f-stack/dpdk/app/test-eventdev/test_pipeline_common.c

878 lines
21 KiB
C

/*
* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017 Cavium, Inc.
*/
#include "test_pipeline_common.h"
int
pipeline_test_result(struct evt_test *test, struct evt_options *opt)
{
RTE_SET_USED(opt);
int i;
uint64_t total = 0;
struct test_pipeline *t = evt_test_priv(test);
evt_info("Packet distribution across worker cores :");
for (i = 0; i < t->nb_workers; i++)
total += t->worker[i].processed_pkts;
for (i = 0; i < t->nb_workers; i++)
evt_info("Worker %d packets: "CLGRN"%"PRIx64""CLNRM" percentage:"
CLGRN" %3.2f"CLNRM, i,
t->worker[i].processed_pkts,
(((double)t->worker[i].processed_pkts)/total)
* 100);
return t->result;
}
void
pipeline_opt_dump(struct evt_options *opt, uint8_t nb_queues)
{
evt_dump("nb_worker_lcores", "%d", evt_nr_active_lcores(opt->wlcores));
evt_dump_worker_lcores(opt);
evt_dump_nb_stages(opt);
evt_dump("nb_evdev_ports", "%d", pipeline_nb_event_ports(opt));
evt_dump("nb_evdev_queues", "%d", nb_queues);
evt_dump_queue_priority(opt);
evt_dump_sched_type_list(opt);
evt_dump_producer_type(opt);
evt_dump("nb_eth_rx_queues", "%d", opt->eth_queues);
evt_dump("event_vector", "%d", opt->ena_vector);
if (opt->ena_vector) {
evt_dump("vector_size", "%d", opt->vector_size);
evt_dump("vector_tmo_ns", "%" PRIu64 "", opt->vector_tmo_nsec);
}
}
static inline uint64_t
processed_pkts(struct test_pipeline *t)
{
uint8_t i;
uint64_t total = 0;
for (i = 0; i < t->nb_workers; i++)
total += t->worker[i].processed_pkts;
return total;
}
/* RFC863 discard port */
#define UDP_SRC_PORT 9
#define UDP_DST_PORT 9
/* RFC2544 reserved test subnet 192.18.0.0 */
#define IP_SRC_ADDR(x, y) ((192U << 24) | (18 << 16) | ((x) << 8) | (y))
#define IP_DST_ADDR(x, y) ((192U << 24) | (18 << 16) | ((x) << 8) | (y))
#define IP_DEFTTL 64 /* from RFC 1340. */
#define IP_VERSION 0x40
#define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */
#define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
static void
setup_pkt_udp_ip_headers(struct rte_ipv4_hdr *ip_hdr,
struct rte_udp_hdr *udp_hdr, uint16_t pkt_data_len,
uint8_t port, uint8_t flow)
{
uint16_t *ptr16;
uint32_t ip_cksum;
uint16_t pkt_len;
/*
* Initialize UDP header.
*/
pkt_len = (uint16_t)(pkt_data_len + sizeof(struct rte_udp_hdr));
udp_hdr->src_port = rte_cpu_to_be_16(UDP_SRC_PORT);
udp_hdr->dst_port = rte_cpu_to_be_16(UDP_DST_PORT);
udp_hdr->dgram_len = rte_cpu_to_be_16(pkt_len);
udp_hdr->dgram_cksum = 0; /* No UDP checksum. */
/*
* Initialize IP header.
*/
pkt_len = (uint16_t)(pkt_len + sizeof(struct rte_ipv4_hdr));
ip_hdr->version_ihl = IP_VHL_DEF;
ip_hdr->type_of_service = 0;
ip_hdr->fragment_offset = 0;
ip_hdr->time_to_live = IP_DEFTTL;
ip_hdr->next_proto_id = IPPROTO_UDP;
ip_hdr->packet_id = 0;
ip_hdr->total_length = rte_cpu_to_be_16(pkt_len);
ip_hdr->src_addr = rte_cpu_to_be_32(IP_SRC_ADDR(port, 1));
ip_hdr->dst_addr = rte_cpu_to_be_32(IP_DST_ADDR(port + 1, flow));
/*
* Compute IP header checksum.
*/
ptr16 = (unaligned_uint16_t *)ip_hdr;
ip_cksum = 0;
ip_cksum += ptr16[0];
ip_cksum += ptr16[1];
ip_cksum += ptr16[2];
ip_cksum += ptr16[3];
ip_cksum += ptr16[4];
ip_cksum += ptr16[6];
ip_cksum += ptr16[7];
ip_cksum += ptr16[8];
ip_cksum += ptr16[9];
/*
* Reduce 32 bit checksum to 16 bits and complement it.
*/
ip_cksum = ((ip_cksum & 0xFFFF0000) >> 16) + (ip_cksum & 0x0000FFFF);
if (ip_cksum > 65535)
ip_cksum -= 65535;
ip_cksum = (~ip_cksum) & 0x0000FFFF;
if (ip_cksum == 0)
ip_cksum = 0xFFFF;
ip_hdr->hdr_checksum = (uint16_t)ip_cksum;
}
static void
pipeline_tx_first(struct test_pipeline *t, struct evt_options *opt)
{
#define TX_DEF_PACKET_LEN 64
uint16_t eth_port_id = 0;
uint16_t pkt_sz, rc;
uint32_t i;
pkt_sz = opt->tx_pkt_sz;
if (pkt_sz > opt->max_pkt_sz)
pkt_sz = opt->max_pkt_sz;
if (!pkt_sz)
pkt_sz = TX_DEF_PACKET_LEN;
RTE_ETH_FOREACH_DEV(eth_port_id) {
struct rte_ether_addr src_mac;
struct rte_ether_addr dst_mac;
struct rte_ether_hdr eth_hdr;
/* Send to the same dest.mac as port mac */
rte_eth_macaddr_get(eth_port_id, &dst_mac);
rte_eth_random_addr((uint8_t *)&src_mac);
rte_ether_addr_copy(&dst_mac, &eth_hdr.dst_addr);
rte_ether_addr_copy(&src_mac, &eth_hdr.src_addr);
eth_hdr.ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
for (i = 0; i < opt->tx_first; i++) {
struct rte_udp_hdr *pkt_udp_hdr;
struct rte_ipv4_hdr ip_hdr;
struct rte_udp_hdr udp_hdr;
struct rte_mbuf *mbuf;
mbuf = rte_pktmbuf_alloc(
opt->per_port_pool ? t->pool[i] : t->pool[0]);
if (mbuf == NULL)
continue;
setup_pkt_udp_ip_headers(
&ip_hdr, &udp_hdr,
pkt_sz - sizeof(struct rte_ether_hdr) -
sizeof(struct rte_ipv4_hdr) -
sizeof(struct rte_udp_hdr),
eth_port_id, i);
mbuf->port = eth_port_id;
mbuf->data_len = pkt_sz;
mbuf->pkt_len = pkt_sz;
/* Copy Ethernet header */
rte_memcpy(rte_pktmbuf_mtod_offset(mbuf, char *, 0),
&eth_hdr, sizeof(struct rte_ether_hdr));
/* Copy Ipv4 header */
rte_memcpy(rte_pktmbuf_mtod_offset(
mbuf, char *,
sizeof(struct rte_ether_hdr)),
&ip_hdr, sizeof(struct rte_ipv4_hdr));
/* Copy UDP header */
rte_memcpy(
rte_pktmbuf_mtod_offset(
mbuf, char *,
sizeof(struct rte_ipv4_hdr) +
sizeof(struct rte_ether_hdr)),
&udp_hdr, sizeof(struct rte_udp_hdr));
pkt_udp_hdr = rte_pktmbuf_mtod_offset(
mbuf, struct rte_udp_hdr *,
sizeof(struct rte_ipv4_hdr) +
sizeof(struct rte_ether_hdr));
pkt_udp_hdr->src_port =
rte_cpu_to_be_16(UDP_SRC_PORT + i);
pkt_udp_hdr->dst_port =
rte_cpu_to_be_16(UDP_SRC_PORT + i);
rc = rte_eth_tx_burst(eth_port_id, 0, &mbuf, 1);
if (rc == 0)
rte_pktmbuf_free(mbuf);
}
}
}
int
pipeline_launch_lcores(struct evt_test *test, struct evt_options *opt,
int (*worker)(void *))
{
struct test_pipeline *t = evt_test_priv(test);
int ret, lcore_id;
int port_idx = 0;
if (opt->tx_first)
pipeline_tx_first(t, opt);
/* launch workers */
RTE_LCORE_FOREACH_WORKER(lcore_id) {
if (!(opt->wlcores[lcore_id]))
continue;
ret = rte_eal_remote_launch(worker,
&t->worker[port_idx], lcore_id);
if (ret) {
evt_err("failed to launch worker %d", lcore_id);
return ret;
}
port_idx++;
}
uint64_t perf_cycles = rte_get_timer_cycles();
const uint64_t perf_sample = rte_get_timer_hz();
static float total_mpps;
static uint64_t samples;
uint64_t prev_pkts = 0;
while (t->done == false) {
const uint64_t new_cycles = rte_get_timer_cycles();
if ((new_cycles - perf_cycles) > perf_sample) {
const uint64_t curr_pkts = processed_pkts(t);
float mpps = (float)(curr_pkts - prev_pkts)/1000000;
prev_pkts = curr_pkts;
perf_cycles = new_cycles;
total_mpps += mpps;
++samples;
printf(CLGRN"\r%.3f mpps avg %.3f mpps"CLNRM,
mpps, total_mpps/samples);
fflush(stdout);
}
}
printf("\n");
return 0;
}
int
pipeline_opt_check(struct evt_options *opt, uint64_t nb_queues)
{
unsigned int lcores;
/* N worker + main */
lcores = 2;
if (opt->prod_type != EVT_PROD_TYPE_ETH_RX_ADPTR) {
evt_err("Invalid producer type '%s' valid producer '%s'",
evt_prod_id_to_name(opt->prod_type),
evt_prod_id_to_name(EVT_PROD_TYPE_ETH_RX_ADPTR));
return -1;
}
if (!rte_eth_dev_count_avail()) {
evt_err("test needs minimum 1 ethernet dev");
return -1;
}
if (rte_lcore_count() < lcores) {
evt_err("test need minimum %d lcores", lcores);
return -1;
}
/* Validate worker lcores */
if (evt_lcores_has_overlap(opt->wlcores, rte_get_main_lcore())) {
evt_err("worker lcores overlaps with main lcore");
return -1;
}
if (evt_has_disabled_lcore(opt->wlcores)) {
evt_err("one or more workers lcores are not enabled");
return -1;
}
if (!evt_has_active_lcore(opt->wlcores)) {
evt_err("minimum one worker is required");
return -1;
}
if (nb_queues > EVT_MAX_QUEUES) {
evt_err("number of queues exceeds %d", EVT_MAX_QUEUES);
return -1;
}
if (pipeline_nb_event_ports(opt) > EVT_MAX_PORTS) {
evt_err("number of ports exceeds %d", EVT_MAX_PORTS);
return -1;
}
if (opt->prod_type != EVT_PROD_TYPE_ETH_RX_ADPTR) {
evt_err("Invalid producer type, only --prod_type_ethdev is supported");
return -1;
}
if (evt_has_invalid_stage(opt))
return -1;
if (evt_has_invalid_sched_type(opt))
return -1;
return 0;
}
#define NB_RX_DESC 128
#define NB_TX_DESC 512
int
pipeline_ethdev_setup(struct evt_test *test, struct evt_options *opt)
{
uint16_t i, j;
int ret;
uint8_t nb_queues = 1;
struct test_pipeline *t = evt_test_priv(test);
struct rte_eth_rxconf rx_conf;
struct rte_eth_conf port_conf = {
.rxmode = {
.mq_mode = RTE_ETH_MQ_RX_RSS,
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = RTE_ETH_RSS_IP,
},
},
};
if (!rte_eth_dev_count_avail()) {
evt_err("No ethernet ports found.");
return -ENODEV;
}
if (opt->max_pkt_sz < RTE_ETHER_MIN_LEN) {
evt_err("max_pkt_sz can not be less than %d",
RTE_ETHER_MIN_LEN);
return -EINVAL;
}
port_conf.rxmode.mtu = opt->max_pkt_sz - RTE_ETHER_HDR_LEN -
RTE_ETHER_CRC_LEN;
t->internal_port = 1;
RTE_ETH_FOREACH_DEV(i) {
struct rte_eth_dev_info dev_info;
struct rte_eth_conf local_port_conf = port_conf;
uint32_t caps = 0;
ret = rte_event_eth_tx_adapter_caps_get(opt->dev_id, i, &caps);
if (ret != 0) {
evt_err("failed to get event tx adapter[%d] caps", i);
return ret;
}
if (!(caps & RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT))
t->internal_port = 0;
ret = rte_event_eth_rx_adapter_caps_get(opt->dev_id, i, &caps);
if (ret != 0) {
evt_err("failed to get event tx adapter[%d] caps", i);
return ret;
}
if (!(caps & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT))
local_port_conf.rxmode.offloads |=
RTE_ETH_RX_OFFLOAD_RSS_HASH;
ret = rte_eth_dev_info_get(i, &dev_info);
if (ret != 0) {
evt_err("Error during getting device (port %u) info: %s\n",
i, strerror(-ret));
return ret;
}
/* Enable mbuf fast free if PMD has the capability. */
if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
local_port_conf.txmode.offloads |=
RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
rx_conf = dev_info.default_rxconf;
rx_conf.offloads = port_conf.rxmode.offloads;
local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
dev_info.flow_type_rss_offloads;
if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
port_conf.rx_adv_conf.rss_conf.rss_hf) {
evt_info("Port %u modified RSS hash function based on hardware support,"
"requested:%#"PRIx64" configured:%#"PRIx64"",
i,
port_conf.rx_adv_conf.rss_conf.rss_hf,
local_port_conf.rx_adv_conf.rss_conf.rss_hf);
}
if (rte_eth_dev_configure(i, opt->eth_queues, nb_queues,
&local_port_conf) < 0) {
evt_err("Failed to configure eth port [%d]", i);
return -EINVAL;
}
for (j = 0; j < opt->eth_queues; j++) {
if (rte_eth_rx_queue_setup(
i, j, NB_RX_DESC, rte_socket_id(), &rx_conf,
opt->per_port_pool ? t->pool[i] :
t->pool[0]) < 0) {
evt_err("Failed to setup eth port [%d] rx_queue: %d.",
i, 0);
return -EINVAL;
}
}
if (rte_eth_tx_queue_setup(i, 0, NB_TX_DESC,
rte_socket_id(), NULL) < 0) {
evt_err("Failed to setup eth port [%d] tx_queue: %d.",
i, 0);
return -EINVAL;
}
ret = rte_eth_promiscuous_enable(i);
if (ret != 0) {
evt_err("Failed to enable promiscuous mode for eth port [%d]: %s",
i, rte_strerror(-ret));
return ret;
}
}
return 0;
}
int
pipeline_event_port_setup(struct evt_test *test, struct evt_options *opt,
uint8_t *queue_arr, uint8_t nb_queues,
const struct rte_event_port_conf p_conf)
{
int ret;
uint8_t port;
struct test_pipeline *t = evt_test_priv(test);
/* setup one port per worker, linking to all queues */
for (port = 0; port < evt_nr_active_lcores(opt->wlcores); port++) {
struct worker_data *w = &t->worker[port];
w->dev_id = opt->dev_id;
w->port_id = port;
w->t = t;
w->processed_pkts = 0;
ret = rte_event_port_setup(opt->dev_id, port, &p_conf);
if (ret) {
evt_err("failed to setup port %d", port);
return ret;
}
if (rte_event_port_link(opt->dev_id, port, queue_arr, NULL,
nb_queues) != nb_queues)
goto link_fail;
}
return 0;
link_fail:
evt_err("failed to link queues to port %d", port);
return -EINVAL;
}
int
pipeline_event_rx_adapter_setup(struct evt_options *opt, uint8_t stride,
struct rte_event_port_conf prod_conf)
{
int ret = 0;
uint16_t prod;
struct rte_mempool *vector_pool = NULL;
struct rte_event_eth_rx_adapter_queue_conf queue_conf;
memset(&queue_conf, 0,
sizeof(struct rte_event_eth_rx_adapter_queue_conf));
queue_conf.ev.sched_type = opt->sched_type_list[0];
if (opt->ena_vector) {
unsigned int nb_elem = (opt->pool_sz / opt->vector_size) << 1;
nb_elem = RTE_MAX(512U, nb_elem);
nb_elem += evt_nr_active_lcores(opt->wlcores) * 32;
vector_pool = rte_event_vector_pool_create(
"vector_pool", nb_elem, 32, opt->vector_size,
opt->socket_id);
if (vector_pool == NULL) {
evt_err("failed to create event vector pool");
return -ENOMEM;
}
}
RTE_ETH_FOREACH_DEV(prod) {
struct rte_event_eth_rx_adapter_vector_limits limits;
uint32_t cap;
ret = rte_event_eth_rx_adapter_caps_get(opt->dev_id,
prod, &cap);
if (ret) {
evt_err("failed to get event rx adapter[%d]"
" capabilities",
opt->dev_id);
return ret;
}
if (opt->ena_vector) {
memset(&limits, 0, sizeof(limits));
ret = rte_event_eth_rx_adapter_vector_limits_get(
opt->dev_id, prod, &limits);
if (ret) {
evt_err("failed to get vector limits");
return ret;
}
if (opt->vector_size < limits.min_sz ||
opt->vector_size > limits.max_sz) {
evt_err("Vector size [%d] not within limits max[%d] min[%d]",
opt->vector_size, limits.max_sz,
limits.min_sz);
return -EINVAL;
}
if (limits.log2_sz &&
!rte_is_power_of_2(opt->vector_size)) {
evt_err("Vector size [%d] not power of 2",
opt->vector_size);
return -EINVAL;
}
if (opt->vector_tmo_nsec > limits.max_timeout_ns ||
opt->vector_tmo_nsec < limits.min_timeout_ns) {
evt_err("Vector timeout [%" PRIu64
"] not within limits max[%" PRIu64
"] min[%" PRIu64 "]",
opt->vector_tmo_nsec,
limits.max_timeout_ns,
limits.min_timeout_ns);
return -EINVAL;
}
if (cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_EVENT_VECTOR) {
queue_conf.vector_sz = opt->vector_size;
queue_conf.vector_timeout_ns =
opt->vector_tmo_nsec;
queue_conf.rx_queue_flags |=
RTE_EVENT_ETH_RX_ADAPTER_QUEUE_EVENT_VECTOR;
queue_conf.vector_mp = vector_pool;
} else {
evt_err("Rx adapter doesn't support event vector");
return -EINVAL;
}
}
queue_conf.ev.queue_id = prod * stride;
ret = rte_event_eth_rx_adapter_create(prod, opt->dev_id,
&prod_conf);
if (ret) {
evt_err("failed to create rx adapter[%d]", prod);
return ret;
}
ret = rte_event_eth_rx_adapter_queue_add(prod, prod, -1,
&queue_conf);
if (ret) {
evt_err("failed to add rx queues to adapter[%d]", prod);
return ret;
}
if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
uint32_t service_id = -1U;
rte_event_eth_rx_adapter_service_id_get(prod,
&service_id);
ret = evt_service_setup(service_id);
if (ret) {
evt_err("Failed to setup service core"
" for Rx adapter");
return ret;
}
}
evt_info("Port[%d] using Rx adapter[%d] configured", prod,
prod);
}
return ret;
}
int
pipeline_event_tx_adapter_setup(struct evt_options *opt,
struct rte_event_port_conf port_conf)
{
int ret = 0;
uint16_t consm;
RTE_ETH_FOREACH_DEV(consm) {
uint32_t cap;
ret = rte_event_eth_tx_adapter_caps_get(opt->dev_id,
consm, &cap);
if (ret) {
evt_err("failed to get event tx adapter[%d] caps",
consm);
return ret;
}
if (opt->ena_vector) {
if (!(cap &
RTE_EVENT_ETH_TX_ADAPTER_CAP_EVENT_VECTOR)) {
evt_err("Tx adapter doesn't support event vector");
return -EINVAL;
}
}
ret = rte_event_eth_tx_adapter_create(consm, opt->dev_id,
&port_conf);
if (ret) {
evt_err("failed to create tx adapter[%d]", consm);
return ret;
}
ret = rte_event_eth_tx_adapter_queue_add(consm, consm, -1);
if (ret) {
evt_err("failed to add tx queues to adapter[%d]",
consm);
return ret;
}
if (!(cap & RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT)) {
uint32_t service_id = -1U;
ret = rte_event_eth_tx_adapter_service_id_get(consm,
&service_id);
if (ret != -ESRCH && ret != 0) {
evt_err("Failed to get Tx adptr service ID");
return ret;
}
ret = evt_service_setup(service_id);
if (ret) {
evt_err("Failed to setup service core"
" for Tx adapter");
return ret;
}
}
evt_info("Port[%d] using Tx adapter[%d] Configured", consm,
consm);
}
return ret;
}
static void
pipeline_vector_array_free(struct rte_event events[], uint16_t num)
{
uint16_t i;
for (i = 0; i < num; i++) {
rte_pktmbuf_free_bulk(
&events[i].vec->mbufs[events[i].vec->elem_offset],
events[i].vec->nb_elem);
rte_mempool_put(rte_mempool_from_obj(events[i].vec),
events[i].vec);
}
}
static void
pipeline_event_port_flush(uint8_t dev_id __rte_unused, struct rte_event ev,
void *args __rte_unused)
{
if (ev.event_type & RTE_EVENT_TYPE_VECTOR)
pipeline_vector_array_free(&ev, 1);
else
rte_pktmbuf_free(ev.mbuf);
}
void
pipeline_worker_cleanup(uint8_t dev, uint8_t port, struct rte_event ev[],
uint16_t enq, uint16_t deq)
{
int i;
if (deq) {
for (i = enq; i < deq; i++) {
if (ev[i].op == RTE_EVENT_OP_RELEASE)
continue;
if (ev[i].event_type & RTE_EVENT_TYPE_VECTOR)
pipeline_vector_array_free(&ev[i], 1);
else
rte_pktmbuf_free(ev[i].mbuf);
}
for (i = 0; i < deq; i++)
ev[i].op = RTE_EVENT_OP_RELEASE;
rte_event_enqueue_burst(dev, port, ev, deq);
}
rte_event_port_quiesce(dev, port, pipeline_event_port_flush, NULL);
}
void
pipeline_ethdev_rx_stop(struct evt_test *test, struct evt_options *opt)
{
uint16_t i, j;
RTE_SET_USED(test);
if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
RTE_ETH_FOREACH_DEV(i) {
rte_event_eth_rx_adapter_stop(i);
rte_event_eth_rx_adapter_queue_del(i, i, -1);
for (j = 0; j < opt->eth_queues; j++)
rte_eth_dev_rx_queue_stop(i, j);
}
}
}
void
pipeline_ethdev_destroy(struct evt_test *test, struct evt_options *opt)
{
uint16_t i;
RTE_SET_USED(test);
RTE_SET_USED(opt);
RTE_ETH_FOREACH_DEV(i) {
rte_event_eth_tx_adapter_stop(i);
rte_event_eth_tx_adapter_queue_del(i, i, -1);
rte_eth_dev_tx_queue_stop(i, 0);
rte_eth_dev_stop(i);
}
}
void
pipeline_eventdev_destroy(struct evt_test *test, struct evt_options *opt)
{
RTE_SET_USED(test);
rte_event_dev_stop(opt->dev_id);
rte_event_dev_close(opt->dev_id);
}
int
pipeline_mempool_setup(struct evt_test *test, struct evt_options *opt)
{
struct test_pipeline *t = evt_test_priv(test);
int i, ret;
if (!opt->mbuf_sz)
opt->mbuf_sz = RTE_MBUF_DEFAULT_BUF_SIZE;
if (!opt->max_pkt_sz)
opt->max_pkt_sz = RTE_ETHER_MAX_LEN;
RTE_ETH_FOREACH_DEV(i) {
struct rte_eth_dev_info dev_info;
uint16_t data_size = 0;
memset(&dev_info, 0, sizeof(dev_info));
ret = rte_eth_dev_info_get(i, &dev_info);
if (ret != 0) {
evt_err("Error during getting device (port %u) info: %s\n",
i, strerror(-ret));
return ret;
}
if (dev_info.rx_desc_lim.nb_mtu_seg_max != UINT16_MAX &&
dev_info.rx_desc_lim.nb_mtu_seg_max != 0) {
data_size = opt->max_pkt_sz /
dev_info.rx_desc_lim.nb_mtu_seg_max;
data_size += RTE_PKTMBUF_HEADROOM;
if (data_size > opt->mbuf_sz)
opt->mbuf_sz = data_size;
}
if (opt->per_port_pool) {
char name[RTE_MEMPOOL_NAMESIZE];
snprintf(name, RTE_MEMPOOL_NAMESIZE, "%s-%d",
test->name, i);
t->pool[i] = rte_pktmbuf_pool_create(
name, /* mempool name */
opt->pool_sz, /* number of elements*/
0, /* cache size*/
0, opt->mbuf_sz, opt->socket_id); /* flags */
if (t->pool[i] == NULL) {
evt_err("failed to create mempool %s", name);
return -ENOMEM;
}
}
}
if (!opt->per_port_pool) {
t->pool[0] = rte_pktmbuf_pool_create(
test->name, /* mempool name */
opt->pool_sz, /* number of elements*/
0, /* cache size*/
0, opt->mbuf_sz, opt->socket_id); /* flags */
if (t->pool[0] == NULL) {
evt_err("failed to create mempool");
return -ENOMEM;
}
}
return 0;
}
void
pipeline_mempool_destroy(struct evt_test *test, struct evt_options *opt)
{
struct test_pipeline *t = evt_test_priv(test);
int i;
RTE_SET_USED(opt);
if (opt->per_port_pool) {
RTE_ETH_FOREACH_DEV(i)
rte_mempool_free(t->pool[i]);
} else {
rte_mempool_free(t->pool[0]);
}
}
int
pipeline_test_setup(struct evt_test *test, struct evt_options *opt)
{
void *test_pipeline;
test_pipeline = rte_zmalloc_socket(test->name,
sizeof(struct test_pipeline), RTE_CACHE_LINE_SIZE,
opt->socket_id);
if (test_pipeline == NULL) {
evt_err("failed to allocate test_pipeline memory");
goto nomem;
}
test->test_priv = test_pipeline;
struct test_pipeline *t = evt_test_priv(test);
t->nb_workers = evt_nr_active_lcores(opt->wlcores);
t->outstand_pkts = opt->nb_pkts * evt_nr_active_lcores(opt->wlcores);
t->done = false;
t->nb_flows = opt->nb_flows;
t->result = EVT_TEST_FAILED;
t->opt = opt;
opt->prod_type = EVT_PROD_TYPE_ETH_RX_ADPTR;
memcpy(t->sched_type_list, opt->sched_type_list,
sizeof(opt->sched_type_list));
return 0;
nomem:
return -ENOMEM;
}
void
pipeline_test_destroy(struct evt_test *test, struct evt_options *opt)
{
RTE_SET_USED(opt);
rte_free(test->test_priv);
}