mirror of https://github.com/F-Stack/f-stack.git
1605 lines
41 KiB
C
1605 lines
41 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) 2015 - 2016 CESNET
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of CESNET nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <unistd.h>
|
|
#include <stdbool.h>
|
|
#include <err.h>
|
|
#include <sys/types.h>
|
|
#include <dirent.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <libsze2.h>
|
|
|
|
#include <rte_mbuf.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_kvargs.h>
|
|
#include <rte_dev.h>
|
|
#include <rte_atomic.h>
|
|
|
|
#include "rte_eth_szedata2.h"
|
|
|
|
#define RTE_ETH_SZEDATA2_MAX_RX_QUEUES 32
|
|
#define RTE_ETH_SZEDATA2_MAX_TX_QUEUES 32
|
|
#define RTE_ETH_SZEDATA2_TX_LOCK_SIZE (32 * 1024 * 1024)
|
|
|
|
/**
|
|
* size of szedata2_packet header with alignment
|
|
*/
|
|
#define RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED 8
|
|
|
|
#define RTE_SZEDATA2_DRIVER_NAME rte_szedata2_pmd
|
|
#define RTE_SZEDATA2_PCI_DRIVER_NAME "rte_szedata2_pmd"
|
|
|
|
#define SZEDATA2_DEV_PATH_FMT "/dev/szedataII%u"
|
|
|
|
struct szedata2_rx_queue {
|
|
struct szedata *sze;
|
|
uint8_t rx_channel;
|
|
uint8_t in_port;
|
|
struct rte_mempool *mb_pool;
|
|
volatile uint64_t rx_pkts;
|
|
volatile uint64_t rx_bytes;
|
|
volatile uint64_t err_pkts;
|
|
};
|
|
|
|
struct szedata2_tx_queue {
|
|
struct szedata *sze;
|
|
uint8_t tx_channel;
|
|
volatile uint64_t tx_pkts;
|
|
volatile uint64_t tx_bytes;
|
|
volatile uint64_t err_pkts;
|
|
};
|
|
|
|
struct pmd_internals {
|
|
struct szedata2_rx_queue rx_queue[RTE_ETH_SZEDATA2_MAX_RX_QUEUES];
|
|
struct szedata2_tx_queue tx_queue[RTE_ETH_SZEDATA2_MAX_TX_QUEUES];
|
|
uint16_t max_rx_queues;
|
|
uint16_t max_tx_queues;
|
|
char sze_dev[PATH_MAX];
|
|
};
|
|
|
|
static struct ether_addr eth_addr = {
|
|
.addr_bytes = { 0x00, 0x11, 0x17, 0x00, 0x00, 0x00 }
|
|
};
|
|
|
|
static uint16_t
|
|
eth_szedata2_rx(void *queue,
|
|
struct rte_mbuf **bufs,
|
|
uint16_t nb_pkts)
|
|
{
|
|
unsigned int i;
|
|
struct rte_mbuf *mbuf;
|
|
struct szedata2_rx_queue *sze_q = queue;
|
|
struct rte_pktmbuf_pool_private *mbp_priv;
|
|
uint16_t num_rx = 0;
|
|
uint16_t buf_size;
|
|
uint16_t sg_size;
|
|
uint16_t hw_size;
|
|
uint16_t packet_size;
|
|
uint64_t num_bytes = 0;
|
|
struct szedata *sze = sze_q->sze;
|
|
uint8_t *header_ptr = NULL; /* header of packet */
|
|
uint8_t *packet_ptr1 = NULL;
|
|
uint8_t *packet_ptr2 = NULL;
|
|
uint16_t packet_len1 = 0;
|
|
uint16_t packet_len2 = 0;
|
|
uint16_t hw_data_align;
|
|
|
|
if (unlikely(sze_q->sze == NULL || nb_pkts == 0))
|
|
return 0;
|
|
|
|
/*
|
|
* Reads the given number of packets from szedata2 channel given
|
|
* by queue and copies the packet data into a newly allocated mbuf
|
|
* to return.
|
|
*/
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
mbuf = rte_pktmbuf_alloc(sze_q->mb_pool);
|
|
|
|
if (unlikely(mbuf == NULL))
|
|
break;
|
|
|
|
/* get the next sze packet */
|
|
if (sze->ct_rx_lck != NULL && !sze->ct_rx_rem_bytes &&
|
|
sze->ct_rx_lck->next == NULL) {
|
|
/* unlock old data */
|
|
szedata_rx_unlock_data(sze_q->sze, sze->ct_rx_lck_orig);
|
|
sze->ct_rx_lck_orig = NULL;
|
|
sze->ct_rx_lck = NULL;
|
|
}
|
|
|
|
if (!sze->ct_rx_rem_bytes && sze->ct_rx_lck_orig == NULL) {
|
|
/* nothing to read, lock new data */
|
|
sze->ct_rx_lck = szedata_rx_lock_data(sze_q->sze, ~0U);
|
|
sze->ct_rx_lck_orig = sze->ct_rx_lck;
|
|
|
|
if (sze->ct_rx_lck == NULL) {
|
|
/* nothing to lock */
|
|
rte_pktmbuf_free(mbuf);
|
|
break;
|
|
}
|
|
|
|
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
|
|
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len;
|
|
|
|
if (!sze->ct_rx_rem_bytes) {
|
|
rte_pktmbuf_free(mbuf);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (sze->ct_rx_rem_bytes < RTE_SZE2_PACKET_HEADER_SIZE) {
|
|
/*
|
|
* cut in header
|
|
* copy parts of header to merge buffer
|
|
*/
|
|
if (sze->ct_rx_lck->next == NULL) {
|
|
rte_pktmbuf_free(mbuf);
|
|
break;
|
|
}
|
|
|
|
/* copy first part of header */
|
|
rte_memcpy(sze->ct_rx_buffer, sze->ct_rx_cur_ptr,
|
|
sze->ct_rx_rem_bytes);
|
|
|
|
/* copy second part of header */
|
|
sze->ct_rx_lck = sze->ct_rx_lck->next;
|
|
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
|
|
rte_memcpy(sze->ct_rx_buffer + sze->ct_rx_rem_bytes,
|
|
sze->ct_rx_cur_ptr,
|
|
RTE_SZE2_PACKET_HEADER_SIZE -
|
|
sze->ct_rx_rem_bytes);
|
|
|
|
sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE -
|
|
sze->ct_rx_rem_bytes;
|
|
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
|
|
RTE_SZE2_PACKET_HEADER_SIZE +
|
|
sze->ct_rx_rem_bytes;
|
|
|
|
header_ptr = (uint8_t *)sze->ct_rx_buffer;
|
|
} else {
|
|
/* not cut */
|
|
header_ptr = (uint8_t *)sze->ct_rx_cur_ptr;
|
|
sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE;
|
|
sze->ct_rx_rem_bytes -= RTE_SZE2_PACKET_HEADER_SIZE;
|
|
}
|
|
|
|
sg_size = le16toh(*((uint16_t *)header_ptr));
|
|
hw_size = le16toh(*(((uint16_t *)header_ptr) + 1));
|
|
packet_size = sg_size -
|
|
RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size);
|
|
|
|
|
|
/* checks if packet all right */
|
|
if (!sg_size)
|
|
errx(5, "Zero segsize");
|
|
|
|
/* check sg_size and hwsize */
|
|
if (hw_size > sg_size - RTE_SZE2_PACKET_HEADER_SIZE) {
|
|
errx(10, "Hwsize bigger than expected. Segsize: %d, "
|
|
"hwsize: %d", sg_size, hw_size);
|
|
}
|
|
|
|
hw_data_align =
|
|
RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size) -
|
|
RTE_SZE2_PACKET_HEADER_SIZE;
|
|
|
|
if (sze->ct_rx_rem_bytes >=
|
|
(uint16_t)(sg_size -
|
|
RTE_SZE2_PACKET_HEADER_SIZE)) {
|
|
/* no cut */
|
|
/* one packet ready - go to another */
|
|
packet_ptr1 = sze->ct_rx_cur_ptr + hw_data_align;
|
|
packet_len1 = packet_size;
|
|
packet_ptr2 = NULL;
|
|
packet_len2 = 0;
|
|
|
|
sze->ct_rx_cur_ptr += RTE_SZE2_ALIGN8(sg_size) -
|
|
RTE_SZE2_PACKET_HEADER_SIZE;
|
|
sze->ct_rx_rem_bytes -= RTE_SZE2_ALIGN8(sg_size) -
|
|
RTE_SZE2_PACKET_HEADER_SIZE;
|
|
} else {
|
|
/* cut in data */
|
|
if (sze->ct_rx_lck->next == NULL) {
|
|
errx(6, "Need \"next\" lock, "
|
|
"but it is missing: %u",
|
|
sze->ct_rx_rem_bytes);
|
|
}
|
|
|
|
/* skip hw data */
|
|
if (sze->ct_rx_rem_bytes <= hw_data_align) {
|
|
uint16_t rem_size = hw_data_align -
|
|
sze->ct_rx_rem_bytes;
|
|
|
|
/* MOVE to next lock */
|
|
sze->ct_rx_lck = sze->ct_rx_lck->next;
|
|
sze->ct_rx_cur_ptr =
|
|
(void *)(((uint8_t *)
|
|
(sze->ct_rx_lck->start)) + rem_size);
|
|
|
|
packet_ptr1 = sze->ct_rx_cur_ptr;
|
|
packet_len1 = packet_size;
|
|
packet_ptr2 = NULL;
|
|
packet_len2 = 0;
|
|
|
|
sze->ct_rx_cur_ptr +=
|
|
RTE_SZE2_ALIGN8(packet_size);
|
|
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
|
|
rem_size - RTE_SZE2_ALIGN8(packet_size);
|
|
} else {
|
|
/* get pointer and length from first part */
|
|
packet_ptr1 = sze->ct_rx_cur_ptr +
|
|
hw_data_align;
|
|
packet_len1 = sze->ct_rx_rem_bytes -
|
|
hw_data_align;
|
|
|
|
/* MOVE to next lock */
|
|
sze->ct_rx_lck = sze->ct_rx_lck->next;
|
|
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
|
|
|
|
/* get pointer and length from second part */
|
|
packet_ptr2 = sze->ct_rx_cur_ptr;
|
|
packet_len2 = packet_size - packet_len1;
|
|
|
|
sze->ct_rx_cur_ptr +=
|
|
RTE_SZE2_ALIGN8(packet_size) -
|
|
packet_len1;
|
|
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
|
|
(RTE_SZE2_ALIGN8(packet_size) -
|
|
packet_len1);
|
|
}
|
|
}
|
|
|
|
if (unlikely(packet_ptr1 == NULL)) {
|
|
rte_pktmbuf_free(mbuf);
|
|
break;
|
|
}
|
|
|
|
/* get the space available for data in the mbuf */
|
|
mbp_priv = rte_mempool_get_priv(sze_q->mb_pool);
|
|
buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
|
|
RTE_PKTMBUF_HEADROOM);
|
|
|
|
if (packet_size <= buf_size) {
|
|
/* sze packet will fit in one mbuf, go ahead and copy */
|
|
rte_memcpy(rte_pktmbuf_mtod(mbuf, void *),
|
|
packet_ptr1, packet_len1);
|
|
if (packet_ptr2 != NULL) {
|
|
rte_memcpy((void *)(rte_pktmbuf_mtod(mbuf,
|
|
uint8_t *) + packet_len1),
|
|
packet_ptr2, packet_len2);
|
|
}
|
|
mbuf->data_len = (uint16_t)packet_size;
|
|
|
|
mbuf->pkt_len = packet_size;
|
|
mbuf->port = sze_q->in_port;
|
|
bufs[num_rx] = mbuf;
|
|
num_rx++;
|
|
num_bytes += packet_size;
|
|
} else {
|
|
/*
|
|
* sze packet will not fit in one mbuf,
|
|
* scattered mode is not enabled, drop packet
|
|
*/
|
|
RTE_LOG(ERR, PMD,
|
|
"SZE segment %d bytes will not fit in one mbuf "
|
|
"(%d bytes), scattered mode is not enabled, "
|
|
"drop packet!!\n",
|
|
packet_size, buf_size);
|
|
rte_pktmbuf_free(mbuf);
|
|
}
|
|
}
|
|
|
|
sze_q->rx_pkts += num_rx;
|
|
sze_q->rx_bytes += num_bytes;
|
|
return num_rx;
|
|
}
|
|
|
|
static uint16_t
|
|
eth_szedata2_rx_scattered(void *queue,
|
|
struct rte_mbuf **bufs,
|
|
uint16_t nb_pkts)
|
|
{
|
|
unsigned int i;
|
|
struct rte_mbuf *mbuf;
|
|
struct szedata2_rx_queue *sze_q = queue;
|
|
struct rte_pktmbuf_pool_private *mbp_priv;
|
|
uint16_t num_rx = 0;
|
|
uint16_t buf_size;
|
|
uint16_t sg_size;
|
|
uint16_t hw_size;
|
|
uint16_t packet_size;
|
|
uint64_t num_bytes = 0;
|
|
struct szedata *sze = sze_q->sze;
|
|
uint8_t *header_ptr = NULL; /* header of packet */
|
|
uint8_t *packet_ptr1 = NULL;
|
|
uint8_t *packet_ptr2 = NULL;
|
|
uint16_t packet_len1 = 0;
|
|
uint16_t packet_len2 = 0;
|
|
uint16_t hw_data_align;
|
|
|
|
if (unlikely(sze_q->sze == NULL || nb_pkts == 0))
|
|
return 0;
|
|
|
|
/*
|
|
* Reads the given number of packets from szedata2 channel given
|
|
* by queue and copies the packet data into a newly allocated mbuf
|
|
* to return.
|
|
*/
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
const struct szedata_lock *ct_rx_lck_backup;
|
|
unsigned int ct_rx_rem_bytes_backup;
|
|
unsigned char *ct_rx_cur_ptr_backup;
|
|
|
|
/* get the next sze packet */
|
|
if (sze->ct_rx_lck != NULL && !sze->ct_rx_rem_bytes &&
|
|
sze->ct_rx_lck->next == NULL) {
|
|
/* unlock old data */
|
|
szedata_rx_unlock_data(sze_q->sze, sze->ct_rx_lck_orig);
|
|
sze->ct_rx_lck_orig = NULL;
|
|
sze->ct_rx_lck = NULL;
|
|
}
|
|
|
|
/*
|
|
* Store items from sze structure which can be changed
|
|
* before mbuf allocating. Use these items in case of mbuf
|
|
* allocating failure.
|
|
*/
|
|
ct_rx_lck_backup = sze->ct_rx_lck;
|
|
ct_rx_rem_bytes_backup = sze->ct_rx_rem_bytes;
|
|
ct_rx_cur_ptr_backup = sze->ct_rx_cur_ptr;
|
|
|
|
if (!sze->ct_rx_rem_bytes && sze->ct_rx_lck_orig == NULL) {
|
|
/* nothing to read, lock new data */
|
|
sze->ct_rx_lck = szedata_rx_lock_data(sze_q->sze, ~0U);
|
|
sze->ct_rx_lck_orig = sze->ct_rx_lck;
|
|
|
|
/*
|
|
* Backup items from sze structure must be updated
|
|
* after locking to contain pointers to new locks.
|
|
*/
|
|
ct_rx_lck_backup = sze->ct_rx_lck;
|
|
ct_rx_rem_bytes_backup = sze->ct_rx_rem_bytes;
|
|
ct_rx_cur_ptr_backup = sze->ct_rx_cur_ptr;
|
|
|
|
if (sze->ct_rx_lck == NULL)
|
|
/* nothing to lock */
|
|
break;
|
|
|
|
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
|
|
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len;
|
|
|
|
if (!sze->ct_rx_rem_bytes)
|
|
break;
|
|
}
|
|
|
|
if (sze->ct_rx_rem_bytes < RTE_SZE2_PACKET_HEADER_SIZE) {
|
|
/*
|
|
* cut in header - copy parts of header to merge buffer
|
|
*/
|
|
if (sze->ct_rx_lck->next == NULL)
|
|
break;
|
|
|
|
/* copy first part of header */
|
|
rte_memcpy(sze->ct_rx_buffer, sze->ct_rx_cur_ptr,
|
|
sze->ct_rx_rem_bytes);
|
|
|
|
/* copy second part of header */
|
|
sze->ct_rx_lck = sze->ct_rx_lck->next;
|
|
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
|
|
rte_memcpy(sze->ct_rx_buffer + sze->ct_rx_rem_bytes,
|
|
sze->ct_rx_cur_ptr,
|
|
RTE_SZE2_PACKET_HEADER_SIZE -
|
|
sze->ct_rx_rem_bytes);
|
|
|
|
sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE -
|
|
sze->ct_rx_rem_bytes;
|
|
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
|
|
RTE_SZE2_PACKET_HEADER_SIZE +
|
|
sze->ct_rx_rem_bytes;
|
|
|
|
header_ptr = (uint8_t *)sze->ct_rx_buffer;
|
|
} else {
|
|
/* not cut */
|
|
header_ptr = (uint8_t *)sze->ct_rx_cur_ptr;
|
|
sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE;
|
|
sze->ct_rx_rem_bytes -= RTE_SZE2_PACKET_HEADER_SIZE;
|
|
}
|
|
|
|
sg_size = le16toh(*((uint16_t *)header_ptr));
|
|
hw_size = le16toh(*(((uint16_t *)header_ptr) + 1));
|
|
packet_size = sg_size -
|
|
RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size);
|
|
|
|
|
|
/* checks if packet all right */
|
|
if (!sg_size)
|
|
errx(5, "Zero segsize");
|
|
|
|
/* check sg_size and hwsize */
|
|
if (hw_size > sg_size - RTE_SZE2_PACKET_HEADER_SIZE) {
|
|
errx(10, "Hwsize bigger than expected. Segsize: %d, "
|
|
"hwsize: %d", sg_size, hw_size);
|
|
}
|
|
|
|
hw_data_align =
|
|
RTE_SZE2_ALIGN8((RTE_SZE2_PACKET_HEADER_SIZE +
|
|
hw_size)) - RTE_SZE2_PACKET_HEADER_SIZE;
|
|
|
|
if (sze->ct_rx_rem_bytes >=
|
|
(uint16_t)(sg_size -
|
|
RTE_SZE2_PACKET_HEADER_SIZE)) {
|
|
/* no cut */
|
|
/* one packet ready - go to another */
|
|
packet_ptr1 = sze->ct_rx_cur_ptr + hw_data_align;
|
|
packet_len1 = packet_size;
|
|
packet_ptr2 = NULL;
|
|
packet_len2 = 0;
|
|
|
|
sze->ct_rx_cur_ptr += RTE_SZE2_ALIGN8(sg_size) -
|
|
RTE_SZE2_PACKET_HEADER_SIZE;
|
|
sze->ct_rx_rem_bytes -= RTE_SZE2_ALIGN8(sg_size) -
|
|
RTE_SZE2_PACKET_HEADER_SIZE;
|
|
} else {
|
|
/* cut in data */
|
|
if (sze->ct_rx_lck->next == NULL) {
|
|
errx(6, "Need \"next\" lock, but it is "
|
|
"missing: %u", sze->ct_rx_rem_bytes);
|
|
}
|
|
|
|
/* skip hw data */
|
|
if (sze->ct_rx_rem_bytes <= hw_data_align) {
|
|
uint16_t rem_size = hw_data_align -
|
|
sze->ct_rx_rem_bytes;
|
|
|
|
/* MOVE to next lock */
|
|
sze->ct_rx_lck = sze->ct_rx_lck->next;
|
|
sze->ct_rx_cur_ptr =
|
|
(void *)(((uint8_t *)
|
|
(sze->ct_rx_lck->start)) + rem_size);
|
|
|
|
packet_ptr1 = sze->ct_rx_cur_ptr;
|
|
packet_len1 = packet_size;
|
|
packet_ptr2 = NULL;
|
|
packet_len2 = 0;
|
|
|
|
sze->ct_rx_cur_ptr +=
|
|
RTE_SZE2_ALIGN8(packet_size);
|
|
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
|
|
rem_size - RTE_SZE2_ALIGN8(packet_size);
|
|
} else {
|
|
/* get pointer and length from first part */
|
|
packet_ptr1 = sze->ct_rx_cur_ptr +
|
|
hw_data_align;
|
|
packet_len1 = sze->ct_rx_rem_bytes -
|
|
hw_data_align;
|
|
|
|
/* MOVE to next lock */
|
|
sze->ct_rx_lck = sze->ct_rx_lck->next;
|
|
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
|
|
|
|
/* get pointer and length from second part */
|
|
packet_ptr2 = sze->ct_rx_cur_ptr;
|
|
packet_len2 = packet_size - packet_len1;
|
|
|
|
sze->ct_rx_cur_ptr +=
|
|
RTE_SZE2_ALIGN8(packet_size) -
|
|
packet_len1;
|
|
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
|
|
(RTE_SZE2_ALIGN8(packet_size) -
|
|
packet_len1);
|
|
}
|
|
}
|
|
|
|
if (unlikely(packet_ptr1 == NULL))
|
|
break;
|
|
|
|
mbuf = rte_pktmbuf_alloc(sze_q->mb_pool);
|
|
|
|
if (unlikely(mbuf == NULL)) {
|
|
/*
|
|
* Restore items from sze structure to state after
|
|
* unlocking (eventually locking).
|
|
*/
|
|
sze->ct_rx_lck = ct_rx_lck_backup;
|
|
sze->ct_rx_rem_bytes = ct_rx_rem_bytes_backup;
|
|
sze->ct_rx_cur_ptr = ct_rx_cur_ptr_backup;
|
|
break;
|
|
}
|
|
|
|
/* get the space available for data in the mbuf */
|
|
mbp_priv = rte_mempool_get_priv(sze_q->mb_pool);
|
|
buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
|
|
RTE_PKTMBUF_HEADROOM);
|
|
|
|
if (packet_size <= buf_size) {
|
|
/* sze packet will fit in one mbuf, go ahead and copy */
|
|
rte_memcpy(rte_pktmbuf_mtod(mbuf, void *),
|
|
packet_ptr1, packet_len1);
|
|
if (packet_ptr2 != NULL) {
|
|
rte_memcpy((void *)
|
|
(rte_pktmbuf_mtod(mbuf, uint8_t *) +
|
|
packet_len1), packet_ptr2, packet_len2);
|
|
}
|
|
mbuf->data_len = (uint16_t)packet_size;
|
|
} else {
|
|
/*
|
|
* sze packet will not fit in one mbuf,
|
|
* scatter packet into more mbufs
|
|
*/
|
|
struct rte_mbuf *m = mbuf;
|
|
uint16_t len = rte_pktmbuf_tailroom(mbuf);
|
|
|
|
/* copy first part of packet */
|
|
/* fill first mbuf */
|
|
rte_memcpy(rte_pktmbuf_append(mbuf, len), packet_ptr1,
|
|
len);
|
|
packet_len1 -= len;
|
|
packet_ptr1 = ((uint8_t *)packet_ptr1) + len;
|
|
|
|
while (packet_len1 > 0) {
|
|
/* fill new mbufs */
|
|
m->next = rte_pktmbuf_alloc(sze_q->mb_pool);
|
|
|
|
if (unlikely(m->next == NULL)) {
|
|
rte_pktmbuf_free(mbuf);
|
|
/*
|
|
* Restore items from sze structure
|
|
* to state after unlocking (eventually
|
|
* locking).
|
|
*/
|
|
sze->ct_rx_lck = ct_rx_lck_backup;
|
|
sze->ct_rx_rem_bytes =
|
|
ct_rx_rem_bytes_backup;
|
|
sze->ct_rx_cur_ptr =
|
|
ct_rx_cur_ptr_backup;
|
|
goto finish;
|
|
}
|
|
|
|
m = m->next;
|
|
|
|
len = RTE_MIN(rte_pktmbuf_tailroom(m),
|
|
packet_len1);
|
|
rte_memcpy(rte_pktmbuf_append(mbuf, len),
|
|
packet_ptr1, len);
|
|
|
|
(mbuf->nb_segs)++;
|
|
packet_len1 -= len;
|
|
packet_ptr1 = ((uint8_t *)packet_ptr1) + len;
|
|
}
|
|
|
|
if (packet_ptr2 != NULL) {
|
|
/* copy second part of packet, if exists */
|
|
/* fill the rest of currently last mbuf */
|
|
len = rte_pktmbuf_tailroom(m);
|
|
rte_memcpy(rte_pktmbuf_append(mbuf, len),
|
|
packet_ptr2, len);
|
|
packet_len2 -= len;
|
|
packet_ptr2 = ((uint8_t *)packet_ptr2) + len;
|
|
|
|
while (packet_len2 > 0) {
|
|
/* fill new mbufs */
|
|
m->next = rte_pktmbuf_alloc(
|
|
sze_q->mb_pool);
|
|
|
|
if (unlikely(m->next == NULL)) {
|
|
rte_pktmbuf_free(mbuf);
|
|
/*
|
|
* Restore items from sze
|
|
* structure to state after
|
|
* unlocking (eventually
|
|
* locking).
|
|
*/
|
|
sze->ct_rx_lck =
|
|
ct_rx_lck_backup;
|
|
sze->ct_rx_rem_bytes =
|
|
ct_rx_rem_bytes_backup;
|
|
sze->ct_rx_cur_ptr =
|
|
ct_rx_cur_ptr_backup;
|
|
goto finish;
|
|
}
|
|
|
|
m = m->next;
|
|
|
|
len = RTE_MIN(rte_pktmbuf_tailroom(m),
|
|
packet_len2);
|
|
rte_memcpy(
|
|
rte_pktmbuf_append(mbuf, len),
|
|
packet_ptr2, len);
|
|
|
|
(mbuf->nb_segs)++;
|
|
packet_len2 -= len;
|
|
packet_ptr2 = ((uint8_t *)packet_ptr2) +
|
|
len;
|
|
}
|
|
}
|
|
}
|
|
mbuf->pkt_len = packet_size;
|
|
mbuf->port = sze_q->in_port;
|
|
bufs[num_rx] = mbuf;
|
|
num_rx++;
|
|
num_bytes += packet_size;
|
|
}
|
|
|
|
finish:
|
|
sze_q->rx_pkts += num_rx;
|
|
sze_q->rx_bytes += num_bytes;
|
|
return num_rx;
|
|
}
|
|
|
|
static uint16_t
|
|
eth_szedata2_tx(void *queue,
|
|
struct rte_mbuf **bufs,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct rte_mbuf *mbuf;
|
|
struct szedata2_tx_queue *sze_q = queue;
|
|
uint16_t num_tx = 0;
|
|
uint64_t num_bytes = 0;
|
|
|
|
const struct szedata_lock *lck;
|
|
uint32_t lock_size;
|
|
uint32_t lock_size2;
|
|
void *dst;
|
|
uint32_t pkt_len;
|
|
uint32_t hwpkt_len;
|
|
uint32_t unlock_size;
|
|
uint32_t rem_len;
|
|
uint8_t mbuf_segs;
|
|
uint16_t pkt_left = nb_pkts;
|
|
|
|
if (sze_q->sze == NULL || nb_pkts == 0)
|
|
return 0;
|
|
|
|
while (pkt_left > 0) {
|
|
unlock_size = 0;
|
|
lck = szedata_tx_lock_data(sze_q->sze,
|
|
RTE_ETH_SZEDATA2_TX_LOCK_SIZE,
|
|
sze_q->tx_channel);
|
|
if (lck == NULL)
|
|
continue;
|
|
|
|
dst = lck->start;
|
|
lock_size = lck->len;
|
|
lock_size2 = lck->next ? lck->next->len : 0;
|
|
|
|
next_packet:
|
|
mbuf = bufs[nb_pkts - pkt_left];
|
|
|
|
pkt_len = mbuf->pkt_len;
|
|
mbuf_segs = mbuf->nb_segs;
|
|
|
|
hwpkt_len = RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
|
|
RTE_SZE2_ALIGN8(pkt_len);
|
|
|
|
if (lock_size + lock_size2 < hwpkt_len) {
|
|
szedata_tx_unlock_data(sze_q->sze, lck, unlock_size);
|
|
continue;
|
|
}
|
|
|
|
num_bytes += pkt_len;
|
|
|
|
if (lock_size > hwpkt_len) {
|
|
void *tmp_dst;
|
|
|
|
rem_len = 0;
|
|
|
|
/* write packet length at first 2 bytes in 8B header */
|
|
*((uint16_t *)dst) = htole16(
|
|
RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
|
|
pkt_len);
|
|
*(((uint16_t *)dst) + 1) = htole16(0);
|
|
|
|
/* copy packet from mbuf */
|
|
tmp_dst = ((uint8_t *)(dst)) +
|
|
RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
|
|
if (mbuf_segs == 1) {
|
|
/*
|
|
* non-scattered packet,
|
|
* transmit from one mbuf
|
|
*/
|
|
rte_memcpy(tmp_dst,
|
|
rte_pktmbuf_mtod(mbuf, const void *),
|
|
pkt_len);
|
|
} else {
|
|
/* scattered packet, transmit from more mbufs */
|
|
struct rte_mbuf *m = mbuf;
|
|
while (m) {
|
|
rte_memcpy(tmp_dst,
|
|
rte_pktmbuf_mtod(m,
|
|
const void *),
|
|
m->data_len);
|
|
tmp_dst = ((uint8_t *)(tmp_dst)) +
|
|
m->data_len;
|
|
m = m->next;
|
|
}
|
|
}
|
|
|
|
|
|
dst = ((uint8_t *)dst) + hwpkt_len;
|
|
unlock_size += hwpkt_len;
|
|
lock_size -= hwpkt_len;
|
|
|
|
rte_pktmbuf_free(mbuf);
|
|
num_tx++;
|
|
pkt_left--;
|
|
if (pkt_left == 0) {
|
|
szedata_tx_unlock_data(sze_q->sze, lck,
|
|
unlock_size);
|
|
break;
|
|
}
|
|
goto next_packet;
|
|
} else if (lock_size + lock_size2 >= hwpkt_len) {
|
|
void *tmp_dst;
|
|
uint16_t write_len;
|
|
|
|
/* write packet length at first 2 bytes in 8B header */
|
|
*((uint16_t *)dst) =
|
|
htole16(RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
|
|
pkt_len);
|
|
*(((uint16_t *)dst) + 1) = htole16(0);
|
|
|
|
/*
|
|
* If the raw packet (pkt_len) is smaller than lock_size
|
|
* get the correct length for memcpy
|
|
*/
|
|
write_len =
|
|
pkt_len < lock_size -
|
|
RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED ?
|
|
pkt_len :
|
|
lock_size - RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
|
|
|
|
rem_len = hwpkt_len - lock_size;
|
|
|
|
tmp_dst = ((uint8_t *)(dst)) +
|
|
RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
|
|
if (mbuf_segs == 1) {
|
|
/*
|
|
* non-scattered packet,
|
|
* transmit from one mbuf
|
|
*/
|
|
/* copy part of packet to first area */
|
|
rte_memcpy(tmp_dst,
|
|
rte_pktmbuf_mtod(mbuf, const void *),
|
|
write_len);
|
|
|
|
if (lck->next)
|
|
dst = lck->next->start;
|
|
|
|
/* copy part of packet to second area */
|
|
rte_memcpy(dst,
|
|
(const void *)(rte_pktmbuf_mtod(mbuf,
|
|
const uint8_t *) +
|
|
write_len), pkt_len - write_len);
|
|
} else {
|
|
/* scattered packet, transmit from more mbufs */
|
|
struct rte_mbuf *m = mbuf;
|
|
uint16_t written = 0;
|
|
uint16_t to_write = 0;
|
|
bool new_mbuf = true;
|
|
uint16_t write_off = 0;
|
|
|
|
/* copy part of packet to first area */
|
|
while (m && written < write_len) {
|
|
to_write = RTE_MIN(m->data_len,
|
|
write_len - written);
|
|
rte_memcpy(tmp_dst,
|
|
rte_pktmbuf_mtod(m,
|
|
const void *),
|
|
to_write);
|
|
|
|
tmp_dst = ((uint8_t *)(tmp_dst)) +
|
|
to_write;
|
|
if (m->data_len <= write_len -
|
|
written) {
|
|
m = m->next;
|
|
new_mbuf = true;
|
|
} else {
|
|
new_mbuf = false;
|
|
}
|
|
written += to_write;
|
|
}
|
|
|
|
if (lck->next)
|
|
dst = lck->next->start;
|
|
|
|
tmp_dst = dst;
|
|
written = 0;
|
|
write_off = new_mbuf ? 0 : to_write;
|
|
|
|
/* copy part of packet to second area */
|
|
while (m && written < pkt_len - write_len) {
|
|
rte_memcpy(tmp_dst, (const void *)
|
|
(rte_pktmbuf_mtod(m,
|
|
uint8_t *) + write_off),
|
|
m->data_len - write_off);
|
|
|
|
tmp_dst = ((uint8_t *)(tmp_dst)) +
|
|
(m->data_len - write_off);
|
|
written += m->data_len - write_off;
|
|
m = m->next;
|
|
write_off = 0;
|
|
}
|
|
}
|
|
|
|
dst = ((uint8_t *)dst) + rem_len;
|
|
unlock_size += hwpkt_len;
|
|
lock_size = lock_size2 - rem_len;
|
|
lock_size2 = 0;
|
|
|
|
rte_pktmbuf_free(mbuf);
|
|
num_tx++;
|
|
}
|
|
|
|
szedata_tx_unlock_data(sze_q->sze, lck, unlock_size);
|
|
pkt_left--;
|
|
}
|
|
|
|
sze_q->tx_pkts += num_tx;
|
|
sze_q->err_pkts += nb_pkts - num_tx;
|
|
sze_q->tx_bytes += num_bytes;
|
|
return num_tx;
|
|
}
|
|
|
|
static int
|
|
eth_rx_queue_start(struct rte_eth_dev *dev, uint16_t rxq_id)
|
|
{
|
|
struct szedata2_rx_queue *rxq = dev->data->rx_queues[rxq_id];
|
|
int ret;
|
|
struct pmd_internals *internals = (struct pmd_internals *)
|
|
dev->data->dev_private;
|
|
|
|
if (rxq->sze == NULL) {
|
|
uint32_t rx = 1 << rxq->rx_channel;
|
|
uint32_t tx = 0;
|
|
rxq->sze = szedata_open(internals->sze_dev);
|
|
if (rxq->sze == NULL)
|
|
return -EINVAL;
|
|
ret = szedata_subscribe3(rxq->sze, &rx, &tx);
|
|
if (ret != 0 || rx == 0)
|
|
goto err;
|
|
}
|
|
|
|
ret = szedata_start(rxq->sze);
|
|
if (ret != 0)
|
|
goto err;
|
|
dev->data->rx_queue_state[rxq_id] = RTE_ETH_QUEUE_STATE_STARTED;
|
|
return 0;
|
|
|
|
err:
|
|
szedata_close(rxq->sze);
|
|
rxq->sze = NULL;
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int
|
|
eth_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rxq_id)
|
|
{
|
|
struct szedata2_rx_queue *rxq = dev->data->rx_queues[rxq_id];
|
|
|
|
if (rxq->sze != NULL) {
|
|
szedata_close(rxq->sze);
|
|
rxq->sze = NULL;
|
|
}
|
|
|
|
dev->data->rx_queue_state[rxq_id] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_tx_queue_start(struct rte_eth_dev *dev, uint16_t txq_id)
|
|
{
|
|
struct szedata2_tx_queue *txq = dev->data->tx_queues[txq_id];
|
|
int ret;
|
|
struct pmd_internals *internals = (struct pmd_internals *)
|
|
dev->data->dev_private;
|
|
|
|
if (txq->sze == NULL) {
|
|
uint32_t rx = 0;
|
|
uint32_t tx = 1 << txq->tx_channel;
|
|
txq->sze = szedata_open(internals->sze_dev);
|
|
if (txq->sze == NULL)
|
|
return -EINVAL;
|
|
ret = szedata_subscribe3(txq->sze, &rx, &tx);
|
|
if (ret != 0 || tx == 0)
|
|
goto err;
|
|
}
|
|
|
|
ret = szedata_start(txq->sze);
|
|
if (ret != 0)
|
|
goto err;
|
|
dev->data->tx_queue_state[txq_id] = RTE_ETH_QUEUE_STATE_STARTED;
|
|
return 0;
|
|
|
|
err:
|
|
szedata_close(txq->sze);
|
|
txq->sze = NULL;
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int
|
|
eth_tx_queue_stop(struct rte_eth_dev *dev, uint16_t txq_id)
|
|
{
|
|
struct szedata2_tx_queue *txq = dev->data->tx_queues[txq_id];
|
|
|
|
if (txq->sze != NULL) {
|
|
szedata_close(txq->sze);
|
|
txq->sze = NULL;
|
|
}
|
|
|
|
dev->data->tx_queue_state[txq_id] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_dev_start(struct rte_eth_dev *dev)
|
|
{
|
|
int ret;
|
|
uint16_t i;
|
|
uint16_t nb_rx = dev->data->nb_rx_queues;
|
|
uint16_t nb_tx = dev->data->nb_tx_queues;
|
|
|
|
for (i = 0; i < nb_rx; i++) {
|
|
ret = eth_rx_queue_start(dev, i);
|
|
if (ret != 0)
|
|
goto err_rx;
|
|
}
|
|
|
|
for (i = 0; i < nb_tx; i++) {
|
|
ret = eth_tx_queue_start(dev, i);
|
|
if (ret != 0)
|
|
goto err_tx;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_tx:
|
|
for (i = 0; i < nb_tx; i++)
|
|
eth_tx_queue_stop(dev, i);
|
|
err_rx:
|
|
for (i = 0; i < nb_rx; i++)
|
|
eth_rx_queue_stop(dev, i);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
eth_dev_stop(struct rte_eth_dev *dev)
|
|
{
|
|
uint16_t i;
|
|
uint16_t nb_rx = dev->data->nb_rx_queues;
|
|
uint16_t nb_tx = dev->data->nb_tx_queues;
|
|
|
|
for (i = 0; i < nb_tx; i++)
|
|
eth_tx_queue_stop(dev, i);
|
|
|
|
for (i = 0; i < nb_rx; i++)
|
|
eth_rx_queue_stop(dev, i);
|
|
}
|
|
|
|
static int
|
|
eth_dev_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_dev_data *data = dev->data;
|
|
if (data->dev_conf.rxmode.enable_scatter == 1) {
|
|
dev->rx_pkt_burst = eth_szedata2_rx_scattered;
|
|
data->scattered_rx = 1;
|
|
} else {
|
|
dev->rx_pkt_burst = eth_szedata2_rx;
|
|
data->scattered_rx = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
eth_dev_info(struct rte_eth_dev *dev,
|
|
struct rte_eth_dev_info *dev_info)
|
|
{
|
|
struct pmd_internals *internals = dev->data->dev_private;
|
|
dev_info->if_index = 0;
|
|
dev_info->max_mac_addrs = 1;
|
|
dev_info->max_rx_pktlen = (uint32_t)-1;
|
|
dev_info->max_rx_queues = internals->max_rx_queues;
|
|
dev_info->max_tx_queues = internals->max_tx_queues;
|
|
dev_info->min_rx_bufsize = 0;
|
|
dev_info->speed_capa = ETH_LINK_SPEED_100G;
|
|
}
|
|
|
|
static void
|
|
eth_stats_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_stats *stats)
|
|
{
|
|
uint16_t i;
|
|
uint16_t nb_rx = dev->data->nb_rx_queues;
|
|
uint16_t nb_tx = dev->data->nb_tx_queues;
|
|
uint64_t rx_total = 0;
|
|
uint64_t tx_total = 0;
|
|
uint64_t tx_err_total = 0;
|
|
uint64_t rx_total_bytes = 0;
|
|
uint64_t tx_total_bytes = 0;
|
|
const struct pmd_internals *internals = dev->data->dev_private;
|
|
|
|
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS && i < nb_rx; i++) {
|
|
stats->q_ipackets[i] = internals->rx_queue[i].rx_pkts;
|
|
stats->q_ibytes[i] = internals->rx_queue[i].rx_bytes;
|
|
rx_total += stats->q_ipackets[i];
|
|
rx_total_bytes += stats->q_ibytes[i];
|
|
}
|
|
|
|
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS && i < nb_tx; i++) {
|
|
stats->q_opackets[i] = internals->tx_queue[i].tx_pkts;
|
|
stats->q_obytes[i] = internals->tx_queue[i].tx_bytes;
|
|
stats->q_errors[i] = internals->tx_queue[i].err_pkts;
|
|
tx_total += stats->q_opackets[i];
|
|
tx_total_bytes += stats->q_obytes[i];
|
|
tx_err_total += stats->q_errors[i];
|
|
}
|
|
|
|
stats->ipackets = rx_total;
|
|
stats->opackets = tx_total;
|
|
stats->ibytes = rx_total_bytes;
|
|
stats->obytes = tx_total_bytes;
|
|
stats->oerrors = tx_err_total;
|
|
}
|
|
|
|
static void
|
|
eth_stats_reset(struct rte_eth_dev *dev)
|
|
{
|
|
uint16_t i;
|
|
uint16_t nb_rx = dev->data->nb_rx_queues;
|
|
uint16_t nb_tx = dev->data->nb_tx_queues;
|
|
struct pmd_internals *internals = dev->data->dev_private;
|
|
|
|
for (i = 0; i < nb_rx; i++) {
|
|
internals->rx_queue[i].rx_pkts = 0;
|
|
internals->rx_queue[i].rx_bytes = 0;
|
|
internals->rx_queue[i].err_pkts = 0;
|
|
}
|
|
for (i = 0; i < nb_tx; i++) {
|
|
internals->tx_queue[i].tx_pkts = 0;
|
|
internals->tx_queue[i].tx_bytes = 0;
|
|
internals->tx_queue[i].err_pkts = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
eth_rx_queue_release(void *q)
|
|
{
|
|
struct szedata2_rx_queue *rxq = (struct szedata2_rx_queue *)q;
|
|
if (rxq->sze != NULL) {
|
|
szedata_close(rxq->sze);
|
|
rxq->sze = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
eth_tx_queue_release(void *q)
|
|
{
|
|
struct szedata2_tx_queue *txq = (struct szedata2_tx_queue *)q;
|
|
if (txq->sze != NULL) {
|
|
szedata_close(txq->sze);
|
|
txq->sze = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
eth_dev_close(struct rte_eth_dev *dev)
|
|
{
|
|
uint16_t i;
|
|
uint16_t nb_rx = dev->data->nb_rx_queues;
|
|
uint16_t nb_tx = dev->data->nb_tx_queues;
|
|
|
|
eth_dev_stop(dev);
|
|
|
|
for (i = 0; i < nb_rx; i++) {
|
|
eth_rx_queue_release(dev->data->rx_queues[i]);
|
|
dev->data->rx_queues[i] = NULL;
|
|
}
|
|
dev->data->nb_rx_queues = 0;
|
|
for (i = 0; i < nb_tx; i++) {
|
|
eth_tx_queue_release(dev->data->tx_queues[i]);
|
|
dev->data->tx_queues[i] = NULL;
|
|
}
|
|
dev->data->nb_tx_queues = 0;
|
|
}
|
|
|
|
static int
|
|
eth_link_update(struct rte_eth_dev *dev,
|
|
int wait_to_complete __rte_unused)
|
|
{
|
|
struct rte_eth_link link;
|
|
struct rte_eth_link *link_ptr = &link;
|
|
struct rte_eth_link *dev_link = &dev->data->dev_link;
|
|
volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
|
|
dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
|
|
volatile struct szedata2_cgmii_ibuf *);
|
|
|
|
switch (cgmii_link_speed(ibuf)) {
|
|
case SZEDATA2_LINK_SPEED_10G:
|
|
link.link_speed = ETH_SPEED_NUM_10G;
|
|
break;
|
|
case SZEDATA2_LINK_SPEED_40G:
|
|
link.link_speed = ETH_SPEED_NUM_40G;
|
|
break;
|
|
case SZEDATA2_LINK_SPEED_100G:
|
|
link.link_speed = ETH_SPEED_NUM_100G;
|
|
break;
|
|
default:
|
|
link.link_speed = ETH_SPEED_NUM_10G;
|
|
break;
|
|
}
|
|
|
|
/* szedata2 uses only full duplex */
|
|
link.link_duplex = ETH_LINK_FULL_DUPLEX;
|
|
|
|
link.link_status = (cgmii_ibuf_is_enabled(ibuf) &&
|
|
cgmii_ibuf_is_link_up(ibuf)) ? ETH_LINK_UP : ETH_LINK_DOWN;
|
|
|
|
link.link_autoneg = ETH_LINK_SPEED_FIXED;
|
|
|
|
rte_atomic64_cmpset((uint64_t *)dev_link, *(uint64_t *)dev_link,
|
|
*(uint64_t *)link_ptr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_dev_set_link_up(struct rte_eth_dev *dev)
|
|
{
|
|
volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
|
|
dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
|
|
volatile struct szedata2_cgmii_ibuf *);
|
|
volatile struct szedata2_cgmii_obuf *obuf = SZEDATA2_PCI_RESOURCE_PTR(
|
|
dev, SZEDATA2_CGMII_OBUF_BASE_OFF,
|
|
volatile struct szedata2_cgmii_obuf *);
|
|
|
|
cgmii_ibuf_enable(ibuf);
|
|
cgmii_obuf_enable(obuf);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_dev_set_link_down(struct rte_eth_dev *dev)
|
|
{
|
|
volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
|
|
dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
|
|
volatile struct szedata2_cgmii_ibuf *);
|
|
volatile struct szedata2_cgmii_obuf *obuf = SZEDATA2_PCI_RESOURCE_PTR(
|
|
dev, SZEDATA2_CGMII_OBUF_BASE_OFF,
|
|
volatile struct szedata2_cgmii_obuf *);
|
|
|
|
cgmii_ibuf_disable(ibuf);
|
|
cgmii_obuf_disable(obuf);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_rx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t rx_queue_id,
|
|
uint16_t nb_rx_desc __rte_unused,
|
|
unsigned int socket_id __rte_unused,
|
|
const struct rte_eth_rxconf *rx_conf __rte_unused,
|
|
struct rte_mempool *mb_pool)
|
|
{
|
|
struct pmd_internals *internals = dev->data->dev_private;
|
|
struct szedata2_rx_queue *rxq = &internals->rx_queue[rx_queue_id];
|
|
int ret;
|
|
uint32_t rx = 1 << rx_queue_id;
|
|
uint32_t tx = 0;
|
|
|
|
rxq->sze = szedata_open(internals->sze_dev);
|
|
if (rxq->sze == NULL)
|
|
return -EINVAL;
|
|
ret = szedata_subscribe3(rxq->sze, &rx, &tx);
|
|
if (ret != 0 || rx == 0) {
|
|
szedata_close(rxq->sze);
|
|
rxq->sze = NULL;
|
|
return -EINVAL;
|
|
}
|
|
rxq->rx_channel = rx_queue_id;
|
|
rxq->in_port = dev->data->port_id;
|
|
rxq->mb_pool = mb_pool;
|
|
rxq->rx_pkts = 0;
|
|
rxq->rx_bytes = 0;
|
|
rxq->err_pkts = 0;
|
|
|
|
dev->data->rx_queues[rx_queue_id] = rxq;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_tx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t tx_queue_id,
|
|
uint16_t nb_tx_desc __rte_unused,
|
|
unsigned int socket_id __rte_unused,
|
|
const struct rte_eth_txconf *tx_conf __rte_unused)
|
|
{
|
|
struct pmd_internals *internals = dev->data->dev_private;
|
|
struct szedata2_tx_queue *txq = &internals->tx_queue[tx_queue_id];
|
|
int ret;
|
|
uint32_t rx = 0;
|
|
uint32_t tx = 1 << tx_queue_id;
|
|
|
|
txq->sze = szedata_open(internals->sze_dev);
|
|
if (txq->sze == NULL)
|
|
return -EINVAL;
|
|
ret = szedata_subscribe3(txq->sze, &rx, &tx);
|
|
if (ret != 0 || tx == 0) {
|
|
szedata_close(txq->sze);
|
|
txq->sze = NULL;
|
|
return -EINVAL;
|
|
}
|
|
txq->tx_channel = tx_queue_id;
|
|
txq->tx_pkts = 0;
|
|
txq->tx_bytes = 0;
|
|
txq->err_pkts = 0;
|
|
|
|
dev->data->tx_queues[tx_queue_id] = txq;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
eth_mac_addr_set(struct rte_eth_dev *dev __rte_unused,
|
|
struct ether_addr *mac_addr __rte_unused)
|
|
{
|
|
}
|
|
|
|
static void
|
|
eth_promiscuous_enable(struct rte_eth_dev *dev)
|
|
{
|
|
volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
|
|
dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
|
|
volatile struct szedata2_cgmii_ibuf *);
|
|
cgmii_ibuf_mac_mode_write(ibuf, SZEDATA2_MAC_CHMODE_PROMISC);
|
|
}
|
|
|
|
static void
|
|
eth_promiscuous_disable(struct rte_eth_dev *dev)
|
|
{
|
|
volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
|
|
dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
|
|
volatile struct szedata2_cgmii_ibuf *);
|
|
cgmii_ibuf_mac_mode_write(ibuf, SZEDATA2_MAC_CHMODE_ONLY_VALID);
|
|
}
|
|
|
|
static void
|
|
eth_allmulticast_enable(struct rte_eth_dev *dev)
|
|
{
|
|
volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
|
|
dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
|
|
volatile struct szedata2_cgmii_ibuf *);
|
|
cgmii_ibuf_mac_mode_write(ibuf, SZEDATA2_MAC_CHMODE_ALL_MULTICAST);
|
|
}
|
|
|
|
static void
|
|
eth_allmulticast_disable(struct rte_eth_dev *dev)
|
|
{
|
|
volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
|
|
dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
|
|
volatile struct szedata2_cgmii_ibuf *);
|
|
cgmii_ibuf_mac_mode_write(ibuf, SZEDATA2_MAC_CHMODE_ONLY_VALID);
|
|
}
|
|
|
|
static const struct eth_dev_ops ops = {
|
|
.dev_start = eth_dev_start,
|
|
.dev_stop = eth_dev_stop,
|
|
.dev_set_link_up = eth_dev_set_link_up,
|
|
.dev_set_link_down = eth_dev_set_link_down,
|
|
.dev_close = eth_dev_close,
|
|
.dev_configure = eth_dev_configure,
|
|
.dev_infos_get = eth_dev_info,
|
|
.promiscuous_enable = eth_promiscuous_enable,
|
|
.promiscuous_disable = eth_promiscuous_disable,
|
|
.allmulticast_enable = eth_allmulticast_enable,
|
|
.allmulticast_disable = eth_allmulticast_disable,
|
|
.rx_queue_start = eth_rx_queue_start,
|
|
.rx_queue_stop = eth_rx_queue_stop,
|
|
.tx_queue_start = eth_tx_queue_start,
|
|
.tx_queue_stop = eth_tx_queue_stop,
|
|
.rx_queue_setup = eth_rx_queue_setup,
|
|
.tx_queue_setup = eth_tx_queue_setup,
|
|
.rx_queue_release = eth_rx_queue_release,
|
|
.tx_queue_release = eth_tx_queue_release,
|
|
.link_update = eth_link_update,
|
|
.stats_get = eth_stats_get,
|
|
.stats_reset = eth_stats_reset,
|
|
.mac_addr_set = eth_mac_addr_set,
|
|
};
|
|
|
|
/*
|
|
* This function goes through sysfs and looks for an index of szedata2
|
|
* device file (/dev/szedataIIX, where X is the index).
|
|
*
|
|
* @return
|
|
* 0 on success
|
|
* -1 on error
|
|
*/
|
|
static int
|
|
get_szedata2_index(struct rte_eth_dev *dev, uint32_t *index)
|
|
{
|
|
DIR *dir;
|
|
struct dirent *entry;
|
|
int ret;
|
|
uint32_t tmp_index;
|
|
FILE *fd;
|
|
char pcislot_path[PATH_MAX];
|
|
struct rte_pci_addr pcislot_addr = dev->pci_dev->addr;
|
|
uint32_t domain;
|
|
uint32_t bus;
|
|
uint32_t devid;
|
|
uint32_t function;
|
|
|
|
dir = opendir("/sys/class/combo");
|
|
if (dir == NULL)
|
|
return -1;
|
|
|
|
/*
|
|
* Iterate through all combosixX directories.
|
|
* When the value in /sys/class/combo/combosixX/device/pcislot
|
|
* file is the location of the ethernet device dev, "X" is the
|
|
* index of the device.
|
|
*/
|
|
while ((entry = readdir(dir)) != NULL) {
|
|
ret = sscanf(entry->d_name, "combosix%u", &tmp_index);
|
|
if (ret != 1)
|
|
continue;
|
|
|
|
snprintf(pcislot_path, PATH_MAX,
|
|
"/sys/class/combo/combosix%u/device/pcislot",
|
|
tmp_index);
|
|
|
|
fd = fopen(pcislot_path, "r");
|
|
if (fd == NULL)
|
|
continue;
|
|
|
|
ret = fscanf(fd, "%4" PRIx16 ":%2" PRIx8 ":%2" PRIx8 ".%" PRIx8,
|
|
&domain, &bus, &devid, &function);
|
|
fclose(fd);
|
|
if (ret != 4)
|
|
continue;
|
|
|
|
if (pcislot_addr.domain == domain &&
|
|
pcislot_addr.bus == bus &&
|
|
pcislot_addr.devid == devid &&
|
|
pcislot_addr.function == function) {
|
|
*index = tmp_index;
|
|
closedir(dir);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
closedir(dir);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
rte_szedata2_eth_dev_init(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_dev_data *data = dev->data;
|
|
struct pmd_internals *internals = (struct pmd_internals *)
|
|
data->dev_private;
|
|
struct szedata *szedata_temp;
|
|
int ret;
|
|
uint32_t szedata2_index;
|
|
struct rte_pci_addr *pci_addr = &dev->pci_dev->addr;
|
|
struct rte_pci_resource *pci_rsc =
|
|
&dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER];
|
|
char rsc_filename[PATH_MAX];
|
|
void *pci_resource_ptr = NULL;
|
|
int fd;
|
|
|
|
RTE_LOG(INFO, PMD, "Initializing szedata2 device (" PCI_PRI_FMT ")\n",
|
|
pci_addr->domain, pci_addr->bus, pci_addr->devid,
|
|
pci_addr->function);
|
|
|
|
/* Get index of szedata2 device file and create path to device file */
|
|
ret = get_szedata2_index(dev, &szedata2_index);
|
|
if (ret != 0) {
|
|
RTE_LOG(ERR, PMD, "Failed to get szedata2 device index!\n");
|
|
return -ENODEV;
|
|
}
|
|
snprintf(internals->sze_dev, PATH_MAX, SZEDATA2_DEV_PATH_FMT,
|
|
szedata2_index);
|
|
|
|
RTE_LOG(INFO, PMD, "SZEDATA2 path: %s\n", internals->sze_dev);
|
|
|
|
/*
|
|
* Get number of available DMA RX and TX channels, which is maximum
|
|
* number of queues that can be created and store it in private device
|
|
* data structure.
|
|
*/
|
|
szedata_temp = szedata_open(internals->sze_dev);
|
|
if (szedata_temp == NULL) {
|
|
RTE_LOG(ERR, PMD, "szedata_open(): failed to open %s",
|
|
internals->sze_dev);
|
|
return -EINVAL;
|
|
}
|
|
internals->max_rx_queues = szedata_ifaces_available(szedata_temp,
|
|
SZE2_DIR_RX);
|
|
internals->max_tx_queues = szedata_ifaces_available(szedata_temp,
|
|
SZE2_DIR_TX);
|
|
szedata_close(szedata_temp);
|
|
|
|
RTE_LOG(INFO, PMD, "Available DMA channels RX: %u TX: %u\n",
|
|
internals->max_rx_queues, internals->max_tx_queues);
|
|
|
|
/* Set rx, tx burst functions */
|
|
if (data->dev_conf.rxmode.enable_scatter == 1 ||
|
|
data->scattered_rx == 1) {
|
|
dev->rx_pkt_burst = eth_szedata2_rx_scattered;
|
|
data->scattered_rx = 1;
|
|
} else {
|
|
dev->rx_pkt_burst = eth_szedata2_rx;
|
|
data->scattered_rx = 0;
|
|
}
|
|
dev->tx_pkt_burst = eth_szedata2_tx;
|
|
|
|
/* Set function callbacks for Ethernet API */
|
|
dev->dev_ops = &ops;
|
|
|
|
rte_eth_copy_pci_info(dev, dev->pci_dev);
|
|
|
|
/* mmap pci resource0 file to rte_pci_resource structure */
|
|
if (dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].phys_addr ==
|
|
0) {
|
|
RTE_LOG(ERR, PMD, "Missing resource%u file\n",
|
|
PCI_RESOURCE_NUMBER);
|
|
return -EINVAL;
|
|
}
|
|
snprintf(rsc_filename, PATH_MAX,
|
|
"%s/" PCI_PRI_FMT "/resource%u", pci_get_sysfs_path(),
|
|
pci_addr->domain, pci_addr->bus,
|
|
pci_addr->devid, pci_addr->function, PCI_RESOURCE_NUMBER);
|
|
fd = open(rsc_filename, O_RDWR);
|
|
if (fd < 0) {
|
|
RTE_LOG(ERR, PMD, "Could not open file %s\n", rsc_filename);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pci_resource_ptr = mmap(0,
|
|
dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].len,
|
|
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
|
|
close(fd);
|
|
if (pci_resource_ptr == NULL) {
|
|
RTE_LOG(ERR, PMD, "Could not mmap file %s (fd = %d)\n",
|
|
rsc_filename, fd);
|
|
return -EINVAL;
|
|
}
|
|
dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr =
|
|
pci_resource_ptr;
|
|
|
|
RTE_LOG(DEBUG, PMD, "resource%u phys_addr = 0x%llx len = %llu "
|
|
"virt addr = %llx\n", PCI_RESOURCE_NUMBER,
|
|
(unsigned long long)pci_rsc->phys_addr,
|
|
(unsigned long long)pci_rsc->len,
|
|
(unsigned long long)pci_rsc->addr);
|
|
|
|
/* Get link state */
|
|
eth_link_update(dev, 0);
|
|
|
|
/* Allocate space for one mac address */
|
|
data->mac_addrs = rte_zmalloc(data->name, sizeof(struct ether_addr),
|
|
RTE_CACHE_LINE_SIZE);
|
|
if (data->mac_addrs == NULL) {
|
|
RTE_LOG(ERR, PMD, "Could not alloc space for MAC address!\n");
|
|
munmap(dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr,
|
|
dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ether_addr_copy(ð_addr, data->mac_addrs);
|
|
|
|
/* At initial state COMBO card is in promiscuous mode so disable it */
|
|
eth_promiscuous_disable(dev);
|
|
|
|
RTE_LOG(INFO, PMD, "szedata2 device ("
|
|
PCI_PRI_FMT ") successfully initialized\n",
|
|
pci_addr->domain, pci_addr->bus, pci_addr->devid,
|
|
pci_addr->function);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
rte_szedata2_eth_dev_uninit(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_pci_addr *pci_addr = &dev->pci_dev->addr;
|
|
|
|
rte_free(dev->data->mac_addrs);
|
|
dev->data->mac_addrs = NULL;
|
|
munmap(dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr,
|
|
dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].len);
|
|
|
|
RTE_LOG(INFO, PMD, "szedata2 device ("
|
|
PCI_PRI_FMT ") successfully uninitialized\n",
|
|
pci_addr->domain, pci_addr->bus, pci_addr->devid,
|
|
pci_addr->function);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct rte_pci_id rte_szedata2_pci_id_table[] = {
|
|
{
|
|
RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
|
|
PCI_DEVICE_ID_NETCOPE_COMBO80G)
|
|
},
|
|
{
|
|
RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
|
|
PCI_DEVICE_ID_NETCOPE_COMBO100G)
|
|
},
|
|
{
|
|
RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
|
|
PCI_DEVICE_ID_NETCOPE_COMBO100G2)
|
|
},
|
|
{
|
|
.vendor_id = 0,
|
|
}
|
|
};
|
|
|
|
static struct eth_driver szedata2_eth_driver = {
|
|
.pci_drv = {
|
|
.name = RTE_SZEDATA2_PCI_DRIVER_NAME,
|
|
.id_table = rte_szedata2_pci_id_table,
|
|
},
|
|
.eth_dev_init = rte_szedata2_eth_dev_init,
|
|
.eth_dev_uninit = rte_szedata2_eth_dev_uninit,
|
|
.dev_private_size = sizeof(struct pmd_internals),
|
|
};
|
|
|
|
static int
|
|
rte_szedata2_init(const char *name __rte_unused,
|
|
const char *args __rte_unused)
|
|
{
|
|
rte_eth_driver_register(&szedata2_eth_driver);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
rte_szedata2_uninit(const char *name __rte_unused)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static struct rte_driver rte_szedata2_driver = {
|
|
.type = PMD_PDEV,
|
|
.init = rte_szedata2_init,
|
|
.uninit = rte_szedata2_uninit,
|
|
};
|
|
|
|
PMD_REGISTER_DRIVER(rte_szedata2_driver, RTE_SZEDATA2_DRIVER_NAME);
|
|
DRIVER_REGISTER_PCI_TABLE(RTE_SZEDATA2_DRIVER_NAME, rte_szedata2_pci_id_table);
|