f-stack/lib/ff_dpdk_if.c

1610 lines
45 KiB
C

/*
* Copyright (C) 2017 THL A29 Limited, a Tencent company.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <assert.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_config.h>
#include <rte_eal.h>
#include <rte_pci.h>
#include <rte_mbuf.h>
#include <rte_memory.h>
#include <rte_lcore.h>
#include <rte_launch.h>
#include <rte_ethdev.h>
#include <rte_debug.h>
#include <rte_common.h>
#include <rte_ether.h>
#include <rte_malloc.h>
#include <rte_cycles.h>
#include <rte_timer.h>
#include <rte_thash.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include "ff_dpdk_if.h"
#include "ff_dpdk_pcap.h"
#include "ff_dpdk_kni.h"
#include "ff_config.h"
#include "ff_veth.h"
#include "ff_host_interface.h"
#include "ff_msg.h"
#include "ff_api.h"
#define MEMPOOL_CACHE_SIZE 256
#define DISPATCH_RING_SIZE 2048
#define MSG_RING_SIZE 32
/*
* Configurable number of RX/TX ring descriptors
*/
#define RX_QUEUE_SIZE 512
#define TX_QUEUE_SIZE 512
#define MAX_PKT_BURST 32
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
/*
* Try to avoid TX buffering if we have at least MAX_TX_BURST packets to send.
*/
#define MAX_TX_BURST (MAX_PKT_BURST / 2)
#define NB_SOCKETS 8
/* Configure how many packets ahead to prefetch, when reading packets */
#define PREFETCH_OFFSET 3
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
#define MAX_RX_QUEUE_PER_PORT 128
#define KNI_MBUF_MAX 2048
#define KNI_QUEUE_SIZE 2048
static int enable_kni;
static int kni_accept;
static int numa_on;
static struct rte_timer freebsd_clock;
// Mellanox Linux's driver key
static uint8_t default_rsskey_40bytes[40] = {
0xd1, 0x81, 0xc6, 0x2c, 0xf7, 0xf4, 0xdb, 0x5b,
0x19, 0x83, 0xa2, 0xfc, 0x94, 0x3e, 0x1a, 0xdb,
0xd9, 0x38, 0x9e, 0x6b, 0xd1, 0x03, 0x9c, 0x2c,
0xa7, 0x44, 0x99, 0xad, 0x59, 0x3d, 0x56, 0xd9,
0xf3, 0x25, 0x3c, 0x06, 0x2a, 0xdc, 0x1f, 0xfc
};
static struct rte_eth_conf default_port_conf = {
.rxmode = {
.mq_mode = ETH_MQ_RX_RSS,
.max_rx_pkt_len = ETHER_MAX_LEN,
.split_hdr_size = 0, /**< hdr buf size */
.header_split = 0, /**< Header Split disabled */
.hw_ip_checksum = 0, /**< IP checksum offload disabled */
.hw_vlan_filter = 0, /**< VLAN filtering disabled */
.hw_vlan_strip = 0, /**< VLAN strip disabled. */
.hw_vlan_extend = 0, /**< Extended VLAN disabled. */
.jumbo_frame = 0, /**< Jumbo Frame Support disabled */
.hw_strip_crc = 0, /**< CRC stripped by hardware */
.enable_lro = 0, /**< LRO disabled */
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = default_rsskey_40bytes,
.rss_key_len = 40,
.rss_hf = ETH_RSS_PROTO_MASK,
},
},
.txmode = {
.mq_mode = ETH_MQ_TX_NONE,
},
};
struct mbuf_table {
uint16_t len;
struct rte_mbuf *m_table[MAX_PKT_BURST];
};
struct lcore_rx_queue {
uint16_t port_id;
uint16_t queue_id;
} __rte_cache_aligned;
struct lcore_conf {
uint16_t proc_id;
uint16_t socket_id;
uint16_t nb_queue_list[RTE_MAX_ETHPORTS];
struct ff_port_cfg *port_cfgs;
uint16_t nb_rx_queue;
struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
uint16_t nb_tx_port;
uint16_t tx_port_id[RTE_MAX_ETHPORTS];
uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
char *pcap[RTE_MAX_ETHPORTS];
} __rte_cache_aligned;
static struct lcore_conf lcore_conf;
static struct rte_mempool *pktmbuf_pool[NB_SOCKETS];
static struct rte_ring **dispatch_ring[RTE_MAX_ETHPORTS];
static dispatch_func_t packet_dispatcher;
static uint16_t rss_reta_size[RTE_MAX_ETHPORTS];
struct ff_msg_ring {
char ring_name[2][RTE_RING_NAMESIZE];
/* ring[0] for lcore recv msg, other send */
/* ring[1] for lcore send msg, other read */
struct rte_ring *ring[2];
} __rte_cache_aligned;
static struct ff_msg_ring msg_ring[RTE_MAX_LCORE];
static struct rte_mempool *message_pool;
struct ff_dpdk_if_context {
void *sc;
void *ifp;
uint16_t port_id;
struct ff_hw_features hw_features;
} __rte_cache_aligned;
static struct ff_dpdk_if_context *veth_ctx[RTE_MAX_ETHPORTS];
extern void ff_hardclock(void);
static void
ff_hardclock_job(__rte_unused struct rte_timer *timer,
__rte_unused void *arg) {
ff_hardclock();
ff_update_current_ts();
}
struct ff_dpdk_if_context *
ff_dpdk_register_if(void *sc, void *ifp, struct ff_port_cfg *cfg)
{
struct ff_dpdk_if_context *ctx;
ctx = calloc(1, sizeof(struct ff_dpdk_if_context));
if (ctx == NULL)
return NULL;
ctx->sc = sc;
ctx->ifp = ifp;
ctx->port_id = cfg->port_id;
ctx->hw_features = cfg->hw_features;
return ctx;
}
void
ff_dpdk_deregister_if(struct ff_dpdk_if_context *ctx)
{
free(ctx);
}
static void
check_all_ports_link_status(void)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
uint16_t portid;
uint8_t count, all_ports_up, print_flag = 0;
struct rte_eth_link link;
printf("\nChecking link status");
fflush(stdout);
int i, nb_ports;
nb_ports = ff_global_cfg.dpdk.nb_ports;
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
for (i = 0; i < nb_ports; i++) {
uint16_t portid = ff_global_cfg.dpdk.portid_list[i];
memset(&link, 0, sizeof(link));
rte_eth_link_get_nowait(portid, &link);
/* print link status if flag set */
if (print_flag == 1) {
if (link.link_status) {
printf("Port %d Link Up - speed %u "
"Mbps - %s\n", (int)portid,
(unsigned)link.link_speed,
(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
("full-duplex") : ("half-duplex\n"));
} else {
printf("Port %d Link Down\n", (int)portid);
}
continue;
}
/* clear all_ports_up flag if any link down */
if (link.link_status == 0) {
all_ports_up = 0;
break;
}
}
/* after finally printing all link status, get out */
if (print_flag == 1)
break;
if (all_ports_up == 0) {
printf(".");
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
/* set the print_flag if all ports up or timeout */
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
printf("done\n");
}
}
}
static int
init_lcore_conf(void)
{
uint8_t nb_dev_ports = rte_eth_dev_count();
if (nb_dev_ports == 0) {
rte_exit(EXIT_FAILURE, "No probed ethernet devices\n");
}
if (ff_global_cfg.dpdk.max_portid >= nb_dev_ports) {
rte_exit(EXIT_FAILURE, "this machine doesn't have port %d.\n",
ff_global_cfg.dpdk.max_portid);
}
lcore_conf.port_cfgs = ff_global_cfg.dpdk.port_cfgs;
lcore_conf.proc_id = ff_global_cfg.dpdk.proc_id;
uint16_t proc_id;
for (proc_id = 0; proc_id < ff_global_cfg.dpdk.nb_procs; proc_id++) {
uint16_t lcore_id = ff_global_cfg.dpdk.proc_lcore[proc_id];
if (!lcore_config[lcore_id].detected) {
rte_exit(EXIT_FAILURE, "lcore %u unavailable\n", lcore_id);
}
}
uint16_t socket_id = 0;
if (numa_on) {
socket_id = rte_lcore_to_socket_id(rte_lcore_id());
}
lcore_conf.socket_id = socket_id;
uint16_t lcore_id = ff_global_cfg.dpdk.proc_lcore[lcore_conf.proc_id];
int j;
for (j = 0; j < ff_global_cfg.dpdk.nb_ports; ++j) {
uint16_t port_id = ff_global_cfg.dpdk.portid_list[j];
struct ff_port_cfg *pconf = &ff_global_cfg.dpdk.port_cfgs[port_id];
int queueid = -1;
int i;
for (i = 0; i < pconf->nb_lcores; i++) {
if (pconf->lcore_list[i] == lcore_id) {
queueid = i;
}
}
if (queueid < 0) {
continue;
}
printf("lcore: %u, port: %u, queue: %u\n", lcore_id, port_id, queueid);
uint16_t nb_rx_queue = lcore_conf.nb_rx_queue;
lcore_conf.rx_queue_list[nb_rx_queue].port_id = port_id;
lcore_conf.rx_queue_list[nb_rx_queue].queue_id = queueid;
lcore_conf.nb_rx_queue++;
lcore_conf.tx_queue_id[port_id] = queueid;
lcore_conf.tx_port_id[lcore_conf.nb_tx_port] = port_id;
lcore_conf.nb_tx_port++;
lcore_conf.pcap[port_id] = pconf->pcap;
lcore_conf.nb_queue_list[port_id] = pconf->nb_lcores;
}
if (lcore_conf.nb_rx_queue == 0) {
rte_exit(EXIT_FAILURE, "lcore %u has nothing to do\n", lcore_id);
}
return 0;
}
static int
init_mem_pool(void)
{
uint8_t nb_ports = ff_global_cfg.dpdk.nb_ports;
uint32_t nb_lcores = ff_global_cfg.dpdk.nb_procs;
uint32_t nb_tx_queue = nb_lcores;
uint32_t nb_rx_queue = lcore_conf.nb_rx_queue * nb_lcores;
unsigned nb_mbuf = RTE_MAX (
(nb_rx_queue*RX_QUEUE_SIZE +
nb_ports*nb_lcores*MAX_PKT_BURST +
nb_ports*nb_tx_queue*TX_QUEUE_SIZE +
nb_lcores*MEMPOOL_CACHE_SIZE +
nb_ports*KNI_MBUF_MAX +
nb_ports*KNI_QUEUE_SIZE +
nb_lcores*nb_ports*DISPATCH_RING_SIZE),
(unsigned)8192);
unsigned socketid = 0;
uint16_t i, lcore_id;
char s[64];
for (i = 0; i < ff_global_cfg.dpdk.nb_procs; i++) {
lcore_id = ff_global_cfg.dpdk.proc_lcore[i];
if (numa_on) {
socketid = rte_lcore_to_socket_id(lcore_id);
}
if (socketid >= NB_SOCKETS) {
rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is out of range %d\n",
socketid, i, NB_SOCKETS);
}
if (pktmbuf_pool[socketid] != NULL) {
continue;
}
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
pktmbuf_pool[socketid] =
rte_pktmbuf_pool_create(s, nb_mbuf,
MEMPOOL_CACHE_SIZE, 0,
RTE_MBUF_DEFAULT_BUF_SIZE, socketid);
} else {
snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
pktmbuf_pool[socketid] = rte_mempool_lookup(s);
}
if (pktmbuf_pool[socketid] == NULL) {
rte_exit(EXIT_FAILURE, "Cannot create mbuf pool on socket %d\n", socketid);
} else {
printf("create mbuf pool on socket %d\n", socketid);
}
}
return 0;
}
static struct rte_ring *
create_ring(const char *name, unsigned count, int socket_id, unsigned flags)
{
struct rte_ring *ring;
if (name == NULL)
return NULL;
/* If already create, just attached it */
if (likely((ring = rte_ring_lookup(name)) != NULL))
return ring;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
return rte_ring_create(name, count, socket_id, flags);
} else {
return rte_ring_lookup(name);
}
}
static int
init_dispatch_ring(void)
{
int j;
char name_buf[RTE_RING_NAMESIZE];
int queueid;
unsigned socketid = lcore_conf.socket_id;
/* Create ring according to ports actually being used. */
int nb_ports = ff_global_cfg.dpdk.nb_ports;
for (j = 0; j < nb_ports; j++) {
uint16_t portid = ff_global_cfg.dpdk.portid_list[j];
struct ff_port_cfg *pconf = &ff_global_cfg.dpdk.port_cfgs[portid];
int nb_queues = pconf->nb_lcores;
if (dispatch_ring[portid] == NULL) {
snprintf(name_buf, RTE_RING_NAMESIZE, "ring_ptr_p%d", portid);
dispatch_ring[portid] = rte_zmalloc(name_buf,
sizeof(struct rte_ring *) * nb_queues,
RTE_CACHE_LINE_SIZE);
if (dispatch_ring[portid] == NULL) {
rte_exit(EXIT_FAILURE, "rte_zmalloc(%s (struct rte_ring*)) "
"failed\n", name_buf);
}
}
for(queueid = 0; queueid < nb_queues; ++queueid) {
snprintf(name_buf, RTE_RING_NAMESIZE, "dispatch_ring_p%d_q%d",
portid, queueid);
dispatch_ring[portid][queueid] = create_ring(name_buf,
DISPATCH_RING_SIZE, socketid, RING_F_SC_DEQ);
if (dispatch_ring[portid][queueid] == NULL)
rte_panic("create ring:%s failed!\n", name_buf);
printf("create ring:%s success, %u ring entries are now free!\n",
name_buf, rte_ring_free_count(dispatch_ring[portid][queueid]));
}
}
return 0;
}
static void
ff_msg_init(struct rte_mempool *mp,
__attribute__((unused)) void *opaque_arg,
void *obj, __attribute__((unused)) unsigned i)
{
struct ff_msg *msg = (struct ff_msg *)obj;
msg->msg_type = FF_UNKNOWN;
msg->buf_addr = (char *)msg + sizeof(struct ff_msg);
msg->buf_len = mp->elt_size - sizeof(struct ff_msg);
}
static int
init_msg_ring(void)
{
uint16_t i;
uint16_t nb_procs = ff_global_cfg.dpdk.nb_procs;
unsigned socketid = lcore_conf.socket_id;
/* Create message buffer pool */
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
message_pool = rte_mempool_create(FF_MSG_POOL,
MSG_RING_SIZE * 2 * nb_procs,
MAX_MSG_BUF_SIZE, MSG_RING_SIZE / 2, 0,
NULL, NULL, ff_msg_init, NULL,
socketid, 0);
} else {
message_pool = rte_mempool_lookup(FF_MSG_POOL);
}
if (message_pool == NULL) {
rte_panic("Create msg mempool failed\n");
}
for(i = 0; i < nb_procs; ++i) {
snprintf(msg_ring[i].ring_name[0], RTE_RING_NAMESIZE,
"%s%u", FF_MSG_RING_IN, i);
snprintf(msg_ring[i].ring_name[1], RTE_RING_NAMESIZE,
"%s%u", FF_MSG_RING_OUT, i);
msg_ring[i].ring[0] = create_ring(msg_ring[i].ring_name[0],
MSG_RING_SIZE, socketid, RING_F_SP_ENQ | RING_F_SC_DEQ);
if (msg_ring[i].ring[0] == NULL)
rte_panic("create ring::%s failed!\n", msg_ring[i].ring_name[0]);
msg_ring[i].ring[1] = create_ring(msg_ring[i].ring_name[1],
MSG_RING_SIZE, socketid, RING_F_SP_ENQ | RING_F_SC_DEQ);
if (msg_ring[i].ring[1] == NULL)
rte_panic("create ring::%s failed!\n", msg_ring[i].ring_name[0]);
}
return 0;
}
static int
init_kni(void)
{
int nb_ports = rte_eth_dev_count();
kni_accept = 0;
if(strcasecmp(ff_global_cfg.kni.method, "accept") == 0)
kni_accept = 1;
ff_kni_init(nb_ports, ff_global_cfg.kni.tcp_port,
ff_global_cfg.kni.udp_port);
unsigned socket_id = lcore_conf.socket_id;
struct rte_mempool *mbuf_pool = pktmbuf_pool[socket_id];
nb_ports = ff_global_cfg.dpdk.nb_ports;
int i, ret;
for (i = 0; i < nb_ports; i++) {
uint16_t port_id = ff_global_cfg.dpdk.portid_list[i];
ff_kni_alloc(port_id, socket_id, mbuf_pool, KNI_QUEUE_SIZE);
}
return 0;
}
static void
set_rss_table(uint16_t port_id, uint16_t reta_size, uint16_t nb_queues)
{
if (reta_size == 0) {
return;
}
int reta_conf_size = RTE_MAX(1, reta_size / RTE_RETA_GROUP_SIZE);
struct rte_eth_rss_reta_entry64 reta_conf[reta_conf_size];
/* config HW indirection table */
unsigned i, j, hash=0;
for (i = 0; i < reta_conf_size; i++) {
reta_conf[i].mask = ~0ULL;
for (j = 0; j < RTE_RETA_GROUP_SIZE; j++) {
reta_conf[i].reta[j] = hash++ % nb_queues;
}
}
if (rte_eth_dev_rss_reta_update(port_id, reta_conf, reta_size)) {
rte_exit(EXIT_FAILURE, "port[%d], failed to update rss table\n",
port_id);
}
}
static int
init_port_start(void)
{
int nb_ports = ff_global_cfg.dpdk.nb_ports;
unsigned socketid = rte_lcore_to_socket_id(rte_lcore_id());
struct rte_mempool *mbuf_pool = pktmbuf_pool[socketid];
uint16_t i;
for (i = 0; i < nb_ports; i++) {
uint16_t port_id = ff_global_cfg.dpdk.portid_list[i];
struct ff_port_cfg *pconf = &ff_global_cfg.dpdk.port_cfgs[port_id];
uint16_t nb_queues = pconf->nb_lcores;
struct rte_eth_dev_info dev_info;
rte_eth_dev_info_get(port_id, &dev_info);
if (nb_queues > dev_info.max_rx_queues) {
rte_exit(EXIT_FAILURE, "num_procs[%d] bigger than max_rx_queues[%d]\n",
nb_queues,
dev_info.max_rx_queues);
}
if (nb_queues > dev_info.max_tx_queues) {
rte_exit(EXIT_FAILURE, "num_procs[%d] bigger than max_tx_queues[%d]\n",
nb_queues,
dev_info.max_tx_queues);
}
struct ether_addr addr;
rte_eth_macaddr_get(port_id, &addr);
printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
" %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
(unsigned)port_id,
addr.addr_bytes[0], addr.addr_bytes[1],
addr.addr_bytes[2], addr.addr_bytes[3],
addr.addr_bytes[4], addr.addr_bytes[5]);
rte_memcpy(pconf->mac,
addr.addr_bytes, ETHER_ADDR_LEN);
/* Clear txq_flags - we do not need multi-mempool and refcnt */
dev_info.default_txconf.txq_flags = ETH_TXQ_FLAGS_NOMULTMEMP |
ETH_TXQ_FLAGS_NOREFCOUNT;
/* Disable features that are not supported by port's HW */
if (!(dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM)) {
dev_info.default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOXSUMUDP;
}
if (!(dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM)) {
dev_info.default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOXSUMTCP;
}
if (!(dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM)) {
dev_info.default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOXSUMSCTP;
}
if (!(dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT)) {
dev_info.default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL;
}
if (!(dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) &&
!(dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO)) {
dev_info.default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS;
}
struct rte_eth_conf port_conf = {0};
/* Set RSS mode */
port_conf.rxmode.mq_mode = ETH_MQ_RX_RSS;
port_conf.rx_adv_conf.rss_conf.rss_hf = ETH_RSS_PROTO_MASK;
port_conf.rx_adv_conf.rss_conf.rss_key = default_rsskey_40bytes;
port_conf.rx_adv_conf.rss_conf.rss_key_len = 40;
/* Set Rx VLAN stripping */
if (ff_global_cfg.dpdk.vlan_strip) {
if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
port_conf.rxmode.hw_vlan_strip = 1;
}
}
/* Enable HW CRC stripping */
port_conf.rxmode.hw_strip_crc = 1;
/* FIXME: Enable TCP LRO ?*/
#if 0
if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
printf("LRO is supported\n");
port_conf.rxmode.enable_lro = 1;
pconf->hw_features.rx_lro = 1;
}
#endif
/* Set Rx checksum checking */
if ((dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) &&
(dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) &&
(dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM)) {
printf("RX checksum offload supported\n");
port_conf.rxmode.hw_ip_checksum = 1;
pconf->hw_features.rx_csum = 1;
}
if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM)) {
printf("TX ip checksum offload supported\n");
pconf->hw_features.tx_csum_ip = 1;
}
if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) &&
(dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM)) {
printf("TX TCP&UDP checksum offload supported\n");
pconf->hw_features.tx_csum_l4 = 1;
}
if (ff_global_cfg.dpdk.tso) {
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
printf("TSO is supported\n");
pconf->hw_features.tx_tso = 1;
}
} else {
printf("TSO is disabled\n");
}
if (dev_info.reta_size) {
/* reta size must be power of 2 */
assert((dev_info.reta_size & (dev_info.reta_size - 1)) == 0);
rss_reta_size[port_id] = dev_info.reta_size;
printf("port[%d]: rss table size: %d\n", port_id,
dev_info.reta_size);
}
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
continue;
}
int ret = rte_eth_dev_configure(port_id, nb_queues, nb_queues, &port_conf);
if (ret != 0) {
return ret;
}
uint16_t q;
for (q = 0; q < nb_queues; q++) {
ret = rte_eth_tx_queue_setup(port_id, q, TX_QUEUE_SIZE,
socketid, &dev_info.default_txconf);
if (ret < 0) {
return ret;
}
ret = rte_eth_rx_queue_setup(port_id, q, RX_QUEUE_SIZE,
socketid, &dev_info.default_rxconf, mbuf_pool);
if (ret < 0) {
return ret;
}
}
ret = rte_eth_dev_start(port_id);
if (ret < 0) {
return ret;
}
if (nb_queues > 1) {
/* set HW rss hash function to Toeplitz. */
if (!rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_HASH)) {
struct rte_eth_hash_filter_info info = {0};
info.info_type = RTE_ETH_HASH_FILTER_GLOBAL_CONFIG;
info.info.global_conf.hash_func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
if (rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_HASH,
RTE_ETH_FILTER_SET, &info) < 0) {
rte_exit(EXIT_FAILURE, "port[%d] set hash func failed\n",
port_id);
}
}
set_rss_table(port_id, dev_info.reta_size, nb_queues);
}
/* Enable RX in promiscuous mode for the Ethernet device. */
if (ff_global_cfg.dpdk.promiscuous) {
rte_eth_promiscuous_enable(port_id);
ret = rte_eth_promiscuous_get(port_id);
if (ret == 1) {
printf("set port %u to promiscuous mode ok\n", port_id);
} else {
printf("set port %u to promiscuous mode error\n", port_id);
}
}
/* Enable pcap dump */
if (pconf->pcap) {
ff_enable_pcap(pconf->pcap);
}
}
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
check_all_ports_link_status();
}
return 0;
}
static int
init_clock(void)
{
rte_timer_subsystem_init();
uint64_t hz = rte_get_timer_hz();
uint64_t intrs = MS_PER_S/ff_global_cfg.freebsd.hz;
uint64_t tsc = (hz + MS_PER_S - 1) / MS_PER_S*intrs;
rte_timer_init(&freebsd_clock);
rte_timer_reset(&freebsd_clock, tsc, PERIODICAL,
rte_lcore_id(), &ff_hardclock_job, NULL);
ff_update_current_ts();
return 0;
}
int
ff_dpdk_init(int argc, char **argv)
{
if (ff_global_cfg.dpdk.nb_procs < 1 ||
ff_global_cfg.dpdk.nb_procs > RTE_MAX_LCORE ||
ff_global_cfg.dpdk.proc_id >= ff_global_cfg.dpdk.nb_procs ||
ff_global_cfg.dpdk.proc_id < 0) {
printf("param num_procs[%d] or proc_id[%d] error!\n",
ff_global_cfg.dpdk.nb_procs,
ff_global_cfg.dpdk.proc_id);
exit(1);
}
int ret = rte_eal_init(argc, argv);
if (ret < 0) {
rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
}
numa_on = ff_global_cfg.dpdk.numa_on;
init_lcore_conf();
init_mem_pool();
init_dispatch_ring();
init_msg_ring();
enable_kni = ff_global_cfg.kni.enable;
if (enable_kni) {
init_kni();
}
ret = init_port_start();
if (ret < 0) {
rte_exit(EXIT_FAILURE, "init_port_start failed\n");
}
init_clock();
return 0;
}
static void
ff_veth_input(const struct ff_dpdk_if_context *ctx, struct rte_mbuf *pkt)
{
uint8_t rx_csum = ctx->hw_features.rx_csum;
if (rx_csum) {
if (pkt->ol_flags & (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD)) {
return;
}
}
/*
* FIXME: should we save pkt->vlan_tci
* if (pkt->ol_flags & PKT_RX_VLAN_PKT)
*/
void *data = rte_pktmbuf_mtod(pkt, void*);
uint16_t len = rte_pktmbuf_data_len(pkt);
void *hdr = ff_mbuf_gethdr(pkt, pkt->pkt_len, data, len, rx_csum);
if (hdr == NULL) {
rte_pktmbuf_free(pkt);
return;
}
struct rte_mbuf *pn = pkt->next;
void *prev = hdr;
while(pn != NULL) {
data = rte_pktmbuf_mtod(pn, void*);
len = rte_pktmbuf_data_len(pn);
void *mb = ff_mbuf_get(prev, data, len);
if (mb == NULL) {
ff_mbuf_free(hdr);
rte_pktmbuf_free(pkt);
return;
}
pn = pn->next;
prev = mb;
}
ff_veth_process_packet(ctx->ifp, hdr);
}
static enum FilterReturn
protocol_filter(const void *data, uint16_t len)
{
if(len < ETHER_HDR_LEN)
return FILTER_UNKNOWN;
const struct ether_hdr *hdr;
hdr = (const struct ether_hdr *)data;
if(ntohs(hdr->ether_type) == ETHER_TYPE_ARP)
return FILTER_ARP;
if (!enable_kni) {
return FILTER_UNKNOWN;
}
if(ntohs(hdr->ether_type) != ETHER_TYPE_IPv4)
return FILTER_UNKNOWN;
return ff_kni_proto_filter(data + ETHER_HDR_LEN,
len - ETHER_HDR_LEN);
}
static inline void
pktmbuf_deep_attach(struct rte_mbuf *mi, const struct rte_mbuf *m)
{
struct rte_mbuf *md;
void *src, *dst;
dst = rte_pktmbuf_mtod(mi, void *);
src = rte_pktmbuf_mtod(m, void *);
mi->data_len = m->data_len;
rte_memcpy(dst, src, m->data_len);
mi->port = m->port;
mi->vlan_tci = m->vlan_tci;
mi->vlan_tci_outer = m->vlan_tci_outer;
mi->tx_offload = m->tx_offload;
mi->hash = m->hash;
mi->ol_flags = m->ol_flags;
mi->packet_type = m->packet_type;
}
/* copied from rte_pktmbuf_clone */
static inline struct rte_mbuf *
pktmbuf_deep_clone(const struct rte_mbuf *md,
struct rte_mempool *mp)
{
struct rte_mbuf *mc, *mi, **prev;
uint32_t pktlen;
uint8_t nseg;
if (unlikely ((mc = rte_pktmbuf_alloc(mp)) == NULL))
return NULL;
mi = mc;
prev = &mi->next;
pktlen = md->pkt_len;
nseg = 0;
do {
nseg++;
pktmbuf_deep_attach(mi, md);
*prev = mi;
prev = &mi->next;
} while ((md = md->next) != NULL &&
(mi = rte_pktmbuf_alloc(mp)) != NULL);
*prev = NULL;
mc->nb_segs = nseg;
mc->pkt_len = pktlen;
/* Allocation of new indirect segment failed */
if (unlikely (mi == NULL)) {
rte_pktmbuf_free(mc);
return NULL;
}
__rte_mbuf_sanity_check(mc, 1);
return mc;
}
static inline void
process_packets(uint16_t port_id, uint16_t queue_id, struct rte_mbuf **bufs,
uint16_t count, const struct ff_dpdk_if_context *ctx, int pkts_from_ring)
{
struct lcore_conf *qconf = &lcore_conf;
uint16_t nb_queues = qconf->nb_queue_list[port_id];
uint16_t i;
for (i = 0; i < count; i++) {
struct rte_mbuf *rtem = bufs[i];
if (unlikely(qconf->pcap[port_id] != NULL)) {
if (!pkts_from_ring) {
ff_dump_packets(qconf->pcap[port_id], rtem);
}
}
void *data = rte_pktmbuf_mtod(rtem, void*);
uint16_t len = rte_pktmbuf_data_len(rtem);
if (!pkts_from_ring && packet_dispatcher) {
int ret = (*packet_dispatcher)(data, len, queue_id, nb_queues);
if (ret < 0 || ret >= nb_queues) {
rte_pktmbuf_free(rtem);
continue;
}
if (ret != queue_id) {
ret = rte_ring_enqueue(dispatch_ring[port_id][ret], rtem);
if (ret < 0)
rte_pktmbuf_free(rtem);
continue;
}
}
enum FilterReturn filter = protocol_filter(data, len);
if (filter == FILTER_ARP) {
struct rte_mempool *mbuf_pool;
struct rte_mbuf *mbuf_clone;
if (!pkts_from_ring) {
uint16_t j;
for(j = 0; j < nb_queues; ++j) {
if(j == queue_id)
continue;
unsigned socket_id = 0;
if (numa_on) {
uint16_t lcore_id = qconf->port_cfgs[port_id].lcore_list[j];
socket_id = rte_lcore_to_socket_id(lcore_id);
}
mbuf_pool = pktmbuf_pool[socket_id];
mbuf_clone = pktmbuf_deep_clone(rtem, mbuf_pool);
if(mbuf_clone) {
int ret = rte_ring_enqueue(dispatch_ring[port_id][j],
mbuf_clone);
if (ret < 0)
rte_pktmbuf_free(mbuf_clone);
}
}
}
if (enable_kni && rte_eal_process_type() == RTE_PROC_PRIMARY) {
mbuf_pool = pktmbuf_pool[qconf->socket_id];
mbuf_clone = pktmbuf_deep_clone(rtem, mbuf_pool);
if(mbuf_clone) {
ff_kni_enqueue(port_id, mbuf_clone);
}
}
ff_veth_input(ctx, rtem);
} else if (enable_kni &&
((filter == FILTER_KNI && kni_accept) ||
(filter == FILTER_UNKNOWN && !kni_accept)) ) {
ff_kni_enqueue(port_id, rtem);
} else {
ff_veth_input(ctx, rtem);
}
}
}
static inline int
process_dispatch_ring(uint16_t port_id, uint16_t queue_id,
struct rte_mbuf **pkts_burst, const struct ff_dpdk_if_context *ctx)
{
/* read packet from ring buf and to process */
uint16_t nb_rb;
nb_rb = rte_ring_dequeue_burst(dispatch_ring[port_id][queue_id],
(void **)pkts_burst, MAX_PKT_BURST, NULL);
if(nb_rb > 0) {
process_packets(port_id, queue_id, pkts_burst, nb_rb, ctx, 1);
}
return 0;
}
static inline void
handle_sysctl_msg(struct ff_msg *msg)
{
int ret = ff_sysctl(msg->sysctl.name, msg->sysctl.namelen,
msg->sysctl.old, msg->sysctl.oldlenp, msg->sysctl.new,
msg->sysctl.newlen);
if (ret < 0) {
msg->result = errno;
} else {
msg->result = 0;
}
}
static inline void
handle_ioctl_msg(struct ff_msg *msg)
{
int fd, ret;
fd = ff_socket(AF_INET, SOCK_DGRAM, 0);
if (fd < 0) {
ret = -1;
goto done;
}
ret = ff_ioctl(fd, msg->ioctl.cmd, msg->ioctl.data);
ff_close(fd);
done:
if (ret < 0) {
msg->result = errno;
} else {
msg->result = 0;
}
}
static inline void
handle_route_msg(struct ff_msg *msg)
{
int ret = ff_rtioctl(msg->route.fib, msg->route.data,
&msg->route.len, msg->route.maxlen);
if (ret < 0) {
msg->result = errno;
} else {
msg->result = 0;
}
}
static struct ff_top_args ff_status;
static inline void
handle_top_msg(struct ff_msg *msg)
{
msg->top = ff_status;
msg->result = 0;
}
#ifdef FF_NETGRAPH
static inline void
handle_ngctl_msg(struct ff_msg *msg)
{
int ret = ff_ngctl(msg->ngctl.cmd, msg->ngctl.data);
if (ret < 0) {
msg->result = errno;
} else {
msg->result = 0;
msg->ngctl.ret = ret;
}
}
#endif
#ifdef FF_IPFW
static inline void
handle_ipfw_msg(struct ff_msg *msg)
{
int fd, ret;
fd = ff_socket(AF_INET, SOCK_RAW, IPPROTO_RAW);
if (fd < 0) {
ret = -1;
goto done;
}
switch (msg->ipfw.cmd) {
case FF_IPFW_GET:
ret = ff_getsockopt(fd, msg->ipfw.level,
msg->ipfw.optname, msg->ipfw.optval,
msg->ipfw.optlen);
break;
case FF_IPFW_SET:
ret = ff_setsockopt(fd, msg->ipfw.level,
msg->ipfw.optname, msg->ipfw.optval,
*(msg->ipfw.optlen));
break;
default:
ret = -1;
errno = ENOTSUP;
break;
}
ff_close(fd);
done:
if (ret < 0) {
msg->result = errno;
} else {
msg->result = 0;
}
}
#endif
static inline void
handle_default_msg(struct ff_msg *msg)
{
msg->result = ENOTSUP;
}
static inline void
handle_msg(struct ff_msg *msg, uint16_t proc_id)
{
switch (msg->msg_type) {
case FF_SYSCTL:
handle_sysctl_msg(msg);
break;
case FF_IOCTL:
handle_ioctl_msg(msg);
break;
case FF_ROUTE:
handle_route_msg(msg);
break;
case FF_TOP:
handle_top_msg(msg);
break;
#ifdef FF_NETGRAPH
case FF_NGCTL:
handle_ngctl_msg(msg);
break;
#endif
#ifdef FF_IPFW
case FF_IPFW_CTL:
handle_ipfw_msg(msg);
break;
#endif
default:
handle_default_msg(msg);
break;
}
rte_ring_enqueue(msg_ring[proc_id].ring[1], msg);
}
static inline int
process_msg_ring(uint16_t proc_id)
{
void *msg;
int ret = rte_ring_dequeue(msg_ring[proc_id].ring[0], &msg);
if (unlikely(ret == 0)) {
handle_msg((struct ff_msg *)msg, proc_id);
}
return 0;
}
/* Send burst of packets on an output interface */
static inline int
send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
{
struct rte_mbuf **m_table;
int ret;
uint16_t queueid;
queueid = qconf->tx_queue_id[port];
m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
if (unlikely(qconf->pcap[port] != NULL)) {
uint16_t i;
for (i = 0; i < n; i++) {
ff_dump_packets(qconf->pcap[port], m_table[i]);
}
}
ret = rte_eth_tx_burst(port, queueid, m_table, n);
if (unlikely(ret < n)) {
do {
rte_pktmbuf_free(m_table[ret]);
} while (++ret < n);
}
return 0;
}
/* Enqueue a single packet, and send burst if queue is filled */
static inline int
send_single_packet(struct rte_mbuf *m, uint8_t port)
{
uint16_t len;
struct lcore_conf *qconf;
qconf = &lcore_conf;
len = qconf->tx_mbufs[port].len;
qconf->tx_mbufs[port].m_table[len] = m;
len++;
/* enough pkts to be sent */
if (unlikely(len == MAX_PKT_BURST)) {
send_burst(qconf, MAX_PKT_BURST, port);
len = 0;
}
qconf->tx_mbufs[port].len = len;
return 0;
}
int
ff_dpdk_if_send(struct ff_dpdk_if_context *ctx, void *m,
int total)
{
struct rte_mempool *mbuf_pool = pktmbuf_pool[lcore_conf.socket_id];
struct rte_mbuf *head = rte_pktmbuf_alloc(mbuf_pool);
if (head == NULL) {
ff_mbuf_free(m);
return -1;
}
head->pkt_len = total;
head->nb_segs = 0;
int off = 0;
struct rte_mbuf *cur = head, *prev = NULL;
while(total > 0) {
if (cur == NULL) {
cur = rte_pktmbuf_alloc(mbuf_pool);
if (cur == NULL) {
rte_pktmbuf_free(head);
ff_mbuf_free(m);
return -1;
}
}
void *data = rte_pktmbuf_mtod(cur, void*);
int len = total > RTE_MBUF_DEFAULT_DATAROOM ? RTE_MBUF_DEFAULT_DATAROOM : total;
int ret = ff_mbuf_copydata(m, data, off, len);
if (ret < 0) {
rte_pktmbuf_free(head);
ff_mbuf_free(m);
return -1;
}
if (prev != NULL) {
prev->next = cur;
}
prev = cur;
cur->data_len = len;
off += len;
total -= len;
head->nb_segs++;
cur = NULL;
}
struct ff_tx_offload offload = {0};
ff_mbuf_tx_offload(m, &offload);
void *data = rte_pktmbuf_mtod(head, void*);
if (offload.ip_csum) {
/* ipv6 not supported yet */
struct ipv4_hdr *iph;
int iph_len;
iph = (struct ipv4_hdr *)(data + ETHER_HDR_LEN);
iph_len = (iph->version_ihl & 0x0f) << 2;
head->ol_flags |= PKT_TX_IP_CKSUM | PKT_TX_IPV4;
head->l2_len = ETHER_HDR_LEN;
head->l3_len = iph_len;
}
if (ctx->hw_features.tx_csum_l4) {
struct ipv4_hdr *iph;
int iph_len;
iph = (struct ipv4_hdr *)(data + ETHER_HDR_LEN);
iph_len = (iph->version_ihl & 0x0f) << 2;
if (offload.tcp_csum) {
head->ol_flags |= PKT_TX_TCP_CKSUM;
head->l2_len = ETHER_HDR_LEN;
head->l3_len = iph_len;
}
/*
* TCP segmentation offload.
*
* - set the PKT_TX_TCP_SEG flag in mbuf->ol_flags (this flag
* implies PKT_TX_TCP_CKSUM)
* - set the flag PKT_TX_IPV4 or PKT_TX_IPV6
* - if it's IPv4, set the PKT_TX_IP_CKSUM flag and
* write the IP checksum to 0 in the packet
* - fill the mbuf offload information: l2_len,
* l3_len, l4_len, tso_segsz
* - calculate the pseudo header checksum without taking ip_len
* in account, and set it in the TCP header. Refer to
* rte_ipv4_phdr_cksum() and rte_ipv6_phdr_cksum() that can be
* used as helpers.
*/
if (offload.tso_seg_size) {
struct tcp_hdr *tcph;
int tcph_len;
tcph = (struct tcp_hdr *)((char *)iph + iph_len);
tcph_len = (tcph->data_off & 0xf0) >> 2;
tcph->cksum = rte_ipv4_phdr_cksum(iph, PKT_TX_TCP_SEG);
head->ol_flags |= PKT_TX_TCP_SEG;
head->l4_len = tcph_len;
head->tso_segsz = offload.tso_seg_size;
}
if (offload.udp_csum) {
head->ol_flags |= PKT_TX_UDP_CKSUM;
head->l2_len = ETHER_HDR_LEN;
head->l3_len = iph_len;
}
}
ff_mbuf_free(m);
return send_single_packet(head, ctx->port_id);
}
static int
main_loop(void *arg)
{
struct loop_routine *lr = (struct loop_routine *)arg;
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
uint64_t prev_tsc, diff_tsc, cur_tsc, usch_tsc, div_tsc, usr_tsc, sys_tsc, end_tsc;
int i, j, nb_rx, idle;
uint16_t port_id, queue_id;
struct lcore_conf *qconf;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
US_PER_S * BURST_TX_DRAIN_US;
struct ff_dpdk_if_context *ctx;
prev_tsc = 0;
usch_tsc = 0;
qconf = &lcore_conf;
while (1) {
cur_tsc = rte_rdtsc();
if (unlikely(freebsd_clock.expire < cur_tsc)) {
rte_timer_manage();
}
idle = 1;
sys_tsc = 0;
usr_tsc = 0;
/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
for (i = 0; i < qconf->nb_tx_port; i++) {
port_id = qconf->tx_port_id[i];
if (qconf->tx_mbufs[port_id].len == 0)
continue;
idle = 0;
send_burst(qconf,
qconf->tx_mbufs[port_id].len,
port_id);
qconf->tx_mbufs[port_id].len = 0;
}
prev_tsc = cur_tsc;
}
/*
* Read packet from RX queues
*/
for (i = 0; i < qconf->nb_rx_queue; ++i) {
port_id = qconf->rx_queue_list[i].port_id;
queue_id = qconf->rx_queue_list[i].queue_id;
ctx = veth_ctx[port_id];
if (enable_kni && rte_eal_process_type() == RTE_PROC_PRIMARY) {
ff_kni_process(port_id, queue_id, pkts_burst, MAX_PKT_BURST);
}
process_dispatch_ring(port_id, queue_id, pkts_burst, ctx);
nb_rx = rte_eth_rx_burst(port_id, queue_id, pkts_burst,
MAX_PKT_BURST);
if (nb_rx == 0)
continue;
idle = 0;
/* Prefetch first packets */
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
rte_prefetch0(rte_pktmbuf_mtod(
pkts_burst[j], void *));
}
/* Prefetch and handle already prefetched packets */
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
j + PREFETCH_OFFSET], void *));
process_packets(port_id, queue_id, &pkts_burst[j], 1, ctx, 0);
}
/* Handle remaining prefetched packets */
for (; j < nb_rx; j++) {
process_packets(port_id, queue_id, &pkts_burst[j], 1, ctx, 0);
}
}
process_msg_ring(qconf->proc_id);
div_tsc = rte_rdtsc();
if (likely(lr->loop != NULL && (!idle || cur_tsc - usch_tsc > drain_tsc))) {
usch_tsc = cur_tsc;
lr->loop(lr->arg);
}
end_tsc = rte_rdtsc();
if (usch_tsc == cur_tsc) {
usr_tsc = end_tsc - div_tsc;
}
if (!idle) {
sys_tsc = div_tsc - cur_tsc;
ff_status.sys_tsc += sys_tsc;
}
ff_status.usr_tsc += usr_tsc;
ff_status.work_tsc += end_tsc - cur_tsc;
ff_status.idle_tsc += end_tsc - cur_tsc - usr_tsc - sys_tsc;
ff_status.loops++;
}
return 0;
}
int
ff_dpdk_if_up(void) {
int i;
struct lcore_conf *qconf = &lcore_conf;
for (i = 0; i < qconf->nb_tx_port; i++) {
uint16_t port_id = qconf->tx_port_id[i];
struct ff_port_cfg *pconf = &qconf->port_cfgs[port_id];
veth_ctx[port_id] = ff_veth_attach(pconf);
if (veth_ctx[port_id] == NULL) {
rte_exit(EXIT_FAILURE, "ff_veth_attach failed");
}
}
return 0;
}
void
ff_dpdk_run(loop_func_t loop, void *arg) {
struct loop_routine *lr = rte_malloc(NULL,
sizeof(struct loop_routine), 0);
lr->loop = loop;
lr->arg = arg;
rte_eal_mp_remote_launch(main_loop, lr, CALL_MASTER);
rte_eal_mp_wait_lcore();
rte_free(lr);
}
void
ff_dpdk_pktmbuf_free(void *m)
{
rte_pktmbuf_free((struct rte_mbuf *)m);
}
static uint32_t
toeplitz_hash(unsigned keylen, const uint8_t *key,
unsigned datalen, const uint8_t *data)
{
uint32_t hash = 0, v;
u_int i, b;
/* XXXRW: Perhaps an assertion about key length vs. data length? */
v = (key[0]<<24) + (key[1]<<16) + (key[2] <<8) + key[3];
for (i = 0; i < datalen; i++) {
for (b = 0; b < 8; b++) {
if (data[i] & (1<<(7-b)))
hash ^= v;
v <<= 1;
if ((i + 4) < keylen &&
(key[i+4] & (1<<(7-b))))
v |= 1;
}
}
return (hash);
}
int
ff_rss_check(void *softc, uint32_t saddr, uint32_t daddr,
uint16_t sport, uint16_t dport)
{
struct lcore_conf *qconf = &lcore_conf;
struct ff_dpdk_if_context *ctx = ff_veth_softc_to_hostc(softc);
uint16_t nb_queues = qconf->nb_queue_list[ctx->port_id];
if (nb_queues <= 1) {
return 1;
}
uint16_t reta_size = rss_reta_size[ctx->port_id];
uint16_t queueid = qconf->tx_queue_id[ctx->port_id];
uint8_t data[sizeof(saddr) + sizeof(daddr) + sizeof(sport) +
sizeof(dport)];
unsigned datalen = 0;
bcopy(&saddr, &data[datalen], sizeof(saddr));
datalen += sizeof(saddr);
bcopy(&daddr, &data[datalen], sizeof(daddr));
datalen += sizeof(daddr);
bcopy(&sport, &data[datalen], sizeof(sport));
datalen += sizeof(sport);
bcopy(&dport, &data[datalen], sizeof(dport));
datalen += sizeof(dport);
uint32_t hash = toeplitz_hash(sizeof(default_rsskey_40bytes),
default_rsskey_40bytes, datalen, data);
return ((hash & (reta_size - 1)) % nb_queues) == queueid;
}
void
ff_regist_packet_dispatcher(dispatch_func_t func)
{
packet_dispatcher = func;
}
uint64_t
ff_get_tsc_ns()
{
uint64_t cur_tsc = rte_rdtsc();
uint64_t hz = rte_get_tsc_hz();
return ((double)cur_tsc/(double)hz) * NS_PER_S;
}