f-stack/dpdk/drivers/raw/dpaa2_qdma/dpaa2_qdma.c

1499 lines
36 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2018-2019 NXP
*/
#include <string.h>
#include <rte_eal.h>
#include <rte_fslmc.h>
#include <rte_atomic.h>
#include <rte_lcore.h>
#include <rte_rawdev.h>
#include <rte_rawdev_pmd.h>
#include <rte_malloc.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include <rte_kvargs.h>
#include <mc/fsl_dpdmai.h>
#include <portal/dpaa2_hw_pvt.h>
#include <portal/dpaa2_hw_dpio.h>
#include "rte_pmd_dpaa2_qdma.h"
#include "dpaa2_qdma.h"
#include "dpaa2_qdma_logs.h"
#define DPAA2_QDMA_NO_PREFETCH "no_prefetch"
/* Dynamic log type identifier */
int dpaa2_qdma_logtype;
uint32_t dpaa2_coherent_no_alloc_cache;
uint32_t dpaa2_coherent_alloc_cache;
/* QDMA device */
static struct qdma_device qdma_dev;
/* QDMA H/W queues list */
TAILQ_HEAD(qdma_hw_queue_list, qdma_hw_queue);
static struct qdma_hw_queue_list qdma_queue_list
= TAILQ_HEAD_INITIALIZER(qdma_queue_list);
/* QDMA Virtual Queues */
static struct qdma_virt_queue *qdma_vqs;
/* QDMA per core data */
static struct qdma_per_core_info qdma_core_info[RTE_MAX_LCORE];
typedef int (dpdmai_dev_dequeue_multijob_t)(struct dpaa2_dpdmai_dev *dpdmai_dev,
uint16_t rxq_id,
uint16_t *vq_id,
struct rte_qdma_job **job,
uint16_t nb_jobs);
dpdmai_dev_dequeue_multijob_t *dpdmai_dev_dequeue_multijob;
typedef uint16_t (dpdmai_dev_get_job_t)(const struct qbman_fd *fd,
struct rte_qdma_job **job);
typedef int (dpdmai_dev_set_fd_t)(struct qbman_fd *fd,
struct rte_qdma_job *job,
struct rte_qdma_rbp *rbp,
uint16_t vq_id);
dpdmai_dev_get_job_t *dpdmai_dev_get_job;
dpdmai_dev_set_fd_t *dpdmai_dev_set_fd;
static inline int
qdma_populate_fd_pci(phys_addr_t src, phys_addr_t dest,
uint32_t len, struct qbman_fd *fd,
struct rte_qdma_rbp *rbp)
{
fd->simple_pci.saddr_lo = lower_32_bits((uint64_t) (src));
fd->simple_pci.saddr_hi = upper_32_bits((uint64_t) (src));
fd->simple_pci.len_sl = len;
fd->simple_pci.bmt = 1;
fd->simple_pci.fmt = 3;
fd->simple_pci.sl = 1;
fd->simple_pci.ser = 1;
fd->simple_pci.sportid = rbp->sportid; /*pcie 3 */
fd->simple_pci.srbp = rbp->srbp;
if (rbp->srbp)
fd->simple_pci.rdttype = 0;
else
fd->simple_pci.rdttype = dpaa2_coherent_alloc_cache;
/*dest is pcie memory */
fd->simple_pci.dportid = rbp->dportid; /*pcie 3 */
fd->simple_pci.drbp = rbp->drbp;
if (rbp->drbp)
fd->simple_pci.wrttype = 0;
else
fd->simple_pci.wrttype = dpaa2_coherent_no_alloc_cache;
fd->simple_pci.daddr_lo = lower_32_bits((uint64_t) (dest));
fd->simple_pci.daddr_hi = upper_32_bits((uint64_t) (dest));
return 0;
}
static inline int
qdma_populate_fd_ddr(phys_addr_t src, phys_addr_t dest,
uint32_t len, struct qbman_fd *fd)
{
fd->simple_ddr.saddr_lo = lower_32_bits((uint64_t) (src));
fd->simple_ddr.saddr_hi = upper_32_bits((uint64_t) (src));
fd->simple_ddr.len = len;
fd->simple_ddr.bmt = 1;
fd->simple_ddr.fmt = 3;
fd->simple_ddr.sl = 1;
fd->simple_ddr.ser = 1;
/**
* src If RBP=0 {NS,RDTTYPE[3:0]}: 0_1011
* Coherent copy of cacheable memory,
* lookup in downstream cache, no allocate
* on miss
*/
fd->simple_ddr.rns = 0;
fd->simple_ddr.rdttype = dpaa2_coherent_alloc_cache;
/**
* dest If RBP=0 {NS,WRTTYPE[3:0]}: 0_0111
* Coherent write of cacheable memory,
* lookup in downstream cache, no allocate on miss
*/
fd->simple_ddr.wns = 0;
fd->simple_ddr.wrttype = dpaa2_coherent_no_alloc_cache;
fd->simple_ddr.daddr_lo = lower_32_bits((uint64_t) (dest));
fd->simple_ddr.daddr_hi = upper_32_bits((uint64_t) (dest));
return 0;
}
static void
dpaa2_qdma_populate_fle(struct qbman_fle *fle,
struct rte_qdma_rbp *rbp,
uint64_t src, uint64_t dest,
size_t len, uint32_t flags)
{
struct qdma_sdd *sdd;
sdd = (struct qdma_sdd *)((uint8_t *)(fle) +
(DPAA2_QDMA_MAX_FLE * sizeof(struct qbman_fle)));
/* first frame list to source descriptor */
DPAA2_SET_FLE_ADDR(fle, DPAA2_VADDR_TO_IOVA(sdd));
DPAA2_SET_FLE_LEN(fle, (2 * (sizeof(struct qdma_sdd))));
/* source and destination descriptor */
if (rbp && rbp->enable) {
/* source */
sdd->read_cmd.portid = rbp->sportid;
sdd->rbpcmd_simple.pfid = rbp->spfid;
sdd->rbpcmd_simple.vfid = rbp->svfid;
if (rbp->srbp) {
sdd->read_cmd.rbp = rbp->srbp;
sdd->read_cmd.rdtype = DPAA2_RBP_MEM_RW;
} else {
sdd->read_cmd.rdtype = dpaa2_coherent_no_alloc_cache;
}
sdd++;
/* destination */
sdd->write_cmd.portid = rbp->dportid;
sdd->rbpcmd_simple.pfid = rbp->dpfid;
sdd->rbpcmd_simple.vfid = rbp->dvfid;
if (rbp->drbp) {
sdd->write_cmd.rbp = rbp->drbp;
sdd->write_cmd.wrttype = DPAA2_RBP_MEM_RW;
} else {
sdd->write_cmd.wrttype = dpaa2_coherent_alloc_cache;
}
} else {
sdd->read_cmd.rdtype = dpaa2_coherent_no_alloc_cache;
sdd++;
sdd->write_cmd.wrttype = dpaa2_coherent_alloc_cache;
}
fle++;
/* source frame list to source buffer */
if (flags & RTE_QDMA_JOB_SRC_PHY) {
DPAA2_SET_FLE_ADDR(fle, src);
DPAA2_SET_FLE_BMT(fle);
} else {
DPAA2_SET_FLE_ADDR(fle, DPAA2_VADDR_TO_IOVA(src));
}
DPAA2_SET_FLE_LEN(fle, len);
fle++;
/* destination frame list to destination buffer */
if (flags & RTE_QDMA_JOB_DEST_PHY) {
DPAA2_SET_FLE_BMT(fle);
DPAA2_SET_FLE_ADDR(fle, dest);
} else {
DPAA2_SET_FLE_ADDR(fle, DPAA2_VADDR_TO_IOVA(dest));
}
DPAA2_SET_FLE_LEN(fle, len);
/* Final bit: 1, for last frame list */
DPAA2_SET_FLE_FIN(fle);
}
static inline int dpdmai_dev_set_fd_us(struct qbman_fd *fd,
struct rte_qdma_job *job,
struct rte_qdma_rbp *rbp,
uint16_t vq_id)
{
struct rte_qdma_job **ppjob;
size_t iova;
int ret = 0;
if (job->src & QDMA_RBP_UPPER_ADDRESS_MASK)
iova = (size_t)job->dest;
else
iova = (size_t)job->src;
/* Set the metadata */
job->vq_id = vq_id;
ppjob = (struct rte_qdma_job **)DPAA2_IOVA_TO_VADDR(iova) - 1;
*ppjob = job;
if ((rbp->drbp == 1) || (rbp->srbp == 1))
ret = qdma_populate_fd_pci((phys_addr_t) job->src,
(phys_addr_t) job->dest,
job->len, fd, rbp);
else
ret = qdma_populate_fd_ddr((phys_addr_t) job->src,
(phys_addr_t) job->dest,
job->len, fd);
return ret;
}
static inline int dpdmai_dev_set_fd_lf(struct qbman_fd *fd,
struct rte_qdma_job *job,
struct rte_qdma_rbp *rbp,
uint16_t vq_id)
{
struct rte_qdma_job **ppjob;
struct qbman_fle *fle;
int ret = 0;
/*
* Get an FLE/SDD from FLE pool.
* Note: IO metadata is before the FLE and SDD memory.
*/
ret = rte_mempool_get(qdma_dev.fle_pool, (void **)(&ppjob));
if (ret) {
DPAA2_QDMA_DP_DEBUG("Memory alloc failed for FLE");
return ret;
}
/* Set the metadata */
job->vq_id = vq_id;
*ppjob = job;
fle = (struct qbman_fle *)(ppjob + 1);
DPAA2_SET_FD_ADDR(fd, DPAA2_VADDR_TO_IOVA(fle));
DPAA2_SET_FD_COMPOUND_FMT(fd);
DPAA2_SET_FD_FRC(fd, QDMA_SER_CTX);
/* Populate FLE */
memset(fle, 0, QDMA_FLE_POOL_SIZE);
dpaa2_qdma_populate_fle(fle, rbp, job->src, job->dest,
job->len, job->flags);
return 0;
}
static inline uint16_t dpdmai_dev_get_job_us(const struct qbman_fd *fd,
struct rte_qdma_job **job)
{
uint16_t vqid;
size_t iova;
struct rte_qdma_job **ppjob;
if (fd->simple_pci.saddr_hi & (QDMA_RBP_UPPER_ADDRESS_MASK >> 32))
iova = (size_t) (((uint64_t)fd->simple_pci.daddr_hi) << 32
| (uint64_t)fd->simple_pci.daddr_lo);
else
iova = (size_t)(((uint64_t)fd->simple_pci.saddr_hi) << 32
| (uint64_t)fd->simple_pci.saddr_lo);
ppjob = (struct rte_qdma_job **)DPAA2_IOVA_TO_VADDR(iova) - 1;
*job = (struct rte_qdma_job *)*ppjob;
(*job)->status = (fd->simple_pci.acc_err << 8) | (fd->simple_pci.error);
vqid = (*job)->vq_id;
return vqid;
}
static inline uint16_t dpdmai_dev_get_job_lf(const struct qbman_fd *fd,
struct rte_qdma_job **job)
{
struct rte_qdma_job **ppjob;
uint16_t vqid;
/*
* Fetch metadata from FLE. job and vq_id were set
* in metadata in the enqueue operation.
*/
ppjob = (struct rte_qdma_job **)
DPAA2_IOVA_TO_VADDR(DPAA2_GET_FD_ADDR(fd));
ppjob -= 1;
*job = (struct rte_qdma_job *)*ppjob;
(*job)->status = (DPAA2_GET_FD_ERR(fd) << 8) |
(DPAA2_GET_FD_FRC(fd) & 0xFF);
vqid = (*job)->vq_id;
/* Free FLE to the pool */
rte_mempool_put(qdma_dev.fle_pool, (void *)ppjob);
return vqid;
}
static struct qdma_hw_queue *
alloc_hw_queue(uint32_t lcore_id)
{
struct qdma_hw_queue *queue = NULL;
DPAA2_QDMA_FUNC_TRACE();
/* Get a free queue from the list */
TAILQ_FOREACH(queue, &qdma_queue_list, next) {
if (queue->num_users == 0) {
queue->lcore_id = lcore_id;
queue->num_users++;
break;
}
}
return queue;
}
static void
free_hw_queue(struct qdma_hw_queue *queue)
{
DPAA2_QDMA_FUNC_TRACE();
queue->num_users--;
}
static struct qdma_hw_queue *
get_hw_queue(uint32_t lcore_id)
{
struct qdma_per_core_info *core_info;
struct qdma_hw_queue *queue, *temp;
uint32_t least_num_users;
int num_hw_queues, i;
DPAA2_QDMA_FUNC_TRACE();
core_info = &qdma_core_info[lcore_id];
num_hw_queues = core_info->num_hw_queues;
/*
* Allocate a HW queue if there are less queues
* than maximum per core queues configured
*/
if (num_hw_queues < qdma_dev.max_hw_queues_per_core) {
queue = alloc_hw_queue(lcore_id);
if (queue) {
core_info->hw_queues[num_hw_queues] = queue;
core_info->num_hw_queues++;
return queue;
}
}
queue = core_info->hw_queues[0];
/* In case there is no queue associated with the core return NULL */
if (!queue)
return NULL;
/* Fetch the least loaded H/W queue */
least_num_users = core_info->hw_queues[0]->num_users;
for (i = 0; i < num_hw_queues; i++) {
temp = core_info->hw_queues[i];
if (temp->num_users < least_num_users)
queue = temp;
}
if (queue)
queue->num_users++;
return queue;
}
static void
put_hw_queue(struct qdma_hw_queue *queue)
{
struct qdma_per_core_info *core_info;
int lcore_id, num_hw_queues, i;
DPAA2_QDMA_FUNC_TRACE();
/*
* If this is the last user of the queue free it.
* Also remove it from QDMA core info.
*/
if (queue->num_users == 1) {
free_hw_queue(queue);
/* Remove the physical queue from core info */
lcore_id = queue->lcore_id;
core_info = &qdma_core_info[lcore_id];
num_hw_queues = core_info->num_hw_queues;
for (i = 0; i < num_hw_queues; i++) {
if (queue == core_info->hw_queues[i])
break;
}
for (; i < num_hw_queues - 1; i++)
core_info->hw_queues[i] = core_info->hw_queues[i + 1];
core_info->hw_queues[i] = NULL;
} else {
queue->num_users--;
}
}
int
rte_qdma_init(void)
{
DPAA2_QDMA_FUNC_TRACE();
rte_spinlock_init(&qdma_dev.lock);
return 0;
}
void
rte_qdma_attr_get(struct rte_qdma_attr *qdma_attr)
{
DPAA2_QDMA_FUNC_TRACE();
qdma_attr->num_hw_queues = qdma_dev.num_hw_queues;
}
int
rte_qdma_reset(void)
{
struct qdma_hw_queue *queue;
int i;
DPAA2_QDMA_FUNC_TRACE();
/* In case QDMA device is not in stopped state, return -EBUSY */
if (qdma_dev.state == 1) {
DPAA2_QDMA_ERR(
"Device is in running state. Stop before reset.");
return -EBUSY;
}
/* In case there are pending jobs on any VQ, return -EBUSY */
for (i = 0; i < qdma_dev.max_vqs; i++) {
if (qdma_vqs[i].in_use && (qdma_vqs[i].num_enqueues !=
qdma_vqs[i].num_dequeues))
DPAA2_QDMA_ERR("Jobs are still pending on VQ: %d", i);
return -EBUSY;
}
/* Reset HW queues */
TAILQ_FOREACH(queue, &qdma_queue_list, next)
queue->num_users = 0;
/* Reset and free virtual queues */
for (i = 0; i < qdma_dev.max_vqs; i++) {
if (qdma_vqs[i].status_ring)
rte_ring_free(qdma_vqs[i].status_ring);
}
if (qdma_vqs)
rte_free(qdma_vqs);
qdma_vqs = NULL;
/* Reset per core info */
memset(&qdma_core_info, 0,
sizeof(struct qdma_per_core_info) * RTE_MAX_LCORE);
/* Free the FLE pool */
if (qdma_dev.fle_pool)
rte_mempool_free(qdma_dev.fle_pool);
/* Reset QDMA device structure */
qdma_dev.mode = RTE_QDMA_MODE_HW;
qdma_dev.max_hw_queues_per_core = 0;
qdma_dev.fle_pool = NULL;
qdma_dev.fle_pool_count = 0;
qdma_dev.max_vqs = 0;
return 0;
}
int
rte_qdma_configure(struct rte_qdma_config *qdma_config)
{
int ret;
char fle_pool_name[32]; /* RTE_MEMZONE_NAMESIZE = 32 */
DPAA2_QDMA_FUNC_TRACE();
/* In case QDMA device is not in stopped state, return -EBUSY */
if (qdma_dev.state == 1) {
DPAA2_QDMA_ERR(
"Device is in running state. Stop before config.");
return -1;
}
/* Reset the QDMA device */
ret = rte_qdma_reset();
if (ret) {
DPAA2_QDMA_ERR("Resetting QDMA failed");
return ret;
}
/* Set mode */
qdma_dev.mode = qdma_config->mode;
/* Set max HW queue per core */
if (qdma_config->max_hw_queues_per_core > MAX_HW_QUEUE_PER_CORE) {
DPAA2_QDMA_ERR("H/W queues per core is more than: %d",
MAX_HW_QUEUE_PER_CORE);
return -EINVAL;
}
qdma_dev.max_hw_queues_per_core =
qdma_config->max_hw_queues_per_core;
/* Allocate Virtual Queues */
qdma_vqs = rte_malloc("qdma_virtual_queues",
(sizeof(struct qdma_virt_queue) * qdma_config->max_vqs),
RTE_CACHE_LINE_SIZE);
if (!qdma_vqs) {
DPAA2_QDMA_ERR("qdma_virtual_queues allocation failed");
return -ENOMEM;
}
qdma_dev.max_vqs = qdma_config->max_vqs;
/* Allocate FLE pool; just append PID so that in case of
* multiprocess, the pool's don't collide.
*/
snprintf(fle_pool_name, sizeof(fle_pool_name), "qdma_fle_pool%u",
getpid());
qdma_dev.fle_pool = rte_mempool_create(fle_pool_name,
qdma_config->fle_pool_count, QDMA_FLE_POOL_SIZE,
QDMA_FLE_CACHE_SIZE(qdma_config->fle_pool_count), 0,
NULL, NULL, NULL, NULL, SOCKET_ID_ANY, 0);
if (!qdma_dev.fle_pool) {
DPAA2_QDMA_ERR("qdma_fle_pool create failed");
rte_free(qdma_vqs);
qdma_vqs = NULL;
return -ENOMEM;
}
qdma_dev.fle_pool_count = qdma_config->fle_pool_count;
if (qdma_config->format == RTE_QDMA_ULTRASHORT_FORMAT) {
dpdmai_dev_get_job = dpdmai_dev_get_job_us;
dpdmai_dev_set_fd = dpdmai_dev_set_fd_us;
} else {
dpdmai_dev_get_job = dpdmai_dev_get_job_lf;
dpdmai_dev_set_fd = dpdmai_dev_set_fd_lf;
}
return 0;
}
int
rte_qdma_start(void)
{
DPAA2_QDMA_FUNC_TRACE();
qdma_dev.state = 1;
return 0;
}
int
rte_qdma_vq_create(uint32_t lcore_id, uint32_t flags)
{
char ring_name[32];
int i;
DPAA2_QDMA_FUNC_TRACE();
rte_spinlock_lock(&qdma_dev.lock);
/* Get a free Virtual Queue */
for (i = 0; i < qdma_dev.max_vqs; i++) {
if (qdma_vqs[i].in_use == 0)
break;
}
/* Return in case no VQ is free */
if (i == qdma_dev.max_vqs) {
rte_spinlock_unlock(&qdma_dev.lock);
DPAA2_QDMA_ERR("Unable to get lock on QDMA device");
return -ENODEV;
}
if (qdma_dev.mode == RTE_QDMA_MODE_HW ||
(flags & RTE_QDMA_VQ_EXCLUSIVE_PQ)) {
/* Allocate HW queue for a VQ */
qdma_vqs[i].hw_queue = alloc_hw_queue(lcore_id);
qdma_vqs[i].exclusive_hw_queue = 1;
} else {
/* Allocate a Ring for Virutal Queue in VQ mode */
snprintf(ring_name, sizeof(ring_name), "status ring %d", i);
qdma_vqs[i].status_ring = rte_ring_create(ring_name,
qdma_dev.fle_pool_count, rte_socket_id(), 0);
if (!qdma_vqs[i].status_ring) {
DPAA2_QDMA_ERR("Status ring creation failed for vq");
rte_spinlock_unlock(&qdma_dev.lock);
return rte_errno;
}
/* Get a HW queue (shared) for a VQ */
qdma_vqs[i].hw_queue = get_hw_queue(lcore_id);
qdma_vqs[i].exclusive_hw_queue = 0;
}
if (qdma_vqs[i].hw_queue == NULL) {
DPAA2_QDMA_ERR("No H/W queue available for VQ");
if (qdma_vqs[i].status_ring)
rte_ring_free(qdma_vqs[i].status_ring);
qdma_vqs[i].status_ring = NULL;
rte_spinlock_unlock(&qdma_dev.lock);
return -ENODEV;
}
qdma_vqs[i].in_use = 1;
qdma_vqs[i].lcore_id = lcore_id;
memset(&qdma_vqs[i].rbp, 0, sizeof(struct rte_qdma_rbp));
rte_spinlock_unlock(&qdma_dev.lock);
return i;
}
/*create vq for route-by-port*/
int
rte_qdma_vq_create_rbp(uint32_t lcore_id, uint32_t flags,
struct rte_qdma_rbp *rbp)
{
int i;
i = rte_qdma_vq_create(lcore_id, flags);
memcpy(&qdma_vqs[i].rbp, rbp, sizeof(struct rte_qdma_rbp));
return i;
}
static int
dpdmai_dev_enqueue_multi(struct dpaa2_dpdmai_dev *dpdmai_dev,
uint16_t txq_id,
uint16_t vq_id,
struct rte_qdma_rbp *rbp,
struct rte_qdma_job **job,
uint16_t nb_jobs)
{
struct qbman_fd fd[RTE_QDMA_BURST_NB_MAX];
struct dpaa2_queue *txq;
struct qbman_eq_desc eqdesc;
struct qbman_swp *swp;
int ret;
uint32_t num_to_send = 0;
uint16_t num_tx = 0;
if (unlikely(!DPAA2_PER_LCORE_DPIO)) {
ret = dpaa2_affine_qbman_swp();
if (ret) {
DPAA2_QDMA_ERR("Failure in affining portal");
return 0;
}
}
swp = DPAA2_PER_LCORE_PORTAL;
txq = &(dpdmai_dev->tx_queue[txq_id]);
/* Prepare enqueue descriptor */
qbman_eq_desc_clear(&eqdesc);
qbman_eq_desc_set_fq(&eqdesc, txq->fqid);
qbman_eq_desc_set_no_orp(&eqdesc, 0);
qbman_eq_desc_set_response(&eqdesc, 0, 0);
memset(fd, 0, RTE_QDMA_BURST_NB_MAX * sizeof(struct qbman_fd));
while (nb_jobs > 0) {
uint32_t loop;
num_to_send = (nb_jobs > dpaa2_eqcr_size) ?
dpaa2_eqcr_size : nb_jobs;
for (loop = 0; loop < num_to_send; loop++) {
ret = dpdmai_dev_set_fd(&fd[loop],
job[num_tx], rbp, vq_id);
if (ret < 0) {
/* Set nb_jobs to loop, so outer while loop
* breaks out.
*/
nb_jobs = loop;
break;
}
num_tx++;
}
/* Enqueue the packet to the QBMAN */
uint32_t enqueue_loop = 0, retry_count = 0;
while (enqueue_loop < loop) {
ret = qbman_swp_enqueue_multiple(swp,
&eqdesc,
&fd[enqueue_loop],
NULL,
loop - enqueue_loop);
if (unlikely(ret < 0)) {
retry_count++;
if (retry_count > DPAA2_MAX_TX_RETRY_COUNT)
return num_tx - (loop - enqueue_loop);
} else {
enqueue_loop += ret;
retry_count = 0;
}
}
nb_jobs -= loop;
}
return num_tx;
}
int
rte_qdma_vq_enqueue_multi(uint16_t vq_id,
struct rte_qdma_job **job,
uint16_t nb_jobs)
{
struct qdma_virt_queue *qdma_vq = &qdma_vqs[vq_id];
struct qdma_hw_queue *qdma_pq = qdma_vq->hw_queue;
struct dpaa2_dpdmai_dev *dpdmai_dev = qdma_pq->dpdmai_dev;
int ret;
/* Return error in case of wrong lcore_id */
if (rte_lcore_id() != qdma_vq->lcore_id) {
DPAA2_QDMA_ERR("QDMA enqueue for vqid %d on wrong core",
vq_id);
return -EINVAL;
}
ret = dpdmai_dev_enqueue_multi(dpdmai_dev,
qdma_pq->queue_id,
vq_id,
&qdma_vq->rbp,
job,
nb_jobs);
if (ret < 0) {
DPAA2_QDMA_ERR("DPDMAI device enqueue failed: %d", ret);
return ret;
}
qdma_vq->num_enqueues += ret;
return ret;
}
int
rte_qdma_vq_enqueue(uint16_t vq_id,
struct rte_qdma_job *job)
{
return rte_qdma_vq_enqueue_multi(vq_id, &job, 1);
}
/* Function to receive a QDMA job for a given device and queue*/
static int
dpdmai_dev_dequeue_multijob_prefetch(
struct dpaa2_dpdmai_dev *dpdmai_dev,
uint16_t rxq_id,
uint16_t *vq_id,
struct rte_qdma_job **job,
uint16_t nb_jobs)
{
struct dpaa2_queue *rxq;
struct qbman_result *dq_storage, *dq_storage1 = NULL;
struct qbman_pull_desc pulldesc;
struct qbman_swp *swp;
struct queue_storage_info_t *q_storage;
uint32_t fqid;
uint8_t status, pending;
uint8_t num_rx = 0;
const struct qbman_fd *fd;
uint16_t vqid;
int ret, pull_size;
if (unlikely(!DPAA2_PER_LCORE_DPIO)) {
ret = dpaa2_affine_qbman_swp();
if (ret) {
DPAA2_QDMA_ERR("Failure in affining portal");
return 0;
}
}
swp = DPAA2_PER_LCORE_PORTAL;
pull_size = (nb_jobs > dpaa2_dqrr_size) ? dpaa2_dqrr_size : nb_jobs;
rxq = &(dpdmai_dev->rx_queue[rxq_id]);
fqid = rxq->fqid;
q_storage = rxq->q_storage;
if (unlikely(!q_storage->active_dqs)) {
q_storage->toggle = 0;
dq_storage = q_storage->dq_storage[q_storage->toggle];
q_storage->last_num_pkts = pull_size;
qbman_pull_desc_clear(&pulldesc);
qbman_pull_desc_set_numframes(&pulldesc,
q_storage->last_num_pkts);
qbman_pull_desc_set_fq(&pulldesc, fqid);
qbman_pull_desc_set_storage(&pulldesc, dq_storage,
(size_t)(DPAA2_VADDR_TO_IOVA(dq_storage)), 1);
if (check_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index)) {
while (!qbman_check_command_complete(
get_swp_active_dqs(
DPAA2_PER_LCORE_DPIO->index)))
;
clear_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index);
}
while (1) {
if (qbman_swp_pull(swp, &pulldesc)) {
DPAA2_QDMA_DP_WARN(
"VDQ command not issued.QBMAN busy\n");
/* Portal was busy, try again */
continue;
}
break;
}
q_storage->active_dqs = dq_storage;
q_storage->active_dpio_id = DPAA2_PER_LCORE_DPIO->index;
set_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index,
dq_storage);
}
dq_storage = q_storage->active_dqs;
rte_prefetch0((void *)(size_t)(dq_storage));
rte_prefetch0((void *)(size_t)(dq_storage + 1));
/* Prepare next pull descriptor. This will give space for the
* prefething done on DQRR entries
*/
q_storage->toggle ^= 1;
dq_storage1 = q_storage->dq_storage[q_storage->toggle];
qbman_pull_desc_clear(&pulldesc);
qbman_pull_desc_set_numframes(&pulldesc, pull_size);
qbman_pull_desc_set_fq(&pulldesc, fqid);
qbman_pull_desc_set_storage(&pulldesc, dq_storage1,
(size_t)(DPAA2_VADDR_TO_IOVA(dq_storage1)), 1);
/* Check if the previous issued command is completed.
* Also seems like the SWP is shared between the Ethernet Driver
* and the SEC driver.
*/
while (!qbman_check_command_complete(dq_storage))
;
if (dq_storage == get_swp_active_dqs(q_storage->active_dpio_id))
clear_swp_active_dqs(q_storage->active_dpio_id);
pending = 1;
do {
/* Loop until the dq_storage is updated with
* new token by QBMAN
*/
while (!qbman_check_new_result(dq_storage))
;
rte_prefetch0((void *)((size_t)(dq_storage + 2)));
/* Check whether Last Pull command is Expired and
* setting Condition for Loop termination
*/
if (qbman_result_DQ_is_pull_complete(dq_storage)) {
pending = 0;
/* Check for valid frame. */
status = qbman_result_DQ_flags(dq_storage);
if (unlikely((status & QBMAN_DQ_STAT_VALIDFRAME) == 0))
continue;
}
fd = qbman_result_DQ_fd(dq_storage);
vqid = dpdmai_dev_get_job(fd, &job[num_rx]);
if (vq_id)
vq_id[num_rx] = vqid;
dq_storage++;
num_rx++;
} while (pending);
if (check_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index)) {
while (!qbman_check_command_complete(
get_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index)))
;
clear_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index);
}
/* issue a volatile dequeue command for next pull */
while (1) {
if (qbman_swp_pull(swp, &pulldesc)) {
DPAA2_QDMA_DP_WARN("VDQ command is not issued."
"QBMAN is busy (2)\n");
continue;
}
break;
}
q_storage->active_dqs = dq_storage1;
q_storage->active_dpio_id = DPAA2_PER_LCORE_DPIO->index;
set_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index, dq_storage1);
return num_rx;
}
static int
dpdmai_dev_dequeue_multijob_no_prefetch(
struct dpaa2_dpdmai_dev *dpdmai_dev,
uint16_t rxq_id,
uint16_t *vq_id,
struct rte_qdma_job **job,
uint16_t nb_jobs)
{
struct dpaa2_queue *rxq;
struct qbman_result *dq_storage;
struct qbman_pull_desc pulldesc;
struct qbman_swp *swp;
uint32_t fqid;
uint8_t status, pending;
uint8_t num_rx = 0;
const struct qbman_fd *fd;
uint16_t vqid;
int ret, next_pull = nb_jobs, num_pulled = 0;
if (unlikely(!DPAA2_PER_LCORE_DPIO)) {
ret = dpaa2_affine_qbman_swp();
if (ret) {
DPAA2_QDMA_ERR("Failure in affining portal");
return 0;
}
}
swp = DPAA2_PER_LCORE_PORTAL;
rxq = &(dpdmai_dev->rx_queue[rxq_id]);
fqid = rxq->fqid;
do {
dq_storage = rxq->q_storage->dq_storage[0];
/* Prepare dequeue descriptor */
qbman_pull_desc_clear(&pulldesc);
qbman_pull_desc_set_fq(&pulldesc, fqid);
qbman_pull_desc_set_storage(&pulldesc, dq_storage,
(uint64_t)(DPAA2_VADDR_TO_IOVA(dq_storage)), 1);
if (next_pull > dpaa2_dqrr_size) {
qbman_pull_desc_set_numframes(&pulldesc,
dpaa2_dqrr_size);
next_pull -= dpaa2_dqrr_size;
} else {
qbman_pull_desc_set_numframes(&pulldesc, next_pull);
next_pull = 0;
}
while (1) {
if (qbman_swp_pull(swp, &pulldesc)) {
DPAA2_QDMA_DP_WARN("VDQ command not issued. QBMAN busy");
/* Portal was busy, try again */
continue;
}
break;
}
rte_prefetch0((void *)((size_t)(dq_storage + 1)));
/* Check if the previous issued command is completed. */
while (!qbman_check_command_complete(dq_storage))
;
num_pulled = 0;
pending = 1;
do {
/* Loop until dq_storage is updated
* with new token by QBMAN
*/
while (!qbman_check_new_result(dq_storage))
;
rte_prefetch0((void *)((size_t)(dq_storage + 2)));
if (qbman_result_DQ_is_pull_complete(dq_storage)) {
pending = 0;
/* Check for valid frame. */
status = qbman_result_DQ_flags(dq_storage);
if (unlikely((status &
QBMAN_DQ_STAT_VALIDFRAME) == 0))
continue;
}
fd = qbman_result_DQ_fd(dq_storage);
vqid = dpdmai_dev_get_job(fd, &job[num_rx]);
if (vq_id)
vq_id[num_rx] = vqid;
dq_storage++;
num_rx++;
num_pulled++;
} while (pending);
/* Last VDQ provided all packets and more packets are requested */
} while (next_pull && num_pulled == dpaa2_dqrr_size);
return num_rx;
}
int
rte_qdma_vq_dequeue_multi(uint16_t vq_id,
struct rte_qdma_job **job,
uint16_t nb_jobs)
{
struct qdma_virt_queue *qdma_vq = &qdma_vqs[vq_id];
struct qdma_hw_queue *qdma_pq = qdma_vq->hw_queue;
struct qdma_virt_queue *temp_qdma_vq;
struct dpaa2_dpdmai_dev *dpdmai_dev = qdma_pq->dpdmai_dev;
int ring_count, ret = 0, i;
/* Return error in case of wrong lcore_id */
if (rte_lcore_id() != (unsigned int)(qdma_vq->lcore_id)) {
DPAA2_QDMA_WARN("QDMA dequeue for vqid %d on wrong core",
vq_id);
return -1;
}
/* Only dequeue when there are pending jobs on VQ */
if (qdma_vq->num_enqueues == qdma_vq->num_dequeues)
return 0;
if (qdma_vq->num_enqueues < (qdma_vq->num_dequeues + nb_jobs))
nb_jobs = (qdma_vq->num_enqueues - qdma_vq->num_dequeues);
if (qdma_vq->exclusive_hw_queue) {
/* In case of exclusive queue directly fetch from HW queue */
ret = dpdmai_dev_dequeue_multijob(dpdmai_dev, qdma_pq->queue_id,
NULL, job, nb_jobs);
if (ret < 0) {
DPAA2_QDMA_ERR(
"Dequeue from DPDMAI device failed: %d", ret);
return ret;
}
qdma_vq->num_dequeues += ret;
} else {
uint16_t temp_vq_id[RTE_QDMA_BURST_NB_MAX];
/*
* Get the QDMA completed jobs from the software ring.
* In case they are not available on the ring poke the HW
* to fetch completed jobs from corresponding HW queues
*/
ring_count = rte_ring_count(qdma_vq->status_ring);
if (ring_count < nb_jobs) {
/* TODO - How to have right budget */
ret = dpdmai_dev_dequeue_multijob(dpdmai_dev,
qdma_pq->queue_id,
temp_vq_id, job, nb_jobs);
for (i = 0; i < ret; i++) {
temp_qdma_vq = &qdma_vqs[temp_vq_id[i]];
rte_ring_enqueue(temp_qdma_vq->status_ring,
(void *)(job[i]));
}
ring_count = rte_ring_count(
qdma_vq->status_ring);
}
if (ring_count) {
/* Dequeue job from the software ring
* to provide to the user
*/
ret = rte_ring_dequeue_bulk(qdma_vq->status_ring,
(void **)job, ring_count, NULL);
if (ret)
qdma_vq->num_dequeues += ret;
}
}
return ret;
}
struct rte_qdma_job *
rte_qdma_vq_dequeue(uint16_t vq_id)
{
int ret;
struct rte_qdma_job *job = NULL;
ret = rte_qdma_vq_dequeue_multi(vq_id, &job, 1);
if (ret < 0)
DPAA2_QDMA_DP_WARN("DPDMAI device dequeue failed: %d", ret);
return job;
}
void
rte_qdma_vq_stats(uint16_t vq_id,
struct rte_qdma_vq_stats *vq_status)
{
struct qdma_virt_queue *qdma_vq = &qdma_vqs[vq_id];
if (qdma_vq->in_use) {
vq_status->exclusive_hw_queue = qdma_vq->exclusive_hw_queue;
vq_status->lcore_id = qdma_vq->lcore_id;
vq_status->num_enqueues = qdma_vq->num_enqueues;
vq_status->num_dequeues = qdma_vq->num_dequeues;
vq_status->num_pending_jobs = vq_status->num_enqueues -
vq_status->num_dequeues;
}
}
int
rte_qdma_vq_destroy(uint16_t vq_id)
{
struct qdma_virt_queue *qdma_vq = &qdma_vqs[vq_id];
DPAA2_QDMA_FUNC_TRACE();
/* In case there are pending jobs on any VQ, return -EBUSY */
if (qdma_vq->num_enqueues != qdma_vq->num_dequeues)
return -EBUSY;
rte_spinlock_lock(&qdma_dev.lock);
if (qdma_vq->exclusive_hw_queue)
free_hw_queue(qdma_vq->hw_queue);
else {
if (qdma_vqs->status_ring)
rte_ring_free(qdma_vqs->status_ring);
put_hw_queue(qdma_vq->hw_queue);
}
memset(qdma_vq, 0, sizeof(struct qdma_virt_queue));
rte_spinlock_unlock(&qdma_dev.lock);
return 0;
}
int
rte_qdma_vq_destroy_rbp(uint16_t vq_id)
{
struct qdma_virt_queue *qdma_vq = &qdma_vqs[vq_id];
DPAA2_QDMA_FUNC_TRACE();
/* In case there are pending jobs on any VQ, return -EBUSY */
if (qdma_vq->num_enqueues != qdma_vq->num_dequeues)
return -EBUSY;
rte_spinlock_lock(&qdma_dev.lock);
if (qdma_vq->exclusive_hw_queue) {
free_hw_queue(qdma_vq->hw_queue);
} else {
if (qdma_vqs->status_ring)
rte_ring_free(qdma_vqs->status_ring);
put_hw_queue(qdma_vq->hw_queue);
}
memset(qdma_vq, 0, sizeof(struct qdma_virt_queue));
rte_spinlock_unlock(&qdma_dev.lock);
return 0;
}
void
rte_qdma_stop(void)
{
DPAA2_QDMA_FUNC_TRACE();
qdma_dev.state = 0;
}
void
rte_qdma_destroy(void)
{
DPAA2_QDMA_FUNC_TRACE();
rte_qdma_reset();
}
static const struct rte_rawdev_ops dpaa2_qdma_ops;
static int
add_hw_queues_to_list(struct dpaa2_dpdmai_dev *dpdmai_dev)
{
struct qdma_hw_queue *queue;
int i;
DPAA2_QDMA_FUNC_TRACE();
for (i = 0; i < dpdmai_dev->num_queues; i++) {
queue = rte_zmalloc(NULL, sizeof(struct qdma_hw_queue), 0);
if (!queue) {
DPAA2_QDMA_ERR(
"Memory allocation failed for QDMA queue");
return -ENOMEM;
}
queue->dpdmai_dev = dpdmai_dev;
queue->queue_id = i;
TAILQ_INSERT_TAIL(&qdma_queue_list, queue, next);
qdma_dev.num_hw_queues++;
}
return 0;
}
static void
remove_hw_queues_from_list(struct dpaa2_dpdmai_dev *dpdmai_dev)
{
struct qdma_hw_queue *queue = NULL;
struct qdma_hw_queue *tqueue = NULL;
DPAA2_QDMA_FUNC_TRACE();
TAILQ_FOREACH_SAFE(queue, &qdma_queue_list, next, tqueue) {
if (queue->dpdmai_dev == dpdmai_dev) {
TAILQ_REMOVE(&qdma_queue_list, queue, next);
rte_free(queue);
queue = NULL;
}
}
}
static int
dpaa2_dpdmai_dev_uninit(struct rte_rawdev *rawdev)
{
struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private;
int ret, i;
DPAA2_QDMA_FUNC_TRACE();
/* Remove HW queues from global list */
remove_hw_queues_from_list(dpdmai_dev);
ret = dpdmai_disable(&dpdmai_dev->dpdmai, CMD_PRI_LOW,
dpdmai_dev->token);
if (ret)
DPAA2_QDMA_ERR("dmdmai disable failed");
/* Set up the DQRR storage for Rx */
for (i = 0; i < dpdmai_dev->num_queues; i++) {
struct dpaa2_queue *rxq = &(dpdmai_dev->rx_queue[i]);
if (rxq->q_storage) {
dpaa2_free_dq_storage(rxq->q_storage);
rte_free(rxq->q_storage);
}
}
/* Close the device at underlying layer*/
ret = dpdmai_close(&dpdmai_dev->dpdmai, CMD_PRI_LOW, dpdmai_dev->token);
if (ret)
DPAA2_QDMA_ERR("Failure closing dpdmai device");
return 0;
}
static int
check_devargs_handler(__rte_unused const char *key, const char *value,
__rte_unused void *opaque)
{
if (strcmp(value, "1"))
return -1;
return 0;
}
static int
dpaa2_get_devargs(struct rte_devargs *devargs, const char *key)
{
struct rte_kvargs *kvlist;
if (!devargs)
return 0;
kvlist = rte_kvargs_parse(devargs->args, NULL);
if (!kvlist)
return 0;
if (!rte_kvargs_count(kvlist, key)) {
rte_kvargs_free(kvlist);
return 0;
}
if (rte_kvargs_process(kvlist, key,
check_devargs_handler, NULL) < 0) {
rte_kvargs_free(kvlist);
return 0;
}
rte_kvargs_free(kvlist);
return 1;
}
static int
dpaa2_dpdmai_dev_init(struct rte_rawdev *rawdev, int dpdmai_id)
{
struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private;
struct dpdmai_rx_queue_cfg rx_queue_cfg;
struct dpdmai_attr attr;
struct dpdmai_rx_queue_attr rx_attr;
struct dpdmai_tx_queue_attr tx_attr;
int ret, i;
DPAA2_QDMA_FUNC_TRACE();
/* Open DPDMAI device */
dpdmai_dev->dpdmai_id = dpdmai_id;
dpdmai_dev->dpdmai.regs = rte_mcp_ptr_list[MC_PORTAL_INDEX];
ret = dpdmai_open(&dpdmai_dev->dpdmai, CMD_PRI_LOW,
dpdmai_dev->dpdmai_id, &dpdmai_dev->token);
if (ret) {
DPAA2_QDMA_ERR("dpdmai_open() failed with err: %d", ret);
return ret;
}
/* Get DPDMAI attributes */
ret = dpdmai_get_attributes(&dpdmai_dev->dpdmai, CMD_PRI_LOW,
dpdmai_dev->token, &attr);
if (ret) {
DPAA2_QDMA_ERR("dpdmai get attributes failed with err: %d",
ret);
goto init_err;
}
dpdmai_dev->num_queues = attr.num_of_queues;
/* Set up Rx Queues */
for (i = 0; i < dpdmai_dev->num_queues; i++) {
struct dpaa2_queue *rxq;
memset(&rx_queue_cfg, 0, sizeof(struct dpdmai_rx_queue_cfg));
ret = dpdmai_set_rx_queue(&dpdmai_dev->dpdmai,
CMD_PRI_LOW,
dpdmai_dev->token,
i, 0, &rx_queue_cfg);
if (ret) {
DPAA2_QDMA_ERR("Setting Rx queue failed with err: %d",
ret);
goto init_err;
}
/* Allocate DQ storage for the DPDMAI Rx queues */
rxq = &(dpdmai_dev->rx_queue[i]);
rxq->q_storage = rte_malloc("dq_storage",
sizeof(struct queue_storage_info_t),
RTE_CACHE_LINE_SIZE);
if (!rxq->q_storage) {
DPAA2_QDMA_ERR("q_storage allocation failed");
ret = -ENOMEM;
goto init_err;
}
memset(rxq->q_storage, 0, sizeof(struct queue_storage_info_t));
ret = dpaa2_alloc_dq_storage(rxq->q_storage);
if (ret) {
DPAA2_QDMA_ERR("dpaa2_alloc_dq_storage failed");
goto init_err;
}
}
/* Get Rx and Tx queues FQID's */
for (i = 0; i < dpdmai_dev->num_queues; i++) {
ret = dpdmai_get_rx_queue(&dpdmai_dev->dpdmai, CMD_PRI_LOW,
dpdmai_dev->token, i, 0, &rx_attr);
if (ret) {
DPAA2_QDMA_ERR("Reading device failed with err: %d",
ret);
goto init_err;
}
dpdmai_dev->rx_queue[i].fqid = rx_attr.fqid;
ret = dpdmai_get_tx_queue(&dpdmai_dev->dpdmai, CMD_PRI_LOW,
dpdmai_dev->token, i, 0, &tx_attr);
if (ret) {
DPAA2_QDMA_ERR("Reading device failed with err: %d",
ret);
goto init_err;
}
dpdmai_dev->tx_queue[i].fqid = tx_attr.fqid;
}
/* Enable the device */
ret = dpdmai_enable(&dpdmai_dev->dpdmai, CMD_PRI_LOW,
dpdmai_dev->token);
if (ret) {
DPAA2_QDMA_ERR("Enabling device failed with err: %d", ret);
goto init_err;
}
/* Add the HW queue to the global list */
ret = add_hw_queues_to_list(dpdmai_dev);
if (ret) {
DPAA2_QDMA_ERR("Adding H/W queue to list failed");
goto init_err;
}
if (dpaa2_get_devargs(rawdev->device->devargs,
DPAA2_QDMA_NO_PREFETCH)) {
/* If no prefetch is configured. */
dpdmai_dev_dequeue_multijob =
dpdmai_dev_dequeue_multijob_no_prefetch;
DPAA2_QDMA_INFO("No Prefetch RX Mode enabled");
} else {
dpdmai_dev_dequeue_multijob =
dpdmai_dev_dequeue_multijob_prefetch;
}
if (!dpaa2_coherent_no_alloc_cache) {
if (dpaa2_svr_family == SVR_LX2160A) {
dpaa2_coherent_no_alloc_cache =
DPAA2_LX2_COHERENT_NO_ALLOCATE_CACHE;
dpaa2_coherent_alloc_cache =
DPAA2_LX2_COHERENT_ALLOCATE_CACHE;
} else {
dpaa2_coherent_no_alloc_cache =
DPAA2_COHERENT_NO_ALLOCATE_CACHE;
dpaa2_coherent_alloc_cache =
DPAA2_COHERENT_ALLOCATE_CACHE;
}
}
DPAA2_QDMA_DEBUG("Initialized dpdmai object successfully");
return 0;
init_err:
dpaa2_dpdmai_dev_uninit(rawdev);
return ret;
}
static int
rte_dpaa2_qdma_probe(struct rte_dpaa2_driver *dpaa2_drv,
struct rte_dpaa2_device *dpaa2_dev)
{
struct rte_rawdev *rawdev;
int ret;
DPAA2_QDMA_FUNC_TRACE();
rawdev = rte_rawdev_pmd_allocate(dpaa2_dev->device.name,
sizeof(struct dpaa2_dpdmai_dev),
rte_socket_id());
if (!rawdev) {
DPAA2_QDMA_ERR("Unable to allocate rawdevice");
return -EINVAL;
}
dpaa2_dev->rawdev = rawdev;
rawdev->dev_ops = &dpaa2_qdma_ops;
rawdev->device = &dpaa2_dev->device;
rawdev->driver_name = dpaa2_drv->driver.name;
/* Invoke PMD device initialization function */
ret = dpaa2_dpdmai_dev_init(rawdev, dpaa2_dev->object_id);
if (ret) {
rte_rawdev_pmd_release(rawdev);
return ret;
}
return 0;
}
static int
rte_dpaa2_qdma_remove(struct rte_dpaa2_device *dpaa2_dev)
{
struct rte_rawdev *rawdev = dpaa2_dev->rawdev;
int ret;
DPAA2_QDMA_FUNC_TRACE();
dpaa2_dpdmai_dev_uninit(rawdev);
ret = rte_rawdev_pmd_release(rawdev);
if (ret)
DPAA2_QDMA_ERR("Device cleanup failed");
return 0;
}
static struct rte_dpaa2_driver rte_dpaa2_qdma_pmd = {
.drv_flags = RTE_DPAA2_DRV_IOVA_AS_VA,
.drv_type = DPAA2_QDMA,
.probe = rte_dpaa2_qdma_probe,
.remove = rte_dpaa2_qdma_remove,
};
RTE_PMD_REGISTER_DPAA2(dpaa2_qdma, rte_dpaa2_qdma_pmd);
RTE_PMD_REGISTER_PARAM_STRING(dpaa2_qdma,
"no_prefetch=<int> ");
RTE_INIT(dpaa2_qdma_init_log)
{
dpaa2_qdma_logtype = rte_log_register("pmd.raw.dpaa2.qdma");
if (dpaa2_qdma_logtype >= 0)
rte_log_set_level(dpaa2_qdma_logtype, RTE_LOG_INFO);
}