f-stack/dpdk/drivers/crypto/kasumi/rte_kasumi_pmd.c

632 lines
16 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2018 Intel Corporation
*/
#include <rte_common.h>
#include <rte_hexdump.h>
#include <rte_cryptodev.h>
#include <rte_cryptodev_pmd.h>
#include <rte_bus_vdev.h>
#include <rte_malloc.h>
#include <rte_cpuflags.h>
#include "kasumi_pmd_private.h"
#define KASUMI_KEY_LENGTH 16
#define KASUMI_IV_LENGTH 8
#define KASUMI_MAX_BURST 4
#define BYTE_LEN 8
static uint8_t cryptodev_driver_id;
/** Get xform chain order. */
static enum kasumi_operation
kasumi_get_mode(const struct rte_crypto_sym_xform *xform)
{
if (xform == NULL)
return KASUMI_OP_NOT_SUPPORTED;
if (xform->next)
if (xform->next->next != NULL)
return KASUMI_OP_NOT_SUPPORTED;
if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
if (xform->next == NULL)
return KASUMI_OP_ONLY_AUTH;
else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
return KASUMI_OP_AUTH_CIPHER;
else
return KASUMI_OP_NOT_SUPPORTED;
}
if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
if (xform->next == NULL)
return KASUMI_OP_ONLY_CIPHER;
else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
return KASUMI_OP_CIPHER_AUTH;
else
return KASUMI_OP_NOT_SUPPORTED;
}
return KASUMI_OP_NOT_SUPPORTED;
}
/** Parse crypto xform chain and set private session parameters. */
int
kasumi_set_session_parameters(struct kasumi_session *sess,
const struct rte_crypto_sym_xform *xform)
{
const struct rte_crypto_sym_xform *auth_xform = NULL;
const struct rte_crypto_sym_xform *cipher_xform = NULL;
enum kasumi_operation mode;
/* Select Crypto operation - hash then cipher / cipher then hash */
mode = kasumi_get_mode(xform);
switch (mode) {
case KASUMI_OP_CIPHER_AUTH:
auth_xform = xform->next;
/* Fall-through */
case KASUMI_OP_ONLY_CIPHER:
cipher_xform = xform;
break;
case KASUMI_OP_AUTH_CIPHER:
cipher_xform = xform->next;
/* Fall-through */
case KASUMI_OP_ONLY_AUTH:
auth_xform = xform;
break;
case KASUMI_OP_NOT_SUPPORTED:
default:
KASUMI_LOG(ERR, "Unsupported operation chain order parameter");
return -ENOTSUP;
}
if (cipher_xform) {
/* Only KASUMI F8 supported */
if (cipher_xform->cipher.algo != RTE_CRYPTO_CIPHER_KASUMI_F8) {
KASUMI_LOG(ERR, "Unsupported cipher algorithm ");
return -ENOTSUP;
}
sess->cipher_iv_offset = cipher_xform->cipher.iv.offset;
if (cipher_xform->cipher.iv.length != KASUMI_IV_LENGTH) {
KASUMI_LOG(ERR, "Wrong IV length");
return -EINVAL;
}
/* Initialize key */
sso_kasumi_init_f8_key_sched(cipher_xform->cipher.key.data,
&sess->pKeySched_cipher);
}
if (auth_xform) {
/* Only KASUMI F9 supported */
if (auth_xform->auth.algo != RTE_CRYPTO_AUTH_KASUMI_F9) {
KASUMI_LOG(ERR, "Unsupported authentication");
return -ENOTSUP;
}
if (auth_xform->auth.digest_length != KASUMI_DIGEST_LENGTH) {
KASUMI_LOG(ERR, "Wrong digest length");
return -EINVAL;
}
sess->auth_op = auth_xform->auth.op;
/* Initialize key */
sso_kasumi_init_f9_key_sched(auth_xform->auth.key.data,
&sess->pKeySched_hash);
}
sess->op = mode;
return 0;
}
/** Get KASUMI session. */
static struct kasumi_session *
kasumi_get_session(struct kasumi_qp *qp, struct rte_crypto_op *op)
{
struct kasumi_session *sess = NULL;
if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
if (likely(op->sym->session != NULL))
sess = (struct kasumi_session *)
get_sym_session_private_data(
op->sym->session,
cryptodev_driver_id);
} else {
void *_sess = NULL;
void *_sess_private_data = NULL;
if (rte_mempool_get(qp->sess_mp, (void **)&_sess))
return NULL;
if (rte_mempool_get(qp->sess_mp_priv,
(void **)&_sess_private_data))
return NULL;
sess = (struct kasumi_session *)_sess_private_data;
if (unlikely(kasumi_set_session_parameters(sess,
op->sym->xform) != 0)) {
rte_mempool_put(qp->sess_mp, _sess);
rte_mempool_put(qp->sess_mp_priv, _sess_private_data);
sess = NULL;
}
op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
set_sym_session_private_data(op->sym->session,
cryptodev_driver_id, _sess_private_data);
}
if (unlikely(sess == NULL))
op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
return sess;
}
/** Encrypt/decrypt mbufs with same cipher key. */
static uint8_t
process_kasumi_cipher_op(struct rte_crypto_op **ops,
struct kasumi_session *session,
uint8_t num_ops)
{
unsigned i;
uint8_t processed_ops = 0;
uint8_t *src[num_ops], *dst[num_ops];
uint8_t *iv_ptr;
uint64_t iv[num_ops];
uint32_t num_bytes[num_ops];
for (i = 0; i < num_ops; i++) {
src[i] = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) +
(ops[i]->sym->cipher.data.offset >> 3);
dst[i] = ops[i]->sym->m_dst ?
rte_pktmbuf_mtod(ops[i]->sym->m_dst, uint8_t *) +
(ops[i]->sym->cipher.data.offset >> 3) :
rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) +
(ops[i]->sym->cipher.data.offset >> 3);
iv_ptr = rte_crypto_op_ctod_offset(ops[i], uint8_t *,
session->cipher_iv_offset);
iv[i] = *((uint64_t *)(iv_ptr));
num_bytes[i] = ops[i]->sym->cipher.data.length >> 3;
processed_ops++;
}
if (processed_ops != 0)
sso_kasumi_f8_n_buffer(&session->pKeySched_cipher, iv,
src, dst, num_bytes, processed_ops);
return processed_ops;
}
/** Encrypt/decrypt mbuf (bit level function). */
static uint8_t
process_kasumi_cipher_op_bit(struct rte_crypto_op *op,
struct kasumi_session *session)
{
uint8_t *src, *dst;
uint8_t *iv_ptr;
uint64_t iv;
uint32_t length_in_bits, offset_in_bits;
offset_in_bits = op->sym->cipher.data.offset;
src = rte_pktmbuf_mtod(op->sym->m_src, uint8_t *);
if (op->sym->m_dst == NULL) {
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
KASUMI_LOG(ERR, "bit-level in-place not supported");
return 0;
}
dst = rte_pktmbuf_mtod(op->sym->m_dst, uint8_t *);
iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
session->cipher_iv_offset);
iv = *((uint64_t *)(iv_ptr));
length_in_bits = op->sym->cipher.data.length;
sso_kasumi_f8_1_buffer_bit(&session->pKeySched_cipher, iv,
src, dst, length_in_bits, offset_in_bits);
return 1;
}
/** Generate/verify hash from mbufs with same hash key. */
static int
process_kasumi_hash_op(struct kasumi_qp *qp, struct rte_crypto_op **ops,
struct kasumi_session *session,
uint8_t num_ops)
{
unsigned i;
uint8_t processed_ops = 0;
uint8_t *src, *dst;
uint32_t length_in_bits;
uint32_t num_bytes;
for (i = 0; i < num_ops; i++) {
/* Data must be byte aligned */
if ((ops[i]->sym->auth.data.offset % BYTE_LEN) != 0) {
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
KASUMI_LOG(ERR, "Invalid Offset");
break;
}
length_in_bits = ops[i]->sym->auth.data.length;
src = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) +
(ops[i]->sym->auth.data.offset >> 3);
/* Direction from next bit after end of message */
num_bytes = length_in_bits >> 3;
if (session->auth_op == RTE_CRYPTO_AUTH_OP_VERIFY) {
dst = qp->temp_digest;
sso_kasumi_f9_1_buffer(&session->pKeySched_hash, src,
num_bytes, dst);
/* Verify digest. */
if (memcmp(dst, ops[i]->sym->auth.digest.data,
KASUMI_DIGEST_LENGTH) != 0)
ops[i]->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
} else {
dst = ops[i]->sym->auth.digest.data;
sso_kasumi_f9_1_buffer(&session->pKeySched_hash, src,
num_bytes, dst);
}
processed_ops++;
}
return processed_ops;
}
/** Process a batch of crypto ops which shares the same session. */
static int
process_ops(struct rte_crypto_op **ops, struct kasumi_session *session,
struct kasumi_qp *qp, uint8_t num_ops,
uint16_t *accumulated_enqueued_ops)
{
unsigned i;
unsigned enqueued_ops, processed_ops;
switch (session->op) {
case KASUMI_OP_ONLY_CIPHER:
processed_ops = process_kasumi_cipher_op(ops,
session, num_ops);
break;
case KASUMI_OP_ONLY_AUTH:
processed_ops = process_kasumi_hash_op(qp, ops, session,
num_ops);
break;
case KASUMI_OP_CIPHER_AUTH:
processed_ops = process_kasumi_cipher_op(ops, session,
num_ops);
process_kasumi_hash_op(qp, ops, session, processed_ops);
break;
case KASUMI_OP_AUTH_CIPHER:
processed_ops = process_kasumi_hash_op(qp, ops, session,
num_ops);
process_kasumi_cipher_op(ops, session, processed_ops);
break;
default:
/* Operation not supported. */
processed_ops = 0;
}
for (i = 0; i < num_ops; i++) {
/*
* If there was no error/authentication failure,
* change status to successful.
*/
if (ops[i]->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
ops[i]->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
/* Free session if a session-less crypto op. */
if (ops[i]->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
memset(session, 0, sizeof(struct kasumi_session));
memset(ops[i]->sym->session, 0,
rte_cryptodev_sym_get_existing_header_session_size(
ops[i]->sym->session));
rte_mempool_put(qp->sess_mp_priv, session);
rte_mempool_put(qp->sess_mp, ops[i]->sym->session);
ops[i]->sym->session = NULL;
}
}
enqueued_ops = rte_ring_enqueue_burst(qp->processed_ops,
(void **)ops, processed_ops, NULL);
qp->qp_stats.enqueued_count += enqueued_ops;
*accumulated_enqueued_ops += enqueued_ops;
return enqueued_ops;
}
/** Process a crypto op with length/offset in bits. */
static int
process_op_bit(struct rte_crypto_op *op, struct kasumi_session *session,
struct kasumi_qp *qp, uint16_t *accumulated_enqueued_ops)
{
unsigned enqueued_op, processed_op;
switch (session->op) {
case KASUMI_OP_ONLY_CIPHER:
processed_op = process_kasumi_cipher_op_bit(op,
session);
break;
case KASUMI_OP_ONLY_AUTH:
processed_op = process_kasumi_hash_op(qp, &op, session, 1);
break;
case KASUMI_OP_CIPHER_AUTH:
processed_op = process_kasumi_cipher_op_bit(op, session);
if (processed_op == 1)
process_kasumi_hash_op(qp, &op, session, 1);
break;
case KASUMI_OP_AUTH_CIPHER:
processed_op = process_kasumi_hash_op(qp, &op, session, 1);
if (processed_op == 1)
process_kasumi_cipher_op_bit(op, session);
break;
default:
/* Operation not supported. */
processed_op = 0;
}
/*
* If there was no error/authentication failure,
* change status to successful.
*/
if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
/* Free session if a session-less crypto op. */
if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
memset(op->sym->session, 0, sizeof(struct kasumi_session));
rte_cryptodev_sym_session_free(op->sym->session);
op->sym->session = NULL;
}
enqueued_op = rte_ring_enqueue_burst(qp->processed_ops, (void **)&op,
processed_op, NULL);
qp->qp_stats.enqueued_count += enqueued_op;
*accumulated_enqueued_ops += enqueued_op;
return enqueued_op;
}
static uint16_t
kasumi_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct rte_crypto_op *c_ops[nb_ops];
struct rte_crypto_op *curr_c_op;
struct kasumi_session *prev_sess = NULL, *curr_sess = NULL;
struct kasumi_qp *qp = queue_pair;
unsigned i;
uint8_t burst_size = 0;
uint16_t enqueued_ops = 0;
uint8_t processed_ops;
for (i = 0; i < nb_ops; i++) {
curr_c_op = ops[i];
#ifdef RTE_LIBRTE_PMD_KASUMI_DEBUG
if (!rte_pktmbuf_is_contiguous(curr_c_op->sym->m_src) ||
(curr_c_op->sym->m_dst != NULL &&
!rte_pktmbuf_is_contiguous(
curr_c_op->sym->m_dst))) {
KASUMI_LOG(ERR, "PMD supports only contiguous mbufs, "
"op (%p) provides noncontiguous mbuf as "
"source/destination buffer.", curr_c_op);
curr_c_op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
break;
}
#endif
/* Set status as enqueued (not processed yet) by default. */
curr_c_op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
curr_sess = kasumi_get_session(qp, curr_c_op);
if (unlikely(curr_sess == NULL ||
curr_sess->op == KASUMI_OP_NOT_SUPPORTED)) {
curr_c_op->status =
RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
break;
}
/* If length/offset is at bit-level, process this buffer alone. */
if (((curr_c_op->sym->cipher.data.length % BYTE_LEN) != 0)
|| ((ops[i]->sym->cipher.data.offset
% BYTE_LEN) != 0)) {
/* Process the ops of the previous session. */
if (prev_sess != NULL) {
processed_ops = process_ops(c_ops, prev_sess,
qp, burst_size, &enqueued_ops);
if (processed_ops < burst_size) {
burst_size = 0;
break;
}
burst_size = 0;
prev_sess = NULL;
}
processed_ops = process_op_bit(curr_c_op, curr_sess,
qp, &enqueued_ops);
if (processed_ops != 1)
break;
continue;
}
/* Batch ops that share the same session. */
if (prev_sess == NULL) {
prev_sess = curr_sess;
c_ops[burst_size++] = curr_c_op;
} else if (curr_sess == prev_sess) {
c_ops[burst_size++] = curr_c_op;
/*
* When there are enough ops to process in a batch,
* process them, and start a new batch.
*/
if (burst_size == KASUMI_MAX_BURST) {
processed_ops = process_ops(c_ops, prev_sess,
qp, burst_size, &enqueued_ops);
if (processed_ops < burst_size) {
burst_size = 0;
break;
}
burst_size = 0;
prev_sess = NULL;
}
} else {
/*
* Different session, process the ops
* of the previous session.
*/
processed_ops = process_ops(c_ops, prev_sess,
qp, burst_size, &enqueued_ops);
if (processed_ops < burst_size) {
burst_size = 0;
break;
}
burst_size = 0;
prev_sess = curr_sess;
c_ops[burst_size++] = curr_c_op;
}
}
if (burst_size != 0) {
/* Process the crypto ops of the last session. */
processed_ops = process_ops(c_ops, prev_sess,
qp, burst_size, &enqueued_ops);
}
qp->qp_stats.enqueue_err_count += nb_ops - enqueued_ops;
return enqueued_ops;
}
static uint16_t
kasumi_pmd_dequeue_burst(void *queue_pair,
struct rte_crypto_op **c_ops, uint16_t nb_ops)
{
struct kasumi_qp *qp = queue_pair;
unsigned nb_dequeued;
nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
(void **)c_ops, nb_ops, NULL);
qp->qp_stats.dequeued_count += nb_dequeued;
return nb_dequeued;
}
static int cryptodev_kasumi_remove(struct rte_vdev_device *vdev);
static int
cryptodev_kasumi_create(const char *name,
struct rte_vdev_device *vdev,
struct rte_cryptodev_pmd_init_params *init_params)
{
struct rte_cryptodev *dev;
struct kasumi_private *internals;
uint64_t cpu_flags = 0;
dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
if (dev == NULL) {
KASUMI_LOG(ERR, "failed to create cryptodev vdev");
goto init_error;
}
/* Check CPU for supported vector instruction set */
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX))
cpu_flags |= RTE_CRYPTODEV_FF_CPU_AVX;
else
cpu_flags |= RTE_CRYPTODEV_FF_CPU_SSE;
dev->driver_id = cryptodev_driver_id;
dev->dev_ops = rte_kasumi_pmd_ops;
/* Register RX/TX burst functions for data path. */
dev->dequeue_burst = kasumi_pmd_dequeue_burst;
dev->enqueue_burst = kasumi_pmd_enqueue_burst;
dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
cpu_flags;
internals = dev->data->dev_private;
internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs;
return 0;
init_error:
KASUMI_LOG(ERR, "driver %s: failed",
init_params->name);
cryptodev_kasumi_remove(vdev);
return -EFAULT;
}
static int
cryptodev_kasumi_probe(struct rte_vdev_device *vdev)
{
struct rte_cryptodev_pmd_init_params init_params = {
"",
sizeof(struct kasumi_private),
rte_socket_id(),
RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS
};
const char *name;
const char *input_args;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
input_args = rte_vdev_device_args(vdev);
rte_cryptodev_pmd_parse_input_args(&init_params, input_args);
return cryptodev_kasumi_create(name, vdev, &init_params);
}
static int
cryptodev_kasumi_remove(struct rte_vdev_device *vdev)
{
struct rte_cryptodev *cryptodev;
const char *name;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
cryptodev = rte_cryptodev_pmd_get_named_dev(name);
if (cryptodev == NULL)
return -ENODEV;
return rte_cryptodev_pmd_destroy(cryptodev);
}
static struct rte_vdev_driver cryptodev_kasumi_pmd_drv = {
.probe = cryptodev_kasumi_probe,
.remove = cryptodev_kasumi_remove
};
static struct cryptodev_driver kasumi_crypto_drv;
RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_KASUMI_PMD, cryptodev_kasumi_pmd_drv);
RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_KASUMI_PMD, cryptodev_kasumi_pmd);
RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_KASUMI_PMD,
"max_nb_queue_pairs=<int> "
"socket_id=<int>");
RTE_PMD_REGISTER_CRYPTO_DRIVER(kasumi_crypto_drv,
cryptodev_kasumi_pmd_drv.driver, cryptodev_driver_id);
RTE_INIT(kasumi_init_log)
{
kasumi_logtype_driver = rte_log_register("pmd.crypto.kasumi");
}