f-stack/dpdk/drivers/net/qede/qede_ethdev.c

2778 lines
78 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) 2016 - 2018 Cavium Inc.
* All rights reserved.
* www.cavium.com
*/
#include "qede_ethdev.h"
#include <rte_alarm.h>
#include <rte_version.h>
#include <rte_kvargs.h>
/* Globals */
int qede_logtype_init;
int qede_logtype_driver;
static const struct qed_eth_ops *qed_ops;
static int qede_eth_dev_uninit(struct rte_eth_dev *eth_dev);
static int qede_eth_dev_init(struct rte_eth_dev *eth_dev);
#define QEDE_SP_TIMER_PERIOD 10000 /* 100ms */
struct rte_qede_xstats_name_off {
char name[RTE_ETH_XSTATS_NAME_SIZE];
uint64_t offset;
};
static const struct rte_qede_xstats_name_off qede_xstats_strings[] = {
{"rx_unicast_bytes",
offsetof(struct ecore_eth_stats_common, rx_ucast_bytes)},
{"rx_multicast_bytes",
offsetof(struct ecore_eth_stats_common, rx_mcast_bytes)},
{"rx_broadcast_bytes",
offsetof(struct ecore_eth_stats_common, rx_bcast_bytes)},
{"rx_unicast_packets",
offsetof(struct ecore_eth_stats_common, rx_ucast_pkts)},
{"rx_multicast_packets",
offsetof(struct ecore_eth_stats_common, rx_mcast_pkts)},
{"rx_broadcast_packets",
offsetof(struct ecore_eth_stats_common, rx_bcast_pkts)},
{"tx_unicast_bytes",
offsetof(struct ecore_eth_stats_common, tx_ucast_bytes)},
{"tx_multicast_bytes",
offsetof(struct ecore_eth_stats_common, tx_mcast_bytes)},
{"tx_broadcast_bytes",
offsetof(struct ecore_eth_stats_common, tx_bcast_bytes)},
{"tx_unicast_packets",
offsetof(struct ecore_eth_stats_common, tx_ucast_pkts)},
{"tx_multicast_packets",
offsetof(struct ecore_eth_stats_common, tx_mcast_pkts)},
{"tx_broadcast_packets",
offsetof(struct ecore_eth_stats_common, tx_bcast_pkts)},
{"rx_64_byte_packets",
offsetof(struct ecore_eth_stats_common, rx_64_byte_packets)},
{"rx_65_to_127_byte_packets",
offsetof(struct ecore_eth_stats_common,
rx_65_to_127_byte_packets)},
{"rx_128_to_255_byte_packets",
offsetof(struct ecore_eth_stats_common,
rx_128_to_255_byte_packets)},
{"rx_256_to_511_byte_packets",
offsetof(struct ecore_eth_stats_common,
rx_256_to_511_byte_packets)},
{"rx_512_to_1023_byte_packets",
offsetof(struct ecore_eth_stats_common,
rx_512_to_1023_byte_packets)},
{"rx_1024_to_1518_byte_packets",
offsetof(struct ecore_eth_stats_common,
rx_1024_to_1518_byte_packets)},
{"tx_64_byte_packets",
offsetof(struct ecore_eth_stats_common, tx_64_byte_packets)},
{"tx_65_to_127_byte_packets",
offsetof(struct ecore_eth_stats_common,
tx_65_to_127_byte_packets)},
{"tx_128_to_255_byte_packets",
offsetof(struct ecore_eth_stats_common,
tx_128_to_255_byte_packets)},
{"tx_256_to_511_byte_packets",
offsetof(struct ecore_eth_stats_common,
tx_256_to_511_byte_packets)},
{"tx_512_to_1023_byte_packets",
offsetof(struct ecore_eth_stats_common,
tx_512_to_1023_byte_packets)},
{"tx_1024_to_1518_byte_packets",
offsetof(struct ecore_eth_stats_common,
tx_1024_to_1518_byte_packets)},
{"rx_mac_crtl_frames",
offsetof(struct ecore_eth_stats_common, rx_mac_crtl_frames)},
{"tx_mac_control_frames",
offsetof(struct ecore_eth_stats_common, tx_mac_ctrl_frames)},
{"rx_pause_frames",
offsetof(struct ecore_eth_stats_common, rx_pause_frames)},
{"tx_pause_frames",
offsetof(struct ecore_eth_stats_common, tx_pause_frames)},
{"rx_priority_flow_control_frames",
offsetof(struct ecore_eth_stats_common, rx_pfc_frames)},
{"tx_priority_flow_control_frames",
offsetof(struct ecore_eth_stats_common, tx_pfc_frames)},
{"rx_crc_errors",
offsetof(struct ecore_eth_stats_common, rx_crc_errors)},
{"rx_align_errors",
offsetof(struct ecore_eth_stats_common, rx_align_errors)},
{"rx_carrier_errors",
offsetof(struct ecore_eth_stats_common, rx_carrier_errors)},
{"rx_oversize_packet_errors",
offsetof(struct ecore_eth_stats_common, rx_oversize_packets)},
{"rx_jabber_errors",
offsetof(struct ecore_eth_stats_common, rx_jabbers)},
{"rx_undersize_packet_errors",
offsetof(struct ecore_eth_stats_common, rx_undersize_packets)},
{"rx_fragments", offsetof(struct ecore_eth_stats_common, rx_fragments)},
{"rx_host_buffer_not_available",
offsetof(struct ecore_eth_stats_common, no_buff_discards)},
/* Number of packets discarded because they are bigger than MTU */
{"rx_packet_too_big_discards",
offsetof(struct ecore_eth_stats_common,
packet_too_big_discard)},
{"rx_ttl_zero_discards",
offsetof(struct ecore_eth_stats_common, ttl0_discard)},
{"rx_multi_function_tag_filter_discards",
offsetof(struct ecore_eth_stats_common, mftag_filter_discards)},
{"rx_mac_filter_discards",
offsetof(struct ecore_eth_stats_common, mac_filter_discards)},
{"rx_hw_buffer_truncates",
offsetof(struct ecore_eth_stats_common, brb_truncates)},
{"rx_hw_buffer_discards",
offsetof(struct ecore_eth_stats_common, brb_discards)},
{"tx_error_drop_packets",
offsetof(struct ecore_eth_stats_common, tx_err_drop_pkts)},
{"rx_mac_bytes", offsetof(struct ecore_eth_stats_common, rx_mac_bytes)},
{"rx_mac_unicast_packets",
offsetof(struct ecore_eth_stats_common, rx_mac_uc_packets)},
{"rx_mac_multicast_packets",
offsetof(struct ecore_eth_stats_common, rx_mac_mc_packets)},
{"rx_mac_broadcast_packets",
offsetof(struct ecore_eth_stats_common, rx_mac_bc_packets)},
{"rx_mac_frames_ok",
offsetof(struct ecore_eth_stats_common, rx_mac_frames_ok)},
{"tx_mac_bytes", offsetof(struct ecore_eth_stats_common, tx_mac_bytes)},
{"tx_mac_unicast_packets",
offsetof(struct ecore_eth_stats_common, tx_mac_uc_packets)},
{"tx_mac_multicast_packets",
offsetof(struct ecore_eth_stats_common, tx_mac_mc_packets)},
{"tx_mac_broadcast_packets",
offsetof(struct ecore_eth_stats_common, tx_mac_bc_packets)},
{"lro_coalesced_packets",
offsetof(struct ecore_eth_stats_common, tpa_coalesced_pkts)},
{"lro_coalesced_events",
offsetof(struct ecore_eth_stats_common, tpa_coalesced_events)},
{"lro_aborts_num",
offsetof(struct ecore_eth_stats_common, tpa_aborts_num)},
{"lro_not_coalesced_packets",
offsetof(struct ecore_eth_stats_common,
tpa_not_coalesced_pkts)},
{"lro_coalesced_bytes",
offsetof(struct ecore_eth_stats_common,
tpa_coalesced_bytes)},
};
static const struct rte_qede_xstats_name_off qede_bb_xstats_strings[] = {
{"rx_1519_to_1522_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
rx_1519_to_1522_byte_packets)},
{"rx_1519_to_2047_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
rx_1519_to_2047_byte_packets)},
{"rx_2048_to_4095_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
rx_2048_to_4095_byte_packets)},
{"rx_4096_to_9216_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
rx_4096_to_9216_byte_packets)},
{"rx_9217_to_16383_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
rx_9217_to_16383_byte_packets)},
{"tx_1519_to_2047_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
tx_1519_to_2047_byte_packets)},
{"tx_2048_to_4095_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
tx_2048_to_4095_byte_packets)},
{"tx_4096_to_9216_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
tx_4096_to_9216_byte_packets)},
{"tx_9217_to_16383_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
tx_9217_to_16383_byte_packets)},
{"tx_lpi_entry_count",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb, tx_lpi_entry_count)},
{"tx_total_collisions",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb, tx_total_collisions)},
};
static const struct rte_qede_xstats_name_off qede_ah_xstats_strings[] = {
{"rx_1519_to_max_byte_packets",
offsetof(struct ecore_eth_stats, ah) +
offsetof(struct ecore_eth_stats_ah,
rx_1519_to_max_byte_packets)},
{"tx_1519_to_max_byte_packets",
offsetof(struct ecore_eth_stats, ah) +
offsetof(struct ecore_eth_stats_ah,
tx_1519_to_max_byte_packets)},
};
static const struct rte_qede_xstats_name_off qede_rxq_xstats_strings[] = {
{"rx_q_segments",
offsetof(struct qede_rx_queue, rx_segs)},
{"rx_q_hw_errors",
offsetof(struct qede_rx_queue, rx_hw_errors)},
{"rx_q_allocation_errors",
offsetof(struct qede_rx_queue, rx_alloc_errors)}
};
static void qede_interrupt_action(struct ecore_hwfn *p_hwfn)
{
ecore_int_sp_dpc((osal_int_ptr_t)(p_hwfn));
}
static void
qede_interrupt_handler_intx(void *param)
{
struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
u64 status;
/* Check if our device actually raised an interrupt */
status = ecore_int_igu_read_sisr_reg(ECORE_LEADING_HWFN(edev));
if (status & 0x1) {
qede_interrupt_action(ECORE_LEADING_HWFN(edev));
if (rte_intr_enable(eth_dev->intr_handle))
DP_ERR(edev, "rte_intr_enable failed\n");
}
}
static void
qede_interrupt_handler(void *param)
{
struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
qede_interrupt_action(ECORE_LEADING_HWFN(edev));
if (rte_intr_enable(eth_dev->intr_handle))
DP_ERR(edev, "rte_intr_enable failed\n");
}
static void
qede_alloc_etherdev(struct qede_dev *qdev, struct qed_dev_eth_info *info)
{
rte_memcpy(&qdev->dev_info, info, sizeof(*info));
qdev->ops = qed_ops;
}
static void qede_print_adapter_info(struct qede_dev *qdev)
{
struct ecore_dev *edev = &qdev->edev;
struct qed_dev_info *info = &qdev->dev_info.common;
static char drv_ver[QEDE_PMD_DRV_VER_STR_SIZE];
static char ver_str[QEDE_PMD_DRV_VER_STR_SIZE];
DP_INFO(edev, "*********************************\n");
DP_INFO(edev, " DPDK version:%s\n", rte_version());
DP_INFO(edev, " Chip details : %s %c%d\n",
ECORE_IS_BB(edev) ? "BB" : "AH",
'A' + edev->chip_rev,
(int)edev->chip_metal);
snprintf(ver_str, QEDE_PMD_DRV_VER_STR_SIZE, "%d.%d.%d.%d",
info->fw_major, info->fw_minor, info->fw_rev, info->fw_eng);
snprintf(drv_ver, QEDE_PMD_DRV_VER_STR_SIZE, "%s_%s",
ver_str, QEDE_PMD_VERSION);
DP_INFO(edev, " Driver version : %s\n", drv_ver);
DP_INFO(edev, " Firmware version : %s\n", ver_str);
snprintf(ver_str, MCP_DRV_VER_STR_SIZE,
"%d.%d.%d.%d",
(info->mfw_rev >> 24) & 0xff,
(info->mfw_rev >> 16) & 0xff,
(info->mfw_rev >> 8) & 0xff, (info->mfw_rev) & 0xff);
DP_INFO(edev, " Management Firmware version : %s\n", ver_str);
DP_INFO(edev, " Firmware file : %s\n", qede_fw_file);
DP_INFO(edev, "*********************************\n");
}
static void qede_reset_queue_stats(struct qede_dev *qdev, bool xstats)
{
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
unsigned int i = 0, j = 0, qid;
unsigned int rxq_stat_cntrs, txq_stat_cntrs;
struct qede_tx_queue *txq;
DP_VERBOSE(edev, ECORE_MSG_DEBUG, "Clearing queue stats\n");
rxq_stat_cntrs = RTE_MIN(QEDE_RSS_COUNT(qdev),
RTE_ETHDEV_QUEUE_STAT_CNTRS);
txq_stat_cntrs = RTE_MIN(QEDE_TSS_COUNT(qdev),
RTE_ETHDEV_QUEUE_STAT_CNTRS);
for_each_rss(qid) {
OSAL_MEMSET(((char *)(qdev->fp_array[qid].rxq)) +
offsetof(struct qede_rx_queue, rcv_pkts), 0,
sizeof(uint64_t));
OSAL_MEMSET(((char *)(qdev->fp_array[qid].rxq)) +
offsetof(struct qede_rx_queue, rx_hw_errors), 0,
sizeof(uint64_t));
OSAL_MEMSET(((char *)(qdev->fp_array[qid].rxq)) +
offsetof(struct qede_rx_queue, rx_alloc_errors), 0,
sizeof(uint64_t));
if (xstats)
for (j = 0; j < RTE_DIM(qede_rxq_xstats_strings); j++)
OSAL_MEMSET((((char *)
(qdev->fp_array[qid].rxq)) +
qede_rxq_xstats_strings[j].offset),
0,
sizeof(uint64_t));
i++;
if (i == rxq_stat_cntrs)
break;
}
i = 0;
for_each_tss(qid) {
txq = qdev->fp_array[qid].txq;
OSAL_MEMSET((uint64_t *)(uintptr_t)
(((uint64_t)(uintptr_t)(txq)) +
offsetof(struct qede_tx_queue, xmit_pkts)), 0,
sizeof(uint64_t));
i++;
if (i == txq_stat_cntrs)
break;
}
}
static int
qede_stop_vport(struct ecore_dev *edev)
{
struct ecore_hwfn *p_hwfn;
uint8_t vport_id;
int rc;
int i;
vport_id = 0;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
rc = ecore_sp_vport_stop(p_hwfn, p_hwfn->hw_info.opaque_fid,
vport_id);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Stop V-PORT failed rc = %d\n", rc);
return rc;
}
}
DP_INFO(edev, "vport stopped\n");
return 0;
}
static int
qede_start_vport(struct qede_dev *qdev, uint16_t mtu)
{
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_sp_vport_start_params params;
struct ecore_hwfn *p_hwfn;
int rc;
int i;
if (qdev->vport_started)
qede_stop_vport(edev);
memset(&params, 0, sizeof(params));
params.vport_id = 0;
params.mtu = mtu;
/* @DPDK - Disable FW placement */
params.zero_placement_offset = 1;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
params.concrete_fid = p_hwfn->hw_info.concrete_fid;
params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_start(p_hwfn, &params);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Start V-PORT failed %d\n", rc);
return rc;
}
}
ecore_reset_vport_stats(edev);
qdev->vport_started = true;
DP_INFO(edev, "VPORT started with MTU = %u\n", mtu);
return 0;
}
#define QEDE_NPAR_TX_SWITCHING "npar_tx_switching"
#define QEDE_VF_TX_SWITCHING "vf_tx_switching"
/* Activate or deactivate vport via vport-update */
int qede_activate_vport(struct rte_eth_dev *eth_dev, bool flg)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_sp_vport_update_params params;
struct ecore_hwfn *p_hwfn;
uint8_t i;
int rc = -1;
memset(&params, 0, sizeof(struct ecore_sp_vport_update_params));
params.vport_id = 0;
params.update_vport_active_rx_flg = 1;
params.update_vport_active_tx_flg = 1;
params.vport_active_rx_flg = flg;
params.vport_active_tx_flg = flg;
if (~qdev->enable_tx_switching & flg) {
params.update_tx_switching_flg = 1;
params.tx_switching_flg = !flg;
}
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_update(p_hwfn, &params,
ECORE_SPQ_MODE_EBLOCK, NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Failed to update vport\n");
break;
}
}
DP_INFO(edev, "vport is %s\n", flg ? "activated" : "deactivated");
return rc;
}
static void
qede_update_sge_tpa_params(struct ecore_sge_tpa_params *sge_tpa_params,
uint16_t mtu, bool enable)
{
/* Enable LRO in split mode */
sge_tpa_params->tpa_ipv4_en_flg = enable;
sge_tpa_params->tpa_ipv6_en_flg = enable;
sge_tpa_params->tpa_ipv4_tunn_en_flg = enable;
sge_tpa_params->tpa_ipv6_tunn_en_flg = enable;
/* set if tpa enable changes */
sge_tpa_params->update_tpa_en_flg = 1;
/* set if tpa parameters should be handled */
sge_tpa_params->update_tpa_param_flg = enable;
sge_tpa_params->max_buffers_per_cqe = 20;
/* Enable TPA in split mode. In this mode each TPA segment
* starts on the new BD, so there is one BD per segment.
*/
sge_tpa_params->tpa_pkt_split_flg = 1;
sge_tpa_params->tpa_hdr_data_split_flg = 0;
sge_tpa_params->tpa_gro_consistent_flg = 0;
sge_tpa_params->tpa_max_aggs_num = ETH_TPA_MAX_AGGS_NUM;
sge_tpa_params->tpa_max_size = 0x7FFF;
sge_tpa_params->tpa_min_size_to_start = mtu / 2;
sge_tpa_params->tpa_min_size_to_cont = mtu / 2;
}
/* Enable/disable LRO via vport-update */
int qede_enable_tpa(struct rte_eth_dev *eth_dev, bool flg)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_sp_vport_update_params params;
struct ecore_sge_tpa_params tpa_params;
struct ecore_hwfn *p_hwfn;
int rc;
int i;
memset(&params, 0, sizeof(struct ecore_sp_vport_update_params));
memset(&tpa_params, 0, sizeof(struct ecore_sge_tpa_params));
qede_update_sge_tpa_params(&tpa_params, qdev->mtu, flg);
params.vport_id = 0;
params.sge_tpa_params = &tpa_params;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_update(p_hwfn, &params,
ECORE_SPQ_MODE_EBLOCK, NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Failed to update LRO\n");
return -1;
}
}
qdev->enable_lro = flg;
eth_dev->data->lro = flg;
DP_INFO(edev, "LRO is %s\n", flg ? "enabled" : "disabled");
return 0;
}
static int
qed_configure_filter_rx_mode(struct rte_eth_dev *eth_dev,
enum qed_filter_rx_mode_type type)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_filter_accept_flags flags;
memset(&flags, 0, sizeof(flags));
flags.update_rx_mode_config = 1;
flags.update_tx_mode_config = 1;
flags.rx_accept_filter = ECORE_ACCEPT_UCAST_MATCHED |
ECORE_ACCEPT_MCAST_MATCHED |
ECORE_ACCEPT_BCAST;
flags.tx_accept_filter = ECORE_ACCEPT_UCAST_MATCHED |
ECORE_ACCEPT_MCAST_MATCHED |
ECORE_ACCEPT_BCAST;
if (type == QED_FILTER_RX_MODE_TYPE_PROMISC) {
flags.rx_accept_filter |= ECORE_ACCEPT_UCAST_UNMATCHED;
if (IS_VF(edev)) {
flags.tx_accept_filter |= ECORE_ACCEPT_UCAST_UNMATCHED;
DP_INFO(edev, "Enabling Tx unmatched flag for VF\n");
}
} else if (type == QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC) {
flags.rx_accept_filter |= ECORE_ACCEPT_MCAST_UNMATCHED;
} else if (type == (QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC |
QED_FILTER_RX_MODE_TYPE_PROMISC)) {
flags.rx_accept_filter |= ECORE_ACCEPT_UCAST_UNMATCHED |
ECORE_ACCEPT_MCAST_UNMATCHED;
}
return ecore_filter_accept_cmd(edev, 0, flags, false, false,
ECORE_SPQ_MODE_CB, NULL);
}
int
qede_ucast_filter(struct rte_eth_dev *eth_dev, struct ecore_filter_ucast *ucast,
bool add)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct qede_ucast_entry *tmp = NULL;
struct qede_ucast_entry *u;
struct ether_addr *mac_addr;
mac_addr = (struct ether_addr *)ucast->mac;
if (add) {
SLIST_FOREACH(tmp, &qdev->uc_list_head, list) {
if ((memcmp(mac_addr, &tmp->mac,
ETHER_ADDR_LEN) == 0) &&
ucast->vni == tmp->vni &&
ucast->vlan == tmp->vlan) {
DP_INFO(edev, "Unicast MAC is already added"
" with vlan = %u, vni = %u\n",
ucast->vlan, ucast->vni);
return 0;
}
}
u = rte_malloc(NULL, sizeof(struct qede_ucast_entry),
RTE_CACHE_LINE_SIZE);
if (!u) {
DP_ERR(edev, "Did not allocate memory for ucast\n");
return -ENOMEM;
}
ether_addr_copy(mac_addr, &u->mac);
u->vlan = ucast->vlan;
u->vni = ucast->vni;
SLIST_INSERT_HEAD(&qdev->uc_list_head, u, list);
qdev->num_uc_addr++;
} else {
SLIST_FOREACH(tmp, &qdev->uc_list_head, list) {
if ((memcmp(mac_addr, &tmp->mac,
ETHER_ADDR_LEN) == 0) &&
ucast->vlan == tmp->vlan &&
ucast->vni == tmp->vni)
break;
}
if (tmp == NULL) {
DP_INFO(edev, "Unicast MAC is not found\n");
return -EINVAL;
}
SLIST_REMOVE(&qdev->uc_list_head, tmp, qede_ucast_entry, list);
qdev->num_uc_addr--;
}
return 0;
}
static int
qede_add_mcast_filters(struct rte_eth_dev *eth_dev, struct ether_addr *mc_addrs,
uint32_t mc_addrs_num)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_filter_mcast mcast;
struct qede_mcast_entry *m = NULL;
uint8_t i;
int rc;
for (i = 0; i < mc_addrs_num; i++) {
m = rte_malloc(NULL, sizeof(struct qede_mcast_entry),
RTE_CACHE_LINE_SIZE);
if (!m) {
DP_ERR(edev, "Did not allocate memory for mcast\n");
return -ENOMEM;
}
ether_addr_copy(&mc_addrs[i], &m->mac);
SLIST_INSERT_HEAD(&qdev->mc_list_head, m, list);
}
memset(&mcast, 0, sizeof(mcast));
mcast.num_mc_addrs = mc_addrs_num;
mcast.opcode = ECORE_FILTER_ADD;
for (i = 0; i < mc_addrs_num; i++)
ether_addr_copy(&mc_addrs[i], (struct ether_addr *)
&mcast.mac[i]);
rc = ecore_filter_mcast_cmd(edev, &mcast, ECORE_SPQ_MODE_CB, NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Failed to add multicast filter (rc = %d\n)", rc);
return -1;
}
return 0;
}
static int qede_del_mcast_filters(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct qede_mcast_entry *tmp = NULL;
struct ecore_filter_mcast mcast;
int j;
int rc;
memset(&mcast, 0, sizeof(mcast));
mcast.num_mc_addrs = qdev->num_mc_addr;
mcast.opcode = ECORE_FILTER_REMOVE;
j = 0;
SLIST_FOREACH(tmp, &qdev->mc_list_head, list) {
ether_addr_copy(&tmp->mac, (struct ether_addr *)&mcast.mac[j]);
j++;
}
rc = ecore_filter_mcast_cmd(edev, &mcast, ECORE_SPQ_MODE_CB, NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Failed to delete multicast filter\n");
return -1;
}
/* Init the list */
while (!SLIST_EMPTY(&qdev->mc_list_head)) {
tmp = SLIST_FIRST(&qdev->mc_list_head);
SLIST_REMOVE_HEAD(&qdev->mc_list_head, list);
}
SLIST_INIT(&qdev->mc_list_head);
return 0;
}
enum _ecore_status_t
qede_mac_int_ops(struct rte_eth_dev *eth_dev, struct ecore_filter_ucast *ucast,
bool add)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
enum _ecore_status_t rc = ECORE_INVAL;
if (add && (qdev->num_uc_addr >= qdev->dev_info.num_mac_filters)) {
DP_ERR(edev, "Ucast filter table limit exceeded,"
" Please enable promisc mode\n");
return ECORE_INVAL;
}
rc = qede_ucast_filter(eth_dev, ucast, add);
if (rc == 0)
rc = ecore_filter_ucast_cmd(edev, ucast,
ECORE_SPQ_MODE_CB, NULL);
/* Indicate error only for add filter operation.
* Delete filter operations are not severe.
*/
if ((rc != ECORE_SUCCESS) && add)
DP_ERR(edev, "MAC filter failed, rc = %d, op = %d\n",
rc, add);
return rc;
}
static int
qede_mac_addr_add(struct rte_eth_dev *eth_dev, struct ether_addr *mac_addr,
__rte_unused uint32_t index, __rte_unused uint32_t pool)
{
struct ecore_filter_ucast ucast;
int re;
if (!is_valid_assigned_ether_addr(mac_addr))
return -EINVAL;
qede_set_ucast_cmn_params(&ucast);
ucast.opcode = ECORE_FILTER_ADD;
ucast.type = ECORE_FILTER_MAC;
ether_addr_copy(mac_addr, (struct ether_addr *)&ucast.mac);
re = (int)qede_mac_int_ops(eth_dev, &ucast, 1);
return re;
}
static void
qede_mac_addr_remove(struct rte_eth_dev *eth_dev, uint32_t index)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct ecore_filter_ucast ucast;
PMD_INIT_FUNC_TRACE(edev);
if (index >= qdev->dev_info.num_mac_filters) {
DP_ERR(edev, "Index %u is above MAC filter limit %u\n",
index, qdev->dev_info.num_mac_filters);
return;
}
if (!is_valid_assigned_ether_addr(&eth_dev->data->mac_addrs[index]))
return;
qede_set_ucast_cmn_params(&ucast);
ucast.opcode = ECORE_FILTER_REMOVE;
ucast.type = ECORE_FILTER_MAC;
/* Use the index maintained by rte */
ether_addr_copy(&eth_dev->data->mac_addrs[index],
(struct ether_addr *)&ucast.mac);
qede_mac_int_ops(eth_dev, &ucast, false);
}
static int
qede_mac_addr_set(struct rte_eth_dev *eth_dev, struct ether_addr *mac_addr)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
if (IS_VF(edev) && !ecore_vf_check_mac(ECORE_LEADING_HWFN(edev),
mac_addr->addr_bytes)) {
DP_ERR(edev, "Setting MAC address is not allowed\n");
return -EPERM;
}
qede_mac_addr_remove(eth_dev, 0);
return qede_mac_addr_add(eth_dev, mac_addr, 0, 0);
}
void qede_config_accept_any_vlan(struct qede_dev *qdev, bool flg)
{
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_sp_vport_update_params params;
struct ecore_hwfn *p_hwfn;
uint8_t i;
int rc;
memset(&params, 0, sizeof(struct ecore_sp_vport_update_params));
params.vport_id = 0;
params.update_accept_any_vlan_flg = 1;
params.accept_any_vlan = flg;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_update(p_hwfn, &params,
ECORE_SPQ_MODE_EBLOCK, NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Failed to configure accept-any-vlan\n");
return;
}
}
DP_INFO(edev, "%s accept-any-vlan\n", flg ? "enabled" : "disabled");
}
static int qede_vlan_stripping(struct rte_eth_dev *eth_dev, bool flg)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_sp_vport_update_params params;
struct ecore_hwfn *p_hwfn;
uint8_t i;
int rc;
memset(&params, 0, sizeof(struct ecore_sp_vport_update_params));
params.vport_id = 0;
params.update_inner_vlan_removal_flg = 1;
params.inner_vlan_removal_flg = flg;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_update(p_hwfn, &params,
ECORE_SPQ_MODE_EBLOCK, NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Failed to update vport\n");
return -1;
}
}
DP_INFO(edev, "VLAN stripping %s\n", flg ? "enabled" : "disabled");
return 0;
}
static int qede_vlan_filter_set(struct rte_eth_dev *eth_dev,
uint16_t vlan_id, int on)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct qed_dev_eth_info *dev_info = &qdev->dev_info;
struct qede_vlan_entry *tmp = NULL;
struct qede_vlan_entry *vlan;
struct ecore_filter_ucast ucast;
int rc;
if (on) {
if (qdev->configured_vlans == dev_info->num_vlan_filters) {
DP_ERR(edev, "Reached max VLAN filter limit"
" enabling accept_any_vlan\n");
qede_config_accept_any_vlan(qdev, true);
return 0;
}
SLIST_FOREACH(tmp, &qdev->vlan_list_head, list) {
if (tmp->vid == vlan_id) {
DP_INFO(edev, "VLAN %u already configured\n",
vlan_id);
return 0;
}
}
vlan = rte_malloc(NULL, sizeof(struct qede_vlan_entry),
RTE_CACHE_LINE_SIZE);
if (!vlan) {
DP_ERR(edev, "Did not allocate memory for VLAN\n");
return -ENOMEM;
}
qede_set_ucast_cmn_params(&ucast);
ucast.opcode = ECORE_FILTER_ADD;
ucast.type = ECORE_FILTER_VLAN;
ucast.vlan = vlan_id;
rc = ecore_filter_ucast_cmd(edev, &ucast, ECORE_SPQ_MODE_CB,
NULL);
if (rc != 0) {
DP_ERR(edev, "Failed to add VLAN %u rc %d\n", vlan_id,
rc);
rte_free(vlan);
} else {
vlan->vid = vlan_id;
SLIST_INSERT_HEAD(&qdev->vlan_list_head, vlan, list);
qdev->configured_vlans++;
DP_INFO(edev, "VLAN %u added, configured_vlans %u\n",
vlan_id, qdev->configured_vlans);
}
} else {
SLIST_FOREACH(tmp, &qdev->vlan_list_head, list) {
if (tmp->vid == vlan_id)
break;
}
if (!tmp) {
if (qdev->configured_vlans == 0) {
DP_INFO(edev,
"No VLAN filters configured yet\n");
return 0;
}
DP_ERR(edev, "VLAN %u not configured\n", vlan_id);
return -EINVAL;
}
SLIST_REMOVE(&qdev->vlan_list_head, tmp, qede_vlan_entry, list);
qede_set_ucast_cmn_params(&ucast);
ucast.opcode = ECORE_FILTER_REMOVE;
ucast.type = ECORE_FILTER_VLAN;
ucast.vlan = vlan_id;
rc = ecore_filter_ucast_cmd(edev, &ucast, ECORE_SPQ_MODE_CB,
NULL);
if (rc != 0) {
DP_ERR(edev, "Failed to delete VLAN %u rc %d\n",
vlan_id, rc);
} else {
qdev->configured_vlans--;
DP_INFO(edev, "VLAN %u removed configured_vlans %u\n",
vlan_id, qdev->configured_vlans);
}
}
return rc;
}
static int qede_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
if (mask & ETH_VLAN_STRIP_MASK) {
if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
(void)qede_vlan_stripping(eth_dev, 1);
else
(void)qede_vlan_stripping(eth_dev, 0);
}
if (mask & ETH_VLAN_FILTER_MASK) {
/* VLAN filtering kicks in when a VLAN is added */
if (rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
qede_vlan_filter_set(eth_dev, 0, 1);
} else {
if (qdev->configured_vlans > 1) { /* Excluding VLAN0 */
DP_ERR(edev,
" Please remove existing VLAN filters"
" before disabling VLAN filtering\n");
/* Signal app that VLAN filtering is still
* enabled
*/
eth_dev->data->dev_conf.rxmode.offloads |=
DEV_RX_OFFLOAD_VLAN_FILTER;
} else {
qede_vlan_filter_set(eth_dev, 0, 0);
}
}
}
if (mask & ETH_VLAN_EXTEND_MASK)
DP_ERR(edev, "Extend VLAN not supported\n");
qdev->vlan_offload_mask = mask;
DP_INFO(edev, "VLAN offload mask %d\n", mask);
return 0;
}
static void qede_prandom_bytes(uint32_t *buff)
{
uint8_t i;
srand((unsigned int)time(NULL));
for (i = 0; i < ECORE_RSS_KEY_SIZE; i++)
buff[i] = rand();
}
int qede_config_rss(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
uint32_t def_rss_key[ECORE_RSS_KEY_SIZE];
struct rte_eth_rss_reta_entry64 reta_conf[2];
struct rte_eth_rss_conf rss_conf;
uint32_t i, id, pos, q;
rss_conf = eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
if (!rss_conf.rss_key) {
DP_INFO(edev, "Applying driver default key\n");
rss_conf.rss_key_len = ECORE_RSS_KEY_SIZE * sizeof(uint32_t);
qede_prandom_bytes(&def_rss_key[0]);
rss_conf.rss_key = (uint8_t *)&def_rss_key[0];
}
/* Configure RSS hash */
if (qede_rss_hash_update(eth_dev, &rss_conf))
return -EINVAL;
/* Configure default RETA */
memset(reta_conf, 0, sizeof(reta_conf));
for (i = 0; i < ECORE_RSS_IND_TABLE_SIZE; i++)
reta_conf[i / RTE_RETA_GROUP_SIZE].mask = UINT64_MAX;
for (i = 0; i < ECORE_RSS_IND_TABLE_SIZE; i++) {
id = i / RTE_RETA_GROUP_SIZE;
pos = i % RTE_RETA_GROUP_SIZE;
q = i % QEDE_RSS_COUNT(qdev);
reta_conf[id].reta[pos] = q;
}
if (qede_rss_reta_update(eth_dev, &reta_conf[0],
ECORE_RSS_IND_TABLE_SIZE))
return -EINVAL;
return 0;
}
static void qede_fastpath_start(struct ecore_dev *edev)
{
struct ecore_hwfn *p_hwfn;
int i;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
ecore_hw_start_fastpath(p_hwfn);
}
}
static int qede_dev_start(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct rte_eth_rxmode *rxmode = &eth_dev->data->dev_conf.rxmode;
PMD_INIT_FUNC_TRACE(edev);
/* Update MTU only if it has changed */
if (eth_dev->data->mtu != qdev->mtu) {
if (qede_update_mtu(eth_dev, qdev->mtu))
goto err;
}
/* Configure TPA parameters */
if (rxmode->offloads & DEV_RX_OFFLOAD_TCP_LRO) {
if (qede_enable_tpa(eth_dev, true))
return -EINVAL;
/* Enable scatter mode for LRO */
if (!eth_dev->data->scattered_rx)
rxmode->offloads |= DEV_RX_OFFLOAD_SCATTER;
}
/* Start queues */
if (qede_start_queues(eth_dev))
goto err;
if (IS_PF(edev))
qede_reset_queue_stats(qdev, true);
/* Newer SR-IOV PF driver expects RX/TX queues to be started before
* enabling RSS. Hence RSS configuration is deferred upto this point.
* Also, we would like to retain similar behavior in PF case, so we
* don't do PF/VF specific check here.
*/
if (eth_dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_RSS)
if (qede_config_rss(eth_dev))
goto err;
/* Enable vport*/
if (qede_activate_vport(eth_dev, true))
goto err;
/* Update link status */
qede_link_update(eth_dev, 0);
/* Start/resume traffic */
qede_fastpath_start(edev);
DP_INFO(edev, "Device started\n");
return 0;
err:
DP_ERR(edev, "Device start fails\n");
return -1; /* common error code is < 0 */
}
static void qede_dev_stop(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
PMD_INIT_FUNC_TRACE(edev);
/* Disable vport */
if (qede_activate_vport(eth_dev, false))
return;
if (qdev->enable_lro)
qede_enable_tpa(eth_dev, false);
/* Stop queues */
qede_stop_queues(eth_dev);
/* Disable traffic */
ecore_hw_stop_fastpath(edev); /* TBD - loop */
DP_INFO(edev, "Device is stopped\n");
}
static const char * const valid_args[] = {
QEDE_NPAR_TX_SWITCHING,
QEDE_VF_TX_SWITCHING,
NULL,
};
static int qede_args_check(const char *key, const char *val, void *opaque)
{
unsigned long tmp;
int ret = 0;
struct rte_eth_dev *eth_dev = opaque;
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
errno = 0;
tmp = strtoul(val, NULL, 0);
if (errno) {
DP_INFO(edev, "%s: \"%s\" is not a valid integer", key, val);
return errno;
}
if ((strcmp(QEDE_NPAR_TX_SWITCHING, key) == 0) ||
((strcmp(QEDE_VF_TX_SWITCHING, key) == 0) && IS_VF(edev))) {
qdev->enable_tx_switching = !!tmp;
DP_INFO(edev, "Disabling %s tx-switching\n",
strcmp(QEDE_NPAR_TX_SWITCHING, key) ?
"VF" : "NPAR");
}
return ret;
}
static int qede_args(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(eth_dev->device);
struct rte_kvargs *kvlist;
struct rte_devargs *devargs;
int ret;
int i;
devargs = pci_dev->device.devargs;
if (!devargs)
return 0; /* return success */
kvlist = rte_kvargs_parse(devargs->args, valid_args);
if (kvlist == NULL)
return -EINVAL;
/* Process parameters. */
for (i = 0; (valid_args[i] != NULL); ++i) {
if (rte_kvargs_count(kvlist, valid_args[i])) {
ret = rte_kvargs_process(kvlist, valid_args[i],
qede_args_check, eth_dev);
if (ret != ECORE_SUCCESS) {
rte_kvargs_free(kvlist);
return ret;
}
}
}
rte_kvargs_free(kvlist);
return 0;
}
static int qede_dev_configure(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct rte_eth_rxmode *rxmode = &eth_dev->data->dev_conf.rxmode;
int ret;
PMD_INIT_FUNC_TRACE(edev);
/* Check requirements for 100G mode */
if (ECORE_IS_CMT(edev)) {
if (eth_dev->data->nb_rx_queues < 2 ||
eth_dev->data->nb_tx_queues < 2) {
DP_ERR(edev, "100G mode needs min. 2 RX/TX queues\n");
return -EINVAL;
}
if ((eth_dev->data->nb_rx_queues % 2 != 0) ||
(eth_dev->data->nb_tx_queues % 2 != 0)) {
DP_ERR(edev,
"100G mode needs even no. of RX/TX queues\n");
return -EINVAL;
}
}
/* We need to have min 1 RX queue.There is no min check in
* rte_eth_dev_configure(), so we are checking it here.
*/
if (eth_dev->data->nb_rx_queues == 0) {
DP_ERR(edev, "Minimum one RX queue is required\n");
return -EINVAL;
}
/* Enable Tx switching by default */
qdev->enable_tx_switching = 1;
/* Parse devargs and fix up rxmode */
if (qede_args(eth_dev))
DP_NOTICE(edev, false,
"Invalid devargs supplied, requested change will not take effect\n");
if (!(rxmode->mq_mode == ETH_MQ_RX_NONE ||
rxmode->mq_mode == ETH_MQ_RX_RSS)) {
DP_ERR(edev, "Unsupported multi-queue mode\n");
return -ENOTSUP;
}
/* Flow director mode check */
if (qede_check_fdir_support(eth_dev))
return -ENOTSUP;
qede_dealloc_fp_resc(eth_dev);
qdev->num_tx_queues = eth_dev->data->nb_tx_queues;
qdev->num_rx_queues = eth_dev->data->nb_rx_queues;
if (qede_alloc_fp_resc(qdev))
return -ENOMEM;
/* If jumbo enabled adjust MTU */
if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
eth_dev->data->mtu =
eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
ETHER_HDR_LEN - QEDE_ETH_OVERHEAD;
if (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER)
eth_dev->data->scattered_rx = 1;
if (qede_start_vport(qdev, eth_dev->data->mtu))
return -1;
qdev->mtu = eth_dev->data->mtu;
/* Enable VLAN offloads by default */
ret = qede_vlan_offload_set(eth_dev, ETH_VLAN_STRIP_MASK |
ETH_VLAN_FILTER_MASK);
if (ret)
return ret;
DP_INFO(edev, "Device configured with RSS=%d TSS=%d\n",
QEDE_RSS_COUNT(qdev), QEDE_TSS_COUNT(qdev));
return 0;
}
/* Info about HW descriptor ring limitations */
static const struct rte_eth_desc_lim qede_rx_desc_lim = {
.nb_max = 0x8000, /* 32K */
.nb_min = 128,
.nb_align = 128 /* lowest common multiple */
};
static const struct rte_eth_desc_lim qede_tx_desc_lim = {
.nb_max = 0x8000, /* 32K */
.nb_min = 256,
.nb_align = 256,
.nb_seg_max = ETH_TX_MAX_BDS_PER_LSO_PACKET,
.nb_mtu_seg_max = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET
};
static void
qede_dev_info_get(struct rte_eth_dev *eth_dev,
struct rte_eth_dev_info *dev_info)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct qed_link_output link;
uint32_t speed_cap = 0;
PMD_INIT_FUNC_TRACE(edev);
dev_info->min_rx_bufsize = (uint32_t)QEDE_MIN_RX_BUFF_SIZE;
dev_info->max_rx_pktlen = (uint32_t)ETH_TX_MAX_NON_LSO_PKT_LEN;
dev_info->rx_desc_lim = qede_rx_desc_lim;
dev_info->tx_desc_lim = qede_tx_desc_lim;
if (IS_PF(edev))
dev_info->max_rx_queues = (uint16_t)RTE_MIN(
QEDE_MAX_RSS_CNT(qdev), QEDE_PF_NUM_CONNS / 2);
else
dev_info->max_rx_queues = (uint16_t)RTE_MIN(
QEDE_MAX_RSS_CNT(qdev), ECORE_MAX_VF_CHAINS_PER_PF);
dev_info->max_tx_queues = dev_info->max_rx_queues;
dev_info->max_mac_addrs = qdev->dev_info.num_mac_filters;
dev_info->max_vfs = 0;
dev_info->reta_size = ECORE_RSS_IND_TABLE_SIZE;
dev_info->hash_key_size = ECORE_RSS_KEY_SIZE * sizeof(uint32_t);
dev_info->flow_type_rss_offloads = (uint64_t)QEDE_RSS_OFFLOAD_ALL;
dev_info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_RX_OFFLOAD_TCP_LRO |
DEV_RX_OFFLOAD_KEEP_CRC |
DEV_RX_OFFLOAD_SCATTER |
DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_VLAN_FILTER |
DEV_RX_OFFLOAD_VLAN_STRIP);
dev_info->rx_queue_offload_capa = 0;
/* TX offloads are on a per-packet basis, so it is applicable
* to both at port and queue levels.
*/
dev_info->tx_offload_capa = (DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_MULTI_SEGS |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GENEVE_TNL_TSO);
dev_info->tx_queue_offload_capa = dev_info->tx_offload_capa;
dev_info->default_txconf = (struct rte_eth_txconf) {
.offloads = DEV_TX_OFFLOAD_MULTI_SEGS,
};
dev_info->default_rxconf = (struct rte_eth_rxconf) {
/* Packets are always dropped if no descriptors are available */
.rx_drop_en = 1,
.offloads = 0,
};
memset(&link, 0, sizeof(struct qed_link_output));
qdev->ops->common->get_link(edev, &link);
if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G)
speed_cap |= ETH_LINK_SPEED_1G;
if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G)
speed_cap |= ETH_LINK_SPEED_10G;
if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G)
speed_cap |= ETH_LINK_SPEED_25G;
if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G)
speed_cap |= ETH_LINK_SPEED_40G;
if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G)
speed_cap |= ETH_LINK_SPEED_50G;
if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G)
speed_cap |= ETH_LINK_SPEED_100G;
dev_info->speed_capa = speed_cap;
}
/* return 0 means link status changed, -1 means not changed */
int
qede_link_update(struct rte_eth_dev *eth_dev, __rte_unused int wait_to_complete)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct qed_link_output q_link;
struct rte_eth_link link;
uint16_t link_duplex;
memset(&q_link, 0, sizeof(q_link));
memset(&link, 0, sizeof(link));
qdev->ops->common->get_link(edev, &q_link);
/* Link Speed */
link.link_speed = q_link.speed;
/* Link Mode */
switch (q_link.duplex) {
case QEDE_DUPLEX_HALF:
link_duplex = ETH_LINK_HALF_DUPLEX;
break;
case QEDE_DUPLEX_FULL:
link_duplex = ETH_LINK_FULL_DUPLEX;
break;
case QEDE_DUPLEX_UNKNOWN:
default:
link_duplex = -1;
}
link.link_duplex = link_duplex;
/* Link Status */
link.link_status = q_link.link_up ? ETH_LINK_UP : ETH_LINK_DOWN;
/* AN */
link.link_autoneg = (q_link.supported_caps & QEDE_SUPPORTED_AUTONEG) ?
ETH_LINK_AUTONEG : ETH_LINK_FIXED;
DP_INFO(edev, "Link - Speed %u Mode %u AN %u Status %u\n",
link.link_speed, link.link_duplex,
link.link_autoneg, link.link_status);
return rte_eth_linkstatus_set(eth_dev, &link);
}
static void qede_promiscuous_enable(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
enum qed_filter_rx_mode_type type = QED_FILTER_RX_MODE_TYPE_PROMISC;
PMD_INIT_FUNC_TRACE(edev);
if (rte_eth_allmulticast_get(eth_dev->data->port_id) == 1)
type |= QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
qed_configure_filter_rx_mode(eth_dev, type);
}
static void qede_promiscuous_disable(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
PMD_INIT_FUNC_TRACE(edev);
if (rte_eth_allmulticast_get(eth_dev->data->port_id) == 1)
qed_configure_filter_rx_mode(eth_dev,
QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC);
else
qed_configure_filter_rx_mode(eth_dev,
QED_FILTER_RX_MODE_TYPE_REGULAR);
}
static void qede_poll_sp_sb_cb(void *param)
{
struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
int rc;
qede_interrupt_action(ECORE_LEADING_HWFN(edev));
qede_interrupt_action(&edev->hwfns[1]);
rc = rte_eal_alarm_set(QEDE_SP_TIMER_PERIOD,
qede_poll_sp_sb_cb,
(void *)eth_dev);
if (rc != 0) {
DP_ERR(edev, "Unable to start periodic"
" timer rc %d\n", rc);
assert(false && "Unable to start periodic timer");
}
}
static void qede_dev_close(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
PMD_INIT_FUNC_TRACE(edev);
/* dev_stop() shall cleanup fp resources in hw but without releasing
* dma memories and sw structures so that dev_start() can be called
* by the app without reconfiguration. However, in dev_close() we
* can release all the resources and device can be brought up newly
*/
if (eth_dev->data->dev_started)
qede_dev_stop(eth_dev);
qede_stop_vport(edev);
qdev->vport_started = false;
qede_fdir_dealloc_resc(eth_dev);
qede_dealloc_fp_resc(eth_dev);
eth_dev->data->nb_rx_queues = 0;
eth_dev->data->nb_tx_queues = 0;
/* Bring the link down */
qede_dev_set_link_state(eth_dev, false);
qdev->ops->common->slowpath_stop(edev);
qdev->ops->common->remove(edev);
rte_intr_disable(&pci_dev->intr_handle);
switch (pci_dev->intr_handle.type) {
case RTE_INTR_HANDLE_UIO_INTX:
case RTE_INTR_HANDLE_VFIO_LEGACY:
rte_intr_callback_unregister(&pci_dev->intr_handle,
qede_interrupt_handler_intx,
(void *)eth_dev);
break;
default:
rte_intr_callback_unregister(&pci_dev->intr_handle,
qede_interrupt_handler,
(void *)eth_dev);
}
if (ECORE_IS_CMT(edev))
rte_eal_alarm_cancel(qede_poll_sp_sb_cb, (void *)eth_dev);
}
static int
qede_get_stats(struct rte_eth_dev *eth_dev, struct rte_eth_stats *eth_stats)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct ecore_eth_stats stats;
unsigned int i = 0, j = 0, qid;
unsigned int rxq_stat_cntrs, txq_stat_cntrs;
struct qede_tx_queue *txq;
ecore_get_vport_stats(edev, &stats);
/* RX Stats */
eth_stats->ipackets = stats.common.rx_ucast_pkts +
stats.common.rx_mcast_pkts + stats.common.rx_bcast_pkts;
eth_stats->ibytes = stats.common.rx_ucast_bytes +
stats.common.rx_mcast_bytes + stats.common.rx_bcast_bytes;
eth_stats->ierrors = stats.common.rx_crc_errors +
stats.common.rx_align_errors +
stats.common.rx_carrier_errors +
stats.common.rx_oversize_packets +
stats.common.rx_jabbers + stats.common.rx_undersize_packets;
eth_stats->rx_nombuf = stats.common.no_buff_discards;
eth_stats->imissed = stats.common.mftag_filter_discards +
stats.common.mac_filter_discards +
stats.common.no_buff_discards +
stats.common.brb_truncates + stats.common.brb_discards;
/* TX stats */
eth_stats->opackets = stats.common.tx_ucast_pkts +
stats.common.tx_mcast_pkts + stats.common.tx_bcast_pkts;
eth_stats->obytes = stats.common.tx_ucast_bytes +
stats.common.tx_mcast_bytes + stats.common.tx_bcast_bytes;
eth_stats->oerrors = stats.common.tx_err_drop_pkts;
/* Queue stats */
rxq_stat_cntrs = RTE_MIN(QEDE_RSS_COUNT(qdev),
RTE_ETHDEV_QUEUE_STAT_CNTRS);
txq_stat_cntrs = RTE_MIN(QEDE_TSS_COUNT(qdev),
RTE_ETHDEV_QUEUE_STAT_CNTRS);
if ((rxq_stat_cntrs != (unsigned int)QEDE_RSS_COUNT(qdev)) ||
(txq_stat_cntrs != (unsigned int)QEDE_TSS_COUNT(qdev)))
DP_VERBOSE(edev, ECORE_MSG_DEBUG,
"Not all the queue stats will be displayed. Set"
" RTE_ETHDEV_QUEUE_STAT_CNTRS config param"
" appropriately and retry.\n");
for_each_rss(qid) {
eth_stats->q_ipackets[i] =
*(uint64_t *)(
((char *)(qdev->fp_array[qid].rxq)) +
offsetof(struct qede_rx_queue,
rcv_pkts));
eth_stats->q_errors[i] =
*(uint64_t *)(
((char *)(qdev->fp_array[qid].rxq)) +
offsetof(struct qede_rx_queue,
rx_hw_errors)) +
*(uint64_t *)(
((char *)(qdev->fp_array[qid].rxq)) +
offsetof(struct qede_rx_queue,
rx_alloc_errors));
i++;
if (i == rxq_stat_cntrs)
break;
}
for_each_tss(qid) {
txq = qdev->fp_array[qid].txq;
eth_stats->q_opackets[j] =
*((uint64_t *)(uintptr_t)
(((uint64_t)(uintptr_t)(txq)) +
offsetof(struct qede_tx_queue,
xmit_pkts)));
j++;
if (j == txq_stat_cntrs)
break;
}
return 0;
}
static unsigned
qede_get_xstats_count(struct qede_dev *qdev) {
if (ECORE_IS_BB(&qdev->edev))
return RTE_DIM(qede_xstats_strings) +
RTE_DIM(qede_bb_xstats_strings) +
(RTE_DIM(qede_rxq_xstats_strings) *
RTE_MIN(QEDE_RSS_COUNT(qdev),
RTE_ETHDEV_QUEUE_STAT_CNTRS));
else
return RTE_DIM(qede_xstats_strings) +
RTE_DIM(qede_ah_xstats_strings) +
(RTE_DIM(qede_rxq_xstats_strings) *
RTE_MIN(QEDE_RSS_COUNT(qdev),
RTE_ETHDEV_QUEUE_STAT_CNTRS));
}
static int
qede_get_xstats_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
__rte_unused unsigned int limit)
{
struct qede_dev *qdev = dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
const unsigned int stat_cnt = qede_get_xstats_count(qdev);
unsigned int i, qid, stat_idx = 0;
unsigned int rxq_stat_cntrs;
if (xstats_names != NULL) {
for (i = 0; i < RTE_DIM(qede_xstats_strings); i++) {
snprintf(xstats_names[stat_idx].name,
sizeof(xstats_names[stat_idx].name),
"%s",
qede_xstats_strings[i].name);
stat_idx++;
}
if (ECORE_IS_BB(edev)) {
for (i = 0; i < RTE_DIM(qede_bb_xstats_strings); i++) {
snprintf(xstats_names[stat_idx].name,
sizeof(xstats_names[stat_idx].name),
"%s",
qede_bb_xstats_strings[i].name);
stat_idx++;
}
} else {
for (i = 0; i < RTE_DIM(qede_ah_xstats_strings); i++) {
snprintf(xstats_names[stat_idx].name,
sizeof(xstats_names[stat_idx].name),
"%s",
qede_ah_xstats_strings[i].name);
stat_idx++;
}
}
rxq_stat_cntrs = RTE_MIN(QEDE_RSS_COUNT(qdev),
RTE_ETHDEV_QUEUE_STAT_CNTRS);
for (qid = 0; qid < rxq_stat_cntrs; qid++) {
for (i = 0; i < RTE_DIM(qede_rxq_xstats_strings); i++) {
snprintf(xstats_names[stat_idx].name,
sizeof(xstats_names[stat_idx].name),
"%.4s%d%s",
qede_rxq_xstats_strings[i].name, qid,
qede_rxq_xstats_strings[i].name + 4);
stat_idx++;
}
}
}
return stat_cnt;
}
static int
qede_get_xstats(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
unsigned int n)
{
struct qede_dev *qdev = dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct ecore_eth_stats stats;
const unsigned int num = qede_get_xstats_count(qdev);
unsigned int i, qid, stat_idx = 0;
unsigned int rxq_stat_cntrs;
if (n < num)
return num;
ecore_get_vport_stats(edev, &stats);
for (i = 0; i < RTE_DIM(qede_xstats_strings); i++) {
xstats[stat_idx].value = *(uint64_t *)(((char *)&stats) +
qede_xstats_strings[i].offset);
xstats[stat_idx].id = stat_idx;
stat_idx++;
}
if (ECORE_IS_BB(edev)) {
for (i = 0; i < RTE_DIM(qede_bb_xstats_strings); i++) {
xstats[stat_idx].value =
*(uint64_t *)(((char *)&stats) +
qede_bb_xstats_strings[i].offset);
xstats[stat_idx].id = stat_idx;
stat_idx++;
}
} else {
for (i = 0; i < RTE_DIM(qede_ah_xstats_strings); i++) {
xstats[stat_idx].value =
*(uint64_t *)(((char *)&stats) +
qede_ah_xstats_strings[i].offset);
xstats[stat_idx].id = stat_idx;
stat_idx++;
}
}
rxq_stat_cntrs = RTE_MIN(QEDE_RSS_COUNT(qdev),
RTE_ETHDEV_QUEUE_STAT_CNTRS);
for (qid = 0; qid < rxq_stat_cntrs; qid++) {
for_each_rss(qid) {
for (i = 0; i < RTE_DIM(qede_rxq_xstats_strings); i++) {
xstats[stat_idx].value = *(uint64_t *)(
((char *)(qdev->fp_array[qid].rxq)) +
qede_rxq_xstats_strings[i].offset);
xstats[stat_idx].id = stat_idx;
stat_idx++;
}
}
}
return stat_idx;
}
static void
qede_reset_xstats(struct rte_eth_dev *dev)
{
struct qede_dev *qdev = dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
ecore_reset_vport_stats(edev);
qede_reset_queue_stats(qdev, true);
}
int qede_dev_set_link_state(struct rte_eth_dev *eth_dev, bool link_up)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct qed_link_params link_params;
int rc;
DP_INFO(edev, "setting link state %d\n", link_up);
memset(&link_params, 0, sizeof(link_params));
link_params.link_up = link_up;
rc = qdev->ops->common->set_link(edev, &link_params);
if (rc != ECORE_SUCCESS)
DP_ERR(edev, "Unable to set link state %d\n", link_up);
return rc;
}
static int qede_dev_set_link_up(struct rte_eth_dev *eth_dev)
{
return qede_dev_set_link_state(eth_dev, true);
}
static int qede_dev_set_link_down(struct rte_eth_dev *eth_dev)
{
return qede_dev_set_link_state(eth_dev, false);
}
static void qede_reset_stats(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
ecore_reset_vport_stats(edev);
qede_reset_queue_stats(qdev, false);
}
static void qede_allmulticast_enable(struct rte_eth_dev *eth_dev)
{
enum qed_filter_rx_mode_type type =
QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
if (rte_eth_promiscuous_get(eth_dev->data->port_id) == 1)
type |= QED_FILTER_RX_MODE_TYPE_PROMISC;
qed_configure_filter_rx_mode(eth_dev, type);
}
static void qede_allmulticast_disable(struct rte_eth_dev *eth_dev)
{
if (rte_eth_promiscuous_get(eth_dev->data->port_id) == 1)
qed_configure_filter_rx_mode(eth_dev,
QED_FILTER_RX_MODE_TYPE_PROMISC);
else
qed_configure_filter_rx_mode(eth_dev,
QED_FILTER_RX_MODE_TYPE_REGULAR);
}
static int
qede_set_mc_addr_list(struct rte_eth_dev *eth_dev, struct ether_addr *mc_addrs,
uint32_t mc_addrs_num)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
uint8_t i;
if (mc_addrs_num > ECORE_MAX_MC_ADDRS) {
DP_ERR(edev, "Reached max multicast filters limit,"
"Please enable multicast promisc mode\n");
return -ENOSPC;
}
for (i = 0; i < mc_addrs_num; i++) {
if (!is_multicast_ether_addr(&mc_addrs[i])) {
DP_ERR(edev, "Not a valid multicast MAC\n");
return -EINVAL;
}
}
/* Flush all existing entries */
if (qede_del_mcast_filters(eth_dev))
return -1;
/* Set new mcast list */
return qede_add_mcast_filters(eth_dev, mc_addrs, mc_addrs_num);
}
/* Update MTU via vport-update without doing port restart.
* The vport must be deactivated before calling this API.
*/
int qede_update_mtu(struct rte_eth_dev *eth_dev, uint16_t mtu)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_hwfn *p_hwfn;
int rc;
int i;
if (IS_PF(edev)) {
struct ecore_sp_vport_update_params params;
memset(&params, 0, sizeof(struct ecore_sp_vport_update_params));
params.vport_id = 0;
params.mtu = mtu;
params.vport_id = 0;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_update(p_hwfn, &params,
ECORE_SPQ_MODE_EBLOCK, NULL);
if (rc != ECORE_SUCCESS)
goto err;
}
} else {
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
rc = ecore_vf_pf_update_mtu(p_hwfn, mtu);
if (rc == ECORE_INVAL) {
DP_INFO(edev, "VF MTU Update TLV not supported\n");
/* Recreate vport */
rc = qede_start_vport(qdev, mtu);
if (rc != ECORE_SUCCESS)
goto err;
/* Restore config lost due to vport stop */
if (eth_dev->data->promiscuous)
qede_promiscuous_enable(eth_dev);
else
qede_promiscuous_disable(eth_dev);
if (eth_dev->data->all_multicast)
qede_allmulticast_enable(eth_dev);
else
qede_allmulticast_disable(eth_dev);
qede_vlan_offload_set(eth_dev,
qdev->vlan_offload_mask);
} else if (rc != ECORE_SUCCESS) {
goto err;
}
}
}
DP_INFO(edev, "%s MTU updated to %u\n", IS_PF(edev) ? "PF" : "VF", mtu);
return 0;
err:
DP_ERR(edev, "Failed to update MTU\n");
return -1;
}
static int qede_flow_ctrl_set(struct rte_eth_dev *eth_dev,
struct rte_eth_fc_conf *fc_conf)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct qed_link_output current_link;
struct qed_link_params params;
memset(&current_link, 0, sizeof(current_link));
qdev->ops->common->get_link(edev, &current_link);
memset(&params, 0, sizeof(params));
params.override_flags |= QED_LINK_OVERRIDE_PAUSE_CONFIG;
if (fc_conf->autoneg) {
if (!(current_link.supported_caps & QEDE_SUPPORTED_AUTONEG)) {
DP_ERR(edev, "Autoneg not supported\n");
return -EINVAL;
}
params.pause_config |= QED_LINK_PAUSE_AUTONEG_ENABLE;
}
/* Pause is assumed to be supported (SUPPORTED_Pause) */
if (fc_conf->mode == RTE_FC_FULL)
params.pause_config |= (QED_LINK_PAUSE_TX_ENABLE |
QED_LINK_PAUSE_RX_ENABLE);
if (fc_conf->mode == RTE_FC_TX_PAUSE)
params.pause_config |= QED_LINK_PAUSE_TX_ENABLE;
if (fc_conf->mode == RTE_FC_RX_PAUSE)
params.pause_config |= QED_LINK_PAUSE_RX_ENABLE;
params.link_up = true;
(void)qdev->ops->common->set_link(edev, &params);
return 0;
}
static int qede_flow_ctrl_get(struct rte_eth_dev *eth_dev,
struct rte_eth_fc_conf *fc_conf)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct qed_link_output current_link;
memset(&current_link, 0, sizeof(current_link));
qdev->ops->common->get_link(edev, &current_link);
if (current_link.pause_config & QED_LINK_PAUSE_AUTONEG_ENABLE)
fc_conf->autoneg = true;
if (current_link.pause_config & (QED_LINK_PAUSE_RX_ENABLE |
QED_LINK_PAUSE_TX_ENABLE))
fc_conf->mode = RTE_FC_FULL;
else if (current_link.pause_config & QED_LINK_PAUSE_RX_ENABLE)
fc_conf->mode = RTE_FC_RX_PAUSE;
else if (current_link.pause_config & QED_LINK_PAUSE_TX_ENABLE)
fc_conf->mode = RTE_FC_TX_PAUSE;
else
fc_conf->mode = RTE_FC_NONE;
return 0;
}
static const uint32_t *
qede_dev_supported_ptypes_get(struct rte_eth_dev *eth_dev)
{
static const uint32_t ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_VLAN,
RTE_PTYPE_L3_IPV4,
RTE_PTYPE_L3_IPV6,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_TUNNEL_VXLAN,
RTE_PTYPE_L4_FRAG,
RTE_PTYPE_TUNNEL_GENEVE,
RTE_PTYPE_TUNNEL_GRE,
/* Inner */
RTE_PTYPE_INNER_L2_ETHER,
RTE_PTYPE_INNER_L2_ETHER_VLAN,
RTE_PTYPE_INNER_L3_IPV4,
RTE_PTYPE_INNER_L3_IPV6,
RTE_PTYPE_INNER_L4_TCP,
RTE_PTYPE_INNER_L4_UDP,
RTE_PTYPE_INNER_L4_FRAG,
RTE_PTYPE_UNKNOWN
};
if (eth_dev->rx_pkt_burst == qede_recv_pkts)
return ptypes;
return NULL;
}
static void qede_init_rss_caps(uint8_t *rss_caps, uint64_t hf)
{
*rss_caps = 0;
*rss_caps |= (hf & ETH_RSS_IPV4) ? ECORE_RSS_IPV4 : 0;
*rss_caps |= (hf & ETH_RSS_IPV6) ? ECORE_RSS_IPV6 : 0;
*rss_caps |= (hf & ETH_RSS_IPV6_EX) ? ECORE_RSS_IPV6 : 0;
*rss_caps |= (hf & ETH_RSS_NONFRAG_IPV4_TCP) ? ECORE_RSS_IPV4_TCP : 0;
*rss_caps |= (hf & ETH_RSS_NONFRAG_IPV6_TCP) ? ECORE_RSS_IPV6_TCP : 0;
*rss_caps |= (hf & ETH_RSS_IPV6_TCP_EX) ? ECORE_RSS_IPV6_TCP : 0;
*rss_caps |= (hf & ETH_RSS_NONFRAG_IPV4_UDP) ? ECORE_RSS_IPV4_UDP : 0;
*rss_caps |= (hf & ETH_RSS_NONFRAG_IPV6_UDP) ? ECORE_RSS_IPV6_UDP : 0;
}
int qede_rss_hash_update(struct rte_eth_dev *eth_dev,
struct rte_eth_rss_conf *rss_conf)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_sp_vport_update_params vport_update_params;
struct ecore_rss_params rss_params;
struct ecore_hwfn *p_hwfn;
uint32_t *key = (uint32_t *)rss_conf->rss_key;
uint64_t hf = rss_conf->rss_hf;
uint8_t len = rss_conf->rss_key_len;
uint8_t idx;
uint8_t i;
int rc;
memset(&vport_update_params, 0, sizeof(vport_update_params));
memset(&rss_params, 0, sizeof(rss_params));
DP_INFO(edev, "RSS hf = 0x%lx len = %u key = %p\n",
(unsigned long)hf, len, key);
if (hf != 0) {
/* Enabling RSS */
DP_INFO(edev, "Enabling rss\n");
/* RSS caps */
qede_init_rss_caps(&rss_params.rss_caps, hf);
rss_params.update_rss_capabilities = 1;
/* RSS hash key */
if (key) {
if (len > (ECORE_RSS_KEY_SIZE * sizeof(uint32_t))) {
DP_ERR(edev, "RSS key length exceeds limit\n");
return -EINVAL;
}
DP_INFO(edev, "Applying user supplied hash key\n");
rss_params.update_rss_key = 1;
memcpy(&rss_params.rss_key, key, len);
}
rss_params.rss_enable = 1;
}
rss_params.update_rss_config = 1;
/* tbl_size has to be set with capabilities */
rss_params.rss_table_size_log = 7;
vport_update_params.vport_id = 0;
/* pass the L2 handles instead of qids */
for (i = 0 ; i < ECORE_RSS_IND_TABLE_SIZE ; i++) {
idx = i % QEDE_RSS_COUNT(qdev);
rss_params.rss_ind_table[i] = qdev->fp_array[idx].rxq->handle;
}
vport_update_params.rss_params = &rss_params;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
vport_update_params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_update(p_hwfn, &vport_update_params,
ECORE_SPQ_MODE_EBLOCK, NULL);
if (rc) {
DP_ERR(edev, "vport-update for RSS failed\n");
return rc;
}
}
qdev->rss_enable = rss_params.rss_enable;
/* Update local structure for hash query */
qdev->rss_conf.rss_hf = hf;
qdev->rss_conf.rss_key_len = len;
if (qdev->rss_enable) {
if (qdev->rss_conf.rss_key == NULL) {
qdev->rss_conf.rss_key = (uint8_t *)malloc(len);
if (qdev->rss_conf.rss_key == NULL) {
DP_ERR(edev, "No memory to store RSS key\n");
return -ENOMEM;
}
}
if (key && len) {
DP_INFO(edev, "Storing RSS key\n");
memcpy(qdev->rss_conf.rss_key, key, len);
}
} else if (!qdev->rss_enable && len == 0) {
if (qdev->rss_conf.rss_key) {
free(qdev->rss_conf.rss_key);
qdev->rss_conf.rss_key = NULL;
DP_INFO(edev, "Free RSS key\n");
}
}
return 0;
}
static int qede_rss_hash_conf_get(struct rte_eth_dev *eth_dev,
struct rte_eth_rss_conf *rss_conf)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
rss_conf->rss_hf = qdev->rss_conf.rss_hf;
rss_conf->rss_key_len = qdev->rss_conf.rss_key_len;
if (rss_conf->rss_key && qdev->rss_conf.rss_key)
memcpy(rss_conf->rss_key, qdev->rss_conf.rss_key,
rss_conf->rss_key_len);
return 0;
}
static bool qede_update_rss_parm_cmt(struct ecore_dev *edev,
struct ecore_rss_params *rss)
{
int i, fn;
bool rss_mode = 1; /* enable */
struct ecore_queue_cid *cid;
struct ecore_rss_params *t_rss;
/* In regular scenario, we'd simply need to take input handlers.
* But in CMT, we'd have to split the handlers according to the
* engine they were configured on. We'd then have to understand
* whether RSS is really required, since 2-queues on CMT doesn't
* require RSS.
*/
/* CMT should be round-robin */
for (i = 0; i < ECORE_RSS_IND_TABLE_SIZE; i++) {
cid = rss->rss_ind_table[i];
if (cid->p_owner == ECORE_LEADING_HWFN(edev))
t_rss = &rss[0];
else
t_rss = &rss[1];
t_rss->rss_ind_table[i / edev->num_hwfns] = cid;
}
t_rss = &rss[1];
t_rss->update_rss_ind_table = 1;
t_rss->rss_table_size_log = 7;
t_rss->update_rss_config = 1;
/* Make sure RSS is actually required */
for_each_hwfn(edev, fn) {
for (i = 1; i < ECORE_RSS_IND_TABLE_SIZE / edev->num_hwfns;
i++) {
if (rss[fn].rss_ind_table[i] !=
rss[fn].rss_ind_table[0])
break;
}
if (i == ECORE_RSS_IND_TABLE_SIZE / edev->num_hwfns) {
DP_INFO(edev,
"CMT - 1 queue per-hwfn; Disabling RSS\n");
rss_mode = 0;
goto out;
}
}
out:
t_rss->rss_enable = rss_mode;
return rss_mode;
}
int qede_rss_reta_update(struct rte_eth_dev *eth_dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_sp_vport_update_params vport_update_params;
struct ecore_rss_params *params;
struct ecore_hwfn *p_hwfn;
uint16_t i, idx, shift;
uint8_t entry;
int rc = 0;
if (reta_size > ETH_RSS_RETA_SIZE_128) {
DP_ERR(edev, "reta_size %d is not supported by hardware\n",
reta_size);
return -EINVAL;
}
memset(&vport_update_params, 0, sizeof(vport_update_params));
params = rte_zmalloc("qede_rss", sizeof(*params) * edev->num_hwfns,
RTE_CACHE_LINE_SIZE);
if (params == NULL) {
DP_ERR(edev, "failed to allocate memory\n");
return -ENOMEM;
}
for (i = 0; i < reta_size; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift)) {
entry = reta_conf[idx].reta[shift];
/* Pass rxq handles to ecore */
params->rss_ind_table[i] =
qdev->fp_array[entry].rxq->handle;
/* Update the local copy for RETA query command */
qdev->rss_ind_table[i] = entry;
}
}
params->update_rss_ind_table = 1;
params->rss_table_size_log = 7;
params->update_rss_config = 1;
/* Fix up RETA for CMT mode device */
if (ECORE_IS_CMT(edev))
qdev->rss_enable = qede_update_rss_parm_cmt(edev,
params);
vport_update_params.vport_id = 0;
/* Use the current value of rss_enable */
params->rss_enable = qdev->rss_enable;
vport_update_params.rss_params = params;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
vport_update_params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_update(p_hwfn, &vport_update_params,
ECORE_SPQ_MODE_EBLOCK, NULL);
if (rc) {
DP_ERR(edev, "vport-update for RSS failed\n");
goto out;
}
}
out:
rte_free(params);
return rc;
}
static int qede_rss_reta_query(struct rte_eth_dev *eth_dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
uint16_t i, idx, shift;
uint8_t entry;
if (reta_size > ETH_RSS_RETA_SIZE_128) {
DP_ERR(edev, "reta_size %d is not supported\n",
reta_size);
return -EINVAL;
}
for (i = 0; i < reta_size; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift)) {
entry = qdev->rss_ind_table[i];
reta_conf[idx].reta[shift] = entry;
}
}
return 0;
}
static int qede_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct rte_eth_dev_info dev_info = {0};
struct qede_fastpath *fp;
uint32_t max_rx_pkt_len;
uint32_t frame_size;
uint16_t bufsz;
bool restart = false;
int i, rc;
PMD_INIT_FUNC_TRACE(edev);
qede_dev_info_get(dev, &dev_info);
max_rx_pkt_len = mtu + QEDE_MAX_ETHER_HDR_LEN;
frame_size = max_rx_pkt_len;
if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen)) {
DP_ERR(edev, "MTU %u out of range, %u is maximum allowable\n",
mtu, dev_info.max_rx_pktlen - ETHER_HDR_LEN -
QEDE_ETH_OVERHEAD);
return -EINVAL;
}
if (!dev->data->scattered_rx &&
frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) {
DP_INFO(edev, "MTU greater than minimum RX buffer size of %u\n",
dev->data->min_rx_buf_size);
return -EINVAL;
}
/* Temporarily replace I/O functions with dummy ones. It cannot
* be set to NULL because rte_eth_rx_burst() doesn't check for NULL.
*/
dev->rx_pkt_burst = qede_rxtx_pkts_dummy;
dev->tx_pkt_burst = qede_rxtx_pkts_dummy;
if (dev->data->dev_started) {
dev->data->dev_started = 0;
qede_dev_stop(dev);
restart = true;
}
rte_delay_ms(1000);
qdev->mtu = mtu;
/* Fix up RX buf size for all queues of the port */
for_each_rss(i) {
fp = &qdev->fp_array[i];
if (fp->rxq != NULL) {
bufsz = (uint16_t)rte_pktmbuf_data_room_size(
fp->rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
/* cache align the mbuf size to simplfy rx_buf_size
* calculation
*/
bufsz = QEDE_FLOOR_TO_CACHE_LINE_SIZE(bufsz);
rc = qede_calc_rx_buf_size(dev, bufsz, frame_size);
if (rc < 0)
return rc;
fp->rxq->rx_buf_size = rc;
}
}
if (max_rx_pkt_len > ETHER_MAX_LEN)
dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
else
dev->data->dev_conf.rxmode.offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME;
if (!dev->data->dev_started && restart) {
qede_dev_start(dev);
dev->data->dev_started = 1;
}
/* update max frame size */
dev->data->dev_conf.rxmode.max_rx_pkt_len = max_rx_pkt_len;
/* Reassign back */
dev->rx_pkt_burst = qede_recv_pkts;
dev->tx_pkt_burst = qede_xmit_pkts;
return 0;
}
static int
qede_dev_reset(struct rte_eth_dev *dev)
{
int ret;
ret = qede_eth_dev_uninit(dev);
if (ret)
return ret;
return qede_eth_dev_init(dev);
}
static const struct eth_dev_ops qede_eth_dev_ops = {
.dev_configure = qede_dev_configure,
.dev_infos_get = qede_dev_info_get,
.rx_queue_setup = qede_rx_queue_setup,
.rx_queue_release = qede_rx_queue_release,
.rx_descriptor_status = qede_rx_descriptor_status,
.tx_queue_setup = qede_tx_queue_setup,
.tx_queue_release = qede_tx_queue_release,
.dev_start = qede_dev_start,
.dev_reset = qede_dev_reset,
.dev_set_link_up = qede_dev_set_link_up,
.dev_set_link_down = qede_dev_set_link_down,
.link_update = qede_link_update,
.promiscuous_enable = qede_promiscuous_enable,
.promiscuous_disable = qede_promiscuous_disable,
.allmulticast_enable = qede_allmulticast_enable,
.allmulticast_disable = qede_allmulticast_disable,
.set_mc_addr_list = qede_set_mc_addr_list,
.dev_stop = qede_dev_stop,
.dev_close = qede_dev_close,
.stats_get = qede_get_stats,
.stats_reset = qede_reset_stats,
.xstats_get = qede_get_xstats,
.xstats_reset = qede_reset_xstats,
.xstats_get_names = qede_get_xstats_names,
.mac_addr_add = qede_mac_addr_add,
.mac_addr_remove = qede_mac_addr_remove,
.mac_addr_set = qede_mac_addr_set,
.vlan_offload_set = qede_vlan_offload_set,
.vlan_filter_set = qede_vlan_filter_set,
.flow_ctrl_set = qede_flow_ctrl_set,
.flow_ctrl_get = qede_flow_ctrl_get,
.dev_supported_ptypes_get = qede_dev_supported_ptypes_get,
.rss_hash_update = qede_rss_hash_update,
.rss_hash_conf_get = qede_rss_hash_conf_get,
.reta_update = qede_rss_reta_update,
.reta_query = qede_rss_reta_query,
.mtu_set = qede_set_mtu,
.filter_ctrl = qede_dev_filter_ctrl,
.udp_tunnel_port_add = qede_udp_dst_port_add,
.udp_tunnel_port_del = qede_udp_dst_port_del,
};
static const struct eth_dev_ops qede_eth_vf_dev_ops = {
.dev_configure = qede_dev_configure,
.dev_infos_get = qede_dev_info_get,
.rx_queue_setup = qede_rx_queue_setup,
.rx_queue_release = qede_rx_queue_release,
.rx_descriptor_status = qede_rx_descriptor_status,
.tx_queue_setup = qede_tx_queue_setup,
.tx_queue_release = qede_tx_queue_release,
.dev_start = qede_dev_start,
.dev_reset = qede_dev_reset,
.dev_set_link_up = qede_dev_set_link_up,
.dev_set_link_down = qede_dev_set_link_down,
.link_update = qede_link_update,
.promiscuous_enable = qede_promiscuous_enable,
.promiscuous_disable = qede_promiscuous_disable,
.allmulticast_enable = qede_allmulticast_enable,
.allmulticast_disable = qede_allmulticast_disable,
.set_mc_addr_list = qede_set_mc_addr_list,
.dev_stop = qede_dev_stop,
.dev_close = qede_dev_close,
.stats_get = qede_get_stats,
.stats_reset = qede_reset_stats,
.xstats_get = qede_get_xstats,
.xstats_reset = qede_reset_xstats,
.xstats_get_names = qede_get_xstats_names,
.vlan_offload_set = qede_vlan_offload_set,
.vlan_filter_set = qede_vlan_filter_set,
.dev_supported_ptypes_get = qede_dev_supported_ptypes_get,
.rss_hash_update = qede_rss_hash_update,
.rss_hash_conf_get = qede_rss_hash_conf_get,
.reta_update = qede_rss_reta_update,
.reta_query = qede_rss_reta_query,
.mtu_set = qede_set_mtu,
.udp_tunnel_port_add = qede_udp_dst_port_add,
.udp_tunnel_port_del = qede_udp_dst_port_del,
.mac_addr_add = qede_mac_addr_add,
.mac_addr_remove = qede_mac_addr_remove,
.mac_addr_set = qede_mac_addr_set,
};
static void qede_update_pf_params(struct ecore_dev *edev)
{
struct ecore_pf_params pf_params;
memset(&pf_params, 0, sizeof(struct ecore_pf_params));
pf_params.eth_pf_params.num_cons = QEDE_PF_NUM_CONNS;
pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
qed_ops->common->update_pf_params(edev, &pf_params);
}
static int qede_common_dev_init(struct rte_eth_dev *eth_dev, bool is_vf)
{
struct rte_pci_device *pci_dev;
struct rte_pci_addr pci_addr;
struct qede_dev *adapter;
struct ecore_dev *edev;
struct qed_dev_eth_info dev_info;
struct qed_slowpath_params params;
static bool do_once = true;
uint8_t bulletin_change;
uint8_t vf_mac[ETHER_ADDR_LEN];
uint8_t is_mac_forced;
bool is_mac_exist;
/* Fix up ecore debug level */
uint32_t dp_module = ~0 & ~ECORE_MSG_HW;
uint8_t dp_level = ECORE_LEVEL_VERBOSE;
uint32_t int_mode;
int rc;
/* Extract key data structures */
adapter = eth_dev->data->dev_private;
adapter->ethdev = eth_dev;
edev = &adapter->edev;
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
pci_addr = pci_dev->addr;
PMD_INIT_FUNC_TRACE(edev);
snprintf(edev->name, NAME_SIZE, PCI_SHORT_PRI_FMT ":dpdk-port-%u",
pci_addr.bus, pci_addr.devid, pci_addr.function,
eth_dev->data->port_id);
eth_dev->rx_pkt_burst = qede_recv_pkts;
eth_dev->tx_pkt_burst = qede_xmit_pkts;
eth_dev->tx_pkt_prepare = qede_xmit_prep_pkts;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
DP_ERR(edev, "Skipping device init from secondary process\n");
return 0;
}
rte_eth_copy_pci_info(eth_dev, pci_dev);
/* @DPDK */
edev->vendor_id = pci_dev->id.vendor_id;
edev->device_id = pci_dev->id.device_id;
qed_ops = qed_get_eth_ops();
if (!qed_ops) {
DP_ERR(edev, "Failed to get qed_eth_ops_pass\n");
return -EINVAL;
}
DP_INFO(edev, "Starting qede probe\n");
rc = qed_ops->common->probe(edev, pci_dev, dp_module,
dp_level, is_vf);
if (rc != 0) {
DP_ERR(edev, "qede probe failed rc %d\n", rc);
return -ENODEV;
}
qede_update_pf_params(edev);
switch (pci_dev->intr_handle.type) {
case RTE_INTR_HANDLE_UIO_INTX:
case RTE_INTR_HANDLE_VFIO_LEGACY:
int_mode = ECORE_INT_MODE_INTA;
rte_intr_callback_register(&pci_dev->intr_handle,
qede_interrupt_handler_intx,
(void *)eth_dev);
break;
default:
int_mode = ECORE_INT_MODE_MSIX;
rte_intr_callback_register(&pci_dev->intr_handle,
qede_interrupt_handler,
(void *)eth_dev);
}
if (rte_intr_enable(&pci_dev->intr_handle)) {
DP_ERR(edev, "rte_intr_enable() failed\n");
return -ENODEV;
}
/* Start the Slowpath-process */
memset(&params, 0, sizeof(struct qed_slowpath_params));
params.int_mode = int_mode;
params.drv_major = QEDE_PMD_VERSION_MAJOR;
params.drv_minor = QEDE_PMD_VERSION_MINOR;
params.drv_rev = QEDE_PMD_VERSION_REVISION;
params.drv_eng = QEDE_PMD_VERSION_PATCH;
strncpy((char *)params.name, QEDE_PMD_VER_PREFIX,
QEDE_PMD_DRV_VER_STR_SIZE);
/* For CMT mode device do periodic polling for slowpath events.
* This is required since uio device uses only one MSI-x
* interrupt vector but we need one for each engine.
*/
if (ECORE_IS_CMT(edev) && IS_PF(edev)) {
rc = rte_eal_alarm_set(QEDE_SP_TIMER_PERIOD,
qede_poll_sp_sb_cb,
(void *)eth_dev);
if (rc != 0) {
DP_ERR(edev, "Unable to start periodic"
" timer rc %d\n", rc);
return -EINVAL;
}
}
rc = qed_ops->common->slowpath_start(edev, &params);
if (rc) {
DP_ERR(edev, "Cannot start slowpath rc = %d\n", rc);
rte_eal_alarm_cancel(qede_poll_sp_sb_cb,
(void *)eth_dev);
return -ENODEV;
}
rc = qed_ops->fill_dev_info(edev, &dev_info);
if (rc) {
DP_ERR(edev, "Cannot get device_info rc %d\n", rc);
qed_ops->common->slowpath_stop(edev);
qed_ops->common->remove(edev);
rte_eal_alarm_cancel(qede_poll_sp_sb_cb,
(void *)eth_dev);
return -ENODEV;
}
qede_alloc_etherdev(adapter, &dev_info);
adapter->ops->common->set_name(edev, edev->name);
if (!is_vf)
adapter->dev_info.num_mac_filters =
(uint32_t)RESC_NUM(ECORE_LEADING_HWFN(edev),
ECORE_MAC);
else
ecore_vf_get_num_mac_filters(ECORE_LEADING_HWFN(edev),
(uint32_t *)&adapter->dev_info.num_mac_filters);
/* Allocate memory for storing MAC addr */
eth_dev->data->mac_addrs = rte_zmalloc(edev->name,
(ETHER_ADDR_LEN *
adapter->dev_info.num_mac_filters),
RTE_CACHE_LINE_SIZE);
if (eth_dev->data->mac_addrs == NULL) {
DP_ERR(edev, "Failed to allocate MAC address\n");
qed_ops->common->slowpath_stop(edev);
qed_ops->common->remove(edev);
rte_eal_alarm_cancel(qede_poll_sp_sb_cb,
(void *)eth_dev);
return -ENOMEM;
}
if (!is_vf) {
ether_addr_copy((struct ether_addr *)edev->hwfns[0].
hw_info.hw_mac_addr,
&eth_dev->data->mac_addrs[0]);
ether_addr_copy(&eth_dev->data->mac_addrs[0],
&adapter->primary_mac);
} else {
ecore_vf_read_bulletin(ECORE_LEADING_HWFN(edev),
&bulletin_change);
if (bulletin_change) {
is_mac_exist =
ecore_vf_bulletin_get_forced_mac(
ECORE_LEADING_HWFN(edev),
vf_mac,
&is_mac_forced);
if (is_mac_exist) {
DP_INFO(edev, "VF macaddr received from PF\n");
ether_addr_copy((struct ether_addr *)&vf_mac,
&eth_dev->data->mac_addrs[0]);
ether_addr_copy(&eth_dev->data->mac_addrs[0],
&adapter->primary_mac);
} else {
DP_ERR(edev, "No VF macaddr assigned\n");
}
}
}
eth_dev->dev_ops = (is_vf) ? &qede_eth_vf_dev_ops : &qede_eth_dev_ops;
if (do_once) {
qede_print_adapter_info(adapter);
do_once = false;
}
/* Bring-up the link */
qede_dev_set_link_state(eth_dev, true);
adapter->num_tx_queues = 0;
adapter->num_rx_queues = 0;
SLIST_INIT(&adapter->arfs_info.arfs_list_head);
SLIST_INIT(&adapter->vlan_list_head);
SLIST_INIT(&adapter->uc_list_head);
SLIST_INIT(&adapter->mc_list_head);
adapter->mtu = ETHER_MTU;
adapter->vport_started = false;
/* VF tunnel offloads is enabled by default in PF driver */
adapter->vxlan.num_filters = 0;
adapter->geneve.num_filters = 0;
adapter->ipgre.num_filters = 0;
if (is_vf) {
adapter->vxlan.enable = true;
adapter->vxlan.filter_type = ETH_TUNNEL_FILTER_IMAC |
ETH_TUNNEL_FILTER_IVLAN;
adapter->vxlan.udp_port = QEDE_VXLAN_DEF_PORT;
adapter->geneve.enable = true;
adapter->geneve.filter_type = ETH_TUNNEL_FILTER_IMAC |
ETH_TUNNEL_FILTER_IVLAN;
adapter->geneve.udp_port = QEDE_GENEVE_DEF_PORT;
adapter->ipgre.enable = true;
adapter->ipgre.filter_type = ETH_TUNNEL_FILTER_IMAC |
ETH_TUNNEL_FILTER_IVLAN;
} else {
adapter->vxlan.enable = false;
adapter->geneve.enable = false;
adapter->ipgre.enable = false;
}
DP_INFO(edev, "MAC address : %02x:%02x:%02x:%02x:%02x:%02x\n",
adapter->primary_mac.addr_bytes[0],
adapter->primary_mac.addr_bytes[1],
adapter->primary_mac.addr_bytes[2],
adapter->primary_mac.addr_bytes[3],
adapter->primary_mac.addr_bytes[4],
adapter->primary_mac.addr_bytes[5]);
DP_INFO(edev, "Device initialized\n");
return 0;
}
static int qedevf_eth_dev_init(struct rte_eth_dev *eth_dev)
{
return qede_common_dev_init(eth_dev, 1);
}
static int qede_eth_dev_init(struct rte_eth_dev *eth_dev)
{
return qede_common_dev_init(eth_dev, 0);
}
static int qede_dev_common_uninit(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
PMD_INIT_FUNC_TRACE(edev);
/* only uninitialize in the primary process */
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
/* safe to close dev here */
qede_dev_close(eth_dev);
eth_dev->dev_ops = NULL;
eth_dev->rx_pkt_burst = NULL;
eth_dev->tx_pkt_burst = NULL;
return 0;
}
static int qede_eth_dev_uninit(struct rte_eth_dev *eth_dev)
{
return qede_dev_common_uninit(eth_dev);
}
static int qedevf_eth_dev_uninit(struct rte_eth_dev *eth_dev)
{
return qede_dev_common_uninit(eth_dev);
}
static const struct rte_pci_id pci_id_qedevf_map[] = {
#define QEDEVF_RTE_PCI_DEVICE(dev) RTE_PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, dev)
{
QEDEVF_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_NX2_VF)
},
{
QEDEVF_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_57980S_IOV)
},
{
QEDEVF_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_AH_IOV)
},
{.vendor_id = 0,}
};
static const struct rte_pci_id pci_id_qede_map[] = {
#define QEDE_RTE_PCI_DEVICE(dev) RTE_PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, dev)
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_NX2_57980E)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_NX2_57980S)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_57980S_40)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_57980S_25)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_57980S_100)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_57980S_50)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_AH_50G)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_AH_10G)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_AH_40G)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_AH_25G)
},
{.vendor_id = 0,}
};
static int qedevf_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct qede_dev), qedevf_eth_dev_init);
}
static int qedevf_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, qedevf_eth_dev_uninit);
}
static struct rte_pci_driver rte_qedevf_pmd = {
.id_table = pci_id_qedevf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
.probe = qedevf_eth_dev_pci_probe,
.remove = qedevf_eth_dev_pci_remove,
};
static int qede_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct qede_dev), qede_eth_dev_init);
}
static int qede_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, qede_eth_dev_uninit);
}
static struct rte_pci_driver rte_qede_pmd = {
.id_table = pci_id_qede_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
.probe = qede_eth_dev_pci_probe,
.remove = qede_eth_dev_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_qede, rte_qede_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_qede, pci_id_qede_map);
RTE_PMD_REGISTER_KMOD_DEP(net_qede, "* igb_uio | uio_pci_generic | vfio-pci");
RTE_PMD_REGISTER_PCI(net_qede_vf, rte_qedevf_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_qede_vf, pci_id_qedevf_map);
RTE_PMD_REGISTER_KMOD_DEP(net_qede_vf, "* igb_uio | vfio-pci");
RTE_INIT(qede_init_log)
{
qede_logtype_init = rte_log_register("pmd.net.qede.init");
if (qede_logtype_init >= 0)
rte_log_set_level(qede_logtype_init, RTE_LOG_NOTICE);
qede_logtype_driver = rte_log_register("pmd.net.qede.driver");
if (qede_logtype_driver >= 0)
rte_log_set_level(qede_logtype_driver, RTE_LOG_NOTICE);
}