f-stack/dpdk/drivers/net/nfp/nfp_net.c

3804 lines
98 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) 2014-2018 Netronome Systems, Inc.
* All rights reserved.
*
* Small portions derived from code Copyright(c) 2010-2015 Intel Corporation.
*/
/*
* vim:shiftwidth=8:noexpandtab
*
* @file dpdk/pmd/nfp_net.c
*
* Netronome vNIC DPDK Poll-Mode Driver: Main entry point
*/
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_ethdev_driver.h>
#include <rte_ethdev_pci.h>
#include <rte_dev.h>
#include <rte_ether.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_mempool.h>
#include <rte_version.h>
#include <rte_string_fns.h>
#include <rte_alarm.h>
#include <rte_spinlock.h>
#include <rte_service_component.h>
#include "nfpcore/nfp_cpp.h"
#include "nfpcore/nfp_nffw.h"
#include "nfpcore/nfp_hwinfo.h"
#include "nfpcore/nfp_mip.h"
#include "nfpcore/nfp_rtsym.h"
#include "nfpcore/nfp_nsp.h"
#include "nfp_net_pmd.h"
#include "nfp_net_logs.h"
#include "nfp_net_ctrl.h"
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include <errno.h>
/* Prototypes */
static void nfp_net_close(struct rte_eth_dev *dev);
static int nfp_net_configure(struct rte_eth_dev *dev);
static void nfp_net_dev_interrupt_handler(void *param);
static void nfp_net_dev_interrupt_delayed_handler(void *param);
static int nfp_net_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int nfp_net_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static int nfp_net_init(struct rte_eth_dev *eth_dev);
static int nfp_net_link_update(struct rte_eth_dev *dev, int wait_to_complete);
static int nfp_net_promisc_enable(struct rte_eth_dev *dev);
static int nfp_net_promisc_disable(struct rte_eth_dev *dev);
static int nfp_net_rx_fill_freelist(struct nfp_net_rxq *rxq);
static uint32_t nfp_net_rx_queue_count(struct rte_eth_dev *dev,
uint16_t queue_idx);
static uint16_t nfp_net_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
static void nfp_net_rx_queue_release(void *rxq);
static int nfp_net_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp);
static int nfp_net_tx_free_bufs(struct nfp_net_txq *txq);
static void nfp_net_tx_queue_release(void *txq);
static int nfp_net_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf);
static int nfp_net_start(struct rte_eth_dev *dev);
static int nfp_net_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats);
static int nfp_net_stats_reset(struct rte_eth_dev *dev);
static void nfp_net_stop(struct rte_eth_dev *dev);
static uint16_t nfp_net_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
static int nfp_net_rss_config_default(struct rte_eth_dev *dev);
static int nfp_net_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int nfp_net_rss_reta_write(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int nfp_net_rss_hash_write(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int nfp_set_mac_addr(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr);
/* The offset of the queue controller queues in the PCIe Target */
#define NFP_PCIE_QUEUE(_q) (0x80000 + (NFP_QCP_QUEUE_ADDR_SZ * ((_q) & 0xff)))
/* Maximum value which can be added to a queue with one transaction */
#define NFP_QCP_MAX_ADD 0x7f
#define RTE_MBUF_DMA_ADDR_DEFAULT(mb) \
(uint64_t)((mb)->buf_iova + RTE_PKTMBUF_HEADROOM)
/* nfp_qcp_ptr - Read or Write Pointer of a queue */
enum nfp_qcp_ptr {
NFP_QCP_READ_PTR = 0,
NFP_QCP_WRITE_PTR
};
/*
* nfp_qcp_ptr_add - Add the value to the selected pointer of a queue
* @q: Base address for queue structure
* @ptr: Add to the Read or Write pointer
* @val: Value to add to the queue pointer
*
* If @val is greater than @NFP_QCP_MAX_ADD multiple writes are performed.
*/
static inline void
nfp_qcp_ptr_add(uint8_t *q, enum nfp_qcp_ptr ptr, uint32_t val)
{
uint32_t off;
if (ptr == NFP_QCP_READ_PTR)
off = NFP_QCP_QUEUE_ADD_RPTR;
else
off = NFP_QCP_QUEUE_ADD_WPTR;
while (val > NFP_QCP_MAX_ADD) {
nn_writel(rte_cpu_to_le_32(NFP_QCP_MAX_ADD), q + off);
val -= NFP_QCP_MAX_ADD;
}
nn_writel(rte_cpu_to_le_32(val), q + off);
}
/*
* nfp_qcp_read - Read the current Read/Write pointer value for a queue
* @q: Base address for queue structure
* @ptr: Read or Write pointer
*/
static inline uint32_t
nfp_qcp_read(uint8_t *q, enum nfp_qcp_ptr ptr)
{
uint32_t off;
uint32_t val;
if (ptr == NFP_QCP_READ_PTR)
off = NFP_QCP_QUEUE_STS_LO;
else
off = NFP_QCP_QUEUE_STS_HI;
val = rte_cpu_to_le_32(nn_readl(q + off));
if (ptr == NFP_QCP_READ_PTR)
return val & NFP_QCP_QUEUE_STS_LO_READPTR_mask;
else
return val & NFP_QCP_QUEUE_STS_HI_WRITEPTR_mask;
}
/*
* Functions to read/write from/to Config BAR
* Performs any endian conversion necessary.
*/
static inline uint8_t
nn_cfg_readb(struct nfp_net_hw *hw, int off)
{
return nn_readb(hw->ctrl_bar + off);
}
static inline void
nn_cfg_writeb(struct nfp_net_hw *hw, int off, uint8_t val)
{
nn_writeb(val, hw->ctrl_bar + off);
}
static inline uint32_t
nn_cfg_readl(struct nfp_net_hw *hw, int off)
{
return rte_le_to_cpu_32(nn_readl(hw->ctrl_bar + off));
}
static inline void
nn_cfg_writel(struct nfp_net_hw *hw, int off, uint32_t val)
{
nn_writel(rte_cpu_to_le_32(val), hw->ctrl_bar + off);
}
static inline uint64_t
nn_cfg_readq(struct nfp_net_hw *hw, int off)
{
return rte_le_to_cpu_64(nn_readq(hw->ctrl_bar + off));
}
static inline void
nn_cfg_writeq(struct nfp_net_hw *hw, int off, uint64_t val)
{
nn_writeq(rte_cpu_to_le_64(val), hw->ctrl_bar + off);
}
static void
nfp_net_rx_queue_release_mbufs(struct nfp_net_rxq *rxq)
{
unsigned i;
if (rxq->rxbufs == NULL)
return;
for (i = 0; i < rxq->rx_count; i++) {
if (rxq->rxbufs[i].mbuf) {
rte_pktmbuf_free_seg(rxq->rxbufs[i].mbuf);
rxq->rxbufs[i].mbuf = NULL;
}
}
}
static void
nfp_net_rx_queue_release(void *rx_queue)
{
struct nfp_net_rxq *rxq = rx_queue;
if (rxq) {
nfp_net_rx_queue_release_mbufs(rxq);
rte_free(rxq->rxbufs);
rte_free(rxq);
}
}
static void
nfp_net_reset_rx_queue(struct nfp_net_rxq *rxq)
{
nfp_net_rx_queue_release_mbufs(rxq);
rxq->rd_p = 0;
rxq->nb_rx_hold = 0;
}
static void
nfp_net_tx_queue_release_mbufs(struct nfp_net_txq *txq)
{
unsigned i;
if (txq->txbufs == NULL)
return;
for (i = 0; i < txq->tx_count; i++) {
if (txq->txbufs[i].mbuf) {
rte_pktmbuf_free_seg(txq->txbufs[i].mbuf);
txq->txbufs[i].mbuf = NULL;
}
}
}
static void
nfp_net_tx_queue_release(void *tx_queue)
{
struct nfp_net_txq *txq = tx_queue;
if (txq) {
nfp_net_tx_queue_release_mbufs(txq);
rte_free(txq->txbufs);
rte_free(txq);
}
}
static void
nfp_net_reset_tx_queue(struct nfp_net_txq *txq)
{
nfp_net_tx_queue_release_mbufs(txq);
txq->wr_p = 0;
txq->rd_p = 0;
}
static int
__nfp_net_reconfig(struct nfp_net_hw *hw, uint32_t update)
{
int cnt;
uint32_t new;
struct timespec wait;
PMD_DRV_LOG(DEBUG, "Writing to the configuration queue (%p)...",
hw->qcp_cfg);
if (hw->qcp_cfg == NULL)
rte_panic("Bad configuration queue pointer\n");
nfp_qcp_ptr_add(hw->qcp_cfg, NFP_QCP_WRITE_PTR, 1);
wait.tv_sec = 0;
wait.tv_nsec = 1000000;
PMD_DRV_LOG(DEBUG, "Polling for update ack...");
/* Poll update field, waiting for NFP to ack the config */
for (cnt = 0; ; cnt++) {
new = nn_cfg_readl(hw, NFP_NET_CFG_UPDATE);
if (new == 0)
break;
if (new & NFP_NET_CFG_UPDATE_ERR) {
PMD_INIT_LOG(ERR, "Reconfig error: 0x%08x", new);
return -1;
}
if (cnt >= NFP_NET_POLL_TIMEOUT) {
PMD_INIT_LOG(ERR, "Reconfig timeout for 0x%08x after"
" %dms", update, cnt);
rte_panic("Exiting\n");
}
nanosleep(&wait, 0); /* waiting for a 1ms */
}
PMD_DRV_LOG(DEBUG, "Ack DONE");
return 0;
}
/*
* Reconfigure the NIC
* @nn: device to reconfigure
* @ctrl: The value for the ctrl field in the BAR config
* @update: The value for the update field in the BAR config
*
* Write the update word to the BAR and ping the reconfig queue. Then poll
* until the firmware has acknowledged the update by zeroing the update word.
*/
static int
nfp_net_reconfig(struct nfp_net_hw *hw, uint32_t ctrl, uint32_t update)
{
uint32_t err;
PMD_DRV_LOG(DEBUG, "nfp_net_reconfig: ctrl=%08x update=%08x",
ctrl, update);
rte_spinlock_lock(&hw->reconfig_lock);
nn_cfg_writel(hw, NFP_NET_CFG_CTRL, ctrl);
nn_cfg_writel(hw, NFP_NET_CFG_UPDATE, update);
rte_wmb();
err = __nfp_net_reconfig(hw, update);
rte_spinlock_unlock(&hw->reconfig_lock);
if (!err)
return 0;
/*
* Reconfig errors imply situations where they can be handled.
* Otherwise, rte_panic is called inside __nfp_net_reconfig
*/
PMD_INIT_LOG(ERR, "Error nfp_net reconfig for ctrl: %x update: %x",
ctrl, update);
return -EIO;
}
/*
* Configure an Ethernet device. This function must be invoked first
* before any other function in the Ethernet API. This function can
* also be re-invoked when a device is in the stopped state.
*/
static int
nfp_net_configure(struct rte_eth_dev *dev)
{
struct rte_eth_conf *dev_conf;
struct rte_eth_rxmode *rxmode;
struct rte_eth_txmode *txmode;
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* A DPDK app sends info about how many queues to use and how
* those queues need to be configured. This is used by the
* DPDK core and it makes sure no more queues than those
* advertised by the driver are requested. This function is
* called after that internal process
*/
PMD_INIT_LOG(DEBUG, "Configure");
dev_conf = &dev->data->dev_conf;
rxmode = &dev_conf->rxmode;
txmode = &dev_conf->txmode;
if (rxmode->mq_mode & ETH_MQ_RX_RSS_FLAG)
rxmode->offloads |= DEV_RX_OFFLOAD_RSS_HASH;
/* Checking TX mode */
if (txmode->mq_mode) {
PMD_INIT_LOG(INFO, "TX mq_mode DCB and VMDq not supported");
return -EINVAL;
}
/* Checking RX mode */
if (rxmode->mq_mode & ETH_MQ_RX_RSS &&
!(hw->cap & NFP_NET_CFG_CTRL_RSS)) {
PMD_INIT_LOG(INFO, "RSS not supported");
return -EINVAL;
}
return 0;
}
static void
nfp_net_enable_queues(struct rte_eth_dev *dev)
{
struct nfp_net_hw *hw;
uint64_t enabled_queues = 0;
int i;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Enabling the required TX queues in the device */
for (i = 0; i < dev->data->nb_tx_queues; i++)
enabled_queues |= (1 << i);
nn_cfg_writeq(hw, NFP_NET_CFG_TXRS_ENABLE, enabled_queues);
enabled_queues = 0;
/* Enabling the required RX queues in the device */
for (i = 0; i < dev->data->nb_rx_queues; i++)
enabled_queues |= (1 << i);
nn_cfg_writeq(hw, NFP_NET_CFG_RXRS_ENABLE, enabled_queues);
}
static void
nfp_net_disable_queues(struct rte_eth_dev *dev)
{
struct nfp_net_hw *hw;
uint32_t new_ctrl, update = 0;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
nn_cfg_writeq(hw, NFP_NET_CFG_TXRS_ENABLE, 0);
nn_cfg_writeq(hw, NFP_NET_CFG_RXRS_ENABLE, 0);
new_ctrl = hw->ctrl & ~NFP_NET_CFG_CTRL_ENABLE;
update = NFP_NET_CFG_UPDATE_GEN | NFP_NET_CFG_UPDATE_RING |
NFP_NET_CFG_UPDATE_MSIX;
if (hw->cap & NFP_NET_CFG_CTRL_RINGCFG)
new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
/* If an error when reconfig we avoid to change hw state */
if (nfp_net_reconfig(hw, new_ctrl, update) < 0)
return;
hw->ctrl = new_ctrl;
}
static int
nfp_net_rx_freelist_setup(struct rte_eth_dev *dev)
{
int i;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (nfp_net_rx_fill_freelist(dev->data->rx_queues[i]) < 0)
return -1;
}
return 0;
}
static void
nfp_net_params_setup(struct nfp_net_hw *hw)
{
nn_cfg_writel(hw, NFP_NET_CFG_MTU, hw->mtu);
nn_cfg_writel(hw, NFP_NET_CFG_FLBUFSZ, hw->flbufsz);
}
static void
nfp_net_cfg_queue_setup(struct nfp_net_hw *hw)
{
hw->qcp_cfg = hw->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
}
#define ETH_ADDR_LEN 6
static void
nfp_eth_copy_mac(uint8_t *dst, const uint8_t *src)
{
int i;
for (i = 0; i < ETH_ADDR_LEN; i++)
dst[i] = src[i];
}
static int
nfp_net_pf_read_mac(struct nfp_net_hw *hw, int port)
{
struct nfp_eth_table *nfp_eth_table;
nfp_eth_table = nfp_eth_read_ports(hw->cpp);
/*
* hw points to port0 private data. We need hw now pointing to
* right port.
*/
hw += port;
nfp_eth_copy_mac((uint8_t *)&hw->mac_addr,
(uint8_t *)&nfp_eth_table->ports[port].mac_addr);
free(nfp_eth_table);
return 0;
}
static void
nfp_net_vf_read_mac(struct nfp_net_hw *hw)
{
uint32_t tmp;
tmp = rte_be_to_cpu_32(nn_cfg_readl(hw, NFP_NET_CFG_MACADDR));
memcpy(&hw->mac_addr[0], &tmp, 4);
tmp = rte_be_to_cpu_32(nn_cfg_readl(hw, NFP_NET_CFG_MACADDR + 4));
memcpy(&hw->mac_addr[4], &tmp, 2);
}
static void
nfp_net_write_mac(struct nfp_net_hw *hw, uint8_t *mac)
{
uint32_t mac0 = *(uint32_t *)mac;
uint16_t mac1;
nn_writel(rte_cpu_to_be_32(mac0), hw->ctrl_bar + NFP_NET_CFG_MACADDR);
mac += 4;
mac1 = *(uint16_t *)mac;
nn_writew(rte_cpu_to_be_16(mac1),
hw->ctrl_bar + NFP_NET_CFG_MACADDR + 6);
}
int
nfp_set_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
{
struct nfp_net_hw *hw;
uint32_t update, ctrl;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if ((hw->ctrl & NFP_NET_CFG_CTRL_ENABLE) &&
!(hw->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)) {
PMD_INIT_LOG(INFO, "MAC address unable to change when"
" port enabled");
return -EBUSY;
}
if ((hw->ctrl & NFP_NET_CFG_CTRL_ENABLE) &&
!(hw->cap & NFP_NET_CFG_CTRL_LIVE_ADDR))
return -EBUSY;
/* Writing new MAC to the specific port BAR address */
nfp_net_write_mac(hw, (uint8_t *)mac_addr);
/* Signal the NIC about the change */
update = NFP_NET_CFG_UPDATE_MACADDR;
ctrl = hw->ctrl;
if ((hw->ctrl & NFP_NET_CFG_CTRL_ENABLE) &&
(hw->cap & NFP_NET_CFG_CTRL_LIVE_ADDR))
ctrl |= NFP_NET_CFG_CTRL_LIVE_ADDR;
if (nfp_net_reconfig(hw, ctrl, update) < 0) {
PMD_INIT_LOG(INFO, "MAC address update failed");
return -EIO;
}
return 0;
}
static int
nfp_configure_rx_interrupt(struct rte_eth_dev *dev,
struct rte_intr_handle *intr_handle)
{
struct nfp_net_hw *hw;
int i;
if (!intr_handle->intr_vec) {
intr_handle->intr_vec =
rte_zmalloc("intr_vec",
dev->data->nb_rx_queues * sizeof(int), 0);
if (!intr_handle->intr_vec) {
PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
" intr_vec", dev->data->nb_rx_queues);
return -ENOMEM;
}
}
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (intr_handle->type == RTE_INTR_HANDLE_UIO) {
PMD_INIT_LOG(INFO, "VF: enabling RX interrupt with UIO");
/* UIO just supports one queue and no LSC*/
nn_cfg_writeb(hw, NFP_NET_CFG_RXR_VEC(0), 0);
intr_handle->intr_vec[0] = 0;
} else {
PMD_INIT_LOG(INFO, "VF: enabling RX interrupt with VFIO");
for (i = 0; i < dev->data->nb_rx_queues; i++) {
/*
* The first msix vector is reserved for non
* efd interrupts
*/
nn_cfg_writeb(hw, NFP_NET_CFG_RXR_VEC(i), i + 1);
intr_handle->intr_vec[i] = i + 1;
PMD_INIT_LOG(DEBUG, "intr_vec[%d]= %d", i,
intr_handle->intr_vec[i]);
}
}
/* Avoiding TX interrupts */
hw->ctrl |= NFP_NET_CFG_CTRL_MSIX_TX_OFF;
return 0;
}
static uint32_t
nfp_check_offloads(struct rte_eth_dev *dev)
{
struct nfp_net_hw *hw;
struct rte_eth_conf *dev_conf;
struct rte_eth_rxmode *rxmode;
struct rte_eth_txmode *txmode;
uint32_t ctrl = 0;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
dev_conf = &dev->data->dev_conf;
rxmode = &dev_conf->rxmode;
txmode = &dev_conf->txmode;
if (rxmode->offloads & DEV_RX_OFFLOAD_IPV4_CKSUM) {
if (hw->cap & NFP_NET_CFG_CTRL_RXCSUM)
ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
}
if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP) {
if (hw->cap & NFP_NET_CFG_CTRL_RXVLAN)
ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
}
if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
hw->mtu = rxmode->max_rx_pkt_len;
if (txmode->offloads & DEV_TX_OFFLOAD_VLAN_INSERT)
ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
/* L2 broadcast */
if (hw->cap & NFP_NET_CFG_CTRL_L2BC)
ctrl |= NFP_NET_CFG_CTRL_L2BC;
/* L2 multicast */
if (hw->cap & NFP_NET_CFG_CTRL_L2MC)
ctrl |= NFP_NET_CFG_CTRL_L2MC;
/* TX checksum offload */
if (txmode->offloads & DEV_TX_OFFLOAD_IPV4_CKSUM ||
txmode->offloads & DEV_TX_OFFLOAD_UDP_CKSUM ||
txmode->offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
/* LSO offload */
if (txmode->offloads & DEV_TX_OFFLOAD_TCP_TSO) {
if (hw->cap & NFP_NET_CFG_CTRL_LSO)
ctrl |= NFP_NET_CFG_CTRL_LSO;
else
ctrl |= NFP_NET_CFG_CTRL_LSO2;
}
/* RX gather */
if (txmode->offloads & DEV_TX_OFFLOAD_MULTI_SEGS)
ctrl |= NFP_NET_CFG_CTRL_GATHER;
return ctrl;
}
static int
nfp_net_start(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint32_t new_ctrl, update = 0;
struct nfp_net_hw *hw;
struct rte_eth_conf *dev_conf;
struct rte_eth_rxmode *rxmode;
uint32_t intr_vector;
int ret;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_LOG(DEBUG, "Start");
/* Disabling queues just in case... */
nfp_net_disable_queues(dev);
/* Enabling the required queues in the device */
nfp_net_enable_queues(dev);
/* check and configure queue intr-vector mapping */
if (dev->data->dev_conf.intr_conf.rxq != 0) {
if (hw->pf_multiport_enabled) {
PMD_INIT_LOG(ERR, "PMD rx interrupt is not supported "
"with NFP multiport PF");
return -EINVAL;
}
if (intr_handle->type == RTE_INTR_HANDLE_UIO) {
/*
* Better not to share LSC with RX interrupts.
* Unregistering LSC interrupt handler
*/
rte_intr_callback_unregister(&pci_dev->intr_handle,
nfp_net_dev_interrupt_handler, (void *)dev);
if (dev->data->nb_rx_queues > 1) {
PMD_INIT_LOG(ERR, "PMD rx interrupt only "
"supports 1 queue with UIO");
return -EIO;
}
}
intr_vector = dev->data->nb_rx_queues;
if (rte_intr_efd_enable(intr_handle, intr_vector))
return -1;
nfp_configure_rx_interrupt(dev, intr_handle);
update = NFP_NET_CFG_UPDATE_MSIX;
}
rte_intr_enable(intr_handle);
new_ctrl = nfp_check_offloads(dev);
/* Writing configuration parameters in the device */
nfp_net_params_setup(hw);
dev_conf = &dev->data->dev_conf;
rxmode = &dev_conf->rxmode;
if (rxmode->mq_mode & ETH_MQ_RX_RSS) {
nfp_net_rss_config_default(dev);
update |= NFP_NET_CFG_UPDATE_RSS;
new_ctrl |= NFP_NET_CFG_CTRL_RSS;
}
/* Enable device */
new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
update |= NFP_NET_CFG_UPDATE_GEN | NFP_NET_CFG_UPDATE_RING;
if (hw->cap & NFP_NET_CFG_CTRL_RINGCFG)
new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
nn_cfg_writel(hw, NFP_NET_CFG_CTRL, new_ctrl);
if (nfp_net_reconfig(hw, new_ctrl, update) < 0)
return -EIO;
/*
* Allocating rte mbufs for configured rx queues.
* This requires queues being enabled before
*/
if (nfp_net_rx_freelist_setup(dev) < 0) {
ret = -ENOMEM;
goto error;
}
if (hw->is_pf) {
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
/* Configure the physical port up */
nfp_eth_set_configured(hw->cpp, hw->pf_port_idx, 1);
else
nfp_eth_set_configured(dev->process_private,
hw->pf_port_idx, 1);
}
hw->ctrl = new_ctrl;
return 0;
error:
/*
* An error returned by this function should mean the app
* exiting and then the system releasing all the memory
* allocated even memory coming from hugepages.
*
* The device could be enabled at this point with some queues
* ready for getting packets. This is true if the call to
* nfp_net_rx_freelist_setup() succeeds for some queues but
* fails for subsequent queues.
*
* This should make the app exiting but better if we tell the
* device first.
*/
nfp_net_disable_queues(dev);
return ret;
}
/* Stop device: disable rx and tx functions to allow for reconfiguring. */
static void
nfp_net_stop(struct rte_eth_dev *dev)
{
int i;
struct nfp_net_hw *hw;
PMD_INIT_LOG(DEBUG, "Stop");
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
nfp_net_disable_queues(dev);
/* Clear queues */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
nfp_net_reset_tx_queue(
(struct nfp_net_txq *)dev->data->tx_queues[i]);
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
nfp_net_reset_rx_queue(
(struct nfp_net_rxq *)dev->data->rx_queues[i]);
}
if (hw->is_pf) {
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
/* Configure the physical port down */
nfp_eth_set_configured(hw->cpp, hw->pf_port_idx, 0);
else
nfp_eth_set_configured(dev->process_private,
hw->pf_port_idx, 0);
}
}
/* Set the link up. */
static int
nfp_net_set_link_up(struct rte_eth_dev *dev)
{
struct nfp_net_hw *hw;
PMD_DRV_LOG(DEBUG, "Set link up");
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (!hw->is_pf)
return -ENOTSUP;
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
/* Configure the physical port down */
return nfp_eth_set_configured(hw->cpp, hw->pf_port_idx, 1);
else
return nfp_eth_set_configured(dev->process_private,
hw->pf_port_idx, 1);
}
/* Set the link down. */
static int
nfp_net_set_link_down(struct rte_eth_dev *dev)
{
struct nfp_net_hw *hw;
PMD_DRV_LOG(DEBUG, "Set link down");
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (!hw->is_pf)
return -ENOTSUP;
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
/* Configure the physical port down */
return nfp_eth_set_configured(hw->cpp, hw->pf_port_idx, 0);
else
return nfp_eth_set_configured(dev->process_private,
hw->pf_port_idx, 0);
}
/* Reset and stop device. The device can not be restarted. */
static void
nfp_net_close(struct rte_eth_dev *dev)
{
struct nfp_net_hw *hw;
struct rte_pci_device *pci_dev;
int i;
PMD_INIT_LOG(DEBUG, "Close");
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
pci_dev = RTE_ETH_DEV_TO_PCI(dev);
/*
* We assume that the DPDK application is stopping all the
* threads/queues before calling the device close function.
*/
nfp_net_disable_queues(dev);
/* Clear queues */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
nfp_net_reset_tx_queue(
(struct nfp_net_txq *)dev->data->tx_queues[i]);
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
nfp_net_reset_rx_queue(
(struct nfp_net_rxq *)dev->data->rx_queues[i]);
}
rte_intr_disable(&pci_dev->intr_handle);
nn_cfg_writeb(hw, NFP_NET_CFG_LSC, 0xff);
/* unregister callback func from eal lib */
rte_intr_callback_unregister(&pci_dev->intr_handle,
nfp_net_dev_interrupt_handler,
(void *)dev);
/*
* The ixgbe PMD driver disables the pcie master on the
* device. The i40e does not...
*/
}
static int
nfp_net_promisc_enable(struct rte_eth_dev *dev)
{
uint32_t new_ctrl, update = 0;
struct nfp_net_hw *hw;
int ret;
PMD_DRV_LOG(DEBUG, "Promiscuous mode enable");
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (!(hw->cap & NFP_NET_CFG_CTRL_PROMISC)) {
PMD_INIT_LOG(INFO, "Promiscuous mode not supported");
return -ENOTSUP;
}
if (hw->ctrl & NFP_NET_CFG_CTRL_PROMISC) {
PMD_DRV_LOG(INFO, "Promiscuous mode already enabled");
return 0;
}
new_ctrl = hw->ctrl | NFP_NET_CFG_CTRL_PROMISC;
update = NFP_NET_CFG_UPDATE_GEN;
/*
* DPDK sets promiscuous mode on just after this call assuming
* it can not fail ...
*/
ret = nfp_net_reconfig(hw, new_ctrl, update);
if (ret < 0)
return ret;
hw->ctrl = new_ctrl;
return 0;
}
static int
nfp_net_promisc_disable(struct rte_eth_dev *dev)
{
uint32_t new_ctrl, update = 0;
struct nfp_net_hw *hw;
int ret;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if ((hw->ctrl & NFP_NET_CFG_CTRL_PROMISC) == 0) {
PMD_DRV_LOG(INFO, "Promiscuous mode already disabled");
return 0;
}
new_ctrl = hw->ctrl & ~NFP_NET_CFG_CTRL_PROMISC;
update = NFP_NET_CFG_UPDATE_GEN;
/*
* DPDK sets promiscuous mode off just before this call
* assuming it can not fail ...
*/
ret = nfp_net_reconfig(hw, new_ctrl, update);
if (ret < 0)
return ret;
hw->ctrl = new_ctrl;
return 0;
}
/*
* return 0 means link status changed, -1 means not changed
*
* Wait to complete is needed as it can take up to 9 seconds to get the Link
* status.
*/
static int
nfp_net_link_update(struct rte_eth_dev *dev, __rte_unused int wait_to_complete)
{
struct nfp_net_hw *hw;
struct rte_eth_link link;
uint32_t nn_link_status;
int ret;
static const uint32_t ls_to_ethtool[] = {
[NFP_NET_CFG_STS_LINK_RATE_UNSUPPORTED] = ETH_SPEED_NUM_NONE,
[NFP_NET_CFG_STS_LINK_RATE_UNKNOWN] = ETH_SPEED_NUM_NONE,
[NFP_NET_CFG_STS_LINK_RATE_1G] = ETH_SPEED_NUM_1G,
[NFP_NET_CFG_STS_LINK_RATE_10G] = ETH_SPEED_NUM_10G,
[NFP_NET_CFG_STS_LINK_RATE_25G] = ETH_SPEED_NUM_25G,
[NFP_NET_CFG_STS_LINK_RATE_40G] = ETH_SPEED_NUM_40G,
[NFP_NET_CFG_STS_LINK_RATE_50G] = ETH_SPEED_NUM_50G,
[NFP_NET_CFG_STS_LINK_RATE_100G] = ETH_SPEED_NUM_100G,
};
PMD_DRV_LOG(DEBUG, "Link update");
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
nn_link_status = nn_cfg_readl(hw, NFP_NET_CFG_STS);
memset(&link, 0, sizeof(struct rte_eth_link));
if (nn_link_status & NFP_NET_CFG_STS_LINK)
link.link_status = ETH_LINK_UP;
link.link_duplex = ETH_LINK_FULL_DUPLEX;
nn_link_status = (nn_link_status >> NFP_NET_CFG_STS_LINK_RATE_SHIFT) &
NFP_NET_CFG_STS_LINK_RATE_MASK;
if (nn_link_status >= RTE_DIM(ls_to_ethtool))
link.link_speed = ETH_SPEED_NUM_NONE;
else
link.link_speed = ls_to_ethtool[nn_link_status];
ret = rte_eth_linkstatus_set(dev, &link);
if (ret == 0) {
if (link.link_status)
PMD_DRV_LOG(INFO, "NIC Link is Up");
else
PMD_DRV_LOG(INFO, "NIC Link is Down");
}
return ret;
}
static int
nfp_net_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
int i;
struct nfp_net_hw *hw;
struct rte_eth_stats nfp_dev_stats;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* RTE_ETHDEV_QUEUE_STAT_CNTRS default value is 16 */
memset(&nfp_dev_stats, 0, sizeof(nfp_dev_stats));
/* reading per RX ring stats */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (i == RTE_ETHDEV_QUEUE_STAT_CNTRS)
break;
nfp_dev_stats.q_ipackets[i] =
nn_cfg_readq(hw, NFP_NET_CFG_RXR_STATS(i));
nfp_dev_stats.q_ipackets[i] -=
hw->eth_stats_base.q_ipackets[i];
nfp_dev_stats.q_ibytes[i] =
nn_cfg_readq(hw, NFP_NET_CFG_RXR_STATS(i) + 0x8);
nfp_dev_stats.q_ibytes[i] -=
hw->eth_stats_base.q_ibytes[i];
}
/* reading per TX ring stats */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
if (i == RTE_ETHDEV_QUEUE_STAT_CNTRS)
break;
nfp_dev_stats.q_opackets[i] =
nn_cfg_readq(hw, NFP_NET_CFG_TXR_STATS(i));
nfp_dev_stats.q_opackets[i] -=
hw->eth_stats_base.q_opackets[i];
nfp_dev_stats.q_obytes[i] =
nn_cfg_readq(hw, NFP_NET_CFG_TXR_STATS(i) + 0x8);
nfp_dev_stats.q_obytes[i] -=
hw->eth_stats_base.q_obytes[i];
}
nfp_dev_stats.ipackets =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_FRAMES);
nfp_dev_stats.ipackets -= hw->eth_stats_base.ipackets;
nfp_dev_stats.ibytes =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_OCTETS);
nfp_dev_stats.ibytes -= hw->eth_stats_base.ibytes;
nfp_dev_stats.opackets =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_FRAMES);
nfp_dev_stats.opackets -= hw->eth_stats_base.opackets;
nfp_dev_stats.obytes =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_OCTETS);
nfp_dev_stats.obytes -= hw->eth_stats_base.obytes;
/* reading general device stats */
nfp_dev_stats.ierrors =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_ERRORS);
nfp_dev_stats.ierrors -= hw->eth_stats_base.ierrors;
nfp_dev_stats.oerrors =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_ERRORS);
nfp_dev_stats.oerrors -= hw->eth_stats_base.oerrors;
/* RX ring mbuf allocation failures */
nfp_dev_stats.rx_nombuf = dev->data->rx_mbuf_alloc_failed;
nfp_dev_stats.imissed =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_DISCARDS);
nfp_dev_stats.imissed -= hw->eth_stats_base.imissed;
if (stats) {
memcpy(stats, &nfp_dev_stats, sizeof(*stats));
return 0;
}
return -EINVAL;
}
static int
nfp_net_stats_reset(struct rte_eth_dev *dev)
{
int i;
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* hw->eth_stats_base records the per counter starting point.
* Lets update it now
*/
/* reading per RX ring stats */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (i == RTE_ETHDEV_QUEUE_STAT_CNTRS)
break;
hw->eth_stats_base.q_ipackets[i] =
nn_cfg_readq(hw, NFP_NET_CFG_RXR_STATS(i));
hw->eth_stats_base.q_ibytes[i] =
nn_cfg_readq(hw, NFP_NET_CFG_RXR_STATS(i) + 0x8);
}
/* reading per TX ring stats */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
if (i == RTE_ETHDEV_QUEUE_STAT_CNTRS)
break;
hw->eth_stats_base.q_opackets[i] =
nn_cfg_readq(hw, NFP_NET_CFG_TXR_STATS(i));
hw->eth_stats_base.q_obytes[i] =
nn_cfg_readq(hw, NFP_NET_CFG_TXR_STATS(i) + 0x8);
}
hw->eth_stats_base.ipackets =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_FRAMES);
hw->eth_stats_base.ibytes =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_OCTETS);
hw->eth_stats_base.opackets =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_FRAMES);
hw->eth_stats_base.obytes =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_OCTETS);
/* reading general device stats */
hw->eth_stats_base.ierrors =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_ERRORS);
hw->eth_stats_base.oerrors =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_ERRORS);
/* RX ring mbuf allocation failures */
dev->data->rx_mbuf_alloc_failed = 0;
hw->eth_stats_base.imissed =
nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_DISCARDS);
return 0;
}
static int
nfp_net_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
dev_info->max_rx_queues = (uint16_t)hw->max_rx_queues;
dev_info->max_tx_queues = (uint16_t)hw->max_tx_queues;
dev_info->min_rx_bufsize = RTE_ETHER_MIN_MTU;
dev_info->max_rx_pktlen = hw->max_mtu;
/* Next should change when PF support is implemented */
dev_info->max_mac_addrs = 1;
if (hw->cap & NFP_NET_CFG_CTRL_RXVLAN)
dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP;
if (hw->cap & NFP_NET_CFG_CTRL_RXCSUM)
dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM;
dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_RSS_HASH;
if (hw->cap & NFP_NET_CFG_CTRL_TXVLAN)
dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT;
if (hw->cap & NFP_NET_CFG_CTRL_TXCSUM)
dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM;
if (hw->cap & NFP_NET_CFG_CTRL_LSO_ANY)
dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_TCP_TSO;
if (hw->cap & NFP_NET_CFG_CTRL_GATHER)
dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_MULTI_SEGS;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = DEFAULT_RX_PTHRESH,
.hthresh = DEFAULT_RX_HTHRESH,
.wthresh = DEFAULT_RX_WTHRESH,
},
.rx_free_thresh = DEFAULT_RX_FREE_THRESH,
.rx_drop_en = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = DEFAULT_TX_PTHRESH,
.hthresh = DEFAULT_TX_HTHRESH,
.wthresh = DEFAULT_TX_WTHRESH,
},
.tx_free_thresh = DEFAULT_TX_FREE_THRESH,
.tx_rs_thresh = DEFAULT_TX_RSBIT_THRESH,
};
dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = NFP_NET_MAX_RX_DESC,
.nb_min = NFP_NET_MIN_RX_DESC,
.nb_align = NFP_ALIGN_RING_DESC,
};
dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = NFP_NET_MAX_TX_DESC,
.nb_min = NFP_NET_MIN_TX_DESC,
.nb_align = NFP_ALIGN_RING_DESC,
.nb_seg_max = NFP_TX_MAX_SEG,
.nb_mtu_seg_max = NFP_TX_MAX_MTU_SEG,
};
dev_info->flow_type_rss_offloads = ETH_RSS_IPV4 |
ETH_RSS_NONFRAG_IPV4_TCP |
ETH_RSS_NONFRAG_IPV4_UDP |
ETH_RSS_IPV6 |
ETH_RSS_NONFRAG_IPV6_TCP |
ETH_RSS_NONFRAG_IPV6_UDP;
dev_info->reta_size = NFP_NET_CFG_RSS_ITBL_SZ;
dev_info->hash_key_size = NFP_NET_CFG_RSS_KEY_SZ;
dev_info->speed_capa = ETH_LINK_SPEED_1G | ETH_LINK_SPEED_10G |
ETH_LINK_SPEED_25G | ETH_LINK_SPEED_40G |
ETH_LINK_SPEED_50G | ETH_LINK_SPEED_100G;
return 0;
}
static const uint32_t *
nfp_net_supported_ptypes_get(struct rte_eth_dev *dev)
{
static const uint32_t ptypes[] = {
/* refers to nfp_net_set_hash() */
RTE_PTYPE_INNER_L3_IPV4,
RTE_PTYPE_INNER_L3_IPV6,
RTE_PTYPE_INNER_L3_IPV6_EXT,
RTE_PTYPE_INNER_L4_MASK,
RTE_PTYPE_UNKNOWN
};
if (dev->rx_pkt_burst == nfp_net_recv_pkts)
return ptypes;
return NULL;
}
static uint32_t
nfp_net_rx_queue_count(struct rte_eth_dev *dev, uint16_t queue_idx)
{
struct nfp_net_rxq *rxq;
struct nfp_net_rx_desc *rxds;
uint32_t idx;
uint32_t count;
rxq = (struct nfp_net_rxq *)dev->data->rx_queues[queue_idx];
idx = rxq->rd_p;
count = 0;
/*
* Other PMDs are just checking the DD bit in intervals of 4
* descriptors and counting all four if the first has the DD
* bit on. Of course, this is not accurate but can be good for
* performance. But ideally that should be done in descriptors
* chunks belonging to the same cache line
*/
while (count < rxq->rx_count) {
rxds = &rxq->rxds[idx];
if ((rxds->rxd.meta_len_dd & PCIE_DESC_RX_DD) == 0)
break;
count++;
idx++;
/* Wrapping? */
if ((idx) == rxq->rx_count)
idx = 0;
}
return count;
}
static int
nfp_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct rte_pci_device *pci_dev;
struct nfp_net_hw *hw;
int base = 0;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
pci_dev = RTE_ETH_DEV_TO_PCI(dev);
if (pci_dev->intr_handle.type != RTE_INTR_HANDLE_UIO)
base = 1;
/* Make sure all updates are written before un-masking */
rte_wmb();
nn_cfg_writeb(hw, NFP_NET_CFG_ICR(base + queue_id),
NFP_NET_CFG_ICR_UNMASKED);
return 0;
}
static int
nfp_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct rte_pci_device *pci_dev;
struct nfp_net_hw *hw;
int base = 0;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
pci_dev = RTE_ETH_DEV_TO_PCI(dev);
if (pci_dev->intr_handle.type != RTE_INTR_HANDLE_UIO)
base = 1;
/* Make sure all updates are written before un-masking */
rte_wmb();
nn_cfg_writeb(hw, NFP_NET_CFG_ICR(base + queue_id), 0x1);
return 0;
}
static void
nfp_net_dev_link_status_print(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_eth_link link;
rte_eth_linkstatus_get(dev, &link);
if (link.link_status)
PMD_DRV_LOG(INFO, "Port %d: Link Up - speed %u Mbps - %s",
dev->data->port_id, link.link_speed,
link.link_duplex == ETH_LINK_FULL_DUPLEX
? "full-duplex" : "half-duplex");
else
PMD_DRV_LOG(INFO, " Port %d: Link Down",
dev->data->port_id);
PMD_DRV_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
pci_dev->addr.domain, pci_dev->addr.bus,
pci_dev->addr.devid, pci_dev->addr.function);
}
/* Interrupt configuration and handling */
/*
* nfp_net_irq_unmask - Unmask an interrupt
*
* If MSI-X auto-masking is enabled clear the mask bit, otherwise
* clear the ICR for the entry.
*/
static void
nfp_net_irq_unmask(struct rte_eth_dev *dev)
{
struct nfp_net_hw *hw;
struct rte_pci_device *pci_dev;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
pci_dev = RTE_ETH_DEV_TO_PCI(dev);
if (hw->ctrl & NFP_NET_CFG_CTRL_MSIXAUTO) {
/* If MSI-X auto-masking is used, clear the entry */
rte_wmb();
rte_intr_ack(&pci_dev->intr_handle);
} else {
/* Make sure all updates are written before un-masking */
rte_wmb();
nn_cfg_writeb(hw, NFP_NET_CFG_ICR(NFP_NET_IRQ_LSC_IDX),
NFP_NET_CFG_ICR_UNMASKED);
}
}
static void
nfp_net_dev_interrupt_handler(void *param)
{
int64_t timeout;
struct rte_eth_link link;
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
PMD_DRV_LOG(DEBUG, "We got a LSC interrupt!!!");
rte_eth_linkstatus_get(dev, &link);
nfp_net_link_update(dev, 0);
/* likely to up */
if (!link.link_status) {
/* handle it 1 sec later, wait it being stable */
timeout = NFP_NET_LINK_UP_CHECK_TIMEOUT;
/* likely to down */
} else {
/* handle it 4 sec later, wait it being stable */
timeout = NFP_NET_LINK_DOWN_CHECK_TIMEOUT;
}
if (rte_eal_alarm_set(timeout * 1000,
nfp_net_dev_interrupt_delayed_handler,
(void *)dev) < 0) {
PMD_INIT_LOG(ERR, "Error setting alarm");
/* Unmasking */
nfp_net_irq_unmask(dev);
}
}
/*
* Interrupt handler which shall be registered for alarm callback for delayed
* handling specific interrupt to wait for the stable nic state. As the NIC
* interrupt state is not stable for nfp after link is just down, it needs
* to wait 4 seconds to get the stable status.
*
* @param handle Pointer to interrupt handle.
* @param param The address of parameter (struct rte_eth_dev *)
*
* @return void
*/
static void
nfp_net_dev_interrupt_delayed_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
nfp_net_link_update(dev, 0);
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
nfp_net_dev_link_status_print(dev);
/* Unmasking */
nfp_net_irq_unmask(dev);
}
static int
nfp_net_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* check that mtu is within the allowed range */
if (mtu < RTE_ETHER_MIN_MTU || (uint32_t)mtu > hw->max_mtu)
return -EINVAL;
/* mtu setting is forbidden if port is started */
if (dev->data->dev_started) {
PMD_DRV_LOG(ERR, "port %d must be stopped before configuration",
dev->data->port_id);
return -EBUSY;
}
/* switch to jumbo mode if needed */
if ((uint32_t)mtu > RTE_ETHER_MAX_LEN)
dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
else
dev->data->dev_conf.rxmode.offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME;
/* update max frame size */
dev->data->dev_conf.rxmode.max_rx_pkt_len = (uint32_t)mtu;
/* writing to configuration space */
nn_cfg_writel(hw, NFP_NET_CFG_MTU, (uint32_t)mtu);
hw->mtu = mtu;
return 0;
}
static int
nfp_net_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx, uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
const struct rte_memzone *tz;
struct nfp_net_rxq *rxq;
struct nfp_net_hw *hw;
uint32_t rx_desc_sz;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
/* Validating number of descriptors */
rx_desc_sz = nb_desc * sizeof(struct nfp_net_rx_desc);
if (rx_desc_sz % NFP_ALIGN_RING_DESC != 0 ||
nb_desc > NFP_NET_MAX_RX_DESC ||
nb_desc < NFP_NET_MIN_RX_DESC) {
PMD_DRV_LOG(ERR, "Wrong nb_desc value");
return -EINVAL;
}
/*
* Free memory prior to re-allocation if needed. This is the case after
* calling nfp_net_stop
*/
if (dev->data->rx_queues[queue_idx]) {
nfp_net_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* Allocating rx queue data structure */
rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct nfp_net_rxq),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq == NULL)
return -ENOMEM;
/* Hw queues mapping based on firmware configuration */
rxq->qidx = queue_idx;
rxq->fl_qcidx = queue_idx * hw->stride_rx;
rxq->rx_qcidx = rxq->fl_qcidx + (hw->stride_rx - 1);
rxq->qcp_fl = hw->rx_bar + NFP_QCP_QUEUE_OFF(rxq->fl_qcidx);
rxq->qcp_rx = hw->rx_bar + NFP_QCP_QUEUE_OFF(rxq->rx_qcidx);
/*
* Tracking mbuf size for detecting a potential mbuf overflow due to
* RX offset
*/
rxq->mem_pool = mp;
rxq->mbuf_size = rxq->mem_pool->elt_size;
rxq->mbuf_size -= (sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM);
hw->flbufsz = rxq->mbuf_size;
rxq->rx_count = nb_desc;
rxq->port_id = dev->data->port_id;
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
rxq->drop_en = rx_conf->rx_drop_en;
/*
* Allocate RX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
tz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
sizeof(struct nfp_net_rx_desc) *
NFP_NET_MAX_RX_DESC, NFP_MEMZONE_ALIGN,
socket_id);
if (tz == NULL) {
PMD_DRV_LOG(ERR, "Error allocating rx dma");
nfp_net_rx_queue_release(rxq);
return -ENOMEM;
}
/* Saving physical and virtual addresses for the RX ring */
rxq->dma = (uint64_t)tz->iova;
rxq->rxds = (struct nfp_net_rx_desc *)tz->addr;
/* mbuf pointers array for referencing mbufs linked to RX descriptors */
rxq->rxbufs = rte_zmalloc_socket("rxq->rxbufs",
sizeof(*rxq->rxbufs) * nb_desc,
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq->rxbufs == NULL) {
nfp_net_rx_queue_release(rxq);
return -ENOMEM;
}
PMD_RX_LOG(DEBUG, "rxbufs=%p hw_ring=%p dma_addr=0x%" PRIx64,
rxq->rxbufs, rxq->rxds, (unsigned long int)rxq->dma);
nfp_net_reset_rx_queue(rxq);
dev->data->rx_queues[queue_idx] = rxq;
rxq->hw = hw;
/*
* Telling the HW about the physical address of the RX ring and number
* of descriptors in log2 format
*/
nn_cfg_writeq(hw, NFP_NET_CFG_RXR_ADDR(queue_idx), rxq->dma);
nn_cfg_writeb(hw, NFP_NET_CFG_RXR_SZ(queue_idx), rte_log2_u32(nb_desc));
return 0;
}
static int
nfp_net_rx_fill_freelist(struct nfp_net_rxq *rxq)
{
struct nfp_net_rx_buff *rxe = rxq->rxbufs;
uint64_t dma_addr;
unsigned i;
PMD_RX_LOG(DEBUG, "nfp_net_rx_fill_freelist for %u descriptors",
rxq->rx_count);
for (i = 0; i < rxq->rx_count; i++) {
struct nfp_net_rx_desc *rxd;
struct rte_mbuf *mbuf = rte_pktmbuf_alloc(rxq->mem_pool);
if (mbuf == NULL) {
PMD_DRV_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
(unsigned)rxq->qidx);
return -ENOMEM;
}
dma_addr = rte_cpu_to_le_64(RTE_MBUF_DMA_ADDR_DEFAULT(mbuf));
rxd = &rxq->rxds[i];
rxd->fld.dd = 0;
rxd->fld.dma_addr_hi = (dma_addr >> 32) & 0xff;
rxd->fld.dma_addr_lo = dma_addr & 0xffffffff;
rxe[i].mbuf = mbuf;
PMD_RX_LOG(DEBUG, "[%d]: %" PRIx64, i, dma_addr);
}
/* Make sure all writes are flushed before telling the hardware */
rte_wmb();
/* Not advertising the whole ring as the firmware gets confused if so */
PMD_RX_LOG(DEBUG, "Increment FL write pointer in %u",
rxq->rx_count - 1);
nfp_qcp_ptr_add(rxq->qcp_fl, NFP_QCP_WRITE_PTR, rxq->rx_count - 1);
return 0;
}
static int
nfp_net_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
const struct rte_memzone *tz;
struct nfp_net_txq *txq;
uint16_t tx_free_thresh;
struct nfp_net_hw *hw;
uint32_t tx_desc_sz;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
/* Validating number of descriptors */
tx_desc_sz = nb_desc * sizeof(struct nfp_net_tx_desc);
if (tx_desc_sz % NFP_ALIGN_RING_DESC != 0 ||
nb_desc > NFP_NET_MAX_TX_DESC ||
nb_desc < NFP_NET_MIN_TX_DESC) {
PMD_DRV_LOG(ERR, "Wrong nb_desc value");
return -EINVAL;
}
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
tx_conf->tx_free_thresh :
DEFAULT_TX_FREE_THRESH);
if (tx_free_thresh > (nb_desc)) {
PMD_DRV_LOG(ERR,
"tx_free_thresh must be less than the number of TX "
"descriptors. (tx_free_thresh=%u port=%d "
"queue=%d)", (unsigned int)tx_free_thresh,
dev->data->port_id, (int)queue_idx);
return -(EINVAL);
}
/*
* Free memory prior to re-allocation if needed. This is the case after
* calling nfp_net_stop
*/
if (dev->data->tx_queues[queue_idx]) {
PMD_TX_LOG(DEBUG, "Freeing memory prior to re-allocation %d",
queue_idx);
nfp_net_tx_queue_release(dev->data->tx_queues[queue_idx]);
dev->data->tx_queues[queue_idx] = NULL;
}
/* Allocating tx queue data structure */
txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct nfp_net_txq),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq == NULL) {
PMD_DRV_LOG(ERR, "Error allocating tx dma");
return -ENOMEM;
}
/*
* Allocate TX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
sizeof(struct nfp_net_tx_desc) *
NFP_NET_MAX_TX_DESC, NFP_MEMZONE_ALIGN,
socket_id);
if (tz == NULL) {
PMD_DRV_LOG(ERR, "Error allocating tx dma");
nfp_net_tx_queue_release(txq);
return -ENOMEM;
}
txq->tx_count = nb_desc;
txq->tx_free_thresh = tx_free_thresh;
txq->tx_pthresh = tx_conf->tx_thresh.pthresh;
txq->tx_hthresh = tx_conf->tx_thresh.hthresh;
txq->tx_wthresh = tx_conf->tx_thresh.wthresh;
/* queue mapping based on firmware configuration */
txq->qidx = queue_idx;
txq->tx_qcidx = queue_idx * hw->stride_tx;
txq->qcp_q = hw->tx_bar + NFP_QCP_QUEUE_OFF(txq->tx_qcidx);
txq->port_id = dev->data->port_id;
/* Saving physical and virtual addresses for the TX ring */
txq->dma = (uint64_t)tz->iova;
txq->txds = (struct nfp_net_tx_desc *)tz->addr;
/* mbuf pointers array for referencing mbufs linked to TX descriptors */
txq->txbufs = rte_zmalloc_socket("txq->txbufs",
sizeof(*txq->txbufs) * nb_desc,
RTE_CACHE_LINE_SIZE, socket_id);
if (txq->txbufs == NULL) {
nfp_net_tx_queue_release(txq);
return -ENOMEM;
}
PMD_TX_LOG(DEBUG, "txbufs=%p hw_ring=%p dma_addr=0x%" PRIx64,
txq->txbufs, txq->txds, (unsigned long int)txq->dma);
nfp_net_reset_tx_queue(txq);
dev->data->tx_queues[queue_idx] = txq;
txq->hw = hw;
/*
* Telling the HW about the physical address of the TX ring and number
* of descriptors in log2 format
*/
nn_cfg_writeq(hw, NFP_NET_CFG_TXR_ADDR(queue_idx), txq->dma);
nn_cfg_writeb(hw, NFP_NET_CFG_TXR_SZ(queue_idx), rte_log2_u32(nb_desc));
return 0;
}
/* nfp_net_tx_tso - Set TX descriptor for TSO */
static inline void
nfp_net_tx_tso(struct nfp_net_txq *txq, struct nfp_net_tx_desc *txd,
struct rte_mbuf *mb)
{
uint64_t ol_flags;
struct nfp_net_hw *hw = txq->hw;
if (!(hw->cap & NFP_NET_CFG_CTRL_LSO_ANY))
goto clean_txd;
ol_flags = mb->ol_flags;
if (!(ol_flags & PKT_TX_TCP_SEG))
goto clean_txd;
txd->l3_offset = mb->l2_len;
txd->l4_offset = mb->l2_len + mb->l3_len;
txd->lso_hdrlen = mb->l2_len + mb->l3_len + mb->l4_len;
txd->mss = rte_cpu_to_le_16(mb->tso_segsz);
txd->flags = PCIE_DESC_TX_LSO;
return;
clean_txd:
txd->flags = 0;
txd->l3_offset = 0;
txd->l4_offset = 0;
txd->lso_hdrlen = 0;
txd->mss = 0;
}
/* nfp_net_tx_cksum - Set TX CSUM offload flags in TX descriptor */
static inline void
nfp_net_tx_cksum(struct nfp_net_txq *txq, struct nfp_net_tx_desc *txd,
struct rte_mbuf *mb)
{
uint64_t ol_flags;
struct nfp_net_hw *hw = txq->hw;
if (!(hw->cap & NFP_NET_CFG_CTRL_TXCSUM))
return;
ol_flags = mb->ol_flags;
/* IPv6 does not need checksum */
if (ol_flags & PKT_TX_IP_CKSUM)
txd->flags |= PCIE_DESC_TX_IP4_CSUM;
switch (ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_UDP_CKSUM:
txd->flags |= PCIE_DESC_TX_UDP_CSUM;
break;
case PKT_TX_TCP_CKSUM:
txd->flags |= PCIE_DESC_TX_TCP_CSUM;
break;
}
if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
txd->flags |= PCIE_DESC_TX_CSUM;
}
/* nfp_net_rx_cksum - set mbuf checksum flags based on RX descriptor flags */
static inline void
nfp_net_rx_cksum(struct nfp_net_rxq *rxq, struct nfp_net_rx_desc *rxd,
struct rte_mbuf *mb)
{
struct nfp_net_hw *hw = rxq->hw;
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RXCSUM))
return;
/* If IPv4 and IP checksum error, fail */
if (unlikely((rxd->rxd.flags & PCIE_DESC_RX_IP4_CSUM) &&
!(rxd->rxd.flags & PCIE_DESC_RX_IP4_CSUM_OK)))
mb->ol_flags |= PKT_RX_IP_CKSUM_BAD;
else
mb->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
/* If neither UDP nor TCP return */
if (!(rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM) &&
!(rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM))
return;
if (likely(rxd->rxd.flags & PCIE_DESC_RX_L4_CSUM_OK))
mb->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
else
mb->ol_flags |= PKT_RX_L4_CKSUM_BAD;
}
#define NFP_HASH_OFFSET ((uint8_t *)mbuf->buf_addr + mbuf->data_off - 4)
#define NFP_HASH_TYPE_OFFSET ((uint8_t *)mbuf->buf_addr + mbuf->data_off - 8)
#define NFP_DESC_META_LEN(d) (d->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK)
/*
* nfp_net_set_hash - Set mbuf hash data
*
* The RSS hash and hash-type are pre-pended to the packet data.
* Extract and decode it and set the mbuf fields.
*/
static inline void
nfp_net_set_hash(struct nfp_net_rxq *rxq, struct nfp_net_rx_desc *rxd,
struct rte_mbuf *mbuf)
{
struct nfp_net_hw *hw = rxq->hw;
uint8_t *meta_offset;
uint32_t meta_info;
uint32_t hash = 0;
uint32_t hash_type = 0;
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
return;
/* this is true for new firmwares */
if (likely(((hw->cap & NFP_NET_CFG_CTRL_RSS2) ||
(NFD_CFG_MAJOR_VERSION_of(hw->ver) == 4)) &&
NFP_DESC_META_LEN(rxd))) {
/*
* new metadata api:
* <---- 32 bit ----->
* m field type word
* e data field #2
* t data field #1
* a data field #0
* ====================
* packet data
*
* Field type word contains up to 8 4bit field types
* A 4bit field type refers to a data field word
* A data field word can have several 4bit field types
*/
meta_offset = rte_pktmbuf_mtod(mbuf, uint8_t *);
meta_offset -= NFP_DESC_META_LEN(rxd);
meta_info = rte_be_to_cpu_32(*(uint32_t *)meta_offset);
meta_offset += 4;
/* NFP PMD just supports metadata for hashing */
switch (meta_info & NFP_NET_META_FIELD_MASK) {
case NFP_NET_META_HASH:
/* next field type is about the hash type */
meta_info >>= NFP_NET_META_FIELD_SIZE;
/* hash value is in the data field */
hash = rte_be_to_cpu_32(*(uint32_t *)meta_offset);
hash_type = meta_info & NFP_NET_META_FIELD_MASK;
break;
default:
/* Unsupported metadata can be a performance issue */
return;
}
} else {
if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
return;
hash = rte_be_to_cpu_32(*(uint32_t *)NFP_HASH_OFFSET);
hash_type = rte_be_to_cpu_32(*(uint32_t *)NFP_HASH_TYPE_OFFSET);
}
mbuf->hash.rss = hash;
mbuf->ol_flags |= PKT_RX_RSS_HASH;
switch (hash_type) {
case NFP_NET_RSS_IPV4:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV4;
break;
case NFP_NET_RSS_IPV6:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6;
break;
case NFP_NET_RSS_IPV6_EX:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
break;
case NFP_NET_RSS_IPV4_TCP:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
break;
case NFP_NET_RSS_IPV6_TCP:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
break;
case NFP_NET_RSS_IPV4_UDP:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
break;
case NFP_NET_RSS_IPV6_UDP:
mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
break;
default:
mbuf->packet_type |= RTE_PTYPE_INNER_L4_MASK;
}
}
static inline void
nfp_net_mbuf_alloc_failed(struct nfp_net_rxq *rxq)
{
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
}
#define NFP_DESC_META_LEN(d) (d->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK)
/*
* RX path design:
*
* There are some decisions to take:
* 1) How to check DD RX descriptors bit
* 2) How and when to allocate new mbufs
*
* Current implementation checks just one single DD bit each loop. As each
* descriptor is 8 bytes, it is likely a good idea to check descriptors in
* a single cache line instead. Tests with this change have not shown any
* performance improvement but it requires further investigation. For example,
* depending on which descriptor is next, the number of descriptors could be
* less than 8 for just checking those in the same cache line. This implies
* extra work which could be counterproductive by itself. Indeed, last firmware
* changes are just doing this: writing several descriptors with the DD bit
* for saving PCIe bandwidth and DMA operations from the NFP.
*
* Mbuf allocation is done when a new packet is received. Then the descriptor
* is automatically linked with the new mbuf and the old one is given to the
* user. The main drawback with this design is mbuf allocation is heavier than
* using bulk allocations allowed by DPDK with rte_mempool_get_bulk. From the
* cache point of view it does not seem allocating the mbuf early on as we are
* doing now have any benefit at all. Again, tests with this change have not
* shown any improvement. Also, rte_mempool_get_bulk returns all or nothing
* so looking at the implications of this type of allocation should be studied
* deeply
*/
static uint16_t
nfp_net_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct nfp_net_rxq *rxq;
struct nfp_net_rx_desc *rxds;
struct nfp_net_rx_buff *rxb;
struct nfp_net_hw *hw;
struct rte_mbuf *mb;
struct rte_mbuf *new_mb;
uint16_t nb_hold;
uint64_t dma_addr;
int avail;
rxq = rx_queue;
if (unlikely(rxq == NULL)) {
/*
* DPDK just checks the queue is lower than max queues
* enabled. But the queue needs to be configured
*/
RTE_LOG_DP(ERR, PMD, "RX Bad queue\n");
return -EINVAL;
}
hw = rxq->hw;
avail = 0;
nb_hold = 0;
while (avail < nb_pkts) {
rxb = &rxq->rxbufs[rxq->rd_p];
if (unlikely(rxb == NULL)) {
RTE_LOG_DP(ERR, PMD, "rxb does not exist!\n");
break;
}
rxds = &rxq->rxds[rxq->rd_p];
if ((rxds->rxd.meta_len_dd & PCIE_DESC_RX_DD) == 0)
break;
/*
* Memory barrier to ensure that we won't do other
* reads before the DD bit.
*/
rte_rmb();
/*
* We got a packet. Let's alloc a new mbuf for refilling the
* free descriptor ring as soon as possible
*/
new_mb = rte_pktmbuf_alloc(rxq->mem_pool);
if (unlikely(new_mb == NULL)) {
RTE_LOG_DP(DEBUG, PMD,
"RX mbuf alloc failed port_id=%u queue_id=%u\n",
rxq->port_id, (unsigned int)rxq->qidx);
nfp_net_mbuf_alloc_failed(rxq);
break;
}
nb_hold++;
/*
* Grab the mbuf and refill the descriptor with the
* previously allocated mbuf
*/
mb = rxb->mbuf;
rxb->mbuf = new_mb;
PMD_RX_LOG(DEBUG, "Packet len: %u, mbuf_size: %u",
rxds->rxd.data_len, rxq->mbuf_size);
/* Size of this segment */
mb->data_len = rxds->rxd.data_len - NFP_DESC_META_LEN(rxds);
/* Size of the whole packet. We just support 1 segment */
mb->pkt_len = rxds->rxd.data_len - NFP_DESC_META_LEN(rxds);
if (unlikely((mb->data_len + hw->rx_offset) >
rxq->mbuf_size)) {
/*
* This should not happen and the user has the
* responsibility of avoiding it. But we have
* to give some info about the error
*/
RTE_LOG_DP(ERR, PMD,
"mbuf overflow likely due to the RX offset.\n"
"\t\tYour mbuf size should have extra space for"
" RX offset=%u bytes.\n"
"\t\tCurrently you just have %u bytes available"
" but the received packet is %u bytes long",
hw->rx_offset,
rxq->mbuf_size - hw->rx_offset,
mb->data_len);
return -EINVAL;
}
/* Filling the received mbuf with packet info */
if (hw->rx_offset)
mb->data_off = RTE_PKTMBUF_HEADROOM + hw->rx_offset;
else
mb->data_off = RTE_PKTMBUF_HEADROOM +
NFP_DESC_META_LEN(rxds);
/* No scatter mode supported */
mb->nb_segs = 1;
mb->next = NULL;
mb->port = rxq->port_id;
/* Checking the RSS flag */
nfp_net_set_hash(rxq, rxds, mb);
/* Checking the checksum flag */
nfp_net_rx_cksum(rxq, rxds, mb);
if ((rxds->rxd.flags & PCIE_DESC_RX_VLAN) &&
(hw->ctrl & NFP_NET_CFG_CTRL_RXVLAN)) {
mb->vlan_tci = rte_cpu_to_le_32(rxds->rxd.vlan);
mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
}
/* Adding the mbuf to the mbuf array passed by the app */
rx_pkts[avail++] = mb;
/* Now resetting and updating the descriptor */
rxds->vals[0] = 0;
rxds->vals[1] = 0;
dma_addr = rte_cpu_to_le_64(RTE_MBUF_DMA_ADDR_DEFAULT(new_mb));
rxds->fld.dd = 0;
rxds->fld.dma_addr_hi = (dma_addr >> 32) & 0xff;
rxds->fld.dma_addr_lo = dma_addr & 0xffffffff;
rxq->rd_p++;
if (unlikely(rxq->rd_p == rxq->rx_count)) /* wrapping?*/
rxq->rd_p = 0;
}
if (nb_hold == 0)
return nb_hold;
PMD_RX_LOG(DEBUG, "RX port_id=%u queue_id=%u, %d packets received",
rxq->port_id, (unsigned int)rxq->qidx, nb_hold);
nb_hold += rxq->nb_rx_hold;
/*
* FL descriptors needs to be written before incrementing the
* FL queue WR pointer
*/
rte_wmb();
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port=%u queue=%u nb_hold=%u avail=%u",
rxq->port_id, (unsigned int)rxq->qidx,
(unsigned)nb_hold, (unsigned)avail);
nfp_qcp_ptr_add(rxq->qcp_fl, NFP_QCP_WRITE_PTR, nb_hold);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return avail;
}
/*
* nfp_net_tx_free_bufs - Check for descriptors with a complete
* status
* @txq: TX queue to work with
* Returns number of descriptors freed
*/
int
nfp_net_tx_free_bufs(struct nfp_net_txq *txq)
{
uint32_t qcp_rd_p;
int todo;
PMD_TX_LOG(DEBUG, "queue %u. Check for descriptor with a complete"
" status", txq->qidx);
/* Work out how many packets have been sent */
qcp_rd_p = nfp_qcp_read(txq->qcp_q, NFP_QCP_READ_PTR);
if (qcp_rd_p == txq->rd_p) {
PMD_TX_LOG(DEBUG, "queue %u: It seems harrier is not sending "
"packets (%u, %u)", txq->qidx,
qcp_rd_p, txq->rd_p);
return 0;
}
if (qcp_rd_p > txq->rd_p)
todo = qcp_rd_p - txq->rd_p;
else
todo = qcp_rd_p + txq->tx_count - txq->rd_p;
PMD_TX_LOG(DEBUG, "qcp_rd_p %u, txq->rd_p: %u, qcp->rd_p: %u",
qcp_rd_p, txq->rd_p, txq->rd_p);
if (todo == 0)
return todo;
txq->rd_p += todo;
if (unlikely(txq->rd_p >= txq->tx_count))
txq->rd_p -= txq->tx_count;
return todo;
}
/* Leaving always free descriptors for avoiding wrapping confusion */
static inline
uint32_t nfp_free_tx_desc(struct nfp_net_txq *txq)
{
if (txq->wr_p >= txq->rd_p)
return txq->tx_count - (txq->wr_p - txq->rd_p) - 8;
else
return txq->rd_p - txq->wr_p - 8;
}
/*
* nfp_net_txq_full - Check if the TX queue free descriptors
* is below tx_free_threshold
*
* @txq: TX queue to check
*
* This function uses the host copy* of read/write pointers
*/
static inline
uint32_t nfp_net_txq_full(struct nfp_net_txq *txq)
{
return (nfp_free_tx_desc(txq) < txq->tx_free_thresh);
}
static uint16_t
nfp_net_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct nfp_net_txq *txq;
struct nfp_net_hw *hw;
struct nfp_net_tx_desc *txds, txd;
struct rte_mbuf *pkt;
uint64_t dma_addr;
int pkt_size, dma_size;
uint16_t free_descs, issued_descs;
struct rte_mbuf **lmbuf;
int i;
txq = tx_queue;
hw = txq->hw;
txds = &txq->txds[txq->wr_p];
PMD_TX_LOG(DEBUG, "working for queue %u at pos %d and %u packets",
txq->qidx, txq->wr_p, nb_pkts);
if ((nfp_free_tx_desc(txq) < nb_pkts) || (nfp_net_txq_full(txq)))
nfp_net_tx_free_bufs(txq);
free_descs = (uint16_t)nfp_free_tx_desc(txq);
if (unlikely(free_descs == 0))
return 0;
pkt = *tx_pkts;
i = 0;
issued_descs = 0;
PMD_TX_LOG(DEBUG, "queue: %u. Sending %u packets",
txq->qidx, nb_pkts);
/* Sending packets */
while ((i < nb_pkts) && free_descs) {
/* Grabbing the mbuf linked to the current descriptor */
lmbuf = &txq->txbufs[txq->wr_p].mbuf;
/* Warming the cache for releasing the mbuf later on */
RTE_MBUF_PREFETCH_TO_FREE(*lmbuf);
pkt = *(tx_pkts + i);
if (unlikely((pkt->nb_segs > 1) &&
!(hw->cap & NFP_NET_CFG_CTRL_GATHER))) {
PMD_INIT_LOG(INFO, "NFP_NET_CFG_CTRL_GATHER not set");
rte_panic("Multisegment packet unsupported\n");
}
/* Checking if we have enough descriptors */
if (unlikely(pkt->nb_segs > free_descs))
goto xmit_end;
/*
* Checksum and VLAN flags just in the first descriptor for a
* multisegment packet, but TSO info needs to be in all of them.
*/
txd.data_len = pkt->pkt_len;
nfp_net_tx_tso(txq, &txd, pkt);
nfp_net_tx_cksum(txq, &txd, pkt);
if ((pkt->ol_flags & PKT_TX_VLAN_PKT) &&
(hw->cap & NFP_NET_CFG_CTRL_TXVLAN)) {
txd.flags |= PCIE_DESC_TX_VLAN;
txd.vlan = pkt->vlan_tci;
}
/*
* mbuf data_len is the data in one segment and pkt_len data
* in the whole packet. When the packet is just one segment,
* then data_len = pkt_len
*/
pkt_size = pkt->pkt_len;
while (pkt) {
/* Copying TSO, VLAN and cksum info */
*txds = txd;
/* Releasing mbuf used by this descriptor previously*/
if (*lmbuf)
rte_pktmbuf_free_seg(*lmbuf);
/*
* Linking mbuf with descriptor for being released
* next time descriptor is used
*/
*lmbuf = pkt;
dma_size = pkt->data_len;
dma_addr = rte_mbuf_data_iova(pkt);
PMD_TX_LOG(DEBUG, "Working with mbuf at dma address:"
"%" PRIx64 "", dma_addr);
/* Filling descriptors fields */
txds->dma_len = dma_size;
txds->data_len = txd.data_len;
txds->dma_addr_hi = (dma_addr >> 32) & 0xff;
txds->dma_addr_lo = (dma_addr & 0xffffffff);
ASSERT(free_descs > 0);
free_descs--;
txq->wr_p++;
if (unlikely(txq->wr_p == txq->tx_count)) /* wrapping?*/
txq->wr_p = 0;
pkt_size -= dma_size;
/*
* Making the EOP, packets with just one segment
* the priority
*/
if (likely(!pkt_size))
txds->offset_eop = PCIE_DESC_TX_EOP;
else
txds->offset_eop = 0;
pkt = pkt->next;
/* Referencing next free TX descriptor */
txds = &txq->txds[txq->wr_p];
lmbuf = &txq->txbufs[txq->wr_p].mbuf;
issued_descs++;
}
i++;
}
xmit_end:
/* Increment write pointers. Force memory write before we let HW know */
rte_wmb();
nfp_qcp_ptr_add(txq->qcp_q, NFP_QCP_WRITE_PTR, issued_descs);
return i;
}
static int
nfp_net_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
uint32_t new_ctrl, update;
struct nfp_net_hw *hw;
int ret;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
new_ctrl = 0;
/* Enable vlan strip if it is not configured yet */
if ((mask & ETH_VLAN_STRIP_OFFLOAD) &&
!(hw->ctrl & NFP_NET_CFG_CTRL_RXVLAN))
new_ctrl = hw->ctrl | NFP_NET_CFG_CTRL_RXVLAN;
/* Disable vlan strip just if it is configured */
if (!(mask & ETH_VLAN_STRIP_OFFLOAD) &&
(hw->ctrl & NFP_NET_CFG_CTRL_RXVLAN))
new_ctrl = hw->ctrl & ~NFP_NET_CFG_CTRL_RXVLAN;
if (new_ctrl == 0)
return 0;
update = NFP_NET_CFG_UPDATE_GEN;
ret = nfp_net_reconfig(hw, new_ctrl, update);
if (!ret)
hw->ctrl = new_ctrl;
return ret;
}
static int
nfp_net_rss_reta_write(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
uint32_t reta, mask;
int i, j;
int idx, shift;
struct nfp_net_hw *hw =
NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (reta_size != NFP_NET_CFG_RSS_ITBL_SZ) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number hardware can supported "
"(%d)", reta_size, NFP_NET_CFG_RSS_ITBL_SZ);
return -EINVAL;
}
/*
* Update Redirection Table. There are 128 8bit-entries which can be
* manage as 32 32bit-entries
*/
for (i = 0; i < reta_size; i += 4) {
/* Handling 4 RSS entries per loop */
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
mask = (uint8_t)((reta_conf[idx].mask >> shift) & 0xF);
if (!mask)
continue;
reta = 0;
/* If all 4 entries were set, don't need read RETA register */
if (mask != 0xF)
reta = nn_cfg_readl(hw, NFP_NET_CFG_RSS_ITBL + i);
for (j = 0; j < 4; j++) {
if (!(mask & (0x1 << j)))
continue;
if (mask != 0xF)
/* Clearing the entry bits */
reta &= ~(0xFF << (8 * j));
reta |= reta_conf[idx].reta[shift + j] << (8 * j);
}
nn_cfg_writel(hw, NFP_NET_CFG_RSS_ITBL + (idx * 64) + shift,
reta);
}
return 0;
}
/* Update Redirection Table(RETA) of Receive Side Scaling of Ethernet device */
static int
nfp_net_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct nfp_net_hw *hw =
NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t update;
int ret;
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
return -EINVAL;
ret = nfp_net_rss_reta_write(dev, reta_conf, reta_size);
if (ret != 0)
return ret;
update = NFP_NET_CFG_UPDATE_RSS;
if (nfp_net_reconfig(hw, hw->ctrl, update) < 0)
return -EIO;
return 0;
}
/* Query Redirection Table(RETA) of Receive Side Scaling of Ethernet device. */
static int
nfp_net_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
uint8_t i, j, mask;
int idx, shift;
uint32_t reta;
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
return -EINVAL;
if (reta_size != NFP_NET_CFG_RSS_ITBL_SZ) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number hardware can supported "
"(%d)", reta_size, NFP_NET_CFG_RSS_ITBL_SZ);
return -EINVAL;
}
/*
* Reading Redirection Table. There are 128 8bit-entries which can be
* manage as 32 32bit-entries
*/
for (i = 0; i < reta_size; i += 4) {
/* Handling 4 RSS entries per loop */
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
mask = (uint8_t)((reta_conf[idx].mask >> shift) & 0xF);
if (!mask)
continue;
reta = nn_cfg_readl(hw, NFP_NET_CFG_RSS_ITBL + (idx * 64) +
shift);
for (j = 0; j < 4; j++) {
if (!(mask & (0x1 << j)))
continue;
reta_conf[idx].reta[shift + j] =
(uint8_t)((reta >> (8 * j)) & 0xF);
}
}
return 0;
}
static int
nfp_net_rss_hash_write(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct nfp_net_hw *hw;
uint64_t rss_hf;
uint32_t cfg_rss_ctrl = 0;
uint8_t key;
int i;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Writing the key byte a byte */
for (i = 0; i < rss_conf->rss_key_len; i++) {
memcpy(&key, &rss_conf->rss_key[i], 1);
nn_cfg_writeb(hw, NFP_NET_CFG_RSS_KEY + i, key);
}
rss_hf = rss_conf->rss_hf;
if (rss_hf & ETH_RSS_IPV4)
cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV4;
if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV4_TCP;
if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV4_UDP;
if (rss_hf & ETH_RSS_IPV6)
cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV6;
if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV6_TCP;
if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV6_UDP;
cfg_rss_ctrl |= NFP_NET_CFG_RSS_MASK;
cfg_rss_ctrl |= NFP_NET_CFG_RSS_TOEPLITZ;
/* configuring where to apply the RSS hash */
nn_cfg_writel(hw, NFP_NET_CFG_RSS_CTRL, cfg_rss_ctrl);
/* Writing the key size */
nn_cfg_writeb(hw, NFP_NET_CFG_RSS_KEY_SZ, rss_conf->rss_key_len);
return 0;
}
static int
nfp_net_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
uint32_t update;
uint64_t rss_hf;
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
rss_hf = rss_conf->rss_hf;
/* Checking if RSS is enabled */
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS)) {
if (rss_hf != 0) { /* Enable RSS? */
PMD_DRV_LOG(ERR, "RSS unsupported");
return -EINVAL;
}
return 0; /* Nothing to do */
}
if (rss_conf->rss_key_len > NFP_NET_CFG_RSS_KEY_SZ) {
PMD_DRV_LOG(ERR, "hash key too long");
return -EINVAL;
}
nfp_net_rss_hash_write(dev, rss_conf);
update = NFP_NET_CFG_UPDATE_RSS;
if (nfp_net_reconfig(hw, hw->ctrl, update) < 0)
return -EIO;
return 0;
}
static int
nfp_net_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
uint64_t rss_hf;
uint32_t cfg_rss_ctrl;
uint8_t key;
int i;
struct nfp_net_hw *hw;
hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
return -EINVAL;
rss_hf = rss_conf->rss_hf;
cfg_rss_ctrl = nn_cfg_readl(hw, NFP_NET_CFG_RSS_CTRL);
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV4)
rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP | ETH_RSS_NONFRAG_IPV4_UDP;
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV4_TCP)
rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV6_TCP)
rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV4_UDP)
rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV6_UDP)
rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV6)
rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP | ETH_RSS_NONFRAG_IPV6_UDP;
/* Propagate current RSS hash functions to caller */
rss_conf->rss_hf = rss_hf;
/* Reading the key size */
rss_conf->rss_key_len = nn_cfg_readl(hw, NFP_NET_CFG_RSS_KEY_SZ);
/* Reading the key byte a byte */
for (i = 0; i < rss_conf->rss_key_len; i++) {
key = nn_cfg_readb(hw, NFP_NET_CFG_RSS_KEY + i);
memcpy(&rss_conf->rss_key[i], &key, 1);
}
return 0;
}
static int
nfp_net_rss_config_default(struct rte_eth_dev *dev)
{
struct rte_eth_conf *dev_conf;
struct rte_eth_rss_conf rss_conf;
struct rte_eth_rss_reta_entry64 nfp_reta_conf[2];
uint16_t rx_queues = dev->data->nb_rx_queues;
uint16_t queue;
int i, j, ret;
PMD_DRV_LOG(INFO, "setting default RSS conf for %u queues",
rx_queues);
nfp_reta_conf[0].mask = ~0x0;
nfp_reta_conf[1].mask = ~0x0;
queue = 0;
for (i = 0; i < 0x40; i += 8) {
for (j = i; j < (i + 8); j++) {
nfp_reta_conf[0].reta[j] = queue;
nfp_reta_conf[1].reta[j] = queue++;
queue %= rx_queues;
}
}
ret = nfp_net_rss_reta_write(dev, nfp_reta_conf, 0x80);
if (ret != 0)
return ret;
dev_conf = &dev->data->dev_conf;
if (!dev_conf) {
PMD_DRV_LOG(INFO, "wrong rss conf");
return -EINVAL;
}
rss_conf = dev_conf->rx_adv_conf.rss_conf;
ret = nfp_net_rss_hash_write(dev, &rss_conf);
return ret;
}
/* Initialise and register driver with DPDK Application */
static const struct eth_dev_ops nfp_net_eth_dev_ops = {
.dev_configure = nfp_net_configure,
.dev_start = nfp_net_start,
.dev_stop = nfp_net_stop,
.dev_set_link_up = nfp_net_set_link_up,
.dev_set_link_down = nfp_net_set_link_down,
.dev_close = nfp_net_close,
.promiscuous_enable = nfp_net_promisc_enable,
.promiscuous_disable = nfp_net_promisc_disable,
.link_update = nfp_net_link_update,
.stats_get = nfp_net_stats_get,
.stats_reset = nfp_net_stats_reset,
.dev_infos_get = nfp_net_infos_get,
.dev_supported_ptypes_get = nfp_net_supported_ptypes_get,
.mtu_set = nfp_net_dev_mtu_set,
.mac_addr_set = nfp_set_mac_addr,
.vlan_offload_set = nfp_net_vlan_offload_set,
.reta_update = nfp_net_reta_update,
.reta_query = nfp_net_reta_query,
.rss_hash_update = nfp_net_rss_hash_update,
.rss_hash_conf_get = nfp_net_rss_hash_conf_get,
.rx_queue_setup = nfp_net_rx_queue_setup,
.rx_queue_release = nfp_net_rx_queue_release,
.rx_queue_count = nfp_net_rx_queue_count,
.tx_queue_setup = nfp_net_tx_queue_setup,
.tx_queue_release = nfp_net_tx_queue_release,
.rx_queue_intr_enable = nfp_rx_queue_intr_enable,
.rx_queue_intr_disable = nfp_rx_queue_intr_disable,
};
/*
* All eth_dev created got its private data, but before nfp_net_init, that
* private data is referencing private data for all the PF ports. This is due
* to how the vNIC bars are mapped based on first port, so all ports need info
* about port 0 private data. Inside nfp_net_init the private data pointer is
* changed to the right address for each port once the bars have been mapped.
*
* This functions helps to find out which port and therefore which offset
* inside the private data array to use.
*/
static int
get_pf_port_number(char *name)
{
char *pf_str = name;
int size = 0;
while ((*pf_str != '_') && (*pf_str != '\0') && (size++ < 30))
pf_str++;
if (size == 30)
/*
* This should not happen at all and it would mean major
* implementation fault.
*/
rte_panic("nfp_net: problem with pf device name\n");
/* Expecting _portX with X within [0,7] */
pf_str += 5;
return (int)strtol(pf_str, NULL, 10);
}
static int
nfp_net_init(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev;
struct nfp_net_hw *hw, *hwport0;
uint64_t tx_bar_off = 0, rx_bar_off = 0;
uint32_t start_q;
int stride = 4;
int port = 0;
int err;
PMD_INIT_FUNC_TRACE();
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
/* NFP can not handle DMA addresses requiring more than 40 bits */
if (rte_mem_check_dma_mask(40)) {
RTE_LOG(ERR, PMD, "device %s can not be used:",
pci_dev->device.name);
RTE_LOG(ERR, PMD, "\trestricted dma mask to 40 bits!\n");
return -ENODEV;
};
if ((pci_dev->id.device_id == PCI_DEVICE_ID_NFP4000_PF_NIC) ||
(pci_dev->id.device_id == PCI_DEVICE_ID_NFP6000_PF_NIC)) {
port = get_pf_port_number(eth_dev->data->name);
if (port < 0 || port > 7) {
PMD_DRV_LOG(ERR, "Port value is wrong");
return -ENODEV;
}
PMD_INIT_LOG(DEBUG, "Working with PF port value %d", port);
/* This points to port 0 private data */
hwport0 = NFP_NET_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
/* This points to the specific port private data */
hw = &hwport0[port];
} else {
hw = NFP_NET_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
hwport0 = 0;
}
eth_dev->dev_ops = &nfp_net_eth_dev_ops;
eth_dev->rx_pkt_burst = &nfp_net_recv_pkts;
eth_dev->tx_pkt_burst = &nfp_net_xmit_pkts;
/* For secondary processes, the primary has done all the work */
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
rte_eth_copy_pci_info(eth_dev, pci_dev);
hw->device_id = pci_dev->id.device_id;
hw->vendor_id = pci_dev->id.vendor_id;
hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
PMD_INIT_LOG(DEBUG, "nfp_net: device (%u:%u) %u:%u:%u:%u",
pci_dev->id.vendor_id, pci_dev->id.device_id,
pci_dev->addr.domain, pci_dev->addr.bus,
pci_dev->addr.devid, pci_dev->addr.function);
hw->ctrl_bar = (uint8_t *)pci_dev->mem_resource[0].addr;
if (hw->ctrl_bar == NULL) {
PMD_DRV_LOG(ERR,
"hw->ctrl_bar is NULL. BAR0 not configured");
return -ENODEV;
}
if (hw->is_pf && port == 0) {
hw->ctrl_bar = nfp_rtsym_map(hw->sym_tbl, "_pf0_net_bar0",
hw->total_ports * 32768,
&hw->ctrl_area);
if (!hw->ctrl_bar) {
printf("nfp_rtsym_map fails for _pf0_net_ctrl_bar");
return -EIO;
}
PMD_INIT_LOG(DEBUG, "ctrl bar: %p", hw->ctrl_bar);
}
if (port > 0) {
if (!hwport0->ctrl_bar)
return -ENODEV;
/* address based on port0 offset */
hw->ctrl_bar = hwport0->ctrl_bar +
(port * NFP_PF_CSR_SLICE_SIZE);
}
PMD_INIT_LOG(DEBUG, "ctrl bar: %p", hw->ctrl_bar);
hw->max_rx_queues = nn_cfg_readl(hw, NFP_NET_CFG_MAX_RXRINGS);
hw->max_tx_queues = nn_cfg_readl(hw, NFP_NET_CFG_MAX_TXRINGS);
/* Work out where in the BAR the queues start. */
switch (pci_dev->id.device_id) {
case PCI_DEVICE_ID_NFP4000_PF_NIC:
case PCI_DEVICE_ID_NFP6000_PF_NIC:
case PCI_DEVICE_ID_NFP6000_VF_NIC:
start_q = nn_cfg_readl(hw, NFP_NET_CFG_START_TXQ);
tx_bar_off = (uint64_t)start_q * NFP_QCP_QUEUE_ADDR_SZ;
start_q = nn_cfg_readl(hw, NFP_NET_CFG_START_RXQ);
rx_bar_off = (uint64_t)start_q * NFP_QCP_QUEUE_ADDR_SZ;
break;
default:
PMD_DRV_LOG(ERR, "nfp_net: no device ID matching");
err = -ENODEV;
goto dev_err_ctrl_map;
}
PMD_INIT_LOG(DEBUG, "tx_bar_off: 0x%" PRIx64 "", tx_bar_off);
PMD_INIT_LOG(DEBUG, "rx_bar_off: 0x%" PRIx64 "", rx_bar_off);
if (hw->is_pf && port == 0) {
/* configure access to tx/rx vNIC BARs */
hwport0->hw_queues = nfp_cpp_map_area(hw->cpp, 0, 0,
NFP_PCIE_QUEUE(0),
NFP_QCP_QUEUE_AREA_SZ,
&hw->hwqueues_area);
if (!hwport0->hw_queues) {
printf("nfp_rtsym_map fails for net.qc");
err = -EIO;
goto dev_err_ctrl_map;
}
PMD_INIT_LOG(DEBUG, "tx/rx bar address: 0x%p",
hwport0->hw_queues);
}
if (hw->is_pf) {
hw->tx_bar = hwport0->hw_queues + tx_bar_off;
hw->rx_bar = hwport0->hw_queues + rx_bar_off;
eth_dev->data->dev_private = hw;
} else {
hw->tx_bar = (uint8_t *)pci_dev->mem_resource[2].addr +
tx_bar_off;
hw->rx_bar = (uint8_t *)pci_dev->mem_resource[2].addr +
rx_bar_off;
}
PMD_INIT_LOG(DEBUG, "ctrl_bar: %p, tx_bar: %p, rx_bar: %p",
hw->ctrl_bar, hw->tx_bar, hw->rx_bar);
nfp_net_cfg_queue_setup(hw);
/* Get some of the read-only fields from the config BAR */
hw->ver = nn_cfg_readl(hw, NFP_NET_CFG_VERSION);
hw->cap = nn_cfg_readl(hw, NFP_NET_CFG_CAP);
hw->max_mtu = nn_cfg_readl(hw, NFP_NET_CFG_MAX_MTU);
hw->mtu = RTE_ETHER_MTU;
/* VLAN insertion is incompatible with LSOv2 */
if (hw->cap & NFP_NET_CFG_CTRL_LSO2)
hw->cap &= ~NFP_NET_CFG_CTRL_TXVLAN;
if (NFD_CFG_MAJOR_VERSION_of(hw->ver) < 2)
hw->rx_offset = NFP_NET_RX_OFFSET;
else
hw->rx_offset = nn_cfg_readl(hw, NFP_NET_CFG_RX_OFFSET_ADDR);
PMD_INIT_LOG(INFO, "VER: %u.%u, Maximum supported MTU: %d",
NFD_CFG_MAJOR_VERSION_of(hw->ver),
NFD_CFG_MINOR_VERSION_of(hw->ver), hw->max_mtu);
PMD_INIT_LOG(INFO, "CAP: %#x, %s%s%s%s%s%s%s%s%s%s%s%s%s%s", hw->cap,
hw->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "",
hw->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "",
hw->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "",
hw->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "",
hw->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "",
hw->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "",
hw->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "",
hw->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "",
hw->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "",
hw->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
hw->cap & NFP_NET_CFG_CTRL_LSO ? "TSO " : "",
hw->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSOv2 " : "",
hw->cap & NFP_NET_CFG_CTRL_RSS ? "RSS " : "",
hw->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSSv2 " : "");
hw->ctrl = 0;
hw->stride_rx = stride;
hw->stride_tx = stride;
PMD_INIT_LOG(INFO, "max_rx_queues: %u, max_tx_queues: %u",
hw->max_rx_queues, hw->max_tx_queues);
/* Initializing spinlock for reconfigs */
rte_spinlock_init(&hw->reconfig_lock);
/* Allocating memory for mac addr */
eth_dev->data->mac_addrs = rte_zmalloc("mac_addr",
RTE_ETHER_ADDR_LEN, 0);
if (eth_dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR, "Failed to space for MAC address");
err = -ENOMEM;
goto dev_err_queues_map;
}
if (hw->is_pf) {
nfp_net_pf_read_mac(hwport0, port);
nfp_net_write_mac(hw, (uint8_t *)&hw->mac_addr);
} else {
nfp_net_vf_read_mac(hw);
}
if (!rte_is_valid_assigned_ether_addr(
(struct rte_ether_addr *)&hw->mac_addr)) {
PMD_INIT_LOG(INFO, "Using random mac address for port %d",
port);
/* Using random mac addresses for VFs */
rte_eth_random_addr(&hw->mac_addr[0]);
nfp_net_write_mac(hw, (uint8_t *)&hw->mac_addr);
}
/* Copying mac address to DPDK eth_dev struct */
rte_ether_addr_copy((struct rte_ether_addr *)hw->mac_addr,
&eth_dev->data->mac_addrs[0]);
if (!(hw->cap & NFP_NET_CFG_CTRL_LIVE_ADDR))
eth_dev->data->dev_flags |= RTE_ETH_DEV_NOLIVE_MAC_ADDR;
PMD_INIT_LOG(INFO, "port %d VendorID=0x%x DeviceID=0x%x "
"mac=%02x:%02x:%02x:%02x:%02x:%02x",
eth_dev->data->port_id, pci_dev->id.vendor_id,
pci_dev->id.device_id,
hw->mac_addr[0], hw->mac_addr[1], hw->mac_addr[2],
hw->mac_addr[3], hw->mac_addr[4], hw->mac_addr[5]);
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
/* Registering LSC interrupt handler */
rte_intr_callback_register(&pci_dev->intr_handle,
nfp_net_dev_interrupt_handler,
(void *)eth_dev);
/* Telling the firmware about the LSC interrupt entry */
nn_cfg_writeb(hw, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
/* Recording current stats counters values */
nfp_net_stats_reset(eth_dev);
}
return 0;
dev_err_queues_map:
nfp_cpp_area_free(hw->hwqueues_area);
dev_err_ctrl_map:
nfp_cpp_area_free(hw->ctrl_area);
return err;
}
#define NFP_CPP_MEMIO_BOUNDARY (1 << 20)
/*
* Serving a write request to NFP from host programs. The request
* sends the write size and the CPP target. The bridge makes use
* of CPP interface handler configured by the PMD setup.
*/
static int
nfp_cpp_bridge_serve_write(int sockfd, struct nfp_cpp *cpp)
{
struct nfp_cpp_area *area;
off_t offset, nfp_offset;
uint32_t cpp_id, pos, len;
uint32_t tmpbuf[16];
size_t count, curlen, totlen = 0;
int err = 0;
PMD_CPP_LOG(DEBUG, "%s: offset size %zu, count_size: %zu\n", __func__,
sizeof(off_t), sizeof(size_t));
/* Reading the count param */
err = recv(sockfd, &count, sizeof(off_t), 0);
if (err != sizeof(off_t))
return -EINVAL;
curlen = count;
/* Reading the offset param */
err = recv(sockfd, &offset, sizeof(off_t), 0);
if (err != sizeof(off_t))
return -EINVAL;
/* Obtain target's CPP ID and offset in target */
cpp_id = (offset >> 40) << 8;
nfp_offset = offset & ((1ull << 40) - 1);
PMD_CPP_LOG(DEBUG, "%s: count %zu and offset %jd\n", __func__, count,
offset);
PMD_CPP_LOG(DEBUG, "%s: cpp_id %08x and nfp_offset %jd\n", __func__,
cpp_id, nfp_offset);
/* Adjust length if not aligned */
if (((nfp_offset + (off_t)count - 1) & ~(NFP_CPP_MEMIO_BOUNDARY - 1)) !=
(nfp_offset & ~(NFP_CPP_MEMIO_BOUNDARY - 1))) {
curlen = NFP_CPP_MEMIO_BOUNDARY -
(nfp_offset & (NFP_CPP_MEMIO_BOUNDARY - 1));
}
while (count > 0) {
/* configure a CPP PCIe2CPP BAR for mapping the CPP target */
area = nfp_cpp_area_alloc_with_name(cpp, cpp_id, "nfp.cdev",
nfp_offset, curlen);
if (!area) {
RTE_LOG(ERR, PMD, "%s: area alloc fail\n", __func__);
return -EIO;
}
/* mapping the target */
err = nfp_cpp_area_acquire(area);
if (err < 0) {
RTE_LOG(ERR, PMD, "area acquire failed\n");
nfp_cpp_area_free(area);
return -EIO;
}
for (pos = 0; pos < curlen; pos += len) {
len = curlen - pos;
if (len > sizeof(tmpbuf))
len = sizeof(tmpbuf);
PMD_CPP_LOG(DEBUG, "%s: Receive %u of %zu\n", __func__,
len, count);
err = recv(sockfd, tmpbuf, len, MSG_WAITALL);
if (err != (int)len) {
RTE_LOG(ERR, PMD,
"%s: error when receiving, %d of %zu\n",
__func__, err, count);
nfp_cpp_area_release(area);
nfp_cpp_area_free(area);
return -EIO;
}
err = nfp_cpp_area_write(area, pos, tmpbuf, len);
if (err < 0) {
RTE_LOG(ERR, PMD, "nfp_cpp_area_write error\n");
nfp_cpp_area_release(area);
nfp_cpp_area_free(area);
return -EIO;
}
}
nfp_offset += pos;
totlen += pos;
nfp_cpp_area_release(area);
nfp_cpp_area_free(area);
count -= pos;
curlen = (count > NFP_CPP_MEMIO_BOUNDARY) ?
NFP_CPP_MEMIO_BOUNDARY : count;
}
return 0;
}
/*
* Serving a read request to NFP from host programs. The request
* sends the read size and the CPP target. The bridge makes use
* of CPP interface handler configured by the PMD setup. The read
* data is sent to the requester using the same socket.
*/
static int
nfp_cpp_bridge_serve_read(int sockfd, struct nfp_cpp *cpp)
{
struct nfp_cpp_area *area;
off_t offset, nfp_offset;
uint32_t cpp_id, pos, len;
uint32_t tmpbuf[16];
size_t count, curlen, totlen = 0;
int err = 0;
PMD_CPP_LOG(DEBUG, "%s: offset size %zu, count_size: %zu\n", __func__,
sizeof(off_t), sizeof(size_t));
/* Reading the count param */
err = recv(sockfd, &count, sizeof(off_t), 0);
if (err != sizeof(off_t))
return -EINVAL;
curlen = count;
/* Reading the offset param */
err = recv(sockfd, &offset, sizeof(off_t), 0);
if (err != sizeof(off_t))
return -EINVAL;
/* Obtain target's CPP ID and offset in target */
cpp_id = (offset >> 40) << 8;
nfp_offset = offset & ((1ull << 40) - 1);
PMD_CPP_LOG(DEBUG, "%s: count %zu and offset %jd\n", __func__, count,
offset);
PMD_CPP_LOG(DEBUG, "%s: cpp_id %08x and nfp_offset %jd\n", __func__,
cpp_id, nfp_offset);
/* Adjust length if not aligned */
if (((nfp_offset + (off_t)count - 1) & ~(NFP_CPP_MEMIO_BOUNDARY - 1)) !=
(nfp_offset & ~(NFP_CPP_MEMIO_BOUNDARY - 1))) {
curlen = NFP_CPP_MEMIO_BOUNDARY -
(nfp_offset & (NFP_CPP_MEMIO_BOUNDARY - 1));
}
while (count > 0) {
area = nfp_cpp_area_alloc_with_name(cpp, cpp_id, "nfp.cdev",
nfp_offset, curlen);
if (!area) {
RTE_LOG(ERR, PMD, "%s: area alloc failed\n", __func__);
return -EIO;
}
err = nfp_cpp_area_acquire(area);
if (err < 0) {
RTE_LOG(ERR, PMD, "area acquire failed\n");
nfp_cpp_area_free(area);
return -EIO;
}
for (pos = 0; pos < curlen; pos += len) {
len = curlen - pos;
if (len > sizeof(tmpbuf))
len = sizeof(tmpbuf);
err = nfp_cpp_area_read(area, pos, tmpbuf, len);
if (err < 0) {
RTE_LOG(ERR, PMD, "nfp_cpp_area_read error\n");
nfp_cpp_area_release(area);
nfp_cpp_area_free(area);
return -EIO;
}
PMD_CPP_LOG(DEBUG, "%s: sending %u of %zu\n", __func__,
len, count);
err = send(sockfd, tmpbuf, len, 0);
if (err != (int)len) {
RTE_LOG(ERR, PMD,
"%s: error when sending: %d of %zu\n",
__func__, err, count);
nfp_cpp_area_release(area);
nfp_cpp_area_free(area);
return -EIO;
}
}
nfp_offset += pos;
totlen += pos;
nfp_cpp_area_release(area);
nfp_cpp_area_free(area);
count -= pos;
curlen = (count > NFP_CPP_MEMIO_BOUNDARY) ?
NFP_CPP_MEMIO_BOUNDARY : count;
}
return 0;
}
#define NFP_IOCTL 'n'
#define NFP_IOCTL_CPP_IDENTIFICATION _IOW(NFP_IOCTL, 0x8f, uint32_t)
/*
* Serving a ioctl command from host NFP tools. This usually goes to
* a kernel driver char driver but it is not available when the PF is
* bound to the PMD. Currently just one ioctl command is served and it
* does not require any CPP access at all.
*/
static int
nfp_cpp_bridge_serve_ioctl(int sockfd, struct nfp_cpp *cpp)
{
uint32_t cmd, ident_size, tmp;
int err;
/* Reading now the IOCTL command */
err = recv(sockfd, &cmd, 4, 0);
if (err != 4) {
RTE_LOG(ERR, PMD, "%s: read error from socket\n", __func__);
return -EIO;
}
/* Only supporting NFP_IOCTL_CPP_IDENTIFICATION */
if (cmd != NFP_IOCTL_CPP_IDENTIFICATION) {
RTE_LOG(ERR, PMD, "%s: unknown cmd %d\n", __func__, cmd);
return -EINVAL;
}
err = recv(sockfd, &ident_size, 4, 0);
if (err != 4) {
RTE_LOG(ERR, PMD, "%s: read error from socket\n", __func__);
return -EIO;
}
tmp = nfp_cpp_model(cpp);
PMD_CPP_LOG(DEBUG, "%s: sending NFP model %08x\n", __func__, tmp);
err = send(sockfd, &tmp, 4, 0);
if (err != 4) {
RTE_LOG(ERR, PMD, "%s: error writing to socket\n", __func__);
return -EIO;
}
tmp = cpp->interface;
PMD_CPP_LOG(DEBUG, "%s: sending NFP interface %08x\n", __func__, tmp);
err = send(sockfd, &tmp, 4, 0);
if (err != 4) {
RTE_LOG(ERR, PMD, "%s: error writing to socket\n", __func__);
return -EIO;
}
return 0;
}
#define NFP_BRIDGE_OP_READ 20
#define NFP_BRIDGE_OP_WRITE 30
#define NFP_BRIDGE_OP_IOCTL 40
/*
* This is the code to be executed by a service core. The CPP bridge interface
* is based on a unix socket and requests usually received by a kernel char
* driver, read, write and ioctl, are handled by the CPP bridge. NFP host tools
* can be executed with a wrapper library and LD_LIBRARY being completely
* unaware of the CPP bridge performing the NFP kernel char driver for CPP
* accesses.
*/
static int32_t
nfp_cpp_bridge_service_func(void *args)
{
struct sockaddr address;
struct nfp_cpp *cpp = args;
int sockfd, datafd, op, ret;
unlink("/tmp/nfp_cpp");
sockfd = socket(AF_UNIX, SOCK_STREAM, 0);
if (sockfd < 0) {
RTE_LOG(ERR, PMD, "%s: socket creation error. Service failed\n",
__func__);
return -EIO;
}
memset(&address, 0, sizeof(struct sockaddr));
address.sa_family = AF_UNIX;
strcpy(address.sa_data, "/tmp/nfp_cpp");
ret = bind(sockfd, (const struct sockaddr *)&address,
sizeof(struct sockaddr));
if (ret < 0) {
RTE_LOG(ERR, PMD, "%s: bind error (%d). Service failed\n",
__func__, errno);
close(sockfd);
return ret;
}
ret = listen(sockfd, 20);
if (ret < 0) {
RTE_LOG(ERR, PMD, "%s: listen error(%d). Service failed\n",
__func__, errno);
close(sockfd);
return ret;
}
for (;;) {
datafd = accept(sockfd, NULL, NULL);
if (datafd < 0) {
RTE_LOG(ERR, PMD, "%s: accept call error (%d)\n",
__func__, errno);
RTE_LOG(ERR, PMD, "%s: service failed\n", __func__);
close(sockfd);
return -EIO;
}
while (1) {
ret = recv(datafd, &op, 4, 0);
if (ret <= 0) {
PMD_CPP_LOG(DEBUG, "%s: socket close\n",
__func__);
break;
}
PMD_CPP_LOG(DEBUG, "%s: getting op %u\n", __func__, op);
if (op == NFP_BRIDGE_OP_READ)
nfp_cpp_bridge_serve_read(datafd, cpp);
if (op == NFP_BRIDGE_OP_WRITE)
nfp_cpp_bridge_serve_write(datafd, cpp);
if (op == NFP_BRIDGE_OP_IOCTL)
nfp_cpp_bridge_serve_ioctl(datafd, cpp);
if (op == 0)
break;
}
close(datafd);
}
close(sockfd);
return 0;
}
static int
nfp_pf_create_dev(struct rte_pci_device *dev, int port, int ports,
struct nfp_cpp *cpp, struct nfp_hwinfo *hwinfo,
int phys_port, struct nfp_rtsym_table *sym_tbl, void **priv)
{
struct rte_eth_dev *eth_dev;
struct nfp_net_hw *hw = NULL;
char *port_name;
struct rte_service_spec service;
int retval;
port_name = rte_zmalloc("nfp_pf_port_name", 100, 0);
if (!port_name)
return -ENOMEM;
if (ports > 1)
snprintf(port_name, 100, "%s_port%d", dev->device.name, port);
else
strlcat(port_name, dev->device.name, 100);
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
eth_dev = rte_eth_dev_allocate(port_name);
if (!eth_dev) {
rte_free(port_name);
return -ENODEV;
}
if (port == 0) {
*priv = rte_zmalloc(port_name,
sizeof(struct nfp_net_adapter) *
ports, RTE_CACHE_LINE_SIZE);
if (!*priv) {
rte_free(port_name);
rte_eth_dev_release_port(eth_dev);
return -ENOMEM;
}
}
eth_dev->data->dev_private = *priv;
/*
* dev_private pointing to port0 dev_private because we need
* to configure vNIC bars based on port0 at nfp_net_init.
* Then dev_private is adjusted per port.
*/
hw = (struct nfp_net_hw *)(eth_dev->data->dev_private) + port;
hw->cpp = cpp;
hw->hwinfo = hwinfo;
hw->sym_tbl = sym_tbl;
hw->pf_port_idx = phys_port;
hw->is_pf = 1;
if (ports > 1)
hw->pf_multiport_enabled = 1;
hw->total_ports = ports;
} else {
eth_dev = rte_eth_dev_attach_secondary(port_name);
if (!eth_dev) {
RTE_LOG(ERR, EAL, "secondary process attach failed, "
"ethdev doesn't exist");
rte_free(port_name);
return -ENODEV;
}
eth_dev->process_private = cpp;
}
eth_dev->device = &dev->device;
rte_eth_copy_pci_info(eth_dev, dev);
retval = nfp_net_init(eth_dev);
if (retval) {
retval = -ENODEV;
goto probe_failed;
} else {
rte_eth_dev_probing_finish(eth_dev);
}
rte_free(port_name);
if (port == 0) {
/*
* The rte_service needs to be created just once per PMD.
* And the cpp handler needs to be linked to the service.
* Secondary processes will be used for debugging DPDK apps
* when requiring to use the CPP interface for accessing NFP
* components. And the cpp handler for secondary processes is
* available at this point.
*/
memset(&service, 0, sizeof(struct rte_service_spec));
snprintf(service.name, sizeof(service.name), "nfp_cpp_service");
service.callback = nfp_cpp_bridge_service_func;
service.callback_userdata = (void *)cpp;
hw = (struct nfp_net_hw *)(eth_dev->data->dev_private);
if (rte_service_component_register(&service,
&hw->nfp_cpp_service_id))
RTE_LOG(ERR, PMD, "NFP CPP bridge service register() failed");
else
RTE_LOG(DEBUG, PMD, "NFP CPP bridge service registered");
}
return retval;
probe_failed:
rte_free(port_name);
/* free ports private data if primary process */
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
rte_free(eth_dev->data->dev_private);
eth_dev->data->dev_private = NULL;
}
rte_eth_dev_release_port(eth_dev);
return retval;
}
#define DEFAULT_FW_PATH "/lib/firmware/netronome"
static int
nfp_fw_upload(struct rte_pci_device *dev, struct nfp_nsp *nsp, char *card)
{
struct nfp_cpp *cpp = nsp->cpp;
int fw_f;
char *fw_buf;
char fw_name[125];
char serial[40];
struct stat file_stat;
off_t fsize, bytes;
/* Looking for firmware file in order of priority */
/* First try to find a firmware image specific for this device */
snprintf(serial, sizeof(serial),
"serial-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x",
cpp->serial[0], cpp->serial[1], cpp->serial[2], cpp->serial[3],
cpp->serial[4], cpp->serial[5], cpp->interface >> 8,
cpp->interface & 0xff);
snprintf(fw_name, sizeof(fw_name), "%s/%s.nffw", DEFAULT_FW_PATH,
serial);
PMD_DRV_LOG(DEBUG, "Trying with fw file: %s", fw_name);
fw_f = open(fw_name, O_RDONLY);
if (fw_f >= 0)
goto read_fw;
/* Then try the PCI name */
snprintf(fw_name, sizeof(fw_name), "%s/pci-%s.nffw", DEFAULT_FW_PATH,
dev->device.name);
PMD_DRV_LOG(DEBUG, "Trying with fw file: %s", fw_name);
fw_f = open(fw_name, O_RDONLY);
if (fw_f >= 0)
goto read_fw;
/* Finally try the card type and media */
snprintf(fw_name, sizeof(fw_name), "%s/%s", DEFAULT_FW_PATH, card);
PMD_DRV_LOG(DEBUG, "Trying with fw file: %s", fw_name);
fw_f = open(fw_name, O_RDONLY);
if (fw_f < 0) {
PMD_DRV_LOG(INFO, "Firmware file %s not found.", fw_name);
return -ENOENT;
}
read_fw:
if (fstat(fw_f, &file_stat) < 0) {
PMD_DRV_LOG(INFO, "Firmware file %s size is unknown", fw_name);
close(fw_f);
return -ENOENT;
}
fsize = file_stat.st_size;
PMD_DRV_LOG(INFO, "Firmware file found at %s with size: %" PRIu64 "",
fw_name, (uint64_t)fsize);
fw_buf = malloc((size_t)fsize);
if (!fw_buf) {
PMD_DRV_LOG(INFO, "malloc failed for fw buffer");
close(fw_f);
return -ENOMEM;
}
memset(fw_buf, 0, fsize);
bytes = read(fw_f, fw_buf, fsize);
if (bytes != fsize) {
PMD_DRV_LOG(INFO, "Reading fw to buffer failed."
"Just %" PRIu64 " of %" PRIu64 " bytes read",
(uint64_t)bytes, (uint64_t)fsize);
free(fw_buf);
close(fw_f);
return -EIO;
}
PMD_DRV_LOG(INFO, "Uploading the firmware ...");
nfp_nsp_load_fw(nsp, fw_buf, bytes);
PMD_DRV_LOG(INFO, "Done");
free(fw_buf);
close(fw_f);
return 0;
}
static int
nfp_fw_setup(struct rte_pci_device *dev, struct nfp_cpp *cpp,
struct nfp_eth_table *nfp_eth_table, struct nfp_hwinfo *hwinfo)
{
struct nfp_nsp *nsp;
const char *nfp_fw_model;
char card_desc[100];
int err = 0;
nfp_fw_model = nfp_hwinfo_lookup(hwinfo, "assembly.partno");
if (nfp_fw_model) {
PMD_DRV_LOG(INFO, "firmware model found: %s", nfp_fw_model);
} else {
PMD_DRV_LOG(ERR, "firmware model NOT found");
return -EIO;
}
if (nfp_eth_table->count == 0 || nfp_eth_table->count > 8) {
PMD_DRV_LOG(ERR, "NFP ethernet table reports wrong ports: %u",
nfp_eth_table->count);
return -EIO;
}
PMD_DRV_LOG(INFO, "NFP ethernet port table reports %u ports",
nfp_eth_table->count);
PMD_DRV_LOG(INFO, "Port speed: %u", nfp_eth_table->ports[0].speed);
snprintf(card_desc, sizeof(card_desc), "nic_%s_%dx%d.nffw",
nfp_fw_model, nfp_eth_table->count,
nfp_eth_table->ports[0].speed / 1000);
nsp = nfp_nsp_open(cpp);
if (!nsp) {
PMD_DRV_LOG(ERR, "NFP error when obtaining NSP handle");
return -EIO;
}
nfp_nsp_device_soft_reset(nsp);
err = nfp_fw_upload(dev, nsp, card_desc);
nfp_nsp_close(nsp);
return err;
}
static int nfp_pf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *dev)
{
struct nfp_cpp *cpp;
struct nfp_hwinfo *hwinfo;
struct nfp_rtsym_table *sym_tbl;
struct nfp_eth_table *nfp_eth_table = NULL;
int total_ports;
void *priv = 0;
int ret = -ENODEV;
int err;
int i;
if (!dev)
return ret;
/*
* When device bound to UIO, the device could be used, by mistake,
* by two DPDK apps, and the UIO driver does not avoid it. This
* could lead to a serious problem when configuring the NFP CPP
* interface. Here we avoid this telling to the CPP init code to
* use a lock file if UIO is being used.
*/
if (dev->kdrv == RTE_KDRV_VFIO)
cpp = nfp_cpp_from_device_name(dev, 0);
else
cpp = nfp_cpp_from_device_name(dev, 1);
if (!cpp) {
PMD_DRV_LOG(ERR, "A CPP handle can not be obtained");
ret = -EIO;
goto error;
}
hwinfo = nfp_hwinfo_read(cpp);
if (!hwinfo) {
PMD_DRV_LOG(ERR, "Error reading hwinfo table");
return -EIO;
}
nfp_eth_table = nfp_eth_read_ports(cpp);
if (!nfp_eth_table) {
PMD_DRV_LOG(ERR, "Error reading NFP ethernet table");
return -EIO;
}
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
if (nfp_fw_setup(dev, cpp, nfp_eth_table, hwinfo)) {
PMD_DRV_LOG(INFO, "Error when uploading firmware");
ret = -EIO;
goto error;
}
}
/* Now the symbol table should be there */
sym_tbl = nfp_rtsym_table_read(cpp);
if (!sym_tbl) {
PMD_DRV_LOG(ERR, "Something is wrong with the firmware"
" symbol table");
ret = -EIO;
goto error;
}
total_ports = nfp_rtsym_read_le(sym_tbl, "nfd_cfg_pf0_num_ports", &err);
if (total_ports != (int)nfp_eth_table->count) {
PMD_DRV_LOG(ERR, "Inconsistent number of ports");
ret = -EIO;
goto error;
}
PMD_INIT_LOG(INFO, "Total pf ports: %d", total_ports);
if (total_ports <= 0 || total_ports > 8) {
PMD_DRV_LOG(ERR, "nfd_cfg_pf0_num_ports symbol with wrong value");
ret = -ENODEV;
goto error;
}
for (i = 0; i < total_ports; i++) {
ret = nfp_pf_create_dev(dev, i, total_ports, cpp, hwinfo,
nfp_eth_table->ports[i].index,
sym_tbl, &priv);
if (ret)
break;
}
error:
free(nfp_eth_table);
return ret;
}
int nfp_logtype_init;
int nfp_logtype_driver;
static const struct rte_pci_id pci_id_nfp_pf_net_map[] = {
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_NETRONOME,
PCI_DEVICE_ID_NFP4000_PF_NIC)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_NETRONOME,
PCI_DEVICE_ID_NFP6000_PF_NIC)
},
{
.vendor_id = 0,
},
};
static const struct rte_pci_id pci_id_nfp_vf_net_map[] = {
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_NETRONOME,
PCI_DEVICE_ID_NFP6000_VF_NIC)
},
{
.vendor_id = 0,
},
};
static int eth_nfp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct nfp_net_adapter), nfp_net_init);
}
static int eth_nfp_pci_remove(struct rte_pci_device *pci_dev)
{
struct rte_eth_dev *eth_dev;
struct nfp_net_hw *hw, *hwport0;
int port = 0;
eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
if ((pci_dev->id.device_id == PCI_DEVICE_ID_NFP4000_PF_NIC) ||
(pci_dev->id.device_id == PCI_DEVICE_ID_NFP6000_PF_NIC)) {
port = get_pf_port_number(eth_dev->data->name);
/*
* hotplug is not possible with multiport PF although freeing
* data structures can be done for first port.
*/
if (port != 0)
return -ENOTSUP;
hwport0 = NFP_NET_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
hw = &hwport0[port];
nfp_cpp_area_free(hw->ctrl_area);
nfp_cpp_area_free(hw->hwqueues_area);
free(hw->hwinfo);
free(hw->sym_tbl);
nfp_cpp_free(hw->cpp);
} else {
hw = NFP_NET_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
}
/* hotplug is not possible with multiport PF */
if (hw->pf_multiport_enabled)
return -ENOTSUP;
return rte_eth_dev_pci_generic_remove(pci_dev, NULL);
}
static struct rte_pci_driver rte_nfp_net_pf_pmd = {
.id_table = pci_id_nfp_pf_net_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
.probe = nfp_pf_pci_probe,
.remove = eth_nfp_pci_remove,
};
static struct rte_pci_driver rte_nfp_net_vf_pmd = {
.id_table = pci_id_nfp_vf_net_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
.probe = eth_nfp_pci_probe,
.remove = eth_nfp_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_nfp_pf, rte_nfp_net_pf_pmd);
RTE_PMD_REGISTER_PCI(net_nfp_vf, rte_nfp_net_vf_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_nfp_pf, pci_id_nfp_pf_net_map);
RTE_PMD_REGISTER_PCI_TABLE(net_nfp_vf, pci_id_nfp_vf_net_map);
RTE_PMD_REGISTER_KMOD_DEP(net_nfp_pf, "* igb_uio | uio_pci_generic | vfio");
RTE_PMD_REGISTER_KMOD_DEP(net_nfp_vf, "* igb_uio | uio_pci_generic | vfio");
RTE_INIT(nfp_init_log)
{
nfp_logtype_init = rte_log_register("pmd.net.nfp.init");
if (nfp_logtype_init >= 0)
rte_log_set_level(nfp_logtype_init, RTE_LOG_NOTICE);
nfp_logtype_driver = rte_log_register("pmd.net.nfp.driver");
if (nfp_logtype_driver >= 0)
rte_log_set_level(nfp_logtype_driver, RTE_LOG_NOTICE);
}
/*
* Local variables:
* c-file-style: "Linux"
* indent-tabs-mode: t
* End:
*/