f-stack/dpdk/examples/ipsec-secgw/sp4.c

649 lines
15 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016 Intel Corporation
*/
/*
* Security Policies
*/
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <rte_acl.h>
#include <rte_ip.h>
#include "ipsec.h"
#include "parser.h"
#define INIT_ACL_RULE_NUM 128
#define IPV4_DST_FROM_SP(acr) \
(rte_cpu_to_be_32((acr).field[DST_FIELD_IPV4].value.u32))
#define IPV4_SRC_FROM_SP(acr) \
(rte_cpu_to_be_32((acr).field[SRC_FIELD_IPV4].value.u32))
#define IPV4_DST_MASK_FROM_SP(acr) \
((acr).field[DST_FIELD_IPV4].mask_range.u32)
#define IPV4_SRC_MASK_FROM_SP(acr) \
((acr).field[SRC_FIELD_IPV4].mask_range.u32)
/*
* Rule and trace formats definitions.
*/
enum {
PROTO_FIELD_IPV4,
SRC_FIELD_IPV4,
DST_FIELD_IPV4,
SRCP_FIELD_IPV4,
DSTP_FIELD_IPV4,
NUM_FIELDS_IPV4
};
/*
* That effectively defines order of IPV4 classifications:
* - PROTO
* - SRC IP ADDRESS
* - DST IP ADDRESS
* - PORTS (SRC and DST)
*/
enum {
RTE_ACL_IPV4_PROTO,
RTE_ACL_IPV4_SRC,
RTE_ACL_IPV4_DST,
RTE_ACL_IPV4_PORTS,
RTE_ACL_IPV4_NUM
};
static struct rte_acl_field_def ip4_defs[NUM_FIELDS_IPV4] = {
{
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof(uint8_t),
.field_index = PROTO_FIELD_IPV4,
.input_index = RTE_ACL_IPV4_PROTO,
.offset = 0,
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC_FIELD_IPV4,
.input_index = RTE_ACL_IPV4_SRC,
.offset = offsetof(struct ip, ip_src) - offsetof(struct ip, ip_p)
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST_FIELD_IPV4,
.input_index = RTE_ACL_IPV4_DST,
.offset = offsetof(struct ip, ip_dst) - offsetof(struct ip, ip_p)
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = SRCP_FIELD_IPV4,
.input_index = RTE_ACL_IPV4_PORTS,
.offset = sizeof(struct ip) - offsetof(struct ip, ip_p)
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = DSTP_FIELD_IPV4,
.input_index = RTE_ACL_IPV4_PORTS,
.offset = sizeof(struct ip) - offsetof(struct ip, ip_p) +
sizeof(uint16_t)
},
};
RTE_ACL_RULE_DEF(acl4_rules, RTE_DIM(ip4_defs));
static struct acl4_rules *acl4_rules_out;
static uint32_t nb_acl4_rules_out;
static uint32_t sp_out_sz;
static struct acl4_rules *acl4_rules_in;
static uint32_t nb_acl4_rules_in;
static uint32_t sp_in_sz;
static int
extend_sp_arr(struct acl4_rules **sp_tbl, uint32_t cur_cnt, uint32_t *cur_sz)
{
if (*sp_tbl == NULL) {
*sp_tbl = calloc(INIT_ACL_RULE_NUM, sizeof(struct acl4_rules));
if (*sp_tbl == NULL)
return -1;
*cur_sz = INIT_ACL_RULE_NUM;
return 0;
}
if (cur_cnt >= *cur_sz) {
*sp_tbl = realloc(*sp_tbl,
*cur_sz * sizeof(struct acl4_rules) * 2);
if (*sp_tbl == NULL)
return -1;
/* clean reallocated extra space */
memset(&(*sp_tbl)[*cur_sz], 0,
*cur_sz * sizeof(struct acl4_rules));
*cur_sz *= 2;
}
return 0;
}
void
parse_sp4_tokens(char **tokens, uint32_t n_tokens,
struct parse_status *status)
{
struct acl4_rules *rule_ipv4 = NULL;
uint32_t *ri = NULL; /* rule index */
uint32_t ti = 0; /* token index */
uint32_t tv;
uint32_t esp_p = 0;
uint32_t protect_p = 0;
uint32_t bypass_p = 0;
uint32_t discard_p = 0;
uint32_t pri_p = 0;
uint32_t src_p = 0;
uint32_t dst_p = 0;
uint32_t proto_p = 0;
uint32_t sport_p = 0;
uint32_t dport_p = 0;
if (strcmp(tokens[1], "in") == 0) {
ri = &nb_acl4_rules_in;
if (extend_sp_arr(&acl4_rules_in, nb_acl4_rules_in,
&sp_in_sz) < 0)
return;
rule_ipv4 = &acl4_rules_in[*ri];
} else if (strcmp(tokens[1], "out") == 0) {
ri = &nb_acl4_rules_out;
if (extend_sp_arr(&acl4_rules_out, nb_acl4_rules_out,
&sp_out_sz) < 0)
return;
rule_ipv4 = &acl4_rules_out[*ri];
} else {
APP_CHECK(0, status, "unrecognized input \"%s\", expect"
" \"in\" or \"out\"\n", tokens[ti]);
return;
}
rule_ipv4->data.category_mask = 1;
for (ti = 2; ti < n_tokens; ti++) {
if (strcmp(tokens[ti], "esp") == 0) {
/* currently do nothing */
APP_CHECK_PRESENCE(esp_p, tokens[ti], status);
if (status->status < 0)
return;
esp_p = 1;
continue;
}
if (strcmp(tokens[ti], "protect") == 0) {
APP_CHECK_PRESENCE(protect_p, tokens[ti], status);
if (status->status < 0)
return;
APP_CHECK(bypass_p == 0, status, "conflict item "
"between \"%s\" and \"%s\"", tokens[ti],
"bypass");
if (status->status < 0)
return;
APP_CHECK(discard_p == 0, status, "conflict item "
"between \"%s\" and \"%s\"", tokens[ti],
"discard");
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
APP_CHECK_TOKEN_IS_NUM(tokens, ti, status);
if (status->status < 0)
return;
tv = atoi(tokens[ti]);
APP_CHECK(tv != DISCARD && tv != BYPASS, status,
"invalid SPI: %s", tokens[ti]);
if (status->status < 0)
return;
rule_ipv4->data.userdata = tv;
protect_p = 1;
continue;
}
if (strcmp(tokens[ti], "bypass") == 0) {
APP_CHECK_PRESENCE(bypass_p, tokens[ti], status);
if (status->status < 0)
return;
APP_CHECK(protect_p == 0, status, "conflict item "
"between \"%s\" and \"%s\"", tokens[ti],
"protect");
if (status->status < 0)
return;
APP_CHECK(discard_p == 0, status, "conflict item "
"between \"%s\" and \"%s\"", tokens[ti],
"discard");
if (status->status < 0)
return;
rule_ipv4->data.userdata = BYPASS;
bypass_p = 1;
continue;
}
if (strcmp(tokens[ti], "discard") == 0) {
APP_CHECK_PRESENCE(discard_p, tokens[ti], status);
if (status->status < 0)
return;
APP_CHECK(protect_p == 0, status, "conflict item "
"between \"%s\" and \"%s\"", tokens[ti],
"protect");
if (status->status < 0)
return;
APP_CHECK(bypass_p == 0, status, "conflict item "
"between \"%s\" and \"%s\"", tokens[ti],
"discard");
if (status->status < 0)
return;
rule_ipv4->data.userdata = DISCARD;
discard_p = 1;
continue;
}
if (strcmp(tokens[ti], "pri") == 0) {
APP_CHECK_PRESENCE(pri_p, tokens[ti], status);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
APP_CHECK_TOKEN_IS_NUM(tokens, ti, status);
if (status->status < 0)
return;
rule_ipv4->data.priority = atoi(tokens[ti]);
pri_p = 1;
continue;
}
if (strcmp(tokens[ti], "src") == 0) {
struct in_addr ip;
uint32_t depth;
APP_CHECK_PRESENCE(src_p, tokens[ti], status);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
APP_CHECK(parse_ipv4_addr(tokens[ti], &ip,
&depth) == 0, status, "unrecognized "
"input \"%s\", expect valid ipv4 addr",
tokens[ti]);
if (status->status < 0)
return;
rule_ipv4->field[1].value.u32 =
rte_bswap32(ip.s_addr);
rule_ipv4->field[1].mask_range.u32 =
depth;
src_p = 1;
continue;
}
if (strcmp(tokens[ti], "dst") == 0) {
struct in_addr ip;
uint32_t depth;
APP_CHECK_PRESENCE(dst_p, tokens[ti], status);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
APP_CHECK(parse_ipv4_addr(tokens[ti], &ip,
&depth) == 0, status, "unrecognized "
"input \"%s\", expect valid ipv4 addr",
tokens[ti]);
if (status->status < 0)
return;
rule_ipv4->field[2].value.u32 =
rte_bswap32(ip.s_addr);
rule_ipv4->field[2].mask_range.u32 =
depth;
dst_p = 1;
continue;
}
if (strcmp(tokens[ti], "proto") == 0) {
uint16_t low, high;
APP_CHECK_PRESENCE(proto_p, tokens[ti], status);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
APP_CHECK(parse_range(tokens[ti], &low, &high)
== 0, status, "unrecognized input \"%s\""
", expect \"from:to\"", tokens[ti]);
if (status->status < 0)
return;
APP_CHECK(low <= 0xff, status, "proto low "
"over-limit");
if (status->status < 0)
return;
APP_CHECK(high <= 0xff, status, "proto high "
"over-limit");
if (status->status < 0)
return;
rule_ipv4->field[0].value.u8 = (uint8_t)low;
rule_ipv4->field[0].mask_range.u8 = (uint8_t)high;
proto_p = 1;
continue;
}
if (strcmp(tokens[ti], "sport") == 0) {
uint16_t port_low, port_high;
APP_CHECK_PRESENCE(sport_p, tokens[ti], status);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
APP_CHECK(parse_range(tokens[ti], &port_low,
&port_high) == 0, status, "unrecognized "
"input \"%s\", expect \"port_from:"
"port_to\"", tokens[ti]);
if (status->status < 0)
return;
rule_ipv4->field[3].value.u16 = port_low;
rule_ipv4->field[3].mask_range.u16 = port_high;
sport_p = 1;
continue;
}
if (strcmp(tokens[ti], "dport") == 0) {
uint16_t port_low, port_high;
APP_CHECK_PRESENCE(dport_p, tokens[ti], status);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
APP_CHECK(parse_range(tokens[ti], &port_low,
&port_high) == 0, status, "unrecognized "
"input \"%s\", expect \"port_from:"
"port_to\"", tokens[ti]);
if (status->status < 0)
return;
rule_ipv4->field[4].value.u16 = port_low;
rule_ipv4->field[4].mask_range.u16 = port_high;
dport_p = 1;
continue;
}
/* unrecognizable input */
APP_CHECK(0, status, "unrecognized input \"%s\"",
tokens[ti]);
return;
}
/* check if argument(s) are missing */
APP_CHECK(esp_p == 1, status, "missing argument \"esp\"");
if (status->status < 0)
return;
APP_CHECK(protect_p | bypass_p | discard_p, status, "missing "
"argument \"protect\", \"bypass\", or \"discard\"");
if (status->status < 0)
return;
*ri = *ri + 1;
}
static void
print_one_ip4_rule(const struct acl4_rules *rule, int32_t extra)
{
uint8_t a, b, c, d;
uint32_t_to_char(rule->field[SRC_FIELD_IPV4].value.u32,
&a, &b, &c, &d);
printf("%hhu.%hhu.%hhu.%hhu/%u ", a, b, c, d,
rule->field[SRC_FIELD_IPV4].mask_range.u32);
uint32_t_to_char(rule->field[DST_FIELD_IPV4].value.u32,
&a, &b, &c, &d);
printf("%hhu.%hhu.%hhu.%hhu/%u ", a, b, c, d,
rule->field[DST_FIELD_IPV4].mask_range.u32);
printf("%hu : %hu %hu : %hu 0x%hhx/0x%hhx ",
rule->field[SRCP_FIELD_IPV4].value.u16,
rule->field[SRCP_FIELD_IPV4].mask_range.u16,
rule->field[DSTP_FIELD_IPV4].value.u16,
rule->field[DSTP_FIELD_IPV4].mask_range.u16,
rule->field[PROTO_FIELD_IPV4].value.u8,
rule->field[PROTO_FIELD_IPV4].mask_range.u8);
if (extra)
printf("0x%x-0x%x-0x%x ",
rule->data.category_mask,
rule->data.priority,
rule->data.userdata);
}
static inline void
dump_ip4_rules(const struct acl4_rules *rule, int32_t num, int32_t extra)
{
int32_t i;
for (i = 0; i < num; i++, rule++) {
printf("\t%d:", i + 1);
print_one_ip4_rule(rule, extra);
printf("\n");
}
}
static struct rte_acl_ctx *
acl4_init(const char *name, int32_t socketid, const struct acl4_rules *rules,
uint32_t rules_nb)
{
char s[PATH_MAX];
struct rte_acl_param acl_param;
struct rte_acl_config acl_build_param;
struct rte_acl_ctx *ctx;
printf("Creating SP context with %u rules\n", rules_nb);
memset(&acl_param, 0, sizeof(acl_param));
/* Create ACL contexts */
snprintf(s, sizeof(s), "%s_%d", name, socketid);
printf("IPv4 %s entries [%u]:\n", s, rules_nb);
dump_ip4_rules(rules, rules_nb, 1);
acl_param.name = s;
acl_param.socket_id = socketid;
acl_param.rule_size = RTE_ACL_RULE_SZ(RTE_DIM(ip4_defs));
acl_param.max_rule_num = rules_nb;
ctx = rte_acl_create(&acl_param);
if (ctx == NULL)
rte_exit(EXIT_FAILURE, "Failed to create ACL context\n");
if (rte_acl_add_rules(ctx, (const struct rte_acl_rule *)rules,
rules_nb) < 0)
rte_exit(EXIT_FAILURE, "add rules failed\n");
/* Perform builds */
memset(&acl_build_param, 0, sizeof(acl_build_param));
acl_build_param.num_categories = DEFAULT_MAX_CATEGORIES;
acl_build_param.num_fields = RTE_DIM(ip4_defs);
memcpy(&acl_build_param.defs, ip4_defs, sizeof(ip4_defs));
if (rte_acl_build(ctx, &acl_build_param) != 0)
rte_exit(EXIT_FAILURE, "Failed to build ACL trie\n");
rte_acl_dump(ctx);
return ctx;
}
/*
* check that for each rule it's SPI has a correspondent entry in SAD
*/
static int
check_spi_value(struct sa_ctx *sa_ctx, int inbound)
{
uint32_t i, num, spi;
int32_t spi_idx;
struct acl4_rules *acr;
if (inbound != 0) {
acr = acl4_rules_in;
num = nb_acl4_rules_in;
} else {
acr = acl4_rules_out;
num = nb_acl4_rules_out;
}
for (i = 0; i != num; i++) {
spi = acr[i].data.userdata;
if (spi != DISCARD && spi != BYPASS) {
spi_idx = sa_spi_present(sa_ctx, spi, inbound);
if (spi_idx < 0) {
RTE_LOG(ERR, IPSEC,
"SPI %u is not present in SAD\n",
spi);
return -ENOENT;
}
/* Update userdata with spi index */
acr[i].data.userdata = spi_idx + 1;
}
}
return 0;
}
void
sp4_init(struct socket_ctx *ctx, int32_t socket_id)
{
const char *name;
if (ctx == NULL)
rte_exit(EXIT_FAILURE, "NULL context.\n");
if (ctx->sp_ip4_in != NULL)
rte_exit(EXIT_FAILURE, "Inbound SP DB for socket %u already "
"initialized\n", socket_id);
if (ctx->sp_ip4_out != NULL)
rte_exit(EXIT_FAILURE, "Outbound SP DB for socket %u already "
"initialized\n", socket_id);
if (check_spi_value(ctx->sa_in, 1) < 0)
rte_exit(EXIT_FAILURE,
"Inbound IPv4 SP DB has unmatched in SAD SPIs\n");
if (check_spi_value(ctx->sa_out, 0) < 0)
rte_exit(EXIT_FAILURE,
"Outbound IPv4 SP DB has unmatched in SAD SPIs\n");
if (nb_acl4_rules_in > 0) {
name = "sp_ip4_in";
ctx->sp_ip4_in = (struct sp_ctx *)acl4_init(name,
socket_id, acl4_rules_in, nb_acl4_rules_in);
} else
RTE_LOG(WARNING, IPSEC, "No IPv4 SP Inbound rule "
"specified\n");
if (nb_acl4_rules_out > 0) {
name = "sp_ip4_out";
ctx->sp_ip4_out = (struct sp_ctx *)acl4_init(name,
socket_id, acl4_rules_out, nb_acl4_rules_out);
} else
RTE_LOG(WARNING, IPSEC, "No IPv4 SP Outbound rule "
"specified\n");
}
static int
sp_cmp(const void *p, const void *q)
{
uint32_t spi1 = ((const struct acl4_rules *)p)->data.userdata;
uint32_t spi2 = ((const struct acl4_rules *)q)->data.userdata;
return (int)(spi1 - spi2);
}
/*
* Search though SP rules for given SPI.
*/
int
sp4_spi_present(uint32_t spi, int inbound, struct ip_addr ip_addr[2],
uint32_t mask[2])
{
uint32_t num;
struct acl4_rules *rule;
const struct acl4_rules *acr;
struct acl4_rules tmpl;
if (inbound != 0) {
acr = acl4_rules_in;
num = nb_acl4_rules_in;
} else {
acr = acl4_rules_out;
num = nb_acl4_rules_out;
}
tmpl.data.userdata = spi;
rule = bsearch(&tmpl, acr, num, sizeof(struct acl4_rules), sp_cmp);
if (rule != NULL) {
if (NULL != ip_addr && NULL != mask) {
ip_addr[0].ip.ip4 = IPV4_SRC_FROM_SP(*rule);
ip_addr[1].ip.ip4 = IPV4_DST_FROM_SP(*rule);
mask[0] = IPV4_SRC_MASK_FROM_SP(*rule);
mask[1] = IPV4_DST_MASK_FROM_SP(*rule);
}
return RTE_PTR_DIFF(rule, acr) / sizeof(struct acl4_rules);
}
return -ENOENT;
}
void
sp4_sort_arr(void)
{
qsort(acl4_rules_in, nb_acl4_rules_in, sizeof(struct acl4_rules),
sp_cmp);
qsort(acl4_rules_out, nb_acl4_rules_out, sizeof(struct acl4_rules),
sp_cmp);
}