mirror of https://github.com/F-Stack/f-stack.git
683 lines
17 KiB
C
683 lines
17 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-4-Clause
|
|
*
|
|
* Copyright (c) 1982, 1986 The Regents of the University of California.
|
|
* Copyright (c) 1989, 1990 William Jolitz
|
|
* Copyright (c) 1994 John Dyson
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
* Science Department, and William Jolitz.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91
|
|
* Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_isa.h"
|
|
#include "opt_npx.h"
|
|
#include "opt_reset.h"
|
|
#include "opt_cpu.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/sf_buf.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/unistd.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/cputypes.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/pcb_ext.h>
|
|
#include <machine/smp.h>
|
|
#include <machine/vm86.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_param.h>
|
|
|
|
_Static_assert(__OFFSETOF_MONITORBUF == offsetof(struct pcpu, pc_monitorbuf),
|
|
"__OFFSETOF_MONITORBUF does not correspond with offset of pc_monitorbuf.");
|
|
|
|
union savefpu *
|
|
get_pcb_user_save_td(struct thread *td)
|
|
{
|
|
vm_offset_t p;
|
|
|
|
p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
|
|
roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN);
|
|
KASSERT((p % XSAVE_AREA_ALIGN) == 0, ("Unaligned pcb_user_save area"));
|
|
return ((union savefpu *)p);
|
|
}
|
|
|
|
union savefpu *
|
|
get_pcb_user_save_pcb(struct pcb *pcb)
|
|
{
|
|
vm_offset_t p;
|
|
|
|
p = (vm_offset_t)(pcb + 1);
|
|
return ((union savefpu *)p);
|
|
}
|
|
|
|
struct pcb *
|
|
get_pcb_td(struct thread *td)
|
|
{
|
|
vm_offset_t p;
|
|
|
|
p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
|
|
roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN) -
|
|
sizeof(struct pcb);
|
|
return ((struct pcb *)p);
|
|
}
|
|
|
|
void *
|
|
alloc_fpusave(int flags)
|
|
{
|
|
void *res;
|
|
struct savefpu_ymm *sf;
|
|
|
|
res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags);
|
|
if (use_xsave) {
|
|
sf = (struct savefpu_ymm *)res;
|
|
bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd));
|
|
sf->sv_xstate.sx_hd.xstate_bv = xsave_mask;
|
|
}
|
|
return (res);
|
|
}
|
|
/*
|
|
* Finish a fork operation, with process p2 nearly set up.
|
|
* Copy and update the pcb, set up the stack so that the child
|
|
* ready to run and return to user mode.
|
|
*/
|
|
void
|
|
cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags)
|
|
{
|
|
struct proc *p1;
|
|
struct pcb *pcb2;
|
|
struct mdproc *mdp2;
|
|
|
|
p1 = td1->td_proc;
|
|
if ((flags & RFPROC) == 0) {
|
|
if ((flags & RFMEM) == 0) {
|
|
/* unshare user LDT */
|
|
struct mdproc *mdp1 = &p1->p_md;
|
|
struct proc_ldt *pldt, *pldt1;
|
|
|
|
mtx_lock_spin(&dt_lock);
|
|
if ((pldt1 = mdp1->md_ldt) != NULL &&
|
|
pldt1->ldt_refcnt > 1) {
|
|
pldt = user_ldt_alloc(mdp1, pldt1->ldt_len);
|
|
if (pldt == NULL)
|
|
panic("could not copy LDT");
|
|
mdp1->md_ldt = pldt;
|
|
set_user_ldt(mdp1);
|
|
user_ldt_deref(pldt1);
|
|
} else
|
|
mtx_unlock_spin(&dt_lock);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Ensure that td1's pcb is up to date. */
|
|
if (td1 == curthread)
|
|
td1->td_pcb->pcb_gs = rgs();
|
|
critical_enter();
|
|
if (PCPU_GET(fpcurthread) == td1)
|
|
npxsave(td1->td_pcb->pcb_save);
|
|
critical_exit();
|
|
|
|
/* Point the pcb to the top of the stack */
|
|
pcb2 = get_pcb_td(td2);
|
|
td2->td_pcb = pcb2;
|
|
|
|
/* Copy td1's pcb */
|
|
bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
|
|
|
|
/* Properly initialize pcb_save */
|
|
pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
|
|
bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2),
|
|
cpu_max_ext_state_size);
|
|
|
|
/* Point mdproc and then copy over td1's contents */
|
|
mdp2 = &p2->p_md;
|
|
bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
|
|
|
|
/*
|
|
* Create a new fresh stack for the new process.
|
|
* Copy the trap frame for the return to user mode as if from a
|
|
* syscall. This copies most of the user mode register values.
|
|
* The -VM86_STACK_SPACE (-16) is so we can expand the trapframe
|
|
* if we go to vm86.
|
|
*/
|
|
td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb -
|
|
VM86_STACK_SPACE) - 1;
|
|
bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
|
|
|
|
td2->td_frame->tf_eax = 0; /* Child returns zero */
|
|
td2->td_frame->tf_eflags &= ~PSL_C; /* success */
|
|
td2->td_frame->tf_edx = 1;
|
|
|
|
/*
|
|
* If the parent process has the trap bit set (i.e. a debugger
|
|
* had single stepped the process to the system call), we need
|
|
* to clear the trap flag from the new frame.
|
|
*/
|
|
td2->td_frame->tf_eflags &= ~PSL_T;
|
|
|
|
/*
|
|
* Set registers for trampoline to user mode. Leave space for the
|
|
* return address on stack. These are the kernel mode register values.
|
|
*/
|
|
pcb2->pcb_cr3 = pmap_get_cr3(vmspace_pmap(p2->p_vmspace));
|
|
pcb2->pcb_edi = 0;
|
|
pcb2->pcb_esi = (int)fork_return; /* fork_trampoline argument */
|
|
pcb2->pcb_ebp = 0;
|
|
pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
|
|
pcb2->pcb_ebx = (int)td2; /* fork_trampoline argument */
|
|
pcb2->pcb_eip = (int)fork_trampoline + setidt_disp;
|
|
/*-
|
|
* pcb2->pcb_dr*: cloned above.
|
|
* pcb2->pcb_savefpu: cloned above.
|
|
* pcb2->pcb_flags: cloned above.
|
|
* pcb2->pcb_onfault: cloned above (always NULL here?).
|
|
* pcb2->pcb_gs: cloned above.
|
|
* pcb2->pcb_ext: cleared below.
|
|
*/
|
|
|
|
/*
|
|
* XXX don't copy the i/o pages. this should probably be fixed.
|
|
*/
|
|
pcb2->pcb_ext = 0;
|
|
|
|
/* Copy the LDT, if necessary. */
|
|
mtx_lock_spin(&dt_lock);
|
|
if (mdp2->md_ldt != NULL) {
|
|
if (flags & RFMEM) {
|
|
mdp2->md_ldt->ldt_refcnt++;
|
|
} else {
|
|
mdp2->md_ldt = user_ldt_alloc(mdp2,
|
|
mdp2->md_ldt->ldt_len);
|
|
if (mdp2->md_ldt == NULL)
|
|
panic("could not copy LDT");
|
|
}
|
|
}
|
|
mtx_unlock_spin(&dt_lock);
|
|
|
|
/* Setup to release spin count in fork_exit(). */
|
|
td2->td_md.md_spinlock_count = 1;
|
|
td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
|
|
|
|
/*
|
|
* Now, cpu_switch() can schedule the new process.
|
|
* pcb_esp is loaded pointing to the cpu_switch() stack frame
|
|
* containing the return address when exiting cpu_switch.
|
|
* This will normally be to fork_trampoline(), which will have
|
|
* %ebx loaded with the new proc's pointer. fork_trampoline()
|
|
* will set up a stack to call fork_return(p, frame); to complete
|
|
* the return to user-mode.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Intercept the return address from a freshly forked process that has NOT
|
|
* been scheduled yet.
|
|
*
|
|
* This is needed to make kernel threads stay in kernel mode.
|
|
*/
|
|
void
|
|
cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg)
|
|
{
|
|
/*
|
|
* Note that the trap frame follows the args, so the function
|
|
* is really called like this: func(arg, frame);
|
|
*/
|
|
td->td_pcb->pcb_esi = (int) func; /* function */
|
|
td->td_pcb->pcb_ebx = (int) arg; /* first arg */
|
|
}
|
|
|
|
void
|
|
cpu_exit(struct thread *td)
|
|
{
|
|
|
|
/*
|
|
* If this process has a custom LDT, release it. Reset pc->pcb_gs
|
|
* and %gs before we free it in case they refer to an LDT entry.
|
|
*/
|
|
mtx_lock_spin(&dt_lock);
|
|
if (td->td_proc->p_md.md_ldt) {
|
|
td->td_pcb->pcb_gs = _udatasel;
|
|
load_gs(_udatasel);
|
|
user_ldt_free(td);
|
|
} else
|
|
mtx_unlock_spin(&dt_lock);
|
|
}
|
|
|
|
void
|
|
cpu_thread_exit(struct thread *td)
|
|
{
|
|
|
|
critical_enter();
|
|
if (td == PCPU_GET(fpcurthread))
|
|
npxdrop();
|
|
critical_exit();
|
|
|
|
/* Disable any hardware breakpoints. */
|
|
if (td->td_pcb->pcb_flags & PCB_DBREGS) {
|
|
reset_dbregs();
|
|
td->td_pcb->pcb_flags &= ~PCB_DBREGS;
|
|
}
|
|
}
|
|
|
|
void
|
|
cpu_thread_clean(struct thread *td)
|
|
{
|
|
struct pcb *pcb;
|
|
|
|
pcb = td->td_pcb;
|
|
if (pcb->pcb_ext != NULL) {
|
|
/* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
|
|
/*
|
|
* XXX do we need to move the TSS off the allocated pages
|
|
* before freeing them? (not done here)
|
|
*/
|
|
pmap_trm_free(pcb->pcb_ext, ctob(IOPAGES + 1));
|
|
pcb->pcb_ext = NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
cpu_thread_swapin(struct thread *td)
|
|
{
|
|
}
|
|
|
|
void
|
|
cpu_thread_swapout(struct thread *td)
|
|
{
|
|
}
|
|
|
|
void
|
|
cpu_thread_alloc(struct thread *td)
|
|
{
|
|
struct pcb *pcb;
|
|
struct xstate_hdr *xhdr;
|
|
|
|
td->td_pcb = pcb = get_pcb_td(td);
|
|
td->td_frame = (struct trapframe *)((caddr_t)pcb -
|
|
VM86_STACK_SPACE) - 1;
|
|
pcb->pcb_ext = NULL;
|
|
pcb->pcb_save = get_pcb_user_save_pcb(pcb);
|
|
if (use_xsave) {
|
|
xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1);
|
|
bzero(xhdr, sizeof(*xhdr));
|
|
xhdr->xstate_bv = xsave_mask;
|
|
}
|
|
}
|
|
|
|
void
|
|
cpu_thread_free(struct thread *td)
|
|
{
|
|
|
|
cpu_thread_clean(td);
|
|
}
|
|
|
|
bool
|
|
cpu_exec_vmspace_reuse(struct proc *p __unused, vm_map_t map __unused)
|
|
{
|
|
|
|
return (true);
|
|
}
|
|
|
|
int
|
|
cpu_procctl(struct thread *td __unused, int idtype __unused, id_t id __unused,
|
|
int com __unused, void *data __unused)
|
|
{
|
|
|
|
return (EINVAL);
|
|
}
|
|
|
|
void
|
|
cpu_set_syscall_retval(struct thread *td, int error)
|
|
{
|
|
|
|
switch (error) {
|
|
case 0:
|
|
td->td_frame->tf_eax = td->td_retval[0];
|
|
td->td_frame->tf_edx = td->td_retval[1];
|
|
td->td_frame->tf_eflags &= ~PSL_C;
|
|
break;
|
|
|
|
case ERESTART:
|
|
/*
|
|
* Reconstruct pc, assuming lcall $X,y is 7 bytes, int
|
|
* 0x80 is 2 bytes. We saved this in tf_err.
|
|
*/
|
|
td->td_frame->tf_eip -= td->td_frame->tf_err;
|
|
break;
|
|
|
|
case EJUSTRETURN:
|
|
break;
|
|
|
|
default:
|
|
td->td_frame->tf_eax = error;
|
|
td->td_frame->tf_eflags |= PSL_C;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize machine state, mostly pcb and trap frame for a new
|
|
* thread, about to return to userspace. Put enough state in the new
|
|
* thread's PCB to get it to go back to the fork_return(), which
|
|
* finalizes the thread state and handles peculiarities of the first
|
|
* return to userspace for the new thread.
|
|
*/
|
|
void
|
|
cpu_copy_thread(struct thread *td, struct thread *td0)
|
|
{
|
|
struct pcb *pcb2;
|
|
|
|
/* Point the pcb to the top of the stack. */
|
|
pcb2 = td->td_pcb;
|
|
|
|
/*
|
|
* Copy the upcall pcb. This loads kernel regs.
|
|
* Those not loaded individually below get their default
|
|
* values here.
|
|
*/
|
|
bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
|
|
pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE |
|
|
PCB_KERNNPX);
|
|
pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
|
|
bcopy(get_pcb_user_save_td(td0), pcb2->pcb_save,
|
|
cpu_max_ext_state_size);
|
|
|
|
/*
|
|
* Create a new fresh stack for the new thread.
|
|
*/
|
|
bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
|
|
|
|
/* If the current thread has the trap bit set (i.e. a debugger had
|
|
* single stepped the process to the system call), we need to clear
|
|
* the trap flag from the new frame. Otherwise, the new thread will
|
|
* receive a (likely unexpected) SIGTRAP when it executes the first
|
|
* instruction after returning to userland.
|
|
*/
|
|
td->td_frame->tf_eflags &= ~PSL_T;
|
|
|
|
/*
|
|
* Set registers for trampoline to user mode. Leave space for the
|
|
* return address on stack. These are the kernel mode register values.
|
|
*/
|
|
pcb2->pcb_edi = 0;
|
|
pcb2->pcb_esi = (int)fork_return; /* trampoline arg */
|
|
pcb2->pcb_ebp = 0;
|
|
pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
|
|
pcb2->pcb_ebx = (int)td; /* trampoline arg */
|
|
pcb2->pcb_eip = (int)fork_trampoline + setidt_disp;
|
|
pcb2->pcb_gs = rgs();
|
|
/*
|
|
* If we didn't copy the pcb, we'd need to do the following registers:
|
|
* pcb2->pcb_cr3: cloned above.
|
|
* pcb2->pcb_dr*: cloned above.
|
|
* pcb2->pcb_savefpu: cloned above.
|
|
* pcb2->pcb_flags: cloned above.
|
|
* pcb2->pcb_onfault: cloned above (always NULL here?).
|
|
* pcb2->pcb_gs: cloned above.
|
|
* pcb2->pcb_ext: cleared below.
|
|
*/
|
|
pcb2->pcb_ext = NULL;
|
|
|
|
/* Setup to release spin count in fork_exit(). */
|
|
td->td_md.md_spinlock_count = 1;
|
|
td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
|
|
}
|
|
|
|
/*
|
|
* Set that machine state for performing an upcall that starts
|
|
* the entry function with the given argument.
|
|
*/
|
|
void
|
|
cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg,
|
|
stack_t *stack)
|
|
{
|
|
|
|
/*
|
|
* Do any extra cleaning that needs to be done.
|
|
* The thread may have optional components
|
|
* that are not present in a fresh thread.
|
|
* This may be a recycled thread so make it look
|
|
* as though it's newly allocated.
|
|
*/
|
|
cpu_thread_clean(td);
|
|
|
|
/*
|
|
* Set the trap frame to point at the beginning of the entry
|
|
* function.
|
|
*/
|
|
td->td_frame->tf_ebp = 0;
|
|
td->td_frame->tf_esp =
|
|
(((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
|
|
td->td_frame->tf_eip = (int)entry;
|
|
|
|
/* Return address sentinel value to stop stack unwinding. */
|
|
suword((void *)td->td_frame->tf_esp, 0);
|
|
|
|
/* Pass the argument to the entry point. */
|
|
suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
|
|
(int)arg);
|
|
}
|
|
|
|
int
|
|
cpu_set_user_tls(struct thread *td, void *tls_base)
|
|
{
|
|
struct segment_descriptor sd;
|
|
uint32_t base;
|
|
|
|
/*
|
|
* Construct a descriptor and store it in the pcb for
|
|
* the next context switch. Also store it in the gdt
|
|
* so that the load of tf_fs into %fs will activate it
|
|
* at return to userland.
|
|
*/
|
|
base = (uint32_t)tls_base;
|
|
sd.sd_lobase = base & 0xffffff;
|
|
sd.sd_hibase = (base >> 24) & 0xff;
|
|
sd.sd_lolimit = 0xffff; /* 4GB limit, wraps around */
|
|
sd.sd_hilimit = 0xf;
|
|
sd.sd_type = SDT_MEMRWA;
|
|
sd.sd_dpl = SEL_UPL;
|
|
sd.sd_p = 1;
|
|
sd.sd_xx = 0;
|
|
sd.sd_def32 = 1;
|
|
sd.sd_gran = 1;
|
|
critical_enter();
|
|
/* set %gs */
|
|
td->td_pcb->pcb_gsd = sd;
|
|
if (td == curthread) {
|
|
PCPU_GET(fsgs_gdt)[1] = sd;
|
|
load_gs(GSEL(GUGS_SEL, SEL_UPL));
|
|
}
|
|
critical_exit();
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Convert kernel VA to physical address
|
|
*/
|
|
vm_paddr_t
|
|
kvtop(void *addr)
|
|
{
|
|
vm_paddr_t pa;
|
|
|
|
pa = pmap_kextract((vm_offset_t)addr);
|
|
if (pa == 0)
|
|
panic("kvtop: zero page frame");
|
|
return (pa);
|
|
}
|
|
|
|
/*
|
|
* Get an sf_buf from the freelist. May block if none are available.
|
|
*/
|
|
void
|
|
sf_buf_map(struct sf_buf *sf, int flags)
|
|
{
|
|
|
|
pmap_sf_buf_map(sf);
|
|
#ifdef SMP
|
|
sf_buf_shootdown(sf, flags);
|
|
#endif
|
|
}
|
|
|
|
#ifdef SMP
|
|
static void
|
|
sf_buf_shootdown_curcpu_cb(pmap_t pmap __unused,
|
|
vm_offset_t addr1 __unused, vm_offset_t addr2 __unused)
|
|
{
|
|
}
|
|
|
|
void
|
|
sf_buf_shootdown(struct sf_buf *sf, int flags)
|
|
{
|
|
cpuset_t other_cpus;
|
|
u_int cpuid;
|
|
|
|
sched_pin();
|
|
cpuid = PCPU_GET(cpuid);
|
|
if (!CPU_ISSET(cpuid, &sf->cpumask)) {
|
|
CPU_SET(cpuid, &sf->cpumask);
|
|
invlpg(sf->kva);
|
|
}
|
|
if ((flags & SFB_CPUPRIVATE) == 0) {
|
|
other_cpus = all_cpus;
|
|
CPU_CLR(cpuid, &other_cpus);
|
|
CPU_ANDNOT(&other_cpus, &sf->cpumask);
|
|
if (!CPU_EMPTY(&other_cpus)) {
|
|
CPU_OR(&sf->cpumask, &other_cpus);
|
|
smp_masked_invlpg(other_cpus, sf->kva, kernel_pmap,
|
|
sf_buf_shootdown_curcpu_cb);
|
|
}
|
|
}
|
|
sched_unpin();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* MD part of sf_buf_free().
|
|
*/
|
|
int
|
|
sf_buf_unmap(struct sf_buf *sf)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sf_buf_invalidate(struct sf_buf *sf)
|
|
{
|
|
vm_page_t m = sf->m;
|
|
|
|
/*
|
|
* Use pmap_qenter to update the pte for
|
|
* existing mapping, in particular, the PAT
|
|
* settings are recalculated.
|
|
*/
|
|
pmap_qenter(sf->kva, &m, 1);
|
|
pmap_invalidate_cache_range(sf->kva, sf->kva + PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Invalidate the cache lines that may belong to the page, if
|
|
* (possibly old) mapping of the page by sf buffer exists. Returns
|
|
* TRUE when mapping was found and cache invalidated.
|
|
*/
|
|
boolean_t
|
|
sf_buf_invalidate_cache(vm_page_t m)
|
|
{
|
|
|
|
return (sf_buf_process_page(m, sf_buf_invalidate));
|
|
}
|
|
|
|
/*
|
|
* Software interrupt handler for queued VM system processing.
|
|
*/
|
|
void
|
|
swi_vm(void *dummy)
|
|
{
|
|
if (busdma_swi_pending != 0)
|
|
busdma_swi();
|
|
}
|
|
|
|
/*
|
|
* Tell whether this address is in some physical memory region.
|
|
* Currently used by the kernel coredump code in order to avoid
|
|
* dumping the ``ISA memory hole'' which could cause indefinite hangs,
|
|
* or other unpredictable behaviour.
|
|
*/
|
|
|
|
int
|
|
is_physical_memory(vm_paddr_t addr)
|
|
{
|
|
|
|
#ifdef DEV_ISA
|
|
/* The ISA ``memory hole''. */
|
|
if (addr >= 0xa0000 && addr < 0x100000)
|
|
return 0;
|
|
#endif
|
|
|
|
/*
|
|
* stuff other tests for known memory-mapped devices (PCI?)
|
|
* here
|
|
*/
|
|
|
|
return 1;
|
|
}
|