqcr->available--;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
eqcr->busy = 0;
#endif
}
static inline u8 qm_eqcr_cci_update(struct qm_portal *portal)
{
register struct qm_eqcr *eqcr = &portal->eqcr;
u8 diff, old_ci = eqcr->ci;
eqcr->ci = qm_in(EQCR_CI_CINH) & (QM_EQCR_SIZE - 1);
diff = qm_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
eqcr->available += diff;
return diff;
}
static inline void qm_eqcr_cce_prefetch(struct qm_portal *portal)
{
__maybe_unused register struct qm_eqcr *eqcr = &portal->eqcr;
qm_cl_touch_ro(EQCR_CI);
}
static inline u8 qm_eqcr_cce_update(struct qm_portal *portal)
{
register struct qm_eqcr *eqcr = &portal->eqcr;
u8 diff, old_ci = eqcr->ci;
eqcr->ci = qm_cl_in(EQCR_CI) & (QM_EQCR_SIZE - 1);
qm_cl_invalidate(EQCR_CI);
diff = qm_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
eqcr->available += diff;
return diff;
}
static inline u8 qm_eqcr_get_ithresh(struct qm_portal *portal)
{
register struct qm_eqcr *eqcr = &portal->eqcr;
return eqcr->ithresh;
}
static inline void qm_eqcr_set_ithresh(struct qm_portal *portal, u8 ithresh)
{
register struct qm_eqcr *eqcr = &portal->eqcr;
eqcr->ithresh = ithresh;
qm_out(EQCR_ITR, ithresh);
}
static inline u8 qm_eqcr_get_avail(struct qm_portal *portal)
{
register struct qm_eqcr *eqcr = &portal->eqcr;
return eqcr->available;
}
static inline u8 qm_eqcr_get_fill(struct qm_portal *portal)
{
register struct qm_eqcr *eqcr = &portal->eqcr;
return QM_EQCR_SIZE - 1 - eqcr->available;
}
#define DQRR_CARRYCLEAR(p) \
(void *)((unsigned long)(p) & (~(unsigned long)(QM_DQRR_SIZE << 6)))
static inline u8 DQRR_PTR2IDX(const struct qm_dqrr_entry *e)
{
return ((uintptr_t)e >> 6) & (QM_DQRR_SIZE - 1);
}
static inline const struct qm_dqrr_entry *DQRR_INC(
const struct qm_dqrr_entry *e)
{
return DQRR_CARRYCLEAR(e + 1);
}
static inline void qm_dqrr_set_maxfill(struct qm_portal *portal, u8 mf)
{
qm_out(CFG, (qm_in(CFG) & 0xff0fffff) |
((mf & (QM_DQRR_SIZE - 1)) << 20));
}
static inline const struct qm_dqrr_entry *qm_dqrr_current(
struct qm_portal *portal)
{
register struct qm_dqrr *dqrr = &portal->dqrr;
if (!dqrr->fill)
return NULL;
return dqrr->cursor;
}
static inline u8 qm_dqrr_cursor(struct qm_portal *portal)
{
register struct qm_dqrr *dqrr = &portal->dqrr;
return DQRR_PTR2IDX(dqrr->cursor);
}
static inline u8 qm_dqrr_next(struct qm_portal *portal)
{
register struct qm_dqrr *dqrr = &portal->dqrr;
DPAA_ASSERT(dqrr->fill);
dqrr->cursor = DQRR_INC(dqrr->cursor);
return --dqrr->fill;
}
static inline u8 qm_dqrr_pci_update(struct qm_portal *portal)
{
register struct qm_dqrr *dqrr = &portal->dqrr;
u8 diff, old_pi = dqrr->pi;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->pmode == qm_dqrr_pci);
#endif
dqrr->pi = qm_in(DQRR_PI_CINH) & (QM_DQRR_SIZE - 1);
diff = qm_cyc_diff(QM_DQRR_SIZE, old_pi, dqrr->pi);
dqrr->fill += diff;
return diff;
}
static inline void qm_dqrr_pce_prefetch(struct qm_portal *portal)
{
__maybe_unused register struct qm_dqrr *dqrr = &portal->dqrr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->pmode == qm_dqrr_pce);
#endif
qm_cl_invalidate(DQRR_PI);
qm_cl_touch_ro(DQRR_PI);
}
static inline u8 qm_dqrr_pce_update(struct qm_portal *portal)
{
register struct qm_dqrr *dqrr = &portal->dqrr;
u8 diff, old_pi = dqrr->pi;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->pmode == qm_dqrr_pce);
#endif
dqrr->pi = qm_cl_in(DQRR_PI) & (QM_DQRR_SIZE - 1);
diff = qm_cyc_diff(QM_DQRR_SIZE, old_pi, dqrr->pi);
dqrr->fill += diff;
return diff;
}
static inline void qm_dqrr_pvb_update(struct qm_portal *portal)
{
register struct qm_dqrr *dqrr = &portal->dqrr;
const struct qm_dqrr_entry *res = qm_cl(dqrr->ring, dqrr->pi);
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->pmode == qm_dqrr_pvb);
#endif
/* when accessing 'verb', use __raw_readb() to ensure that compiler
* inlining doesn't try to optimise out "excess reads".
*/
if ((__raw_readb(&res->verb) & QM_DQRR_VERB_VBIT) == dqrr->vbit) {
dqrr->pi = (dqrr->pi + 1) & (QM_DQRR_SIZE - 1);
if (!dqrr->pi)
dqrr->vbit ^= QM_DQRR_VERB_VBIT;
dqrr->fill++;
}
}
static inline void qm_dqrr_cci_consume(struct qm_portal *portal, u8 num)
{
register struct qm_dqrr *dqrr = &portal->dqrr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->cmode == qm_dqrr_cci);
#endif
dqrr->ci = (dqrr->ci + num) & (QM_DQRR_SIZE - 1);
qm_out(DQRR_CI_CINH, dqrr->ci);
}
static inline void qm_dqrr_cci_consume_to_current(struct qm_portal *portal)
{
register struct qm_dqrr *dqrr = &portal->dqrr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->cmode == qm_dqrr_cci);
#endif
dqrr->ci = DQRR_PTR2IDX(dqrr->cursor);
qm_out(DQRR_CI_CINH, dqrr->ci);
}
static inline void qm_dqrr_cce_prefetch(struct qm_portal *portal)
{
__maybe_unused register struct qm_dqrr *dqrr = &portal->dqrr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->cmode == qm_dqrr_cce);
#endif
qm_cl_invalidate(DQRR_CI);
qm_cl_touch_rw(DQRR_CI);
}
static inline void qm_dqrr_cce_consume(struct qm_portal *portal, u8 num)
{
register struct qm_dqrr *dqrr = &portal->dqrr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->cmode == qm_dqrr_cce);
#endif
dqrr->ci = (dqrr->ci + num) & (QM_DQRR_SIZE - 1);
qm_cl_out(DQRR_CI, dqrr->ci);
}
static inline void qm_dqrr_cce_consume_to_current(struct qm_portal *portal)
{
register struct qm_dqrr *dqrr = &portal->dqrr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->cmode == qm_dqrr_cce);
#endif
dqrr->ci = DQRR_PTR2IDX(dqrr->cursor);
qm_cl_out(DQRR_CI, dqrr->ci);
}
static inline void qm_dqrr_cdc_consume_1(struct qm_portal *portal, u8 idx,
int park)
{
__maybe_unused register struct qm_dqrr *dqrr = &portal->dqrr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc);
#endif
DPAA_ASSERT(idx < QM_DQRR_SIZE);
qm_out(DQRR_DCAP, (0 << 8) | /* S */
((park ? 1 : 0) << 6) | /* PK */
idx); /* DCAP_CI */
}
static inline void qm_dqrr_cdc_consume_1ptr(struct qm_portal *portal,
const struct qm_dqrr_entry *dq,
int park)
{
__maybe_unused register struct qm_dqrr *dqrr = &portal->dqrr;
u8 idx = DQRR_PTR2IDX(dq);
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc);
#endif
DPAA_ASSERT(idx < QM_DQRR_SIZE);
qm_out(DQRR_DCAP, (0 << 8) | /* DQRR_DCAP::S */
((park ? 1 : 0) << 6) | /* DQRR_DCAP::PK */
idx); /* DQRR_DCAP::DCAP_CI */
}
static inline void qm_dqrr_cdc_consume_n(struct qm_portal *portal, u16 bitmask)
{
__maybe_unused register struct qm_dqrr *dqrr = &portal->dqrr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc);
#endif
qm_out(DQRR_DCAP, (1 << 8) | /* DQRR_DCAP::S */
((u32)bitmask << 16)); /* DQRR_DCAP::DCAP_CI */
dqrr->ci = qm_in(DQRR_CI_CINH) & (QM_DQRR_SIZE - 1);
dqrr->fill = qm_cyc_diff(QM_DQRR_SIZE, dqrr->ci, dqrr->pi);
}
static inline u8 qm_dqrr_cdc_cci(struct qm_portal *portal)
{
__maybe_unused register struct qm_dqrr *dqrr = &portal->dqrr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc);
#endif
return qm_in(DQRR_CI_CINH) & (QM_DQRR_SIZE - 1);
}
static inline void qm_dqrr_cdc_cce_prefetch(struct qm_portal *portal)
{
__maybe_unused register struct qm_dqrr *dqrr = &portal->dqrr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc);
#endif
qm_cl_invalidate(DQRR_CI);
qm_cl_touch_ro(DQRR_CI);
}
static inline u8 qm_dqrr_cdc_cce(struct qm_portal *portal)
{
__maybe_unused register struct qm_dqrr *dqrr = &portal->dqrr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc);
#endif
return qm_cl_in(DQRR_CI) & (QM_DQRR_SIZE - 1);
}
static inline u8 qm_dqrr_get_ci(struct qm_portal *portal)
{
register struct qm_dqrr *dqrr = &portal->dqrr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->cmode != qm_dqrr_cdc);
#endif
return dqrr->ci;
}
static inline void qm_dqrr_park(struct qm_portal *portal, u8 idx)
{
__maybe_unused register struct qm_dqrr *dqrr = &portal->dqrr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->cmode != qm_dqrr_cdc);
#endif
qm_out(DQRR_DCAP, (0 << 8) | /* S */
(1 << 6) | /* PK */
(idx & (QM_DQRR_SIZE - 1))); /* DCAP_CI */
}
static inline void qm_dqrr_park_current(struct qm_portal *portal)
{
register struct qm_dqrr *dqrr = &portal->dqrr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(dqrr->cmode != qm_dqrr_cdc);
#endif
qm_out(DQRR_DCAP, (0 << 8) | /* S */
(1 << 6) | /* PK */
DQRR_PTR2IDX(dqrr->cursor)); /* DCAP_CI */
}
static inline void qm_dqrr_sdqcr_set(struct qm_portal *portal, u32 sdqcr)
{
qm_out(DQRR_SDQCR, sdqcr);
}
static inline u32 qm_dqrr_sdqcr_get(struct qm_portal *portal)
{
return qm_in(DQRR_SDQCR);
}
static inline void qm_dqrr_vdqcr_set(struct qm_portal *portal, u32 vdqcr)
{
qm_out(DQRR_VDQCR, vdqcr);
}
static inline u32 qm_dqrr_vdqcr_get(struct qm_portal *portal)
{
return qm_in(DQRR_VDQCR);
}
static inline u8 qm_dqrr_get_ithresh(struct qm_portal *portal)
{
register struct qm_dqrr *dqrr = &portal->dqrr;
return dqrr->ithresh;
}
static inline void qm_dqrr_set_ithresh(struct qm_portal *portal, u8 ithresh)
{
qm_out(DQRR_ITR, ithresh);
}
static inline u8 qm_dqrr_get_maxfill(struct qm_portal *portal)
{
return (qm_in(CFG) & 0x00f00000) >> 20;
}
/* -------------- */
/* --- MR API --- */
#define MR_CARRYCLEAR(p) \
(void *)((unsigned long)(p) & (~(unsigned long)(QM_MR_SIZE << 6)))
static inline u8 MR_PTR2IDX(const struct qm_mr_entry *e)
{
return ((uintptr_t)e >> 6) & (QM_MR_SIZE - 1);
}
static inline const struct qm_mr_entry *MR_INC(const struct qm_mr_entry *e)
{
return MR_CARRYCLEAR(e + 1);
}
static inline void qm_mr_finish(struct qm_portal *portal)
{
register struct qm_mr *mr = &portal->mr;
if (mr->ci != MR_PTR2IDX(mr->cursor))
pr_crit("Ignoring completed MR entries\n");
}
static inline const struct qm_mr_entry *qm_mr_current(struct qm_portal *portal)
{
register struct qm_mr *mr = &portal->mr;
if (!mr->fill)
return NULL;
return mr->cursor;
}
static inline u8 qm_mr_next(struct qm_portal *portal)
{
register struct qm_mr *mr = &portal->mr;
DPAA_ASSERT(mr->fill);
mr->cursor = MR_INC(mr->cursor);
return --mr->fill;
}
static inline void qm_mr_cci_consume(struct qm_portal *portal, u8 num)
{
register struct qm_mr *mr = &portal->mr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(mr->cmode == qm_mr_cci);
#endif
mr->ci = (mr->ci + num) & (QM_MR_SIZE - 1);
qm_out(MR_CI_CINH, mr->ci);
}
static inline void qm_mr_cci_consume_to_current(struct qm_portal *portal)
{
register struct qm_mr *mr = &portal->mr;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(mr->cmode == qm_mr_cci);
#endif
mr->ci = MR_PTR2IDX(mr->cursor);
qm_out(MR_CI_CINH, mr->ci);
}
static inline void qm_mr_set_ithresh(struct qm_portal *portal, u8 ithresh)
{
qm_out(MR_ITR, ithresh);
}
/* ------------------------------ */
/* --- Management command API --- */
static inline int qm_mc_init(struct qm_portal *portal)
{
register struct qm_mc *mc = &portal->mc;
mc->cr = portal->addr.ce + QM_CL_CR;
mc->rr = portal->addr.ce + QM_CL_RR0;
mc->rridx = (__raw_readb(&mc->cr->__dont_write_directly__verb) &
QM_MCC_VERB_VBIT) ? 0 : 1;
mc->vbit = mc->rridx ? QM_MCC_VERB_VBIT : 0;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
mc->state = qman_mc_idle;
#endif
return 0;
}
static inline void qm_mc_finish(struct qm_portal *portal)
{
__maybe_unused register struct qm_mc *mc = &portal->mc;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(mc->state == qman_mc_idle);
if (mc->state != qman_mc_idle)
pr_crit("Losing incomplete MC command\n");
#endif
}
static inline struct qm_mc_command *qm_mc_start(struct qm_portal *portal)
{
register struct qm_mc *mc = &portal->mc;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(mc->state == qman_mc_idle);
mc->state = qman_mc_user;
#endif
dcbz_64(mc->cr);
return mc->cr;
}
static inline void qm_mc_commit(struct qm_portal *portal, u8 myverb)
{
register struct qm_mc *mc = &portal->mc;
struct qm_mc_result *rr = mc->rr + mc->rridx;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(mc->state == qman_mc_user);
#endif
lwsync();
mc->cr->__dont_write_directly__verb = myverb | mc->vbit;
dcbf(mc->cr);
dcbit_ro(rr);
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
mc->state = qman_mc_hw;
#endif
}
static inline struct qm_mc_result *qm_mc_result(struct qm_portal *portal)
{
register struct qm_mc *mc = &portal->mc;
struct qm_mc_result *rr = mc->rr + mc->rridx;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
DPAA_ASSERT(mc->state == qman_mc_hw);
#endif
/* The inactive response register's verb byte always returns zero until
* its command is submitted and completed. This includes the valid-bit,
* in case you were wondering.
*/
if (!__raw_readb(&rr->verb)) {
dcbit_ro(rr);
return NULL;
}
mc->rridx ^= 1;
mc->vbit ^= QM_MCC_VERB_VBIT;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
mc->state = qman_mc_idle;
#endif
return rr;
}
/* Portal interrupt register API */
static inline void qm_isr_set_iperiod(struct qm_portal *portal, u16 iperiod)
{
qm_out(ITPR, iperiod);
}
static inline u32 __qm_isr_read(struct qm_portal *portal, enum qm_isr_reg n)
{
#if defined(RTE_ARCH_ARM64)
return __qm_in(&portal->addr, QM_REG_ISR + (n << 6));
#else
return __qm_in(&portal->addr, QM_REG_ISR + (n << 2));
#endif
}
static inline void __qm_isr_write(struct qm_portal *portal, enum qm_isr_reg n,
u32 val)
{
#if defined(RTE_ARCH_ARM64)
__qm_out(&portal->addr, QM_REG_ISR + (n << 6), val);
#else
__qm_out(&portal->addr, QM_REG_ISR + (n << 2), val);
#endif
}