f-stack/dpdk/drivers/bus/pci/linux/pci_vfio.c

1110 lines
27 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <string.h>
#include <fcntl.h>
#include <linux/pci_regs.h>
#include <sys/eventfd.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <stdbool.h>
#include <rte_log.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_malloc.h>
#include <rte_vfio.h>
#include <rte_eal.h>
#include <rte_bus.h>
#include <rte_spinlock.h>
#include <rte_tailq.h>
#include "eal_filesystem.h"
#include "pci_init.h"
#include "private.h"
/**
* @file
* PCI probing under linux (VFIO version)
*
* This code tries to determine if the PCI device is bound to VFIO driver,
* and initialize it (map BARs, set up interrupts) if that's the case.
*
* This file is only compiled if CONFIG_RTE_EAL_VFIO is set to "y".
*/
#ifdef VFIO_PRESENT
#ifndef PAGE_SIZE
#define PAGE_SIZE (sysconf(_SC_PAGESIZE))
#endif
#define PAGE_MASK (~(PAGE_SIZE - 1))
static struct rte_tailq_elem rte_vfio_tailq = {
.name = "VFIO_RESOURCE_LIST",
};
EAL_REGISTER_TAILQ(rte_vfio_tailq)
int
pci_vfio_read_config(const struct rte_intr_handle *intr_handle,
void *buf, size_t len, off_t offs)
{
return pread64(intr_handle->vfio_dev_fd, buf, len,
VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) + offs);
}
int
pci_vfio_write_config(const struct rte_intr_handle *intr_handle,
const void *buf, size_t len, off_t offs)
{
return pwrite64(intr_handle->vfio_dev_fd, buf, len,
VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) + offs);
}
/* get PCI BAR number where MSI-X interrupts are */
static int
pci_vfio_get_msix_bar(int fd, struct pci_msix_table *msix_table)
{
int ret;
uint32_t reg;
uint16_t flags;
uint8_t cap_id, cap_offset;
/* read PCI capability pointer from config space */
ret = pread64(fd, &reg, sizeof(reg),
VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) +
PCI_CAPABILITY_LIST);
if (ret != sizeof(reg)) {
RTE_LOG(ERR, EAL, "Cannot read capability pointer from PCI "
"config space!\n");
return -1;
}
/* we need first byte */
cap_offset = reg & 0xFF;
while (cap_offset) {
/* read PCI capability ID */
ret = pread64(fd, &reg, sizeof(reg),
VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) +
cap_offset);
if (ret != sizeof(reg)) {
RTE_LOG(ERR, EAL, "Cannot read capability ID from PCI "
"config space!\n");
return -1;
}
/* we need first byte */
cap_id = reg & 0xFF;
/* if we haven't reached MSI-X, check next capability */
if (cap_id != PCI_CAP_ID_MSIX) {
ret = pread64(fd, &reg, sizeof(reg),
VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) +
cap_offset);
if (ret != sizeof(reg)) {
RTE_LOG(ERR, EAL, "Cannot read capability pointer from PCI "
"config space!\n");
return -1;
}
/* we need second byte */
cap_offset = (reg & 0xFF00) >> 8;
continue;
}
/* else, read table offset */
else {
/* table offset resides in the next 4 bytes */
ret = pread64(fd, &reg, sizeof(reg),
VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) +
cap_offset + 4);
if (ret != sizeof(reg)) {
RTE_LOG(ERR, EAL, "Cannot read table offset from PCI config "
"space!\n");
return -1;
}
ret = pread64(fd, &flags, sizeof(flags),
VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) +
cap_offset + 2);
if (ret != sizeof(flags)) {
RTE_LOG(ERR, EAL, "Cannot read table flags from PCI config "
"space!\n");
return -1;
}
msix_table->bar_index = reg & RTE_PCI_MSIX_TABLE_BIR;
msix_table->offset = reg & RTE_PCI_MSIX_TABLE_OFFSET;
msix_table->size =
16 * (1 + (flags & RTE_PCI_MSIX_FLAGS_QSIZE));
return 0;
}
}
return 0;
}
/* enable PCI bus memory space */
static int
pci_vfio_enable_bus_memory(int dev_fd)
{
uint16_t cmd;
int ret;
ret = pread64(dev_fd, &cmd, sizeof(cmd),
VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) +
PCI_COMMAND);
if (ret != sizeof(cmd)) {
RTE_LOG(ERR, EAL, "Cannot read command from PCI config space!\n");
return -1;
}
if (cmd & PCI_COMMAND_MEMORY)
return 0;
cmd |= PCI_COMMAND_MEMORY;
ret = pwrite64(dev_fd, &cmd, sizeof(cmd),
VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) +
PCI_COMMAND);
if (ret != sizeof(cmd)) {
RTE_LOG(ERR, EAL, "Cannot write command to PCI config space!\n");
return -1;
}
return 0;
}
/* set PCI bus mastering */
static int
pci_vfio_set_bus_master(int dev_fd, bool op)
{
uint16_t reg;
int ret;
ret = pread64(dev_fd, &reg, sizeof(reg),
VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) +
PCI_COMMAND);
if (ret != sizeof(reg)) {
RTE_LOG(ERR, EAL, "Cannot read command from PCI config space!\n");
return -1;
}
if (op)
/* set the master bit */
reg |= PCI_COMMAND_MASTER;
else
reg &= ~(PCI_COMMAND_MASTER);
ret = pwrite64(dev_fd, &reg, sizeof(reg),
VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX) +
PCI_COMMAND);
if (ret != sizeof(reg)) {
RTE_LOG(ERR, EAL, "Cannot write command to PCI config space!\n");
return -1;
}
return 0;
}
/* set up interrupt support (but not enable interrupts) */
static int
pci_vfio_setup_interrupts(struct rte_pci_device *dev, int vfio_dev_fd)
{
int i, ret, intr_idx;
enum rte_intr_mode intr_mode;
/* default to invalid index */
intr_idx = VFIO_PCI_NUM_IRQS;
/* Get default / configured intr_mode */
intr_mode = rte_eal_vfio_intr_mode();
/* get interrupt type from internal config (MSI-X by default, can be
* overridden from the command line
*/
switch (intr_mode) {
case RTE_INTR_MODE_MSIX:
intr_idx = VFIO_PCI_MSIX_IRQ_INDEX;
break;
case RTE_INTR_MODE_MSI:
intr_idx = VFIO_PCI_MSI_IRQ_INDEX;
break;
case RTE_INTR_MODE_LEGACY:
intr_idx = VFIO_PCI_INTX_IRQ_INDEX;
break;
/* don't do anything if we want to automatically determine interrupt type */
case RTE_INTR_MODE_NONE:
break;
default:
RTE_LOG(ERR, EAL, " unknown default interrupt type!\n");
return -1;
}
/* start from MSI-X interrupt type */
for (i = VFIO_PCI_MSIX_IRQ_INDEX; i >= 0; i--) {
struct vfio_irq_info irq = { .argsz = sizeof(irq) };
int fd = -1;
/* skip interrupt modes we don't want */
if (intr_mode != RTE_INTR_MODE_NONE &&
i != intr_idx)
continue;
irq.index = i;
ret = ioctl(vfio_dev_fd, VFIO_DEVICE_GET_IRQ_INFO, &irq);
if (ret < 0) {
RTE_LOG(ERR, EAL, " cannot get IRQ info, "
"error %i (%s)\n", errno, strerror(errno));
return -1;
}
/* if this vector cannot be used with eventfd, fail if we explicitly
* specified interrupt type, otherwise continue */
if ((irq.flags & VFIO_IRQ_INFO_EVENTFD) == 0) {
if (intr_mode != RTE_INTR_MODE_NONE) {
RTE_LOG(ERR, EAL,
" interrupt vector does not support eventfd!\n");
return -1;
} else
continue;
}
/* set up an eventfd for interrupts */
fd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
if (fd < 0) {
RTE_LOG(ERR, EAL, " cannot set up eventfd, "
"error %i (%s)\n", errno, strerror(errno));
return -1;
}
dev->intr_handle.fd = fd;
dev->intr_handle.vfio_dev_fd = vfio_dev_fd;
switch (i) {
case VFIO_PCI_MSIX_IRQ_INDEX:
intr_mode = RTE_INTR_MODE_MSIX;
dev->intr_handle.type = RTE_INTR_HANDLE_VFIO_MSIX;
break;
case VFIO_PCI_MSI_IRQ_INDEX:
intr_mode = RTE_INTR_MODE_MSI;
dev->intr_handle.type = RTE_INTR_HANDLE_VFIO_MSI;
break;
case VFIO_PCI_INTX_IRQ_INDEX:
intr_mode = RTE_INTR_MODE_LEGACY;
dev->intr_handle.type = RTE_INTR_HANDLE_VFIO_LEGACY;
break;
default:
RTE_LOG(ERR, EAL, " unknown interrupt type!\n");
return -1;
}
return 0;
}
/* if we're here, we haven't found a suitable interrupt vector */
return -1;
}
#ifdef HAVE_VFIO_DEV_REQ_INTERFACE
/*
* Spinlock for device hot-unplug failure handling.
* If it tries to access bus or device, such as handle sigbus on bus
* or handle memory failure for device, just need to use this lock.
* It could protect the bus and the device to avoid race condition.
*/
static rte_spinlock_t failure_handle_lock = RTE_SPINLOCK_INITIALIZER;
static void
pci_vfio_req_handler(void *param)
{
struct rte_bus *bus;
int ret;
struct rte_device *device = (struct rte_device *)param;
rte_spinlock_lock(&failure_handle_lock);
bus = rte_bus_find_by_device(device);
if (bus == NULL) {
RTE_LOG(ERR, EAL, "Cannot find bus for device (%s)\n",
device->name);
goto handle_end;
}
/*
* vfio kernel module request user space to release allocated
* resources before device be deleted in kernel, so it can directly
* call the vfio bus hot-unplug handler to process it.
*/
ret = bus->hot_unplug_handler(device);
if (ret)
RTE_LOG(ERR, EAL,
"Can not handle hot-unplug for device (%s)\n",
device->name);
handle_end:
rte_spinlock_unlock(&failure_handle_lock);
}
/* enable notifier (only enable req now) */
static int
pci_vfio_enable_notifier(struct rte_pci_device *dev, int vfio_dev_fd)
{
int ret;
int fd = -1;
/* set up an eventfd for req notifier */
fd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
if (fd < 0) {
RTE_LOG(ERR, EAL, "Cannot set up eventfd, error %i (%s)\n",
errno, strerror(errno));
return -1;
}
dev->vfio_req_intr_handle.fd = fd;
dev->vfio_req_intr_handle.type = RTE_INTR_HANDLE_VFIO_REQ;
dev->vfio_req_intr_handle.vfio_dev_fd = vfio_dev_fd;
ret = rte_intr_callback_register(&dev->vfio_req_intr_handle,
pci_vfio_req_handler,
(void *)&dev->device);
if (ret) {
RTE_LOG(ERR, EAL, "Fail to register req notifier handler.\n");
goto error;
}
ret = rte_intr_enable(&dev->vfio_req_intr_handle);
if (ret) {
RTE_LOG(ERR, EAL, "Fail to enable req notifier.\n");
ret = rte_intr_callback_unregister(&dev->vfio_req_intr_handle,
pci_vfio_req_handler,
(void *)&dev->device);
if (ret < 0)
RTE_LOG(ERR, EAL,
"Fail to unregister req notifier handler.\n");
goto error;
}
return 0;
error:
close(fd);
dev->vfio_req_intr_handle.fd = -1;
dev->vfio_req_intr_handle.type = RTE_INTR_HANDLE_UNKNOWN;
dev->vfio_req_intr_handle.vfio_dev_fd = -1;
return -1;
}
/* disable notifier (only disable req now) */
static int
pci_vfio_disable_notifier(struct rte_pci_device *dev)
{
int ret;
ret = rte_intr_disable(&dev->vfio_req_intr_handle);
if (ret) {
RTE_LOG(ERR, EAL, "fail to disable req notifier.\n");
return -1;
}
ret = rte_intr_callback_unregister(&dev->vfio_req_intr_handle,
pci_vfio_req_handler,
(void *)&dev->device);
if (ret < 0) {
RTE_LOG(ERR, EAL,
"fail to unregister req notifier handler.\n");
return -1;
}
close(dev->vfio_req_intr_handle.fd);
dev->vfio_req_intr_handle.fd = -1;
dev->vfio_req_intr_handle.type = RTE_INTR_HANDLE_UNKNOWN;
dev->vfio_req_intr_handle.vfio_dev_fd = -1;
return 0;
}
#endif
static int
pci_vfio_is_ioport_bar(int vfio_dev_fd, int bar_index)
{
uint32_t ioport_bar;
int ret;
ret = pread64(vfio_dev_fd, &ioport_bar, sizeof(ioport_bar),
VFIO_GET_REGION_ADDR(VFIO_PCI_CONFIG_REGION_INDEX)
+ PCI_BASE_ADDRESS_0 + bar_index*4);
if (ret != sizeof(ioport_bar)) {
RTE_LOG(ERR, EAL, "Cannot read command (%x) from config space!\n",
PCI_BASE_ADDRESS_0 + bar_index*4);
return -1;
}
return (ioport_bar & PCI_BASE_ADDRESS_SPACE_IO) != 0;
}
static int
pci_rte_vfio_setup_device(struct rte_pci_device *dev, int vfio_dev_fd)
{
if (pci_vfio_setup_interrupts(dev, vfio_dev_fd) != 0) {
RTE_LOG(ERR, EAL, "Error setting up interrupts!\n");
return -1;
}
if (pci_vfio_enable_bus_memory(vfio_dev_fd)) {
RTE_LOG(ERR, EAL, "Cannot enable bus memory!\n");
return -1;
}
/* set bus mastering for the device */
if (pci_vfio_set_bus_master(vfio_dev_fd, true)) {
RTE_LOG(ERR, EAL, "Cannot set up bus mastering!\n");
return -1;
}
/*
* Reset the device. If the device is not capable of resetting,
* then it updates errno as EINVAL.
*/
if (ioctl(vfio_dev_fd, VFIO_DEVICE_RESET) && errno != EINVAL) {
RTE_LOG(ERR, EAL, "Unable to reset device! Error: %d (%s)\n",
errno, strerror(errno));
return -1;
}
return 0;
}
static int
pci_vfio_mmap_bar(int vfio_dev_fd, struct mapped_pci_resource *vfio_res,
int bar_index, int additional_flags)
{
struct memreg {
uint64_t offset;
size_t size;
} memreg[2] = {};
void *bar_addr;
struct pci_msix_table *msix_table = &vfio_res->msix_table;
struct pci_map *bar = &vfio_res->maps[bar_index];
if (bar->size == 0) {
RTE_LOG(DEBUG, EAL, "Bar size is 0, skip BAR%d\n", bar_index);
return 0;
}
if (msix_table->bar_index == bar_index) {
/*
* VFIO will not let us map the MSI-X table,
* but we can map around it.
*/
uint32_t table_start = msix_table->offset;
uint32_t table_end = table_start + msix_table->size;
table_end = RTE_ALIGN(table_end, PAGE_SIZE);
table_start = RTE_ALIGN_FLOOR(table_start, PAGE_SIZE);
/* If page-aligned start of MSI-X table is less than the
* actual MSI-X table start address, reassign to the actual
* start address.
*/
if (table_start < msix_table->offset)
table_start = msix_table->offset;
if (table_start == 0 && table_end >= bar->size) {
/* Cannot map this BAR */
RTE_LOG(DEBUG, EAL, "Skipping BAR%d\n", bar_index);
bar->size = 0;
bar->addr = 0;
return 0;
}
memreg[0].offset = bar->offset;
memreg[0].size = table_start;
if (bar->size < table_end) {
/*
* If MSI-X table end is beyond BAR end, don't attempt
* to perform second mapping.
*/
memreg[1].offset = 0;
memreg[1].size = 0;
} else {
memreg[1].offset = bar->offset + table_end;
memreg[1].size = bar->size - table_end;
}
RTE_LOG(DEBUG, EAL,
"Trying to map BAR%d that contains the MSI-X "
"table. Trying offsets: "
"0x%04" PRIx64 ":0x%04zx, 0x%04" PRIx64 ":0x%04zx\n",
bar_index,
memreg[0].offset, memreg[0].size,
memreg[1].offset, memreg[1].size);
} else {
memreg[0].offset = bar->offset;
memreg[0].size = bar->size;
}
/* reserve the address using an inaccessible mapping */
bar_addr = mmap(bar->addr, bar->size, 0, MAP_PRIVATE |
MAP_ANONYMOUS | additional_flags, -1, 0);
if (bar_addr != MAP_FAILED) {
void *map_addr = NULL;
if (memreg[0].size) {
/* actual map of first part */
map_addr = pci_map_resource(bar_addr, vfio_dev_fd,
memreg[0].offset,
memreg[0].size,
MAP_FIXED);
}
/* if there's a second part, try to map it */
if (map_addr != MAP_FAILED
&& memreg[1].offset && memreg[1].size) {
void *second_addr = RTE_PTR_ADD(bar_addr,
(uintptr_t)(memreg[1].offset -
bar->offset));
map_addr = pci_map_resource(second_addr,
vfio_dev_fd,
memreg[1].offset,
memreg[1].size,
MAP_FIXED);
}
if (map_addr == MAP_FAILED || !map_addr) {
munmap(bar_addr, bar->size);
bar_addr = MAP_FAILED;
RTE_LOG(ERR, EAL, "Failed to map pci BAR%d\n",
bar_index);
return -1;
}
} else {
RTE_LOG(ERR, EAL,
"Failed to create inaccessible mapping for BAR%d\n",
bar_index);
return -1;
}
bar->addr = bar_addr;
return 0;
}
/*
* region info may contain capability headers, so we need to keep reallocating
* the memory until we match allocated memory size with argsz.
*/
static int
pci_vfio_get_region_info(int vfio_dev_fd, struct vfio_region_info **info,
int region)
{
struct vfio_region_info *ri;
size_t argsz = sizeof(*ri);
int ret;
ri = malloc(sizeof(*ri));
if (ri == NULL) {
RTE_LOG(ERR, EAL, "Cannot allocate memory for region info\n");
return -1;
}
again:
memset(ri, 0, argsz);
ri->argsz = argsz;
ri->index = region;
ret = ioctl(vfio_dev_fd, VFIO_DEVICE_GET_REGION_INFO, ri);
if (ret < 0) {
free(ri);
return ret;
}
if (ri->argsz != argsz) {
struct vfio_region_info *tmp;
argsz = ri->argsz;
tmp = realloc(ri, argsz);
if (tmp == NULL) {
/* realloc failed but the ri is still there */
free(ri);
RTE_LOG(ERR, EAL, "Cannot reallocate memory for region info\n");
return -1;
}
ri = tmp;
goto again;
}
*info = ri;
return 0;
}
static struct vfio_info_cap_header *
pci_vfio_info_cap(struct vfio_region_info *info, int cap)
{
struct vfio_info_cap_header *h;
size_t offset;
if ((info->flags & RTE_VFIO_INFO_FLAG_CAPS) == 0) {
/* VFIO info does not advertise capabilities */
return NULL;
}
offset = VFIO_CAP_OFFSET(info);
while (offset != 0) {
h = RTE_PTR_ADD(info, offset);
if (h->id == cap)
return h;
offset = h->next;
}
return NULL;
}
static int
pci_vfio_msix_is_mappable(int vfio_dev_fd, int msix_region)
{
struct vfio_region_info *info;
int ret;
ret = pci_vfio_get_region_info(vfio_dev_fd, &info, msix_region);
if (ret < 0)
return -1;
ret = pci_vfio_info_cap(info, RTE_VFIO_CAP_MSIX_MAPPABLE) != NULL;
/* cleanup */
free(info);
return ret;
}
static int
pci_vfio_map_resource_primary(struct rte_pci_device *dev)
{
struct vfio_device_info device_info = { .argsz = sizeof(device_info) };
char pci_addr[PATH_MAX] = {0};
int vfio_dev_fd;
struct rte_pci_addr *loc = &dev->addr;
int i, ret;
struct mapped_pci_resource *vfio_res = NULL;
struct mapped_pci_res_list *vfio_res_list =
RTE_TAILQ_CAST(rte_vfio_tailq.head, mapped_pci_res_list);
struct pci_map *maps;
dev->intr_handle.fd = -1;
#ifdef HAVE_VFIO_DEV_REQ_INTERFACE
dev->vfio_req_intr_handle.fd = -1;
#endif
/* store PCI address string */
snprintf(pci_addr, sizeof(pci_addr), PCI_PRI_FMT,
loc->domain, loc->bus, loc->devid, loc->function);
ret = rte_vfio_setup_device(rte_pci_get_sysfs_path(), pci_addr,
&vfio_dev_fd, &device_info);
if (ret)
return ret;
/* allocate vfio_res and get region info */
vfio_res = rte_zmalloc("VFIO_RES", sizeof(*vfio_res), 0);
if (vfio_res == NULL) {
RTE_LOG(ERR, EAL,
"%s(): cannot store vfio mmap details\n", __func__);
goto err_vfio_dev_fd;
}
memcpy(&vfio_res->pci_addr, &dev->addr, sizeof(vfio_res->pci_addr));
/* get number of registers (up to BAR5) */
vfio_res->nb_maps = RTE_MIN((int) device_info.num_regions,
VFIO_PCI_BAR5_REGION_INDEX + 1);
/* map BARs */
maps = vfio_res->maps;
vfio_res->msix_table.bar_index = -1;
/* get MSI-X BAR, if any (we have to know where it is because we can't
* easily mmap it when using VFIO)
*/
ret = pci_vfio_get_msix_bar(vfio_dev_fd, &vfio_res->msix_table);
if (ret < 0) {
RTE_LOG(ERR, EAL, " %s cannot get MSI-X BAR number!\n",
pci_addr);
goto err_vfio_res;
}
/* if we found our MSI-X BAR region, check if we can mmap it */
if (vfio_res->msix_table.bar_index != -1) {
int ret = pci_vfio_msix_is_mappable(vfio_dev_fd,
vfio_res->msix_table.bar_index);
if (ret < 0) {
RTE_LOG(ERR, EAL, "Couldn't check if MSI-X BAR is mappable\n");
goto err_vfio_res;
} else if (ret != 0) {
/* we can map it, so we don't care where it is */
RTE_LOG(DEBUG, EAL, "VFIO reports MSI-X BAR as mappable\n");
vfio_res->msix_table.bar_index = -1;
}
}
for (i = 0; i < (int) vfio_res->nb_maps; i++) {
struct vfio_region_info *reg = NULL;
void *bar_addr;
ret = pci_vfio_get_region_info(vfio_dev_fd, &reg, i);
if (ret < 0) {
RTE_LOG(ERR, EAL, " %s cannot get device region info "
"error %i (%s)\n", pci_addr, errno,
strerror(errno));
goto err_vfio_res;
}
/* chk for io port region */
ret = pci_vfio_is_ioport_bar(vfio_dev_fd, i);
if (ret < 0) {
free(reg);
goto err_vfio_res;
} else if (ret) {
RTE_LOG(INFO, EAL, "Ignore mapping IO port bar(%d)\n",
i);
free(reg);
continue;
}
/* skip non-mmapable BARs */
if ((reg->flags & VFIO_REGION_INFO_FLAG_MMAP) == 0) {
free(reg);
continue;
}
/* try mapping somewhere close to the end of hugepages */
if (pci_map_addr == NULL)
pci_map_addr = pci_find_max_end_va();
bar_addr = pci_map_addr;
pci_map_addr = RTE_PTR_ADD(bar_addr, (size_t) reg->size);
pci_map_addr = RTE_PTR_ALIGN(pci_map_addr,
sysconf(_SC_PAGE_SIZE));
maps[i].addr = bar_addr;
maps[i].offset = reg->offset;
maps[i].size = reg->size;
maps[i].path = NULL; /* vfio doesn't have per-resource paths */
ret = pci_vfio_mmap_bar(vfio_dev_fd, vfio_res, i, 0);
if (ret < 0) {
RTE_LOG(ERR, EAL, " %s mapping BAR%i failed: %s\n",
pci_addr, i, strerror(errno));
free(reg);
goto err_vfio_res;
}
dev->mem_resource[i].addr = maps[i].addr;
free(reg);
}
if (pci_rte_vfio_setup_device(dev, vfio_dev_fd) < 0) {
RTE_LOG(ERR, EAL, " %s setup device failed\n", pci_addr);
goto err_vfio_res;
}
#ifdef HAVE_VFIO_DEV_REQ_INTERFACE
if (pci_vfio_enable_notifier(dev, vfio_dev_fd) != 0) {
RTE_LOG(ERR, EAL, "Error setting up notifier!\n");
goto err_vfio_res;
}
#endif
TAILQ_INSERT_TAIL(vfio_res_list, vfio_res, next);
return 0;
err_vfio_res:
rte_free(vfio_res);
err_vfio_dev_fd:
rte_vfio_release_device(rte_pci_get_sysfs_path(),
pci_addr, vfio_dev_fd);
return -1;
}
static int
pci_vfio_map_resource_secondary(struct rte_pci_device *dev)
{
struct vfio_device_info device_info = { .argsz = sizeof(device_info) };
char pci_addr[PATH_MAX] = {0};
int vfio_dev_fd;
struct rte_pci_addr *loc = &dev->addr;
int i, ret;
struct mapped_pci_resource *vfio_res = NULL;
struct mapped_pci_res_list *vfio_res_list =
RTE_TAILQ_CAST(rte_vfio_tailq.head, mapped_pci_res_list);
struct pci_map *maps;
dev->intr_handle.fd = -1;
#ifdef HAVE_VFIO_DEV_REQ_INTERFACE
dev->vfio_req_intr_handle.fd = -1;
#endif
/* store PCI address string */
snprintf(pci_addr, sizeof(pci_addr), PCI_PRI_FMT,
loc->domain, loc->bus, loc->devid, loc->function);
/* if we're in a secondary process, just find our tailq entry */
TAILQ_FOREACH(vfio_res, vfio_res_list, next) {
if (rte_pci_addr_cmp(&vfio_res->pci_addr,
&dev->addr))
continue;
break;
}
/* if we haven't found our tailq entry, something's wrong */
if (vfio_res == NULL) {
RTE_LOG(ERR, EAL, " %s cannot find TAILQ entry for PCI device!\n",
pci_addr);
return -1;
}
ret = rte_vfio_setup_device(rte_pci_get_sysfs_path(), pci_addr,
&vfio_dev_fd, &device_info);
if (ret)
return ret;
/* map BARs */
maps = vfio_res->maps;
for (i = 0; i < (int) vfio_res->nb_maps; i++) {
ret = pci_vfio_mmap_bar(vfio_dev_fd, vfio_res, i, MAP_FIXED);
if (ret < 0) {
RTE_LOG(ERR, EAL, " %s mapping BAR%i failed: %s\n",
pci_addr, i, strerror(errno));
goto err_vfio_dev_fd;
}
dev->mem_resource[i].addr = maps[i].addr;
}
/* we need save vfio_dev_fd, so it can be used during release */
dev->intr_handle.vfio_dev_fd = vfio_dev_fd;
#ifdef HAVE_VFIO_DEV_REQ_INTERFACE
dev->vfio_req_intr_handle.vfio_dev_fd = vfio_dev_fd;
#endif
return 0;
err_vfio_dev_fd:
rte_vfio_release_device(rte_pci_get_sysfs_path(),
pci_addr, vfio_dev_fd);
return -1;
}
/*
* map the PCI resources of a PCI device in virtual memory (VFIO version).
* primary and secondary processes follow almost exactly the same path
*/
int
pci_vfio_map_resource(struct rte_pci_device *dev)
{
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
return pci_vfio_map_resource_primary(dev);
else
return pci_vfio_map_resource_secondary(dev);
}
static struct mapped_pci_resource *
find_and_unmap_vfio_resource(struct mapped_pci_res_list *vfio_res_list,
struct rte_pci_device *dev,
const char *pci_addr)
{
struct mapped_pci_resource *vfio_res = NULL;
struct pci_map *maps;
int i;
/* Get vfio_res */
TAILQ_FOREACH(vfio_res, vfio_res_list, next) {
if (rte_pci_addr_cmp(&vfio_res->pci_addr, &dev->addr))
continue;
break;
}
if (vfio_res == NULL)
return vfio_res;
RTE_LOG(INFO, EAL, "Releasing pci mapped resource for %s\n",
pci_addr);
maps = vfio_res->maps;
for (i = 0; i < (int) vfio_res->nb_maps; i++) {
/*
* We do not need to be aware of MSI-X table BAR mappings as
* when mapping. Just using current maps array is enough
*/
if (maps[i].addr) {
RTE_LOG(INFO, EAL, "Calling pci_unmap_resource for %s at %p\n",
pci_addr, maps[i].addr);
pci_unmap_resource(maps[i].addr, maps[i].size);
}
}
return vfio_res;
}
static int
pci_vfio_unmap_resource_primary(struct rte_pci_device *dev)
{
char pci_addr[PATH_MAX] = {0};
struct rte_pci_addr *loc = &dev->addr;
struct mapped_pci_resource *vfio_res = NULL;
struct mapped_pci_res_list *vfio_res_list;
int ret;
/* store PCI address string */
snprintf(pci_addr, sizeof(pci_addr), PCI_PRI_FMT,
loc->domain, loc->bus, loc->devid, loc->function);
#ifdef HAVE_VFIO_DEV_REQ_INTERFACE
ret = pci_vfio_disable_notifier(dev);
if (ret) {
RTE_LOG(ERR, EAL, "fail to disable req notifier.\n");
return -1;
}
#endif
if (close(dev->intr_handle.fd) < 0) {
RTE_LOG(INFO, EAL, "Error when closing eventfd file descriptor for %s\n",
pci_addr);
return -1;
}
if (pci_vfio_set_bus_master(dev->intr_handle.vfio_dev_fd, false)) {
RTE_LOG(ERR, EAL, " %s cannot unset bus mastering for PCI device!\n",
pci_addr);
return -1;
}
ret = rte_vfio_release_device(rte_pci_get_sysfs_path(), pci_addr,
dev->intr_handle.vfio_dev_fd);
if (ret < 0) {
RTE_LOG(ERR, EAL,
"%s(): cannot release device\n", __func__);
return ret;
}
vfio_res_list =
RTE_TAILQ_CAST(rte_vfio_tailq.head, mapped_pci_res_list);
vfio_res = find_and_unmap_vfio_resource(vfio_res_list, dev, pci_addr);
/* if we haven't found our tailq entry, something's wrong */
if (vfio_res == NULL) {
RTE_LOG(ERR, EAL, " %s cannot find TAILQ entry for PCI device!\n",
pci_addr);
return -1;
}
TAILQ_REMOVE(vfio_res_list, vfio_res, next);
rte_free(vfio_res);
return 0;
}
static int
pci_vfio_unmap_resource_secondary(struct rte_pci_device *dev)
{
char pci_addr[PATH_MAX] = {0};
struct rte_pci_addr *loc = &dev->addr;
struct mapped_pci_resource *vfio_res = NULL;
struct mapped_pci_res_list *vfio_res_list;
int ret;
/* store PCI address string */
snprintf(pci_addr, sizeof(pci_addr), PCI_PRI_FMT,
loc->domain, loc->bus, loc->devid, loc->function);
ret = rte_vfio_release_device(rte_pci_get_sysfs_path(), pci_addr,
dev->intr_handle.vfio_dev_fd);
if (ret < 0) {
RTE_LOG(ERR, EAL,
"%s(): cannot release device\n", __func__);
return ret;
}
vfio_res_list =
RTE_TAILQ_CAST(rte_vfio_tailq.head, mapped_pci_res_list);
vfio_res = find_and_unmap_vfio_resource(vfio_res_list, dev, pci_addr);
/* if we haven't found our tailq entry, something's wrong */
if (vfio_res == NULL) {
RTE_LOG(ERR, EAL, " %s cannot find TAILQ entry for PCI device!\n",
pci_addr);
return -1;
}
return 0;
}
int
pci_vfio_unmap_resource(struct rte_pci_device *dev)
{
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
return pci_vfio_unmap_resource_primary(dev);
else
return pci_vfio_unmap_resource_secondary(dev);
}
int
pci_vfio_ioport_map(struct rte_pci_device *dev, int bar,
struct rte_pci_ioport *p)
{
if (bar < VFIO_PCI_BAR0_REGION_INDEX ||
bar > VFIO_PCI_BAR5_REGION_INDEX) {
RTE_LOG(ERR, EAL, "invalid bar (%d)!\n", bar);
return -1;
}
p->dev = dev;
p->base = VFIO_GET_REGION_ADDR(bar);
return 0;
}
void
pci_vfio_ioport_read(struct rte_pci_ioport *p,
void *data, size_t len, off_t offset)
{
const struct rte_intr_handle *intr_handle = &p->dev->intr_handle;
if (pread64(intr_handle->vfio_dev_fd, data,
len, p->base + offset) <= 0)
RTE_LOG(ERR, EAL,
"Can't read from PCI bar (%" PRIu64 ") : offset (%x)\n",
VFIO_GET_REGION_IDX(p->base), (int)offset);
}
void
pci_vfio_ioport_write(struct rte_pci_ioport *p,
const void *data, size_t len, off_t offset)
{
const struct rte_intr_handle *intr_handle = &p->dev->intr_handle;
if (pwrite64(intr_handle->vfio_dev_fd, data,
len, p->base + offset) <= 0)
RTE_LOG(ERR, EAL,
"Can't write to PCI bar (%" PRIu64 ") : offset (%x)\n",
VFIO_GET_REGION_IDX(p->base), (int)offset);
}
int
pci_vfio_ioport_unmap(struct rte_pci_ioport *p)
{
RTE_SET_USED(p);
return -1;
}
int
pci_vfio_is_enabled(void)
{
return rte_vfio_is_enabled("vfio_pci");
}
#endif