mirror of https://github.com/F-Stack/f-stack.git
6409 lines
166 KiB
C
6409 lines
166 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-4-Clause
|
|
*
|
|
* Copyright (c) 1991 Regents of the University of California.
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 John S. Dyson
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 David Greenman
|
|
* All rights reserved.
|
|
* Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
* Science Department and William Jolitz of UUNET Technologies Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
|
|
*/
|
|
/*-
|
|
* Copyright (c) 2003 Networks Associates Technology, Inc.
|
|
* All rights reserved.
|
|
* Copyright (c) 2018 The FreeBSD Foundation
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed for the FreeBSD Project by Jake Burkholder,
|
|
* Safeport Network Services, and Network Associates Laboratories, the
|
|
* Security Research Division of Network Associates, Inc. under
|
|
* DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
|
|
* CHATS research program.
|
|
*
|
|
* Portions of this software were developed by
|
|
* Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
|
|
* the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Manages physical address maps.
|
|
*
|
|
* Since the information managed by this module is
|
|
* also stored by the logical address mapping module,
|
|
* this module may throw away valid virtual-to-physical
|
|
* mappings at almost any time. However, invalidations
|
|
* of virtual-to-physical mappings must be done as
|
|
* requested.
|
|
*
|
|
* In order to cope with hardware architectures which
|
|
* make virtual-to-physical map invalidates expensive,
|
|
* this module may delay invalidate or reduced protection
|
|
* operations until such time as they are actually
|
|
* necessary. This module is given full information as
|
|
* to which processors are currently using which maps,
|
|
* and to when physical maps must be made correct.
|
|
*/
|
|
|
|
#include "opt_apic.h"
|
|
#include "opt_cpu.h"
|
|
#include "opt_pmap.h"
|
|
#include "opt_smp.h"
|
|
#include "opt_vm.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/sf_buf.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/vmem.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/vm_phys.h>
|
|
#include <vm/vm_radix.h>
|
|
#include <vm/vm_reserv.h>
|
|
#include <vm/uma.h>
|
|
|
|
#ifdef DEV_APIC
|
|
#include <sys/bus.h>
|
|
#include <machine/intr_machdep.h>
|
|
#include <x86/apicvar.h>
|
|
#endif
|
|
#include <x86/ifunc.h>
|
|
#include <machine/bootinfo.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/cputypes.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/specialreg.h>
|
|
#ifdef SMP
|
|
#include <machine/smp.h>
|
|
#endif
|
|
#include <machine/pmap_base.h>
|
|
|
|
#if !defined(DIAGNOSTIC)
|
|
#ifdef __GNUC_GNU_INLINE__
|
|
#define PMAP_INLINE __attribute__((__gnu_inline__)) inline
|
|
#else
|
|
#define PMAP_INLINE extern inline
|
|
#endif
|
|
#else
|
|
#define PMAP_INLINE
|
|
#endif
|
|
|
|
#ifdef PV_STATS
|
|
#define PV_STAT(x) do { x ; } while (0)
|
|
#else
|
|
#define PV_STAT(x) do { } while (0)
|
|
#endif
|
|
|
|
#define pa_index(pa) ((pa) >> PDRSHIFT)
|
|
#define pa_to_pvh(pa) (&pv_table[pa_index(pa)])
|
|
|
|
/*
|
|
* PTmap is recursive pagemap at top of virtual address space.
|
|
* Within PTmap, the page directory can be found (third indirection).
|
|
*/
|
|
#define PTmap ((pt_entry_t *)(PTDPTDI << PDRSHIFT))
|
|
#define PTD ((pd_entry_t *)((PTDPTDI << PDRSHIFT) + (PTDPTDI * PAGE_SIZE)))
|
|
#define PTDpde ((pd_entry_t *)((PTDPTDI << PDRSHIFT) + (PTDPTDI * PAGE_SIZE) + \
|
|
(PTDPTDI * PDESIZE)))
|
|
|
|
/*
|
|
* Translate a virtual address to the kernel virtual address of its page table
|
|
* entry (PTE). This can be used recursively. If the address of a PTE as
|
|
* previously returned by this macro is itself given as the argument, then the
|
|
* address of the page directory entry (PDE) that maps the PTE will be
|
|
* returned.
|
|
*
|
|
* This macro may be used before pmap_bootstrap() is called.
|
|
*/
|
|
#define vtopte(va) (PTmap + i386_btop(va))
|
|
|
|
/*
|
|
* Get PDEs and PTEs for user/kernel address space
|
|
*/
|
|
#define pmap_pde(m, v) (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
|
|
#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
|
|
|
|
#define pmap_pde_v(pte) ((*(int *)pte & PG_V) != 0)
|
|
#define pmap_pte_w(pte) ((*(int *)pte & PG_W) != 0)
|
|
#define pmap_pte_m(pte) ((*(int *)pte & PG_M) != 0)
|
|
#define pmap_pte_u(pte) ((*(int *)pte & PG_A) != 0)
|
|
#define pmap_pte_v(pte) ((*(int *)pte & PG_V) != 0)
|
|
|
|
#define pmap_pte_set_w(pte, v) ((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
|
|
atomic_clear_int((u_int *)(pte), PG_W))
|
|
#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
|
|
|
|
static int pgeflag = 0; /* PG_G or-in */
|
|
static int pseflag = 0; /* PG_PS or-in */
|
|
|
|
static int nkpt = NKPT;
|
|
|
|
#ifdef PMAP_PAE_COMP
|
|
pt_entry_t pg_nx;
|
|
static uma_zone_t pdptzone;
|
|
#else
|
|
#define pg_nx 0
|
|
#endif
|
|
|
|
_Static_assert(VM_MAXUSER_ADDRESS == VADDR(TRPTDI, 0), "VM_MAXUSER_ADDRESS");
|
|
_Static_assert(VM_MAX_KERNEL_ADDRESS <= VADDR(PTDPTDI, 0),
|
|
"VM_MAX_KERNEL_ADDRESS");
|
|
_Static_assert(PMAP_MAP_LOW == VADDR(LOWPTDI, 0), "PMAP_MAP_LOW");
|
|
_Static_assert(KERNLOAD == (KERNPTDI << PDRSHIFT), "KERNLOAD");
|
|
|
|
extern int pat_works;
|
|
extern int pg_ps_enabled;
|
|
|
|
extern int elf32_nxstack;
|
|
|
|
#define PAT_INDEX_SIZE 8
|
|
static int pat_index[PAT_INDEX_SIZE]; /* cache mode to PAT index conversion */
|
|
|
|
/*
|
|
* pmap_mapdev support pre initialization (i.e. console)
|
|
*/
|
|
#define PMAP_PREINIT_MAPPING_COUNT 8
|
|
static struct pmap_preinit_mapping {
|
|
vm_paddr_t pa;
|
|
vm_offset_t va;
|
|
vm_size_t sz;
|
|
int mode;
|
|
} pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
|
|
static int pmap_initialized;
|
|
|
|
static struct rwlock_padalign pvh_global_lock;
|
|
|
|
/*
|
|
* Data for the pv entry allocation mechanism
|
|
*/
|
|
static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
|
|
extern int pv_entry_max, pv_entry_count;
|
|
static int pv_entry_high_water = 0;
|
|
static struct md_page *pv_table;
|
|
extern int shpgperproc;
|
|
|
|
static struct pv_chunk *pv_chunkbase; /* KVA block for pv_chunks */
|
|
static int pv_maxchunks; /* How many chunks we have KVA for */
|
|
static vm_offset_t pv_vafree; /* freelist stored in the PTE */
|
|
|
|
/*
|
|
* All those kernel PT submaps that BSD is so fond of
|
|
*/
|
|
static pt_entry_t *CMAP3;
|
|
static pd_entry_t *KPTD;
|
|
static caddr_t CADDR3;
|
|
|
|
/*
|
|
* Crashdump maps.
|
|
*/
|
|
static caddr_t crashdumpmap;
|
|
|
|
static pt_entry_t *PMAP1 = NULL, *PMAP2, *PMAP3;
|
|
static pt_entry_t *PADDR1 = NULL, *PADDR2, *PADDR3;
|
|
#ifdef SMP
|
|
static int PMAP1cpu, PMAP3cpu;
|
|
extern int PMAP1changedcpu;
|
|
#endif
|
|
extern int PMAP1changed;
|
|
extern int PMAP1unchanged;
|
|
static struct mtx PMAP2mutex;
|
|
|
|
/*
|
|
* Internal flags for pmap_enter()'s helper functions.
|
|
*/
|
|
#define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
|
|
#define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
|
|
|
|
static void free_pv_chunk(struct pv_chunk *pc);
|
|
static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
|
|
static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
|
|
static void pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
|
|
static bool pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
|
|
u_int flags);
|
|
#if VM_NRESERVLEVEL > 0
|
|
static void pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
|
|
#endif
|
|
static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
|
|
static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
|
|
vm_offset_t va);
|
|
static int pmap_pvh_wired_mappings(struct md_page *pvh, int count);
|
|
|
|
static void pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
|
|
static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
|
|
static bool pmap_enter_4mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
|
|
vm_prot_t prot);
|
|
static int pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
|
|
u_int flags, vm_page_t m);
|
|
static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
|
|
vm_page_t m, vm_prot_t prot, vm_page_t mpte);
|
|
static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted);
|
|
static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
|
|
pd_entry_t pde);
|
|
static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
|
|
static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
|
|
static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
|
|
static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
|
|
static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
|
|
static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
|
|
#if VM_NRESERVLEVEL > 0
|
|
static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
|
|
#endif
|
|
static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
|
|
vm_prot_t prot);
|
|
static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
|
|
static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
|
|
struct spglist *free);
|
|
static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
|
|
struct spglist *free);
|
|
static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
|
|
static void pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free);
|
|
static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
|
|
struct spglist *free);
|
|
static void pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va);
|
|
static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
|
|
static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
|
|
vm_page_t m);
|
|
static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
|
|
pd_entry_t newpde);
|
|
static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
|
|
|
|
static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
|
|
|
|
static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
|
|
static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
|
|
static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
|
|
static void pmap_pte_release(pt_entry_t *pte);
|
|
static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
|
|
#ifdef PMAP_PAE_COMP
|
|
static void *pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain,
|
|
uint8_t *flags, int wait);
|
|
#endif
|
|
static void pmap_init_trm(void);
|
|
static void pmap_invalidate_all_int(pmap_t pmap);
|
|
|
|
static __inline void pagezero(void *page);
|
|
|
|
CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
|
|
CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
|
|
|
|
extern char _end[];
|
|
extern u_long physfree; /* phys addr of next free page */
|
|
extern u_long vm86phystk;/* PA of vm86/bios stack */
|
|
extern u_long vm86paddr;/* address of vm86 region */
|
|
extern int vm86pa; /* phys addr of vm86 region */
|
|
extern u_long KERNend; /* phys addr end of kernel (just after bss) */
|
|
#ifdef PMAP_PAE_COMP
|
|
pd_entry_t *IdlePTD_pae; /* phys addr of kernel PTD */
|
|
pdpt_entry_t *IdlePDPT; /* phys addr of kernel PDPT */
|
|
pt_entry_t *KPTmap_pae; /* address of kernel page tables */
|
|
#define IdlePTD IdlePTD_pae
|
|
#define KPTmap KPTmap_pae
|
|
#else
|
|
pd_entry_t *IdlePTD_nopae;
|
|
pt_entry_t *KPTmap_nopae;
|
|
#define IdlePTD IdlePTD_nopae
|
|
#define KPTmap KPTmap_nopae
|
|
#endif
|
|
extern u_long KPTphys; /* phys addr of kernel page tables */
|
|
extern u_long tramp_idleptd;
|
|
|
|
static u_long
|
|
allocpages(u_int cnt, u_long *physfree)
|
|
{
|
|
u_long res;
|
|
|
|
res = *physfree;
|
|
*physfree += PAGE_SIZE * cnt;
|
|
bzero((void *)res, PAGE_SIZE * cnt);
|
|
return (res);
|
|
}
|
|
|
|
static void
|
|
pmap_cold_map(u_long pa, u_long va, u_long cnt)
|
|
{
|
|
pt_entry_t *pt;
|
|
|
|
for (pt = (pt_entry_t *)KPTphys + atop(va); cnt > 0;
|
|
cnt--, pt++, va += PAGE_SIZE, pa += PAGE_SIZE)
|
|
*pt = pa | PG_V | PG_RW | PG_A | PG_M;
|
|
}
|
|
|
|
static void
|
|
pmap_cold_mapident(u_long pa, u_long cnt)
|
|
{
|
|
|
|
pmap_cold_map(pa, pa, cnt);
|
|
}
|
|
|
|
_Static_assert(LOWPTDI * 2 * NBPDR == KERNBASE,
|
|
"Broken double-map of zero PTD");
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, remap_lower)(bool enable)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < LOWPTDI; i++)
|
|
IdlePTD[i] = enable ? IdlePTD[LOWPTDI + i] : 0;
|
|
load_cr3(rcr3()); /* invalidate TLB */
|
|
}
|
|
|
|
/*
|
|
* Called from locore.s before paging is enabled. Sets up the first
|
|
* kernel page table. Since kernel is mapped with PA == VA, this code
|
|
* does not require relocations.
|
|
*/
|
|
void
|
|
__CONCAT(PMTYPE, cold)(void)
|
|
{
|
|
pt_entry_t *pt;
|
|
u_long a;
|
|
u_int cr3, ncr4;
|
|
|
|
physfree = (u_long)&_end;
|
|
if (bootinfo.bi_esymtab != 0)
|
|
physfree = bootinfo.bi_esymtab;
|
|
if (bootinfo.bi_kernend != 0)
|
|
physfree = bootinfo.bi_kernend;
|
|
physfree = roundup2(physfree, NBPDR);
|
|
KERNend = physfree;
|
|
|
|
/* Allocate Kernel Page Tables */
|
|
KPTphys = allocpages(NKPT, &physfree);
|
|
KPTmap = (pt_entry_t *)KPTphys;
|
|
|
|
/* Allocate Page Table Directory */
|
|
#ifdef PMAP_PAE_COMP
|
|
/* XXX only need 32 bytes (easier for now) */
|
|
IdlePDPT = (pdpt_entry_t *)allocpages(1, &physfree);
|
|
#endif
|
|
IdlePTD = (pd_entry_t *)allocpages(NPGPTD, &physfree);
|
|
|
|
/*
|
|
* Allocate KSTACK. Leave a guard page between IdlePTD and
|
|
* proc0kstack, to control stack overflow for thread0 and
|
|
* prevent corruption of the page table. We leak the guard
|
|
* physical memory due to 1:1 mappings.
|
|
*/
|
|
allocpages(1, &physfree);
|
|
proc0kstack = allocpages(TD0_KSTACK_PAGES, &physfree);
|
|
|
|
/* vm86/bios stack */
|
|
vm86phystk = allocpages(1, &physfree);
|
|
|
|
/* pgtable + ext + IOPAGES */
|
|
vm86paddr = vm86pa = allocpages(3, &physfree);
|
|
|
|
/* Install page tables into PTD. Page table page 1 is wasted. */
|
|
for (a = 0; a < NKPT; a++)
|
|
IdlePTD[a] = (KPTphys + ptoa(a)) | PG_V | PG_RW | PG_A | PG_M;
|
|
|
|
#ifdef PMAP_PAE_COMP
|
|
/* PAE install PTD pointers into PDPT */
|
|
for (a = 0; a < NPGPTD; a++)
|
|
IdlePDPT[a] = ((u_int)IdlePTD + ptoa(a)) | PG_V;
|
|
#endif
|
|
|
|
/*
|
|
* Install recursive mapping for kernel page tables into
|
|
* itself.
|
|
*/
|
|
for (a = 0; a < NPGPTD; a++)
|
|
IdlePTD[PTDPTDI + a] = ((u_int)IdlePTD + ptoa(a)) | PG_V |
|
|
PG_RW;
|
|
|
|
/*
|
|
* Initialize page table pages mapping physical address zero
|
|
* through the (physical) end of the kernel. Many of these
|
|
* pages must be reserved, and we reserve them all and map
|
|
* them linearly for convenience. We do this even if we've
|
|
* enabled PSE above; we'll just switch the corresponding
|
|
* kernel PDEs before we turn on paging.
|
|
*
|
|
* This and all other page table entries allow read and write
|
|
* access for various reasons. Kernel mappings never have any
|
|
* access restrictions.
|
|
*/
|
|
pmap_cold_mapident(0, atop(NBPDR) * LOWPTDI);
|
|
pmap_cold_map(0, NBPDR * LOWPTDI, atop(NBPDR) * LOWPTDI);
|
|
pmap_cold_mapident(KERNBASE, atop(KERNend - KERNBASE));
|
|
|
|
/* Map page table directory */
|
|
#ifdef PMAP_PAE_COMP
|
|
pmap_cold_mapident((u_long)IdlePDPT, 1);
|
|
#endif
|
|
pmap_cold_mapident((u_long)IdlePTD, NPGPTD);
|
|
|
|
/* Map early KPTmap. It is really pmap_cold_mapident. */
|
|
pmap_cold_map(KPTphys, (u_long)KPTmap, NKPT);
|
|
|
|
/* Map proc0kstack */
|
|
pmap_cold_mapident(proc0kstack, TD0_KSTACK_PAGES);
|
|
/* ISA hole already mapped */
|
|
|
|
pmap_cold_mapident(vm86phystk, 1);
|
|
pmap_cold_mapident(vm86pa, 3);
|
|
|
|
/* Map page 0 into the vm86 page table */
|
|
*(pt_entry_t *)vm86pa = 0 | PG_RW | PG_U | PG_A | PG_M | PG_V;
|
|
|
|
/* ...likewise for the ISA hole for vm86 */
|
|
for (pt = (pt_entry_t *)vm86pa + atop(ISA_HOLE_START), a = 0;
|
|
a < atop(ISA_HOLE_LENGTH); a++, pt++)
|
|
*pt = (ISA_HOLE_START + ptoa(a)) | PG_RW | PG_U | PG_A |
|
|
PG_M | PG_V;
|
|
|
|
/* Enable PSE, PGE, VME, and PAE if configured. */
|
|
ncr4 = 0;
|
|
if ((cpu_feature & CPUID_PSE) != 0) {
|
|
ncr4 |= CR4_PSE;
|
|
pseflag = PG_PS;
|
|
/*
|
|
* Superpage mapping of the kernel text. Existing 4k
|
|
* page table pages are wasted.
|
|
*/
|
|
for (a = KERNBASE; a < KERNend; a += NBPDR)
|
|
IdlePTD[a >> PDRSHIFT] = a | PG_PS | PG_A | PG_M |
|
|
PG_RW | PG_V;
|
|
}
|
|
if ((cpu_feature & CPUID_PGE) != 0) {
|
|
ncr4 |= CR4_PGE;
|
|
pgeflag = PG_G;
|
|
}
|
|
ncr4 |= (cpu_feature & CPUID_VME) != 0 ? CR4_VME : 0;
|
|
#ifdef PMAP_PAE_COMP
|
|
ncr4 |= CR4_PAE;
|
|
#endif
|
|
if (ncr4 != 0)
|
|
load_cr4(rcr4() | ncr4);
|
|
|
|
/* Now enable paging */
|
|
#ifdef PMAP_PAE_COMP
|
|
cr3 = (u_int)IdlePDPT;
|
|
if ((cpu_feature & CPUID_PAT) == 0)
|
|
wbinvd();
|
|
#else
|
|
cr3 = (u_int)IdlePTD;
|
|
#endif
|
|
tramp_idleptd = cr3;
|
|
load_cr3(cr3);
|
|
load_cr0(rcr0() | CR0_PG);
|
|
|
|
/*
|
|
* Now running relocated at KERNBASE where the system is
|
|
* linked to run.
|
|
*/
|
|
|
|
/*
|
|
* Remove the lowest part of the double mapping of low memory
|
|
* to get some null pointer checks.
|
|
*/
|
|
__CONCAT(PMTYPE, remap_lower)(false);
|
|
|
|
kernel_vm_end = /* 0 + */ NKPT * NBPDR;
|
|
#ifdef PMAP_PAE_COMP
|
|
i386_pmap_VM_NFREEORDER = VM_NFREEORDER_PAE;
|
|
i386_pmap_VM_LEVEL_0_ORDER = VM_LEVEL_0_ORDER_PAE;
|
|
i386_pmap_PDRSHIFT = PDRSHIFT_PAE;
|
|
#else
|
|
i386_pmap_VM_NFREEORDER = VM_NFREEORDER_NOPAE;
|
|
i386_pmap_VM_LEVEL_0_ORDER = VM_LEVEL_0_ORDER_NOPAE;
|
|
i386_pmap_PDRSHIFT = PDRSHIFT_NOPAE;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, set_nx)(void)
|
|
{
|
|
|
|
#ifdef PMAP_PAE_COMP
|
|
if ((amd_feature & AMDID_NX) == 0)
|
|
return;
|
|
pg_nx = PG_NX;
|
|
elf32_nxstack = 1;
|
|
/* EFER.EFER_NXE is set in initializecpu(). */
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Bootstrap the system enough to run with virtual memory.
|
|
*
|
|
* On the i386 this is called after pmap_cold() created initial
|
|
* kernel page table and enabled paging, and just syncs the pmap
|
|
* module with what has already been done.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, bootstrap)(vm_paddr_t firstaddr)
|
|
{
|
|
vm_offset_t va;
|
|
pt_entry_t *pte, *unused;
|
|
struct pcpu *pc;
|
|
u_long res;
|
|
int i;
|
|
|
|
res = atop(firstaddr - (vm_paddr_t)KERNLOAD);
|
|
|
|
/*
|
|
* Add a physical memory segment (vm_phys_seg) corresponding to the
|
|
* preallocated kernel page table pages so that vm_page structures
|
|
* representing these pages will be created. The vm_page structures
|
|
* are required for promotion of the corresponding kernel virtual
|
|
* addresses to superpage mappings.
|
|
*/
|
|
vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
|
|
|
|
/*
|
|
* Initialize the first available kernel virtual address.
|
|
* However, using "firstaddr" may waste a few pages of the
|
|
* kernel virtual address space, because pmap_cold() may not
|
|
* have mapped every physical page that it allocated.
|
|
* Preferably, pmap_cold() would provide a first unused
|
|
* virtual address in addition to "firstaddr".
|
|
*/
|
|
virtual_avail = (vm_offset_t)firstaddr;
|
|
virtual_end = VM_MAX_KERNEL_ADDRESS;
|
|
|
|
/*
|
|
* Initialize the kernel pmap (which is statically allocated).
|
|
* Count bootstrap data as being resident in case any of this data is
|
|
* later unmapped (using pmap_remove()) and freed.
|
|
*/
|
|
PMAP_LOCK_INIT(kernel_pmap);
|
|
kernel_pmap->pm_pdir = IdlePTD;
|
|
#ifdef PMAP_PAE_COMP
|
|
kernel_pmap->pm_pdpt = IdlePDPT;
|
|
#endif
|
|
CPU_FILL(&kernel_pmap->pm_active); /* don't allow deactivation */
|
|
kernel_pmap->pm_stats.resident_count = res;
|
|
TAILQ_INIT(&kernel_pmap->pm_pvchunk);
|
|
|
|
/*
|
|
* Initialize the global pv list lock.
|
|
*/
|
|
rw_init(&pvh_global_lock, "pmap pv global");
|
|
|
|
/*
|
|
* Reserve some special page table entries/VA space for temporary
|
|
* mapping of pages.
|
|
*/
|
|
#define SYSMAP(c, p, v, n) \
|
|
v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
|
|
|
|
va = virtual_avail;
|
|
pte = vtopte(va);
|
|
|
|
/*
|
|
* Initialize temporary map objects on the current CPU for use
|
|
* during early boot.
|
|
* CMAP1/CMAP2 are used for zeroing and copying pages.
|
|
* CMAP3 is used for the boot-time memory test.
|
|
*/
|
|
pc = get_pcpu();
|
|
mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
|
|
SYSMAP(caddr_t, pc->pc_cmap_pte1, pc->pc_cmap_addr1, 1)
|
|
SYSMAP(caddr_t, pc->pc_cmap_pte2, pc->pc_cmap_addr2, 1)
|
|
SYSMAP(vm_offset_t, pte, pc->pc_qmap_addr, 1)
|
|
|
|
SYSMAP(caddr_t, CMAP3, CADDR3, 1);
|
|
|
|
/*
|
|
* Crashdump maps.
|
|
*/
|
|
SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
|
|
|
|
/*
|
|
* ptvmmap is used for reading arbitrary physical pages via /dev/mem.
|
|
*/
|
|
SYSMAP(caddr_t, unused, ptvmmap, 1)
|
|
|
|
/*
|
|
* msgbufp is used to map the system message buffer.
|
|
*/
|
|
SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
|
|
|
|
/*
|
|
* KPTmap is used by pmap_kextract().
|
|
*
|
|
* KPTmap is first initialized by pmap_cold(). However, that initial
|
|
* KPTmap can only support NKPT page table pages. Here, a larger
|
|
* KPTmap is created that can support KVA_PAGES page table pages.
|
|
*/
|
|
SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
|
|
|
|
for (i = 0; i < NKPT; i++)
|
|
KPTD[i] = (KPTphys + ptoa(i)) | PG_RW | PG_V;
|
|
|
|
/*
|
|
* PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
|
|
* respectively.
|
|
*/
|
|
SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
|
|
SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
|
|
SYSMAP(pt_entry_t *, PMAP3, PADDR3, 1)
|
|
|
|
mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
|
|
|
|
virtual_avail = va;
|
|
|
|
/*
|
|
* Initialize the PAT MSR if present.
|
|
* pmap_init_pat() clears and sets CR4_PGE, which, as a
|
|
* side-effect, invalidates stale PG_G TLB entries that might
|
|
* have been created in our pre-boot environment. We assume
|
|
* that PAT support implies PGE and in reverse, PGE presence
|
|
* comes with PAT. Both features were added for Pentium Pro.
|
|
*/
|
|
pmap_init_pat();
|
|
}
|
|
|
|
static void
|
|
pmap_init_reserved_pages(void)
|
|
{
|
|
struct pcpu *pc;
|
|
vm_offset_t pages;
|
|
int i;
|
|
|
|
#ifdef PMAP_PAE_COMP
|
|
if (!pae_mode)
|
|
return;
|
|
#else
|
|
if (pae_mode)
|
|
return;
|
|
#endif
|
|
CPU_FOREACH(i) {
|
|
pc = pcpu_find(i);
|
|
mtx_init(&pc->pc_copyout_mlock, "cpmlk", NULL, MTX_DEF |
|
|
MTX_NEW);
|
|
pc->pc_copyout_maddr = kva_alloc(ptoa(2));
|
|
if (pc->pc_copyout_maddr == 0)
|
|
panic("unable to allocate non-sleepable copyout KVA");
|
|
sx_init(&pc->pc_copyout_slock, "cpslk");
|
|
pc->pc_copyout_saddr = kva_alloc(ptoa(2));
|
|
if (pc->pc_copyout_saddr == 0)
|
|
panic("unable to allocate sleepable copyout KVA");
|
|
pc->pc_pmap_eh_va = kva_alloc(ptoa(1));
|
|
if (pc->pc_pmap_eh_va == 0)
|
|
panic("unable to allocate pmap_extract_and_hold KVA");
|
|
pc->pc_pmap_eh_ptep = (char *)vtopte(pc->pc_pmap_eh_va);
|
|
|
|
/*
|
|
* Skip if the mappings have already been initialized,
|
|
* i.e. this is the BSP.
|
|
*/
|
|
if (pc->pc_cmap_addr1 != 0)
|
|
continue;
|
|
|
|
mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
|
|
pages = kva_alloc(PAGE_SIZE * 3);
|
|
if (pages == 0)
|
|
panic("unable to allocate CMAP KVA");
|
|
pc->pc_cmap_pte1 = vtopte(pages);
|
|
pc->pc_cmap_pte2 = vtopte(pages + PAGE_SIZE);
|
|
pc->pc_cmap_addr1 = (caddr_t)pages;
|
|
pc->pc_cmap_addr2 = (caddr_t)(pages + PAGE_SIZE);
|
|
pc->pc_qmap_addr = pages + ptoa(2);
|
|
}
|
|
}
|
|
|
|
SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
|
|
|
|
/*
|
|
* Setup the PAT MSR.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, init_pat)(void)
|
|
{
|
|
int pat_table[PAT_INDEX_SIZE];
|
|
uint64_t pat_msr;
|
|
u_long cr0, cr4;
|
|
int i;
|
|
|
|
/* Set default PAT index table. */
|
|
for (i = 0; i < PAT_INDEX_SIZE; i++)
|
|
pat_table[i] = -1;
|
|
pat_table[PAT_WRITE_BACK] = 0;
|
|
pat_table[PAT_WRITE_THROUGH] = 1;
|
|
pat_table[PAT_UNCACHEABLE] = 3;
|
|
pat_table[PAT_WRITE_COMBINING] = 3;
|
|
pat_table[PAT_WRITE_PROTECTED] = 3;
|
|
pat_table[PAT_UNCACHED] = 3;
|
|
|
|
/*
|
|
* Bail if this CPU doesn't implement PAT.
|
|
* We assume that PAT support implies PGE.
|
|
*/
|
|
if ((cpu_feature & CPUID_PAT) == 0) {
|
|
for (i = 0; i < PAT_INDEX_SIZE; i++)
|
|
pat_index[i] = pat_table[i];
|
|
pat_works = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Due to some Intel errata, we can only safely use the lower 4
|
|
* PAT entries.
|
|
*
|
|
* Intel Pentium III Processor Specification Update
|
|
* Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
|
|
* or Mode C Paging)
|
|
*
|
|
* Intel Pentium IV Processor Specification Update
|
|
* Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
|
|
*/
|
|
if (cpu_vendor_id == CPU_VENDOR_INTEL &&
|
|
!(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
|
|
pat_works = 0;
|
|
|
|
/* Initialize default PAT entries. */
|
|
pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
|
|
PAT_VALUE(1, PAT_WRITE_THROUGH) |
|
|
PAT_VALUE(2, PAT_UNCACHED) |
|
|
PAT_VALUE(3, PAT_UNCACHEABLE) |
|
|
PAT_VALUE(4, PAT_WRITE_BACK) |
|
|
PAT_VALUE(5, PAT_WRITE_THROUGH) |
|
|
PAT_VALUE(6, PAT_UNCACHED) |
|
|
PAT_VALUE(7, PAT_UNCACHEABLE);
|
|
|
|
if (pat_works) {
|
|
/*
|
|
* Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
|
|
* Program 5 and 6 as WP and WC.
|
|
* Leave 4 and 7 as WB and UC.
|
|
*/
|
|
pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
|
|
pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
|
|
PAT_VALUE(6, PAT_WRITE_COMBINING);
|
|
pat_table[PAT_UNCACHED] = 2;
|
|
pat_table[PAT_WRITE_PROTECTED] = 5;
|
|
pat_table[PAT_WRITE_COMBINING] = 6;
|
|
} else {
|
|
/*
|
|
* Just replace PAT Index 2 with WC instead of UC-.
|
|
*/
|
|
pat_msr &= ~PAT_MASK(2);
|
|
pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
|
|
pat_table[PAT_WRITE_COMBINING] = 2;
|
|
}
|
|
|
|
/* Disable PGE. */
|
|
cr4 = rcr4();
|
|
load_cr4(cr4 & ~CR4_PGE);
|
|
|
|
/* Disable caches (CD = 1, NW = 0). */
|
|
cr0 = rcr0();
|
|
load_cr0((cr0 & ~CR0_NW) | CR0_CD);
|
|
|
|
/* Flushes caches and TLBs. */
|
|
wbinvd();
|
|
invltlb();
|
|
|
|
/* Update PAT and index table. */
|
|
wrmsr(MSR_PAT, pat_msr);
|
|
for (i = 0; i < PAT_INDEX_SIZE; i++)
|
|
pat_index[i] = pat_table[i];
|
|
|
|
/* Flush caches and TLBs again. */
|
|
wbinvd();
|
|
invltlb();
|
|
|
|
/* Restore caches and PGE. */
|
|
load_cr0(cr0);
|
|
load_cr4(cr4);
|
|
}
|
|
|
|
#ifdef PMAP_PAE_COMP
|
|
static void *
|
|
pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
|
|
int wait)
|
|
{
|
|
|
|
/* Inform UMA that this allocator uses kernel_map/object. */
|
|
*flags = UMA_SLAB_KERNEL;
|
|
return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
|
|
bytes, wait, 0x0ULL, 0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Abuse the pte nodes for unmapped kva to thread a kva freelist through.
|
|
* Requirements:
|
|
* - Must deal with pages in order to ensure that none of the PG_* bits
|
|
* are ever set, PG_V in particular.
|
|
* - Assumes we can write to ptes without pte_store() atomic ops, even
|
|
* on PAE systems. This should be ok.
|
|
* - Assumes nothing will ever test these addresses for 0 to indicate
|
|
* no mapping instead of correctly checking PG_V.
|
|
* - Assumes a vm_offset_t will fit in a pte (true for i386).
|
|
* Because PG_V is never set, there can be no mappings to invalidate.
|
|
*/
|
|
static vm_offset_t
|
|
pmap_ptelist_alloc(vm_offset_t *head)
|
|
{
|
|
pt_entry_t *pte;
|
|
vm_offset_t va;
|
|
|
|
va = *head;
|
|
if (va == 0)
|
|
panic("pmap_ptelist_alloc: exhausted ptelist KVA");
|
|
pte = vtopte(va);
|
|
*head = *pte;
|
|
if (*head & PG_V)
|
|
panic("pmap_ptelist_alloc: va with PG_V set!");
|
|
*pte = 0;
|
|
return (va);
|
|
}
|
|
|
|
static void
|
|
pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
|
|
{
|
|
pt_entry_t *pte;
|
|
|
|
if (va & PG_V)
|
|
panic("pmap_ptelist_free: freeing va with PG_V set!");
|
|
pte = vtopte(va);
|
|
*pte = *head; /* virtual! PG_V is 0 though */
|
|
*head = va;
|
|
}
|
|
|
|
static void
|
|
pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
|
|
{
|
|
int i;
|
|
vm_offset_t va;
|
|
|
|
*head = 0;
|
|
for (i = npages - 1; i >= 0; i--) {
|
|
va = (vm_offset_t)base + i * PAGE_SIZE;
|
|
pmap_ptelist_free(head, va);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the pmap module.
|
|
* Called by vm_init, to initialize any structures that the pmap
|
|
* system needs to map virtual memory.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, init)(void)
|
|
{
|
|
struct pmap_preinit_mapping *ppim;
|
|
vm_page_t mpte;
|
|
vm_size_t s;
|
|
int i, pv_npg;
|
|
|
|
/*
|
|
* Initialize the vm page array entries for the kernel pmap's
|
|
* page table pages.
|
|
*/
|
|
PMAP_LOCK(kernel_pmap);
|
|
for (i = 0; i < NKPT; i++) {
|
|
mpte = PHYS_TO_VM_PAGE(KPTphys + ptoa(i));
|
|
KASSERT(mpte >= vm_page_array &&
|
|
mpte < &vm_page_array[vm_page_array_size],
|
|
("pmap_init: page table page is out of range"));
|
|
mpte->pindex = i + KPTDI;
|
|
mpte->phys_addr = KPTphys + ptoa(i);
|
|
mpte->ref_count = 1;
|
|
|
|
/*
|
|
* Collect the page table pages that were replaced by a 2/4MB
|
|
* page. They are filled with equivalent 4KB page mappings.
|
|
*/
|
|
if (pseflag != 0 &&
|
|
KERNBASE <= i << PDRSHIFT && i << PDRSHIFT < KERNend &&
|
|
pmap_insert_pt_page(kernel_pmap, mpte, true))
|
|
panic("pmap_init: pmap_insert_pt_page failed");
|
|
}
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
vm_wire_add(NKPT);
|
|
|
|
/*
|
|
* Initialize the address space (zone) for the pv entries. Set a
|
|
* high water mark so that the system can recover from excessive
|
|
* numbers of pv entries.
|
|
*/
|
|
TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
|
|
pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
|
|
TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
|
|
pv_entry_max = roundup(pv_entry_max, _NPCPV);
|
|
pv_entry_high_water = 9 * (pv_entry_max / 10);
|
|
|
|
/*
|
|
* If the kernel is running on a virtual machine, then it must assume
|
|
* that MCA is enabled by the hypervisor. Moreover, the kernel must
|
|
* be prepared for the hypervisor changing the vendor and family that
|
|
* are reported by CPUID. Consequently, the workaround for AMD Family
|
|
* 10h Erratum 383 is enabled if the processor's feature set does not
|
|
* include at least one feature that is only supported by older Intel
|
|
* or newer AMD processors.
|
|
*/
|
|
if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
|
|
(cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
|
|
CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
|
|
AMDID2_FMA4)) == 0)
|
|
workaround_erratum383 = 1;
|
|
|
|
/*
|
|
* Are large page mappings supported and enabled?
|
|
*/
|
|
TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
|
|
if (pseflag == 0)
|
|
pg_ps_enabled = 0;
|
|
else if (pg_ps_enabled) {
|
|
KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
|
|
("pmap_init: can't assign to pagesizes[1]"));
|
|
pagesizes[1] = NBPDR;
|
|
}
|
|
|
|
/*
|
|
* Calculate the size of the pv head table for superpages.
|
|
* Handle the possibility that "vm_phys_segs[...].end" is zero.
|
|
*/
|
|
pv_npg = trunc_4mpage(vm_phys_segs[vm_phys_nsegs - 1].end -
|
|
PAGE_SIZE) / NBPDR + 1;
|
|
|
|
/*
|
|
* Allocate memory for the pv head table for superpages.
|
|
*/
|
|
s = (vm_size_t)(pv_npg * sizeof(struct md_page));
|
|
s = round_page(s);
|
|
pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
|
|
for (i = 0; i < pv_npg; i++)
|
|
TAILQ_INIT(&pv_table[i].pv_list);
|
|
|
|
pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
|
|
pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
|
|
if (pv_chunkbase == NULL)
|
|
panic("pmap_init: not enough kvm for pv chunks");
|
|
pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
|
|
#ifdef PMAP_PAE_COMP
|
|
pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
|
|
NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
|
|
UMA_ZONE_CONTIG | UMA_ZONE_VM | UMA_ZONE_NOFREE);
|
|
uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
|
|
#endif
|
|
|
|
pmap_initialized = 1;
|
|
pmap_init_trm();
|
|
|
|
if (!bootverbose)
|
|
return;
|
|
for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
|
|
ppim = pmap_preinit_mapping + i;
|
|
if (ppim->va == 0)
|
|
continue;
|
|
printf("PPIM %u: PA=%#jx, VA=%#x, size=%#x, mode=%#x\n", i,
|
|
(uintmax_t)ppim->pa, ppim->va, ppim->sz, ppim->mode);
|
|
}
|
|
|
|
}
|
|
|
|
extern u_long pmap_pde_demotions;
|
|
extern u_long pmap_pde_mappings;
|
|
extern u_long pmap_pde_p_failures;
|
|
extern u_long pmap_pde_promotions;
|
|
|
|
/***************************************************
|
|
* Low level helper routines.....
|
|
***************************************************/
|
|
|
|
static boolean_t
|
|
__CONCAT(PMTYPE, is_valid_memattr)(pmap_t pmap __unused, vm_memattr_t mode)
|
|
{
|
|
|
|
return (mode >= 0 && mode < PAT_INDEX_SIZE &&
|
|
pat_index[(int)mode] >= 0);
|
|
}
|
|
|
|
/*
|
|
* Determine the appropriate bits to set in a PTE or PDE for a specified
|
|
* caching mode.
|
|
*/
|
|
static int
|
|
__CONCAT(PMTYPE, cache_bits)(pmap_t pmap, int mode, boolean_t is_pde)
|
|
{
|
|
int cache_bits, pat_flag, pat_idx;
|
|
|
|
if (!pmap_is_valid_memattr(pmap, mode))
|
|
panic("Unknown caching mode %d\n", mode);
|
|
|
|
/* The PAT bit is different for PTE's and PDE's. */
|
|
pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
|
|
|
|
/* Map the caching mode to a PAT index. */
|
|
pat_idx = pat_index[mode];
|
|
|
|
/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
|
|
cache_bits = 0;
|
|
if (pat_idx & 0x4)
|
|
cache_bits |= pat_flag;
|
|
if (pat_idx & 0x2)
|
|
cache_bits |= PG_NC_PCD;
|
|
if (pat_idx & 0x1)
|
|
cache_bits |= PG_NC_PWT;
|
|
return (cache_bits);
|
|
}
|
|
|
|
static int
|
|
pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
|
|
{
|
|
int pat_flag, pat_idx;
|
|
|
|
if ((cpu_feature & CPUID_PAT) == 0)
|
|
return (0);
|
|
|
|
pat_idx = 0;
|
|
/* The PAT bit is different for PTE's and PDE's. */
|
|
pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
|
|
|
|
if ((pte & pat_flag) != 0)
|
|
pat_idx |= 0x4;
|
|
if ((pte & PG_NC_PCD) != 0)
|
|
pat_idx |= 0x2;
|
|
if ((pte & PG_NC_PWT) != 0)
|
|
pat_idx |= 0x1;
|
|
|
|
/* See pmap_init_pat(). */
|
|
if (pat_works) {
|
|
if (pat_idx == 4)
|
|
pat_idx = 0;
|
|
if (pat_idx == 7)
|
|
pat_idx = 3;
|
|
} else {
|
|
/* XXXKIB */
|
|
}
|
|
|
|
return (pat_idx);
|
|
}
|
|
|
|
static bool
|
|
__CONCAT(PMTYPE, ps_enabled)(pmap_t pmap __unused)
|
|
{
|
|
|
|
return (pg_ps_enabled);
|
|
}
|
|
|
|
/*
|
|
* The caller is responsible for maintaining TLB consistency.
|
|
*/
|
|
static void
|
|
pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
|
|
{
|
|
pd_entry_t *pde;
|
|
|
|
pde = pmap_pde(kernel_pmap, va);
|
|
pde_store(pde, newpde);
|
|
}
|
|
|
|
/*
|
|
* After changing the page size for the specified virtual address in the page
|
|
* table, flush the corresponding entries from the processor's TLB. Only the
|
|
* calling processor's TLB is affected.
|
|
*
|
|
* The calling thread must be pinned to a processor.
|
|
*/
|
|
static void
|
|
pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
|
|
{
|
|
|
|
if ((newpde & PG_PS) == 0)
|
|
/* Demotion: flush a specific 2MB page mapping. */
|
|
invlpg(va);
|
|
else /* if ((newpde & PG_G) == 0) */
|
|
/*
|
|
* Promotion: flush every 4KB page mapping from the TLB
|
|
* because there are too many to flush individually.
|
|
*/
|
|
invltlb();
|
|
}
|
|
|
|
#ifdef SMP
|
|
|
|
static void
|
|
pmap_curcpu_cb_dummy(pmap_t pmap __unused, vm_offset_t addr1 __unused,
|
|
vm_offset_t addr2 __unused)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* For SMP, these functions have to use the IPI mechanism for coherence.
|
|
*
|
|
* N.B.: Before calling any of the following TLB invalidation functions,
|
|
* the calling processor must ensure that all stores updating a non-
|
|
* kernel page table are globally performed. Otherwise, another
|
|
* processor could cache an old, pre-update entry without being
|
|
* invalidated. This can happen one of two ways: (1) The pmap becomes
|
|
* active on another processor after its pm_active field is checked by
|
|
* one of the following functions but before a store updating the page
|
|
* table is globally performed. (2) The pmap becomes active on another
|
|
* processor before its pm_active field is checked but due to
|
|
* speculative loads one of the following functions stills reads the
|
|
* pmap as inactive on the other processor.
|
|
*
|
|
* The kernel page table is exempt because its pm_active field is
|
|
* immutable. The kernel page table is always active on every
|
|
* processor.
|
|
*/
|
|
static void
|
|
pmap_invalidate_page_int(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
cpuset_t *mask, other_cpus;
|
|
u_int cpuid;
|
|
|
|
sched_pin();
|
|
if (pmap == kernel_pmap) {
|
|
invlpg(va);
|
|
mask = &all_cpus;
|
|
} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
|
|
mask = &all_cpus;
|
|
} else {
|
|
cpuid = PCPU_GET(cpuid);
|
|
other_cpus = all_cpus;
|
|
CPU_CLR(cpuid, &other_cpus);
|
|
CPU_AND(&other_cpus, &pmap->pm_active);
|
|
mask = &other_cpus;
|
|
}
|
|
smp_masked_invlpg(*mask, va, pmap, pmap_curcpu_cb_dummy);
|
|
sched_unpin();
|
|
}
|
|
|
|
/* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
|
|
#define PMAP_INVLPG_THRESHOLD (4 * 1024 * PAGE_SIZE)
|
|
|
|
static void
|
|
pmap_invalidate_range_int(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
cpuset_t *mask, other_cpus;
|
|
vm_offset_t addr;
|
|
u_int cpuid;
|
|
|
|
if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
|
|
pmap_invalidate_all_int(pmap);
|
|
return;
|
|
}
|
|
|
|
sched_pin();
|
|
if (pmap == kernel_pmap) {
|
|
for (addr = sva; addr < eva; addr += PAGE_SIZE)
|
|
invlpg(addr);
|
|
mask = &all_cpus;
|
|
} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
|
|
mask = &all_cpus;
|
|
} else {
|
|
cpuid = PCPU_GET(cpuid);
|
|
other_cpus = all_cpus;
|
|
CPU_CLR(cpuid, &other_cpus);
|
|
CPU_AND(&other_cpus, &pmap->pm_active);
|
|
mask = &other_cpus;
|
|
}
|
|
smp_masked_invlpg_range(*mask, sva, eva, pmap, pmap_curcpu_cb_dummy);
|
|
sched_unpin();
|
|
}
|
|
|
|
static void
|
|
pmap_invalidate_all_int(pmap_t pmap)
|
|
{
|
|
cpuset_t *mask, other_cpus;
|
|
u_int cpuid;
|
|
|
|
sched_pin();
|
|
if (pmap == kernel_pmap) {
|
|
invltlb();
|
|
mask = &all_cpus;
|
|
} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
|
|
mask = &all_cpus;
|
|
} else {
|
|
cpuid = PCPU_GET(cpuid);
|
|
other_cpus = all_cpus;
|
|
CPU_CLR(cpuid, &other_cpus);
|
|
CPU_AND(&other_cpus, &pmap->pm_active);
|
|
mask = &other_cpus;
|
|
}
|
|
smp_masked_invltlb(*mask, pmap, pmap_curcpu_cb_dummy);
|
|
sched_unpin();
|
|
}
|
|
|
|
static void
|
|
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,
|
|
vm_offset_t addr1 __unused, vm_offset_t addr2 __unused)
|
|
{
|
|
wbinvd();
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, invalidate_cache)(void)
|
|
{
|
|
smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
|
|
}
|
|
|
|
struct pde_action {
|
|
cpuset_t invalidate; /* processors that invalidate their TLB */
|
|
vm_offset_t va;
|
|
pd_entry_t *pde;
|
|
pd_entry_t newpde;
|
|
u_int store; /* processor that updates the PDE */
|
|
};
|
|
|
|
static void
|
|
pmap_update_pde_kernel(void *arg)
|
|
{
|
|
struct pde_action *act = arg;
|
|
pd_entry_t *pde;
|
|
|
|
if (act->store == PCPU_GET(cpuid)) {
|
|
pde = pmap_pde(kernel_pmap, act->va);
|
|
pde_store(pde, act->newpde);
|
|
}
|
|
}
|
|
|
|
static void
|
|
pmap_update_pde_user(void *arg)
|
|
{
|
|
struct pde_action *act = arg;
|
|
|
|
if (act->store == PCPU_GET(cpuid))
|
|
pde_store(act->pde, act->newpde);
|
|
}
|
|
|
|
static void
|
|
pmap_update_pde_teardown(void *arg)
|
|
{
|
|
struct pde_action *act = arg;
|
|
|
|
if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
|
|
pmap_update_pde_invalidate(act->va, act->newpde);
|
|
}
|
|
|
|
/*
|
|
* Change the page size for the specified virtual address in a way that
|
|
* prevents any possibility of the TLB ever having two entries that map the
|
|
* same virtual address using different page sizes. This is the recommended
|
|
* workaround for Erratum 383 on AMD Family 10h processors. It prevents a
|
|
* machine check exception for a TLB state that is improperly diagnosed as a
|
|
* hardware error.
|
|
*/
|
|
static void
|
|
pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
|
|
{
|
|
struct pde_action act;
|
|
cpuset_t active, other_cpus;
|
|
u_int cpuid;
|
|
|
|
sched_pin();
|
|
cpuid = PCPU_GET(cpuid);
|
|
other_cpus = all_cpus;
|
|
CPU_CLR(cpuid, &other_cpus);
|
|
if (pmap == kernel_pmap)
|
|
active = all_cpus;
|
|
else
|
|
active = pmap->pm_active;
|
|
if (CPU_OVERLAP(&active, &other_cpus)) {
|
|
act.store = cpuid;
|
|
act.invalidate = active;
|
|
act.va = va;
|
|
act.pde = pde;
|
|
act.newpde = newpde;
|
|
CPU_SET(cpuid, &active);
|
|
smp_rendezvous_cpus(active,
|
|
smp_no_rendezvous_barrier, pmap == kernel_pmap ?
|
|
pmap_update_pde_kernel : pmap_update_pde_user,
|
|
pmap_update_pde_teardown, &act);
|
|
} else {
|
|
if (pmap == kernel_pmap)
|
|
pmap_kenter_pde(va, newpde);
|
|
else
|
|
pde_store(pde, newpde);
|
|
if (CPU_ISSET(cpuid, &active))
|
|
pmap_update_pde_invalidate(va, newpde);
|
|
}
|
|
sched_unpin();
|
|
}
|
|
#else /* !SMP */
|
|
/*
|
|
* Normal, non-SMP, 486+ invalidation functions.
|
|
* We inline these within pmap.c for speed.
|
|
*/
|
|
static void
|
|
pmap_invalidate_page_int(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
|
|
if (pmap == kernel_pmap)
|
|
invlpg(va);
|
|
}
|
|
|
|
static void
|
|
pmap_invalidate_range_int(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
vm_offset_t addr;
|
|
|
|
if (pmap == kernel_pmap)
|
|
for (addr = sva; addr < eva; addr += PAGE_SIZE)
|
|
invlpg(addr);
|
|
}
|
|
|
|
static void
|
|
pmap_invalidate_all_int(pmap_t pmap)
|
|
{
|
|
|
|
if (pmap == kernel_pmap)
|
|
invltlb();
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, invalidate_cache)(void)
|
|
{
|
|
|
|
wbinvd();
|
|
}
|
|
|
|
static void
|
|
pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
|
|
{
|
|
|
|
if (pmap == kernel_pmap)
|
|
pmap_kenter_pde(va, newpde);
|
|
else
|
|
pde_store(pde, newpde);
|
|
if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
|
|
pmap_update_pde_invalidate(va, newpde);
|
|
}
|
|
#endif /* !SMP */
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, invalidate_page)(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
|
|
pmap_invalidate_page_int(pmap, va);
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, invalidate_range)(pmap_t pmap, vm_offset_t sva,
|
|
vm_offset_t eva)
|
|
{
|
|
|
|
pmap_invalidate_range_int(pmap, sva, eva);
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, invalidate_all)(pmap_t pmap)
|
|
{
|
|
|
|
pmap_invalidate_all_int(pmap);
|
|
}
|
|
|
|
static void
|
|
pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
|
|
{
|
|
|
|
/*
|
|
* When the PDE has PG_PROMOTED set, the 2- or 4MB page mapping was
|
|
* created by a promotion that did not invalidate the 512 or 1024 4KB
|
|
* page mappings that might exist in the TLB. Consequently, at this
|
|
* point, the TLB may hold both 4KB and 2- or 4MB page mappings for
|
|
* the address range [va, va + NBPDR). Therefore, the entire range
|
|
* must be invalidated here. In contrast, when PG_PROMOTED is clear,
|
|
* the TLB will not hold any 4KB page mappings for the address range
|
|
* [va, va + NBPDR), and so a single INVLPG suffices to invalidate the
|
|
* 2- or 4MB page mapping from the TLB.
|
|
*/
|
|
if ((pde & PG_PROMOTED) != 0)
|
|
pmap_invalidate_range_int(pmap, va, va + NBPDR - 1);
|
|
else
|
|
pmap_invalidate_page_int(pmap, va);
|
|
}
|
|
|
|
/*
|
|
* Are we current address space or kernel?
|
|
*/
|
|
static __inline int
|
|
pmap_is_current(pmap_t pmap)
|
|
{
|
|
|
|
return (pmap == kernel_pmap);
|
|
}
|
|
|
|
/*
|
|
* If the given pmap is not the current or kernel pmap, the returned pte must
|
|
* be released by passing it to pmap_pte_release().
|
|
*/
|
|
static pt_entry_t *
|
|
__CONCAT(PMTYPE, pte)(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
pd_entry_t newpf;
|
|
pd_entry_t *pde;
|
|
|
|
pde = pmap_pde(pmap, va);
|
|
if (*pde & PG_PS)
|
|
return (pde);
|
|
if (*pde != 0) {
|
|
/* are we current address space or kernel? */
|
|
if (pmap_is_current(pmap))
|
|
return (vtopte(va));
|
|
mtx_lock(&PMAP2mutex);
|
|
newpf = *pde & PG_FRAME;
|
|
if ((*PMAP2 & PG_FRAME) != newpf) {
|
|
*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
|
|
pmap_invalidate_page_int(kernel_pmap,
|
|
(vm_offset_t)PADDR2);
|
|
}
|
|
return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Releases a pte that was obtained from pmap_pte(). Be prepared for the pte
|
|
* being NULL.
|
|
*/
|
|
static __inline void
|
|
pmap_pte_release(pt_entry_t *pte)
|
|
{
|
|
|
|
if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
|
|
mtx_unlock(&PMAP2mutex);
|
|
}
|
|
|
|
/*
|
|
* NB: The sequence of updating a page table followed by accesses to the
|
|
* corresponding pages is subject to the situation described in the "AMD64
|
|
* Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
|
|
* "7.3.1 Special Coherency Considerations". Therefore, issuing the INVLPG
|
|
* right after modifying the PTE bits is crucial.
|
|
*/
|
|
static __inline void
|
|
invlcaddr(void *caddr)
|
|
{
|
|
|
|
invlpg((u_int)caddr);
|
|
}
|
|
|
|
/*
|
|
* Super fast pmap_pte routine best used when scanning
|
|
* the pv lists. This eliminates many coarse-grained
|
|
* invltlb calls. Note that many of the pv list
|
|
* scans are across different pmaps. It is very wasteful
|
|
* to do an entire invltlb for checking a single mapping.
|
|
*
|
|
* If the given pmap is not the current pmap, pvh_global_lock
|
|
* must be held and curthread pinned to a CPU.
|
|
*/
|
|
static pt_entry_t *
|
|
pmap_pte_quick(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
pd_entry_t newpf;
|
|
pd_entry_t *pde;
|
|
|
|
pde = pmap_pde(pmap, va);
|
|
if (*pde & PG_PS)
|
|
return (pde);
|
|
if (*pde != 0) {
|
|
/* are we current address space or kernel? */
|
|
if (pmap_is_current(pmap))
|
|
return (vtopte(va));
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
|
|
newpf = *pde & PG_FRAME;
|
|
if ((*PMAP1 & PG_FRAME) != newpf) {
|
|
*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
|
|
#ifdef SMP
|
|
PMAP1cpu = PCPU_GET(cpuid);
|
|
#endif
|
|
invlcaddr(PADDR1);
|
|
PMAP1changed++;
|
|
} else
|
|
#ifdef SMP
|
|
if (PMAP1cpu != PCPU_GET(cpuid)) {
|
|
PMAP1cpu = PCPU_GET(cpuid);
|
|
invlcaddr(PADDR1);
|
|
PMAP1changedcpu++;
|
|
} else
|
|
#endif
|
|
PMAP1unchanged++;
|
|
return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static pt_entry_t *
|
|
pmap_pte_quick3(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
pd_entry_t newpf;
|
|
pd_entry_t *pde;
|
|
|
|
pde = pmap_pde(pmap, va);
|
|
if (*pde & PG_PS)
|
|
return (pde);
|
|
if (*pde != 0) {
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
|
|
newpf = *pde & PG_FRAME;
|
|
if ((*PMAP3 & PG_FRAME) != newpf) {
|
|
*PMAP3 = newpf | PG_RW | PG_V | PG_A | PG_M;
|
|
#ifdef SMP
|
|
PMAP3cpu = PCPU_GET(cpuid);
|
|
#endif
|
|
invlcaddr(PADDR3);
|
|
PMAP1changed++;
|
|
} else
|
|
#ifdef SMP
|
|
if (PMAP3cpu != PCPU_GET(cpuid)) {
|
|
PMAP3cpu = PCPU_GET(cpuid);
|
|
invlcaddr(PADDR3);
|
|
PMAP1changedcpu++;
|
|
} else
|
|
#endif
|
|
PMAP1unchanged++;
|
|
return (PADDR3 + (i386_btop(va) & (NPTEPG - 1)));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static pt_entry_t
|
|
pmap_pte_ufast(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
|
|
{
|
|
pt_entry_t *eh_ptep, pte, *ptep;
|
|
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
pde &= PG_FRAME;
|
|
critical_enter();
|
|
eh_ptep = (pt_entry_t *)PCPU_GET(pmap_eh_ptep);
|
|
if ((*eh_ptep & PG_FRAME) != pde) {
|
|
*eh_ptep = pde | PG_RW | PG_V | PG_A | PG_M;
|
|
invlcaddr((void *)PCPU_GET(pmap_eh_va));
|
|
}
|
|
ptep = (pt_entry_t *)PCPU_GET(pmap_eh_va) + (i386_btop(va) &
|
|
(NPTEPG - 1));
|
|
pte = *ptep;
|
|
critical_exit();
|
|
return (pte);
|
|
}
|
|
|
|
/*
|
|
* Extract from the kernel page table the physical address that is mapped by
|
|
* the given virtual address "va".
|
|
*
|
|
* This function may be used before pmap_bootstrap() is called.
|
|
*/
|
|
static vm_paddr_t
|
|
__CONCAT(PMTYPE, kextract)(vm_offset_t va)
|
|
{
|
|
vm_paddr_t pa;
|
|
|
|
if ((pa = pte_load(&PTD[va >> PDRSHIFT])) & PG_PS) {
|
|
pa = (pa & PG_PS_FRAME) | (va & PDRMASK);
|
|
} else {
|
|
/*
|
|
* Beware of a concurrent promotion that changes the PDE at
|
|
* this point! For example, vtopte() must not be used to
|
|
* access the PTE because it would use the new PDE. It is,
|
|
* however, safe to use the old PDE because the page table
|
|
* page is preserved by the promotion.
|
|
*/
|
|
pa = KPTmap[i386_btop(va)];
|
|
pa = (pa & PG_FRAME) | (va & PAGE_MASK);
|
|
}
|
|
return (pa);
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_extract
|
|
* Function:
|
|
* Extract the physical page address associated
|
|
* with the given map/virtual_address pair.
|
|
*/
|
|
static vm_paddr_t
|
|
__CONCAT(PMTYPE, extract)(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
vm_paddr_t rtval;
|
|
pt_entry_t pte;
|
|
pd_entry_t pde;
|
|
|
|
rtval = 0;
|
|
PMAP_LOCK(pmap);
|
|
pde = pmap->pm_pdir[va >> PDRSHIFT];
|
|
if (pde != 0) {
|
|
if ((pde & PG_PS) != 0)
|
|
rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
|
|
else {
|
|
pte = pmap_pte_ufast(pmap, va, pde);
|
|
rtval = (pte & PG_FRAME) | (va & PAGE_MASK);
|
|
}
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
return (rtval);
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_extract_and_hold
|
|
* Function:
|
|
* Atomically extract and hold the physical page
|
|
* with the given pmap and virtual address pair
|
|
* if that mapping permits the given protection.
|
|
*/
|
|
static vm_page_t
|
|
__CONCAT(PMTYPE, extract_and_hold)(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
|
|
{
|
|
pd_entry_t pde;
|
|
pt_entry_t pte;
|
|
vm_page_t m;
|
|
|
|
m = NULL;
|
|
PMAP_LOCK(pmap);
|
|
pde = *pmap_pde(pmap, va);
|
|
if (pde != 0) {
|
|
if (pde & PG_PS) {
|
|
if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0)
|
|
m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
|
|
(va & PDRMASK));
|
|
} else {
|
|
pte = pmap_pte_ufast(pmap, va, pde);
|
|
if (pte != 0 &&
|
|
((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
|
|
m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
|
|
}
|
|
if (m != NULL && !vm_page_wire_mapped(m))
|
|
m = NULL;
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
return (m);
|
|
}
|
|
|
|
/***************************************************
|
|
* Low level mapping routines.....
|
|
***************************************************/
|
|
|
|
/*
|
|
* Add a wired page to the kva.
|
|
* Note: not SMP coherent.
|
|
*
|
|
* This function may be used before pmap_bootstrap() is called.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, kenter)(vm_offset_t va, vm_paddr_t pa)
|
|
{
|
|
pt_entry_t *pte;
|
|
|
|
pte = vtopte(va);
|
|
pte_store(pte, pa | PG_RW | PG_V);
|
|
}
|
|
|
|
static __inline void
|
|
pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
|
|
{
|
|
pt_entry_t *pte;
|
|
|
|
pte = vtopte(va);
|
|
pte_store(pte, pa | PG_RW | PG_V | pmap_cache_bits(kernel_pmap,
|
|
mode, 0));
|
|
}
|
|
|
|
/*
|
|
* Remove a page from the kernel pagetables.
|
|
* Note: not SMP coherent.
|
|
*
|
|
* This function may be used before pmap_bootstrap() is called.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, kremove)(vm_offset_t va)
|
|
{
|
|
pt_entry_t *pte;
|
|
|
|
pte = vtopte(va);
|
|
pte_clear(pte);
|
|
}
|
|
|
|
/*
|
|
* Used to map a range of physical addresses into kernel
|
|
* virtual address space.
|
|
*
|
|
* The value passed in '*virt' is a suggested virtual address for
|
|
* the mapping. Architectures which can support a direct-mapped
|
|
* physical to virtual region can return the appropriate address
|
|
* within that region, leaving '*virt' unchanged. Other
|
|
* architectures should map the pages starting at '*virt' and
|
|
* update '*virt' with the first usable address after the mapped
|
|
* region.
|
|
*/
|
|
static vm_offset_t
|
|
__CONCAT(PMTYPE, map)(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
|
|
int prot)
|
|
{
|
|
vm_offset_t va, sva;
|
|
vm_paddr_t superpage_offset;
|
|
pd_entry_t newpde;
|
|
|
|
va = *virt;
|
|
/*
|
|
* Does the physical address range's size and alignment permit at
|
|
* least one superpage mapping to be created?
|
|
*/
|
|
superpage_offset = start & PDRMASK;
|
|
if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
|
|
/*
|
|
* Increase the starting virtual address so that its alignment
|
|
* does not preclude the use of superpage mappings.
|
|
*/
|
|
if ((va & PDRMASK) < superpage_offset)
|
|
va = (va & ~PDRMASK) + superpage_offset;
|
|
else if ((va & PDRMASK) > superpage_offset)
|
|
va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
|
|
}
|
|
sva = va;
|
|
while (start < end) {
|
|
if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
|
|
pseflag != 0) {
|
|
KASSERT((va & PDRMASK) == 0,
|
|
("pmap_map: misaligned va %#x", va));
|
|
newpde = start | PG_PS | PG_RW | PG_V;
|
|
pmap_kenter_pde(va, newpde);
|
|
va += NBPDR;
|
|
start += NBPDR;
|
|
} else {
|
|
pmap_kenter(va, start);
|
|
va += PAGE_SIZE;
|
|
start += PAGE_SIZE;
|
|
}
|
|
}
|
|
pmap_invalidate_range_int(kernel_pmap, sva, va);
|
|
*virt = va;
|
|
return (sva);
|
|
}
|
|
|
|
/*
|
|
* Add a list of wired pages to the kva
|
|
* this routine is only used for temporary
|
|
* kernel mappings that do not need to have
|
|
* page modification or references recorded.
|
|
* Note that old mappings are simply written
|
|
* over. The page *must* be wired.
|
|
* Note: SMP coherent. Uses a ranged shootdown IPI.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, qenter)(vm_offset_t sva, vm_page_t *ma, int count)
|
|
{
|
|
pt_entry_t *endpte, oldpte, pa, *pte;
|
|
vm_page_t m;
|
|
|
|
oldpte = 0;
|
|
pte = vtopte(sva);
|
|
endpte = pte + count;
|
|
while (pte < endpte) {
|
|
m = *ma++;
|
|
pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(kernel_pmap,
|
|
m->md.pat_mode, 0);
|
|
if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
|
|
oldpte |= *pte;
|
|
pte_store(pte, pa | pg_nx | PG_RW | PG_V);
|
|
}
|
|
pte++;
|
|
}
|
|
if (__predict_false((oldpte & PG_V) != 0))
|
|
pmap_invalidate_range_int(kernel_pmap, sva, sva + count *
|
|
PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* This routine tears out page mappings from the
|
|
* kernel -- it is meant only for temporary mappings.
|
|
* Note: SMP coherent. Uses a ranged shootdown IPI.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, qremove)(vm_offset_t sva, int count)
|
|
{
|
|
vm_offset_t va;
|
|
|
|
va = sva;
|
|
while (count-- > 0) {
|
|
pmap_kremove(va);
|
|
va += PAGE_SIZE;
|
|
}
|
|
pmap_invalidate_range_int(kernel_pmap, sva, va);
|
|
}
|
|
|
|
/***************************************************
|
|
* Page table page management routines.....
|
|
***************************************************/
|
|
/*
|
|
* Schedule the specified unused page table page to be freed. Specifically,
|
|
* add the page to the specified list of pages that will be released to the
|
|
* physical memory manager after the TLB has been updated.
|
|
*/
|
|
static __inline void
|
|
pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
|
|
boolean_t set_PG_ZERO)
|
|
{
|
|
|
|
if (set_PG_ZERO)
|
|
m->flags |= PG_ZERO;
|
|
else
|
|
m->flags &= ~PG_ZERO;
|
|
SLIST_INSERT_HEAD(free, m, plinks.s.ss);
|
|
}
|
|
|
|
/*
|
|
* Inserts the specified page table page into the specified pmap's collection
|
|
* of idle page table pages. Each of a pmap's page table pages is responsible
|
|
* for mapping a distinct range of virtual addresses. The pmap's collection is
|
|
* ordered by this virtual address range.
|
|
*
|
|
* If "promoted" is false, then the page table page "mpte" must be zero filled.
|
|
*/
|
|
static __inline int
|
|
pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted)
|
|
{
|
|
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
mpte->valid = promoted ? VM_PAGE_BITS_ALL : 0;
|
|
return (vm_radix_insert(&pmap->pm_root, mpte));
|
|
}
|
|
|
|
/*
|
|
* Removes the page table page mapping the specified virtual address from the
|
|
* specified pmap's collection of idle page table pages, and returns it.
|
|
* Otherwise, returns NULL if there is no page table page corresponding to the
|
|
* specified virtual address.
|
|
*/
|
|
static __inline vm_page_t
|
|
pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
return (vm_radix_remove(&pmap->pm_root, va >> PDRSHIFT));
|
|
}
|
|
|
|
/*
|
|
* Decrements a page table page's reference count, which is used to record the
|
|
* number of valid page table entries within the page. If the reference count
|
|
* drops to zero, then the page table page is unmapped. Returns TRUE if the
|
|
* page table page was unmapped and FALSE otherwise.
|
|
*/
|
|
static inline boolean_t
|
|
pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
|
|
{
|
|
|
|
--m->ref_count;
|
|
if (m->ref_count == 0) {
|
|
_pmap_unwire_ptp(pmap, m, free);
|
|
return (TRUE);
|
|
} else
|
|
return (FALSE);
|
|
}
|
|
|
|
static void
|
|
_pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
|
|
{
|
|
|
|
/*
|
|
* unmap the page table page
|
|
*/
|
|
pmap->pm_pdir[m->pindex] = 0;
|
|
--pmap->pm_stats.resident_count;
|
|
|
|
/*
|
|
* There is not need to invalidate the recursive mapping since
|
|
* we never instantiate such mapping for the usermode pmaps,
|
|
* and never remove page table pages from the kernel pmap.
|
|
* Put page on a list so that it is released since all TLB
|
|
* shootdown is done.
|
|
*/
|
|
MPASS(pmap != kernel_pmap);
|
|
pmap_add_delayed_free_list(m, free, TRUE);
|
|
}
|
|
|
|
/*
|
|
* After removing a page table entry, this routine is used to
|
|
* conditionally free the page, and manage the reference count.
|
|
*/
|
|
static int
|
|
pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
|
|
{
|
|
pd_entry_t ptepde;
|
|
vm_page_t mpte;
|
|
|
|
if (pmap == kernel_pmap)
|
|
return (0);
|
|
ptepde = *pmap_pde(pmap, va);
|
|
mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
|
|
return (pmap_unwire_ptp(pmap, mpte, free));
|
|
}
|
|
|
|
/*
|
|
* Release a page table page reference after a failed attempt to create a
|
|
* mapping.
|
|
*/
|
|
static void
|
|
pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
|
|
{
|
|
struct spglist free;
|
|
|
|
SLIST_INIT(&free);
|
|
if (pmap_unwire_ptp(pmap, mpte, &free)) {
|
|
/*
|
|
* Although "va" was never mapped, paging-structure caches
|
|
* could nonetheless have entries that refer to the freed
|
|
* page table pages. Invalidate those entries.
|
|
*/
|
|
pmap_invalidate_page_int(pmap, va);
|
|
vm_page_free_pages_toq(&free, true);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the pmap for the swapper process.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, pinit0)(pmap_t pmap)
|
|
{
|
|
|
|
PMAP_LOCK_INIT(pmap);
|
|
pmap->pm_pdir = IdlePTD;
|
|
#ifdef PMAP_PAE_COMP
|
|
pmap->pm_pdpt = IdlePDPT;
|
|
#endif
|
|
pmap->pm_root.rt_root = 0;
|
|
CPU_ZERO(&pmap->pm_active);
|
|
TAILQ_INIT(&pmap->pm_pvchunk);
|
|
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
|
|
pmap_activate_boot(pmap);
|
|
}
|
|
|
|
/*
|
|
* Initialize a preallocated and zeroed pmap structure,
|
|
* such as one in a vmspace structure.
|
|
*/
|
|
static int
|
|
__CONCAT(PMTYPE, pinit)(pmap_t pmap)
|
|
{
|
|
vm_page_t m;
|
|
int i;
|
|
|
|
/*
|
|
* No need to allocate page table space yet but we do need a valid
|
|
* page directory table.
|
|
*/
|
|
if (pmap->pm_pdir == NULL) {
|
|
pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
|
|
if (pmap->pm_pdir == NULL)
|
|
return (0);
|
|
#ifdef PMAP_PAE_COMP
|
|
pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
|
|
KASSERT(((vm_offset_t)pmap->pm_pdpt &
|
|
((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
|
|
("pmap_pinit: pdpt misaligned"));
|
|
KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
|
|
("pmap_pinit: pdpt above 4g"));
|
|
#endif
|
|
pmap->pm_root.rt_root = 0;
|
|
}
|
|
KASSERT(vm_radix_is_empty(&pmap->pm_root),
|
|
("pmap_pinit: pmap has reserved page table page(s)"));
|
|
|
|
/*
|
|
* allocate the page directory page(s)
|
|
*/
|
|
for (i = 0; i < NPGPTD; i++) {
|
|
m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
|
|
VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_WAITOK);
|
|
pmap->pm_ptdpg[i] = m;
|
|
#ifdef PMAP_PAE_COMP
|
|
pmap->pm_pdpt[i] = VM_PAGE_TO_PHYS(m) | PG_V;
|
|
#endif
|
|
}
|
|
|
|
pmap_qenter((vm_offset_t)pmap->pm_pdir, pmap->pm_ptdpg, NPGPTD);
|
|
#ifdef PMAP_PAE_COMP
|
|
if ((cpu_feature & CPUID_PAT) == 0) {
|
|
pmap_invalidate_cache_range(
|
|
trunc_page((vm_offset_t)pmap->pm_pdpt),
|
|
round_page((vm_offset_t)pmap->pm_pdpt +
|
|
NPGPTD * sizeof(pdpt_entry_t)));
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < NPGPTD; i++)
|
|
if ((pmap->pm_ptdpg[i]->flags & PG_ZERO) == 0)
|
|
pagezero(pmap->pm_pdir + (i * NPDEPG));
|
|
|
|
/* Install the trampoline mapping. */
|
|
pmap->pm_pdir[TRPTDI] = PTD[TRPTDI];
|
|
|
|
CPU_ZERO(&pmap->pm_active);
|
|
TAILQ_INIT(&pmap->pm_pvchunk);
|
|
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* this routine is called if the page table page is not
|
|
* mapped correctly.
|
|
*/
|
|
static vm_page_t
|
|
_pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
|
|
{
|
|
vm_paddr_t ptepa;
|
|
vm_page_t m;
|
|
|
|
/*
|
|
* Allocate a page table page.
|
|
*/
|
|
if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
|
|
VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
|
|
if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
|
|
PMAP_UNLOCK(pmap);
|
|
rw_wunlock(&pvh_global_lock);
|
|
vm_wait(NULL);
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pmap);
|
|
}
|
|
|
|
/*
|
|
* Indicate the need to retry. While waiting, the page table
|
|
* page may have been allocated.
|
|
*/
|
|
return (NULL);
|
|
}
|
|
if ((m->flags & PG_ZERO) == 0)
|
|
pmap_zero_page(m);
|
|
|
|
/*
|
|
* Map the pagetable page into the process address space, if
|
|
* it isn't already there.
|
|
*/
|
|
|
|
pmap->pm_stats.resident_count++;
|
|
|
|
ptepa = VM_PAGE_TO_PHYS(m);
|
|
pmap->pm_pdir[ptepindex] =
|
|
(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
|
|
|
|
return (m);
|
|
}
|
|
|
|
static vm_page_t
|
|
pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
|
|
{
|
|
u_int ptepindex;
|
|
pd_entry_t ptepa;
|
|
vm_page_t m;
|
|
|
|
/*
|
|
* Calculate pagetable page index
|
|
*/
|
|
ptepindex = va >> PDRSHIFT;
|
|
retry:
|
|
/*
|
|
* Get the page directory entry
|
|
*/
|
|
ptepa = pmap->pm_pdir[ptepindex];
|
|
|
|
/*
|
|
* This supports switching from a 4MB page to a
|
|
* normal 4K page.
|
|
*/
|
|
if (ptepa & PG_PS) {
|
|
(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
|
|
ptepa = pmap->pm_pdir[ptepindex];
|
|
}
|
|
|
|
/*
|
|
* If the page table page is mapped, we just increment the
|
|
* hold count, and activate it.
|
|
*/
|
|
if (ptepa) {
|
|
m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
|
|
m->ref_count++;
|
|
} else {
|
|
/*
|
|
* Here if the pte page isn't mapped, or if it has
|
|
* been deallocated.
|
|
*/
|
|
m = _pmap_allocpte(pmap, ptepindex, flags);
|
|
if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
|
|
goto retry;
|
|
}
|
|
return (m);
|
|
}
|
|
|
|
/***************************************************
|
|
* Pmap allocation/deallocation routines.
|
|
***************************************************/
|
|
|
|
/*
|
|
* Release any resources held by the given physical map.
|
|
* Called when a pmap initialized by pmap_pinit is being released.
|
|
* Should only be called if the map contains no valid mappings.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, release)(pmap_t pmap)
|
|
{
|
|
vm_page_t m;
|
|
int i;
|
|
|
|
KASSERT(pmap->pm_stats.resident_count == 0,
|
|
("pmap_release: pmap resident count %ld != 0",
|
|
pmap->pm_stats.resident_count));
|
|
KASSERT(vm_radix_is_empty(&pmap->pm_root),
|
|
("pmap_release: pmap has reserved page table page(s)"));
|
|
KASSERT(CPU_EMPTY(&pmap->pm_active),
|
|
("releasing active pmap %p", pmap));
|
|
|
|
pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
|
|
|
|
for (i = 0; i < NPGPTD; i++) {
|
|
m = pmap->pm_ptdpg[i];
|
|
#ifdef PMAP_PAE_COMP
|
|
KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
|
|
("pmap_release: got wrong ptd page"));
|
|
#endif
|
|
vm_page_unwire_noq(m);
|
|
vm_page_free(m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* grow the number of kernel page table entries, if needed
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, growkernel)(vm_offset_t addr)
|
|
{
|
|
vm_paddr_t ptppaddr;
|
|
vm_page_t nkpg;
|
|
pd_entry_t newpdir;
|
|
|
|
mtx_assert(&kernel_map->system_mtx, MA_OWNED);
|
|
addr = roundup2(addr, NBPDR);
|
|
if (addr - 1 >= vm_map_max(kernel_map))
|
|
addr = vm_map_max(kernel_map);
|
|
while (kernel_vm_end < addr) {
|
|
if (pdir_pde(PTD, kernel_vm_end)) {
|
|
kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
|
|
if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
|
|
kernel_vm_end = vm_map_max(kernel_map);
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
|
|
VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
|
|
VM_ALLOC_ZERO);
|
|
if (nkpg == NULL)
|
|
panic("pmap_growkernel: no memory to grow kernel");
|
|
|
|
nkpt++;
|
|
|
|
if ((nkpg->flags & PG_ZERO) == 0)
|
|
pmap_zero_page(nkpg);
|
|
ptppaddr = VM_PAGE_TO_PHYS(nkpg);
|
|
newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
|
|
pdir_pde(KPTD, kernel_vm_end) = newpdir;
|
|
|
|
pmap_kenter_pde(kernel_vm_end, newpdir);
|
|
kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
|
|
if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
|
|
kernel_vm_end = vm_map_max(kernel_map);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/***************************************************
|
|
* page management routines.
|
|
***************************************************/
|
|
|
|
CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
|
|
CTASSERT(_NPCM == 11);
|
|
CTASSERT(_NPCPV == 336);
|
|
|
|
static __inline struct pv_chunk *
|
|
pv_to_chunk(pv_entry_t pv)
|
|
{
|
|
|
|
return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
|
|
}
|
|
|
|
#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
|
|
|
|
#define PC_FREE0_9 0xfffffffful /* Free values for index 0 through 9 */
|
|
#define PC_FREE10 0x0000fffful /* Free values for index 10 */
|
|
|
|
static const uint32_t pc_freemask[_NPCM] = {
|
|
PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
|
|
PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
|
|
PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
|
|
PC_FREE0_9, PC_FREE10
|
|
};
|
|
|
|
#ifdef PV_STATS
|
|
extern int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
|
|
extern long pv_entry_frees, pv_entry_allocs;
|
|
extern int pv_entry_spare;
|
|
#endif
|
|
|
|
/*
|
|
* We are in a serious low memory condition. Resort to
|
|
* drastic measures to free some pages so we can allocate
|
|
* another pv entry chunk.
|
|
*/
|
|
static vm_page_t
|
|
pmap_pv_reclaim(pmap_t locked_pmap)
|
|
{
|
|
struct pch newtail;
|
|
struct pv_chunk *pc;
|
|
struct md_page *pvh;
|
|
pd_entry_t *pde;
|
|
pmap_t pmap;
|
|
pt_entry_t *pte, tpte;
|
|
pv_entry_t pv;
|
|
vm_offset_t va;
|
|
vm_page_t m, m_pc;
|
|
struct spglist free;
|
|
uint32_t inuse;
|
|
int bit, field, freed;
|
|
|
|
PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
|
|
pmap = NULL;
|
|
m_pc = NULL;
|
|
SLIST_INIT(&free);
|
|
TAILQ_INIT(&newtail);
|
|
while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
|
|
SLIST_EMPTY(&free))) {
|
|
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
|
|
if (pmap != pc->pc_pmap) {
|
|
if (pmap != NULL) {
|
|
pmap_invalidate_all_int(pmap);
|
|
if (pmap != locked_pmap)
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
pmap = pc->pc_pmap;
|
|
/* Avoid deadlock and lock recursion. */
|
|
if (pmap > locked_pmap)
|
|
PMAP_LOCK(pmap);
|
|
else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
|
|
pmap = NULL;
|
|
TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Destroy every non-wired, 4 KB page mapping in the chunk.
|
|
*/
|
|
freed = 0;
|
|
for (field = 0; field < _NPCM; field++) {
|
|
for (inuse = ~pc->pc_map[field] & pc_freemask[field];
|
|
inuse != 0; inuse &= ~(1UL << bit)) {
|
|
bit = bsfl(inuse);
|
|
pv = &pc->pc_pventry[field * 32 + bit];
|
|
va = pv->pv_va;
|
|
pde = pmap_pde(pmap, va);
|
|
if ((*pde & PG_PS) != 0)
|
|
continue;
|
|
pte = __CONCAT(PMTYPE, pte)(pmap, va);
|
|
tpte = *pte;
|
|
if ((tpte & PG_W) == 0)
|
|
tpte = pte_load_clear(pte);
|
|
pmap_pte_release(pte);
|
|
if ((tpte & PG_W) != 0)
|
|
continue;
|
|
KASSERT(tpte != 0,
|
|
("pmap_pv_reclaim: pmap %p va %x zero pte",
|
|
pmap, va));
|
|
if ((tpte & PG_G) != 0)
|
|
pmap_invalidate_page_int(pmap, va);
|
|
m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
|
|
if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
|
|
vm_page_dirty(m);
|
|
if ((tpte & PG_A) != 0)
|
|
vm_page_aflag_set(m, PGA_REFERENCED);
|
|
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
|
|
if (TAILQ_EMPTY(&m->md.pv_list) &&
|
|
(m->flags & PG_FICTITIOUS) == 0) {
|
|
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
|
|
if (TAILQ_EMPTY(&pvh->pv_list)) {
|
|
vm_page_aflag_clear(m,
|
|
PGA_WRITEABLE);
|
|
}
|
|
}
|
|
pc->pc_map[field] |= 1UL << bit;
|
|
pmap_unuse_pt(pmap, va, &free);
|
|
freed++;
|
|
}
|
|
}
|
|
if (freed == 0) {
|
|
TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
|
|
continue;
|
|
}
|
|
/* Every freed mapping is for a 4 KB page. */
|
|
pmap->pm_stats.resident_count -= freed;
|
|
PV_STAT(pv_entry_frees += freed);
|
|
PV_STAT(pv_entry_spare += freed);
|
|
pv_entry_count -= freed;
|
|
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
|
for (field = 0; field < _NPCM; field++)
|
|
if (pc->pc_map[field] != pc_freemask[field]) {
|
|
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
|
|
pc_list);
|
|
TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
|
|
|
|
/*
|
|
* One freed pv entry in locked_pmap is
|
|
* sufficient.
|
|
*/
|
|
if (pmap == locked_pmap)
|
|
goto out;
|
|
break;
|
|
}
|
|
if (field == _NPCM) {
|
|
PV_STAT(pv_entry_spare -= _NPCPV);
|
|
PV_STAT(pc_chunk_count--);
|
|
PV_STAT(pc_chunk_frees++);
|
|
/* Entire chunk is free; return it. */
|
|
m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
|
|
pmap_qremove((vm_offset_t)pc, 1);
|
|
pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
|
|
break;
|
|
}
|
|
}
|
|
out:
|
|
TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
|
|
if (pmap != NULL) {
|
|
pmap_invalidate_all_int(pmap);
|
|
if (pmap != locked_pmap)
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
|
|
m_pc = SLIST_FIRST(&free);
|
|
SLIST_REMOVE_HEAD(&free, plinks.s.ss);
|
|
/* Recycle a freed page table page. */
|
|
m_pc->ref_count = 1;
|
|
}
|
|
vm_page_free_pages_toq(&free, true);
|
|
return (m_pc);
|
|
}
|
|
|
|
/*
|
|
* free the pv_entry back to the free list
|
|
*/
|
|
static void
|
|
free_pv_entry(pmap_t pmap, pv_entry_t pv)
|
|
{
|
|
struct pv_chunk *pc;
|
|
int idx, field, bit;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
PV_STAT(pv_entry_frees++);
|
|
PV_STAT(pv_entry_spare++);
|
|
pv_entry_count--;
|
|
pc = pv_to_chunk(pv);
|
|
idx = pv - &pc->pc_pventry[0];
|
|
field = idx / 32;
|
|
bit = idx % 32;
|
|
pc->pc_map[field] |= 1ul << bit;
|
|
for (idx = 0; idx < _NPCM; idx++)
|
|
if (pc->pc_map[idx] != pc_freemask[idx]) {
|
|
/*
|
|
* 98% of the time, pc is already at the head of the
|
|
* list. If it isn't already, move it to the head.
|
|
*/
|
|
if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
|
|
pc)) {
|
|
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
|
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
|
|
pc_list);
|
|
}
|
|
return;
|
|
}
|
|
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
|
free_pv_chunk(pc);
|
|
}
|
|
|
|
static void
|
|
free_pv_chunk(struct pv_chunk *pc)
|
|
{
|
|
vm_page_t m;
|
|
|
|
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
|
|
PV_STAT(pv_entry_spare -= _NPCPV);
|
|
PV_STAT(pc_chunk_count--);
|
|
PV_STAT(pc_chunk_frees++);
|
|
/* entire chunk is free, return it */
|
|
m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
|
|
pmap_qremove((vm_offset_t)pc, 1);
|
|
vm_page_unwire_noq(m);
|
|
vm_page_free(m);
|
|
pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
|
|
}
|
|
|
|
/*
|
|
* get a new pv_entry, allocating a block from the system
|
|
* when needed.
|
|
*/
|
|
static pv_entry_t
|
|
get_pv_entry(pmap_t pmap, boolean_t try)
|
|
{
|
|
static const struct timeval printinterval = { 60, 0 };
|
|
static struct timeval lastprint;
|
|
int bit, field;
|
|
pv_entry_t pv;
|
|
struct pv_chunk *pc;
|
|
vm_page_t m;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
PV_STAT(pv_entry_allocs++);
|
|
pv_entry_count++;
|
|
if (pv_entry_count > pv_entry_high_water)
|
|
if (ratecheck(&lastprint, &printinterval))
|
|
printf("Approaching the limit on PV entries, consider "
|
|
"increasing either the vm.pmap.shpgperproc or the "
|
|
"vm.pmap.pv_entries tunable.\n");
|
|
retry:
|
|
pc = TAILQ_FIRST(&pmap->pm_pvchunk);
|
|
if (pc != NULL) {
|
|
for (field = 0; field < _NPCM; field++) {
|
|
if (pc->pc_map[field]) {
|
|
bit = bsfl(pc->pc_map[field]);
|
|
break;
|
|
}
|
|
}
|
|
if (field < _NPCM) {
|
|
pv = &pc->pc_pventry[field * 32 + bit];
|
|
pc->pc_map[field] &= ~(1ul << bit);
|
|
/* If this was the last item, move it to tail */
|
|
for (field = 0; field < _NPCM; field++)
|
|
if (pc->pc_map[field] != 0) {
|
|
PV_STAT(pv_entry_spare--);
|
|
return (pv); /* not full, return */
|
|
}
|
|
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
|
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
|
|
PV_STAT(pv_entry_spare--);
|
|
return (pv);
|
|
}
|
|
}
|
|
/*
|
|
* Access to the ptelist "pv_vafree" is synchronized by the pvh
|
|
* global lock. If "pv_vafree" is currently non-empty, it will
|
|
* remain non-empty until pmap_ptelist_alloc() completes.
|
|
*/
|
|
if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
|
|
VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
|
|
if (try) {
|
|
pv_entry_count--;
|
|
PV_STAT(pc_chunk_tryfail++);
|
|
return (NULL);
|
|
}
|
|
m = pmap_pv_reclaim(pmap);
|
|
if (m == NULL)
|
|
goto retry;
|
|
}
|
|
PV_STAT(pc_chunk_count++);
|
|
PV_STAT(pc_chunk_allocs++);
|
|
pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
|
|
pmap_qenter((vm_offset_t)pc, &m, 1);
|
|
pc->pc_pmap = pmap;
|
|
pc->pc_map[0] = pc_freemask[0] & ~1ul; /* preallocated bit 0 */
|
|
for (field = 1; field < _NPCM; field++)
|
|
pc->pc_map[field] = pc_freemask[field];
|
|
TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
|
|
pv = &pc->pc_pventry[0];
|
|
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
|
|
PV_STAT(pv_entry_spare += _NPCPV - 1);
|
|
return (pv);
|
|
}
|
|
|
|
static __inline pv_entry_t
|
|
pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
|
|
if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
|
|
TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
|
|
break;
|
|
}
|
|
}
|
|
return (pv);
|
|
}
|
|
|
|
static void
|
|
pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
|
|
{
|
|
struct md_page *pvh;
|
|
pv_entry_t pv;
|
|
vm_offset_t va_last;
|
|
vm_page_t m;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
KASSERT((pa & PDRMASK) == 0,
|
|
("pmap_pv_demote_pde: pa is not 4mpage aligned"));
|
|
|
|
/*
|
|
* Transfer the 4mpage's pv entry for this mapping to the first
|
|
* page's pv list.
|
|
*/
|
|
pvh = pa_to_pvh(pa);
|
|
va = trunc_4mpage(va);
|
|
pv = pmap_pvh_remove(pvh, pmap, va);
|
|
KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
|
|
/* Instantiate the remaining NPTEPG - 1 pv entries. */
|
|
va_last = va + NBPDR - PAGE_SIZE;
|
|
do {
|
|
m++;
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("pmap_pv_demote_pde: page %p is not managed", m));
|
|
va += PAGE_SIZE;
|
|
pmap_insert_entry(pmap, va, m);
|
|
} while (va < va_last);
|
|
}
|
|
|
|
#if VM_NRESERVLEVEL > 0
|
|
static void
|
|
pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
|
|
{
|
|
struct md_page *pvh;
|
|
pv_entry_t pv;
|
|
vm_offset_t va_last;
|
|
vm_page_t m;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
KASSERT((pa & PDRMASK) == 0,
|
|
("pmap_pv_promote_pde: pa is not 4mpage aligned"));
|
|
|
|
/*
|
|
* Transfer the first page's pv entry for this mapping to the
|
|
* 4mpage's pv list. Aside from avoiding the cost of a call
|
|
* to get_pv_entry(), a transfer avoids the possibility that
|
|
* get_pv_entry() calls pmap_collect() and that pmap_collect()
|
|
* removes one of the mappings that is being promoted.
|
|
*/
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
va = trunc_4mpage(va);
|
|
pv = pmap_pvh_remove(&m->md, pmap, va);
|
|
KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
|
|
pvh = pa_to_pvh(pa);
|
|
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
|
|
/* Free the remaining NPTEPG - 1 pv entries. */
|
|
va_last = va + NBPDR - PAGE_SIZE;
|
|
do {
|
|
m++;
|
|
va += PAGE_SIZE;
|
|
pmap_pvh_free(&m->md, pmap, va);
|
|
} while (va < va_last);
|
|
}
|
|
#endif /* VM_NRESERVLEVEL > 0 */
|
|
|
|
static void
|
|
pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
pv = pmap_pvh_remove(pvh, pmap, va);
|
|
KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
|
|
free_pv_entry(pmap, pv);
|
|
}
|
|
|
|
static void
|
|
pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
|
|
{
|
|
struct md_page *pvh;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
pmap_pvh_free(&m->md, pmap, va);
|
|
if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
|
|
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
|
|
if (TAILQ_EMPTY(&pvh->pv_list))
|
|
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create a pv entry for page at pa for
|
|
* (pmap, va).
|
|
*/
|
|
static void
|
|
pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
pv = get_pv_entry(pmap, FALSE);
|
|
pv->pv_va = va;
|
|
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
|
|
}
|
|
|
|
/*
|
|
* Conditionally create a pv entry.
|
|
*/
|
|
static boolean_t
|
|
pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
|
|
{
|
|
pv_entry_t pv;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
if (pv_entry_count < pv_entry_high_water &&
|
|
(pv = get_pv_entry(pmap, TRUE)) != NULL) {
|
|
pv->pv_va = va;
|
|
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
|
|
return (TRUE);
|
|
} else
|
|
return (FALSE);
|
|
}
|
|
|
|
/*
|
|
* Create the pv entries for each of the pages within a superpage.
|
|
*/
|
|
static bool
|
|
pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags)
|
|
{
|
|
struct md_page *pvh;
|
|
pv_entry_t pv;
|
|
bool noreclaim;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
noreclaim = (flags & PMAP_ENTER_NORECLAIM) != 0;
|
|
if ((noreclaim && pv_entry_count >= pv_entry_high_water) ||
|
|
(pv = get_pv_entry(pmap, noreclaim)) == NULL)
|
|
return (false);
|
|
pv->pv_va = va;
|
|
pvh = pa_to_pvh(pde & PG_PS_FRAME);
|
|
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
|
|
return (true);
|
|
}
|
|
|
|
/*
|
|
* Fills a page table page with mappings to consecutive physical pages.
|
|
*/
|
|
static void
|
|
pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
|
|
{
|
|
pt_entry_t *pte;
|
|
|
|
for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
|
|
*pte = newpte;
|
|
newpte += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Tries to demote a 2- or 4MB page mapping. If demotion fails, the
|
|
* 2- or 4MB page mapping is invalidated.
|
|
*/
|
|
static boolean_t
|
|
pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
|
|
{
|
|
pd_entry_t newpde, oldpde;
|
|
pt_entry_t *firstpte, newpte;
|
|
vm_paddr_t mptepa;
|
|
vm_page_t mpte;
|
|
struct spglist free;
|
|
vm_offset_t sva;
|
|
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
oldpde = *pde;
|
|
KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
|
|
("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
|
|
if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
|
|
NULL) {
|
|
KASSERT((oldpde & PG_W) == 0,
|
|
("pmap_demote_pde: page table page for a wired mapping"
|
|
" is missing"));
|
|
|
|
/*
|
|
* Invalidate the 2- or 4MB page mapping and return
|
|
* "failure" if the mapping was never accessed or the
|
|
* allocation of the new page table page fails.
|
|
*/
|
|
if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
|
|
va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
|
|
VM_ALLOC_WIRED)) == NULL) {
|
|
SLIST_INIT(&free);
|
|
sva = trunc_4mpage(va);
|
|
pmap_remove_pde(pmap, pde, sva, &free);
|
|
if ((oldpde & PG_G) == 0)
|
|
pmap_invalidate_pde_page(pmap, sva, oldpde);
|
|
vm_page_free_pages_toq(&free, true);
|
|
CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
|
|
" in pmap %p", va, pmap);
|
|
return (FALSE);
|
|
}
|
|
if (pmap != kernel_pmap) {
|
|
mpte->ref_count = NPTEPG;
|
|
pmap->pm_stats.resident_count++;
|
|
}
|
|
}
|
|
mptepa = VM_PAGE_TO_PHYS(mpte);
|
|
|
|
/*
|
|
* If the page mapping is in the kernel's address space, then the
|
|
* KPTmap can provide access to the page table page. Otherwise,
|
|
* temporarily map the page table page (mpte) into the kernel's
|
|
* address space at either PADDR1 or PADDR2.
|
|
*/
|
|
if (pmap == kernel_pmap)
|
|
firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
|
|
else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
|
|
if ((*PMAP1 & PG_FRAME) != mptepa) {
|
|
*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
|
|
#ifdef SMP
|
|
PMAP1cpu = PCPU_GET(cpuid);
|
|
#endif
|
|
invlcaddr(PADDR1);
|
|
PMAP1changed++;
|
|
} else
|
|
#ifdef SMP
|
|
if (PMAP1cpu != PCPU_GET(cpuid)) {
|
|
PMAP1cpu = PCPU_GET(cpuid);
|
|
invlcaddr(PADDR1);
|
|
PMAP1changedcpu++;
|
|
} else
|
|
#endif
|
|
PMAP1unchanged++;
|
|
firstpte = PADDR1;
|
|
} else {
|
|
mtx_lock(&PMAP2mutex);
|
|
if ((*PMAP2 & PG_FRAME) != mptepa) {
|
|
*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
|
|
pmap_invalidate_page_int(kernel_pmap,
|
|
(vm_offset_t)PADDR2);
|
|
}
|
|
firstpte = PADDR2;
|
|
}
|
|
newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
|
|
KASSERT((oldpde & PG_A) != 0,
|
|
("pmap_demote_pde: oldpde is missing PG_A"));
|
|
KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
|
|
("pmap_demote_pde: oldpde is missing PG_M"));
|
|
newpte = oldpde & ~PG_PS;
|
|
if ((newpte & PG_PDE_PAT) != 0)
|
|
newpte ^= PG_PDE_PAT | PG_PTE_PAT;
|
|
|
|
/*
|
|
* If the page table page is not leftover from an earlier promotion,
|
|
* initialize it.
|
|
*/
|
|
if (mpte->valid == 0)
|
|
pmap_fill_ptp(firstpte, newpte);
|
|
|
|
KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
|
|
("pmap_demote_pde: firstpte and newpte map different physical"
|
|
" addresses"));
|
|
|
|
/*
|
|
* If the mapping has changed attributes, update the page table
|
|
* entries.
|
|
*/
|
|
if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
|
|
pmap_fill_ptp(firstpte, newpte);
|
|
|
|
/*
|
|
* Demote the mapping. This pmap is locked. The old PDE has
|
|
* PG_A set. If the old PDE has PG_RW set, it also has PG_M
|
|
* set. Thus, there is no danger of a race with another
|
|
* processor changing the setting of PG_A and/or PG_M between
|
|
* the read above and the store below.
|
|
*/
|
|
if (workaround_erratum383)
|
|
pmap_update_pde(pmap, va, pde, newpde);
|
|
else if (pmap == kernel_pmap)
|
|
pmap_kenter_pde(va, newpde);
|
|
else
|
|
pde_store(pde, newpde);
|
|
if (firstpte == PADDR2)
|
|
mtx_unlock(&PMAP2mutex);
|
|
|
|
/*
|
|
* Invalidate the recursive mapping of the page table page.
|
|
*/
|
|
pmap_invalidate_page_int(pmap, (vm_offset_t)vtopte(va));
|
|
|
|
/*
|
|
* Demote the pv entry. This depends on the earlier demotion
|
|
* of the mapping. Specifically, the (re)creation of a per-
|
|
* page pv entry might trigger the execution of pmap_collect(),
|
|
* which might reclaim a newly (re)created per-page pv entry
|
|
* and destroy the associated mapping. In order to destroy
|
|
* the mapping, the PDE must have already changed from mapping
|
|
* the 2mpage to referencing the page table page.
|
|
*/
|
|
if ((oldpde & PG_MANAGED) != 0)
|
|
pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
|
|
|
|
pmap_pde_demotions++;
|
|
CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
|
|
" in pmap %p", va, pmap);
|
|
return (TRUE);
|
|
}
|
|
|
|
/*
|
|
* Removes a 2- or 4MB page mapping from the kernel pmap.
|
|
*/
|
|
static void
|
|
pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
|
|
{
|
|
pd_entry_t newpde;
|
|
vm_paddr_t mptepa;
|
|
vm_page_t mpte;
|
|
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
mpte = pmap_remove_pt_page(pmap, va);
|
|
if (mpte == NULL)
|
|
panic("pmap_remove_kernel_pde: Missing pt page.");
|
|
|
|
mptepa = VM_PAGE_TO_PHYS(mpte);
|
|
newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
|
|
|
|
/*
|
|
* If this page table page was unmapped by a promotion, then it
|
|
* contains valid mappings. Zero it to invalidate those mappings.
|
|
*/
|
|
if (mpte->valid != 0)
|
|
pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
|
|
|
|
/*
|
|
* Remove the mapping.
|
|
*/
|
|
if (workaround_erratum383)
|
|
pmap_update_pde(pmap, va, pde, newpde);
|
|
else
|
|
pmap_kenter_pde(va, newpde);
|
|
|
|
/*
|
|
* Invalidate the recursive mapping of the page table page.
|
|
*/
|
|
pmap_invalidate_page_int(pmap, (vm_offset_t)vtopte(va));
|
|
}
|
|
|
|
/*
|
|
* pmap_remove_pde: do the things to unmap a superpage in a process
|
|
*/
|
|
static void
|
|
pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
|
|
struct spglist *free)
|
|
{
|
|
struct md_page *pvh;
|
|
pd_entry_t oldpde;
|
|
vm_offset_t eva, va;
|
|
vm_page_t m, mpte;
|
|
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
KASSERT((sva & PDRMASK) == 0,
|
|
("pmap_remove_pde: sva is not 4mpage aligned"));
|
|
oldpde = pte_load_clear(pdq);
|
|
if (oldpde & PG_W)
|
|
pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
|
|
|
|
/*
|
|
* Machines that don't support invlpg, also don't support
|
|
* PG_G.
|
|
*/
|
|
if ((oldpde & PG_G) != 0)
|
|
pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
|
|
|
|
pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
|
|
if (oldpde & PG_MANAGED) {
|
|
pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
|
|
pmap_pvh_free(pvh, pmap, sva);
|
|
eva = sva + NBPDR;
|
|
for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
|
|
va < eva; va += PAGE_SIZE, m++) {
|
|
if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
|
|
vm_page_dirty(m);
|
|
if (oldpde & PG_A)
|
|
vm_page_aflag_set(m, PGA_REFERENCED);
|
|
if (TAILQ_EMPTY(&m->md.pv_list) &&
|
|
TAILQ_EMPTY(&pvh->pv_list))
|
|
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
|
}
|
|
}
|
|
if (pmap == kernel_pmap) {
|
|
pmap_remove_kernel_pde(pmap, pdq, sva);
|
|
} else {
|
|
mpte = pmap_remove_pt_page(pmap, sva);
|
|
if (mpte != NULL) {
|
|
KASSERT(mpte->valid == VM_PAGE_BITS_ALL,
|
|
("pmap_remove_pde: pte page not promoted"));
|
|
pmap->pm_stats.resident_count--;
|
|
KASSERT(mpte->ref_count == NPTEPG,
|
|
("pmap_remove_pde: pte page ref count error"));
|
|
mpte->ref_count = 0;
|
|
pmap_add_delayed_free_list(mpte, free, FALSE);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pmap_remove_pte: do the things to unmap a page in a process
|
|
*/
|
|
static int
|
|
pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
|
|
struct spglist *free)
|
|
{
|
|
pt_entry_t oldpte;
|
|
vm_page_t m;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
oldpte = pte_load_clear(ptq);
|
|
KASSERT(oldpte != 0,
|
|
("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
|
|
if (oldpte & PG_W)
|
|
pmap->pm_stats.wired_count -= 1;
|
|
/*
|
|
* Machines that don't support invlpg, also don't support
|
|
* PG_G.
|
|
*/
|
|
if (oldpte & PG_G)
|
|
pmap_invalidate_page_int(kernel_pmap, va);
|
|
pmap->pm_stats.resident_count -= 1;
|
|
if (oldpte & PG_MANAGED) {
|
|
m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
|
|
if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
|
|
vm_page_dirty(m);
|
|
if (oldpte & PG_A)
|
|
vm_page_aflag_set(m, PGA_REFERENCED);
|
|
pmap_remove_entry(pmap, m, va);
|
|
}
|
|
return (pmap_unuse_pt(pmap, va, free));
|
|
}
|
|
|
|
/*
|
|
* Remove a single page from a process address space
|
|
*/
|
|
static void
|
|
pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
|
|
{
|
|
pt_entry_t *pte;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
|
|
return;
|
|
pmap_remove_pte(pmap, pte, va, free);
|
|
pmap_invalidate_page_int(pmap, va);
|
|
}
|
|
|
|
/*
|
|
* Removes the specified range of addresses from the page table page.
|
|
*/
|
|
static bool
|
|
pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
|
|
struct spglist *free)
|
|
{
|
|
pt_entry_t *pte;
|
|
bool anyvalid;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
anyvalid = false;
|
|
for (pte = pmap_pte_quick(pmap, sva); sva != eva; pte++,
|
|
sva += PAGE_SIZE) {
|
|
if (*pte == 0)
|
|
continue;
|
|
|
|
/*
|
|
* The TLB entry for a PG_G mapping is invalidated by
|
|
* pmap_remove_pte().
|
|
*/
|
|
if ((*pte & PG_G) == 0)
|
|
anyvalid = true;
|
|
|
|
if (pmap_remove_pte(pmap, pte, sva, free))
|
|
break;
|
|
}
|
|
return (anyvalid);
|
|
}
|
|
|
|
/*
|
|
* Remove the given range of addresses from the specified map.
|
|
*
|
|
* It is assumed that the start and end are properly
|
|
* rounded to the page size.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, remove)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
vm_offset_t pdnxt;
|
|
pd_entry_t ptpaddr;
|
|
struct spglist free;
|
|
int anyvalid;
|
|
|
|
/*
|
|
* Perform an unsynchronized read. This is, however, safe.
|
|
*/
|
|
if (pmap->pm_stats.resident_count == 0)
|
|
return;
|
|
|
|
anyvalid = 0;
|
|
SLIST_INIT(&free);
|
|
|
|
rw_wlock(&pvh_global_lock);
|
|
sched_pin();
|
|
PMAP_LOCK(pmap);
|
|
|
|
/*
|
|
* special handling of removing one page. a very
|
|
* common operation and easy to short circuit some
|
|
* code.
|
|
*/
|
|
if ((sva + PAGE_SIZE == eva) &&
|
|
((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
|
|
pmap_remove_page(pmap, sva, &free);
|
|
goto out;
|
|
}
|
|
|
|
for (; sva < eva; sva = pdnxt) {
|
|
u_int pdirindex;
|
|
|
|
/*
|
|
* Calculate index for next page table.
|
|
*/
|
|
pdnxt = (sva + NBPDR) & ~PDRMASK;
|
|
if (pdnxt < sva)
|
|
pdnxt = eva;
|
|
if (pmap->pm_stats.resident_count == 0)
|
|
break;
|
|
|
|
pdirindex = sva >> PDRSHIFT;
|
|
ptpaddr = pmap->pm_pdir[pdirindex];
|
|
|
|
/*
|
|
* Weed out invalid mappings. Note: we assume that the page
|
|
* directory table is always allocated, and in kernel virtual.
|
|
*/
|
|
if (ptpaddr == 0)
|
|
continue;
|
|
|
|
/*
|
|
* Check for large page.
|
|
*/
|
|
if ((ptpaddr & PG_PS) != 0) {
|
|
/*
|
|
* Are we removing the entire large page? If not,
|
|
* demote the mapping and fall through.
|
|
*/
|
|
if (sva + NBPDR == pdnxt && eva >= pdnxt) {
|
|
/*
|
|
* The TLB entry for a PG_G mapping is
|
|
* invalidated by pmap_remove_pde().
|
|
*/
|
|
if ((ptpaddr & PG_G) == 0)
|
|
anyvalid = 1;
|
|
pmap_remove_pde(pmap,
|
|
&pmap->pm_pdir[pdirindex], sva, &free);
|
|
continue;
|
|
} else if (!pmap_demote_pde(pmap,
|
|
&pmap->pm_pdir[pdirindex], sva)) {
|
|
/* The large page mapping was destroyed. */
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Limit our scan to either the end of the va represented
|
|
* by the current page table page, or to the end of the
|
|
* range being removed.
|
|
*/
|
|
if (pdnxt > eva)
|
|
pdnxt = eva;
|
|
|
|
if (pmap_remove_ptes(pmap, sva, pdnxt, &free))
|
|
anyvalid = 1;
|
|
}
|
|
out:
|
|
sched_unpin();
|
|
if (anyvalid)
|
|
pmap_invalidate_all_int(pmap);
|
|
rw_wunlock(&pvh_global_lock);
|
|
PMAP_UNLOCK(pmap);
|
|
vm_page_free_pages_toq(&free, true);
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_remove_all
|
|
* Function:
|
|
* Removes this physical page from
|
|
* all physical maps in which it resides.
|
|
* Reflects back modify bits to the pager.
|
|
*
|
|
* Notes:
|
|
* Original versions of this routine were very
|
|
* inefficient because they iteratively called
|
|
* pmap_remove (slow...)
|
|
*/
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, remove_all)(vm_page_t m)
|
|
{
|
|
struct md_page *pvh;
|
|
pv_entry_t pv;
|
|
pmap_t pmap;
|
|
pt_entry_t *pte, tpte;
|
|
pd_entry_t *pde;
|
|
vm_offset_t va;
|
|
struct spglist free;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("pmap_remove_all: page %p is not managed", m));
|
|
SLIST_INIT(&free);
|
|
rw_wlock(&pvh_global_lock);
|
|
sched_pin();
|
|
if ((m->flags & PG_FICTITIOUS) != 0)
|
|
goto small_mappings;
|
|
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
|
|
while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
|
|
va = pv->pv_va;
|
|
pmap = PV_PMAP(pv);
|
|
PMAP_LOCK(pmap);
|
|
pde = pmap_pde(pmap, va);
|
|
(void)pmap_demote_pde(pmap, pde, va);
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
small_mappings:
|
|
while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
|
|
pmap = PV_PMAP(pv);
|
|
PMAP_LOCK(pmap);
|
|
pmap->pm_stats.resident_count--;
|
|
pde = pmap_pde(pmap, pv->pv_va);
|
|
KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
|
|
" a 4mpage in page %p's pv list", m));
|
|
pte = pmap_pte_quick(pmap, pv->pv_va);
|
|
tpte = pte_load_clear(pte);
|
|
KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
|
|
pmap, pv->pv_va));
|
|
if (tpte & PG_W)
|
|
pmap->pm_stats.wired_count--;
|
|
if (tpte & PG_A)
|
|
vm_page_aflag_set(m, PGA_REFERENCED);
|
|
|
|
/*
|
|
* Update the vm_page_t clean and reference bits.
|
|
*/
|
|
if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
|
|
vm_page_dirty(m);
|
|
pmap_unuse_pt(pmap, pv->pv_va, &free);
|
|
pmap_invalidate_page_int(pmap, pv->pv_va);
|
|
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
|
|
free_pv_entry(pmap, pv);
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
|
sched_unpin();
|
|
rw_wunlock(&pvh_global_lock);
|
|
vm_page_free_pages_toq(&free, true);
|
|
}
|
|
|
|
/*
|
|
* pmap_protect_pde: do the things to protect a 4mpage in a process
|
|
*/
|
|
static boolean_t
|
|
pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
|
|
{
|
|
pd_entry_t newpde, oldpde;
|
|
vm_page_t m, mt;
|
|
boolean_t anychanged;
|
|
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
KASSERT((sva & PDRMASK) == 0,
|
|
("pmap_protect_pde: sva is not 4mpage aligned"));
|
|
anychanged = FALSE;
|
|
retry:
|
|
oldpde = newpde = *pde;
|
|
if ((prot & VM_PROT_WRITE) == 0) {
|
|
if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
|
|
(PG_MANAGED | PG_M | PG_RW)) {
|
|
m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
|
|
for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
|
|
vm_page_dirty(mt);
|
|
}
|
|
newpde &= ~(PG_RW | PG_M);
|
|
}
|
|
#ifdef PMAP_PAE_COMP
|
|
if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
|
|
newpde |= pg_nx;
|
|
#endif
|
|
if (newpde != oldpde) {
|
|
/*
|
|
* As an optimization to future operations on this PDE, clear
|
|
* PG_PROMOTED. The impending invalidation will remove any
|
|
* lingering 4KB page mappings from the TLB.
|
|
*/
|
|
if (!pde_cmpset(pde, oldpde, newpde & ~PG_PROMOTED))
|
|
goto retry;
|
|
if ((oldpde & PG_G) != 0)
|
|
pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
|
|
else
|
|
anychanged = TRUE;
|
|
}
|
|
return (anychanged);
|
|
}
|
|
|
|
/*
|
|
* Set the physical protection on the
|
|
* specified range of this map as requested.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, protect)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
|
|
vm_prot_t prot)
|
|
{
|
|
vm_offset_t pdnxt;
|
|
pd_entry_t ptpaddr;
|
|
pt_entry_t *pte;
|
|
boolean_t anychanged, pv_lists_locked;
|
|
|
|
KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
|
|
if (prot == VM_PROT_NONE) {
|
|
pmap_remove(pmap, sva, eva);
|
|
return;
|
|
}
|
|
|
|
#ifdef PMAP_PAE_COMP
|
|
if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
|
|
(VM_PROT_WRITE | VM_PROT_EXECUTE))
|
|
return;
|
|
#else
|
|
if (prot & VM_PROT_WRITE)
|
|
return;
|
|
#endif
|
|
|
|
if (pmap_is_current(pmap))
|
|
pv_lists_locked = FALSE;
|
|
else {
|
|
pv_lists_locked = TRUE;
|
|
resume:
|
|
rw_wlock(&pvh_global_lock);
|
|
sched_pin();
|
|
}
|
|
anychanged = FALSE;
|
|
|
|
PMAP_LOCK(pmap);
|
|
for (; sva < eva; sva = pdnxt) {
|
|
pt_entry_t obits, pbits;
|
|
u_int pdirindex;
|
|
|
|
pdnxt = (sva + NBPDR) & ~PDRMASK;
|
|
if (pdnxt < sva)
|
|
pdnxt = eva;
|
|
|
|
pdirindex = sva >> PDRSHIFT;
|
|
ptpaddr = pmap->pm_pdir[pdirindex];
|
|
|
|
/*
|
|
* Weed out invalid mappings. Note: we assume that the page
|
|
* directory table is always allocated, and in kernel virtual.
|
|
*/
|
|
if (ptpaddr == 0)
|
|
continue;
|
|
|
|
/*
|
|
* Check for large page.
|
|
*/
|
|
if ((ptpaddr & PG_PS) != 0) {
|
|
/*
|
|
* Are we protecting the entire large page? If not,
|
|
* demote the mapping and fall through.
|
|
*/
|
|
if (sva + NBPDR == pdnxt && eva >= pdnxt) {
|
|
/*
|
|
* The TLB entry for a PG_G mapping is
|
|
* invalidated by pmap_protect_pde().
|
|
*/
|
|
if (pmap_protect_pde(pmap,
|
|
&pmap->pm_pdir[pdirindex], sva, prot))
|
|
anychanged = TRUE;
|
|
continue;
|
|
} else {
|
|
if (!pv_lists_locked) {
|
|
pv_lists_locked = TRUE;
|
|
if (!rw_try_wlock(&pvh_global_lock)) {
|
|
if (anychanged)
|
|
pmap_invalidate_all_int(
|
|
pmap);
|
|
PMAP_UNLOCK(pmap);
|
|
goto resume;
|
|
}
|
|
sched_pin();
|
|
}
|
|
if (!pmap_demote_pde(pmap,
|
|
&pmap->pm_pdir[pdirindex], sva)) {
|
|
/*
|
|
* The large page mapping was
|
|
* destroyed.
|
|
*/
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (pdnxt > eva)
|
|
pdnxt = eva;
|
|
|
|
for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
|
|
sva += PAGE_SIZE) {
|
|
vm_page_t m;
|
|
|
|
retry:
|
|
/*
|
|
* Regardless of whether a pte is 32 or 64 bits in
|
|
* size, PG_RW, PG_A, and PG_M are among the least
|
|
* significant 32 bits.
|
|
*/
|
|
obits = pbits = *pte;
|
|
if ((pbits & PG_V) == 0)
|
|
continue;
|
|
|
|
if ((prot & VM_PROT_WRITE) == 0) {
|
|
if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
|
|
(PG_MANAGED | PG_M | PG_RW)) {
|
|
m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
|
|
vm_page_dirty(m);
|
|
}
|
|
pbits &= ~(PG_RW | PG_M);
|
|
}
|
|
#ifdef PMAP_PAE_COMP
|
|
if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
|
|
pbits |= pg_nx;
|
|
#endif
|
|
|
|
if (pbits != obits) {
|
|
#ifdef PMAP_PAE_COMP
|
|
if (!atomic_cmpset_64(pte, obits, pbits))
|
|
goto retry;
|
|
#else
|
|
if (!atomic_cmpset_int((u_int *)pte, obits,
|
|
pbits))
|
|
goto retry;
|
|
#endif
|
|
if (obits & PG_G)
|
|
pmap_invalidate_page_int(pmap, sva);
|
|
else
|
|
anychanged = TRUE;
|
|
}
|
|
}
|
|
}
|
|
if (anychanged)
|
|
pmap_invalidate_all_int(pmap);
|
|
if (pv_lists_locked) {
|
|
sched_unpin();
|
|
rw_wunlock(&pvh_global_lock);
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
|
|
#if VM_NRESERVLEVEL > 0
|
|
/*
|
|
* Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
|
|
* within a single page table page (PTP) to a single 2- or 4MB page mapping.
|
|
* For promotion to occur, two conditions must be met: (1) the 4KB page
|
|
* mappings must map aligned, contiguous physical memory and (2) the 4KB page
|
|
* mappings must have identical characteristics.
|
|
*
|
|
* Managed (PG_MANAGED) mappings within the kernel address space are not
|
|
* promoted. The reason is that kernel PDEs are replicated in each pmap but
|
|
* pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
|
|
* pmap.
|
|
*/
|
|
static void
|
|
pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
|
|
{
|
|
pd_entry_t newpde;
|
|
pt_entry_t *firstpte, oldpte, pa, *pte;
|
|
vm_offset_t oldpteva;
|
|
vm_page_t mpte;
|
|
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
|
|
/*
|
|
* Examine the first PTE in the specified PTP. Abort if this PTE is
|
|
* either invalid, unused, or does not map the first 4KB physical page
|
|
* within a 2- or 4MB page.
|
|
*/
|
|
firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
|
|
setpde:
|
|
newpde = *firstpte;
|
|
if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
|
|
pmap_pde_p_failures++;
|
|
CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
|
|
" in pmap %p", va, pmap);
|
|
return;
|
|
}
|
|
if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
|
|
pmap_pde_p_failures++;
|
|
CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
|
|
" in pmap %p", va, pmap);
|
|
return;
|
|
}
|
|
if ((newpde & (PG_M | PG_RW)) == PG_RW) {
|
|
/*
|
|
* When PG_M is already clear, PG_RW can be cleared without
|
|
* a TLB invalidation.
|
|
*/
|
|
if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
|
|
~PG_RW))
|
|
goto setpde;
|
|
newpde &= ~PG_RW;
|
|
}
|
|
|
|
/*
|
|
* Examine each of the other PTEs in the specified PTP. Abort if this
|
|
* PTE maps an unexpected 4KB physical page or does not have identical
|
|
* characteristics to the first PTE.
|
|
*/
|
|
pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
|
|
for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
|
|
setpte:
|
|
oldpte = *pte;
|
|
if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
|
|
pmap_pde_p_failures++;
|
|
CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
|
|
" in pmap %p", va, pmap);
|
|
return;
|
|
}
|
|
if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
|
|
/*
|
|
* When PG_M is already clear, PG_RW can be cleared
|
|
* without a TLB invalidation.
|
|
*/
|
|
if (!atomic_cmpset_int((u_int *)pte, oldpte,
|
|
oldpte & ~PG_RW))
|
|
goto setpte;
|
|
oldpte &= ~PG_RW;
|
|
oldpteva = (oldpte & PG_FRAME & PDRMASK) |
|
|
(va & ~PDRMASK);
|
|
CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
|
|
" in pmap %p", oldpteva, pmap);
|
|
}
|
|
if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
|
|
pmap_pde_p_failures++;
|
|
CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
|
|
" in pmap %p", va, pmap);
|
|
return;
|
|
}
|
|
pa -= PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Save the page table page in its current state until the PDE
|
|
* mapping the superpage is demoted by pmap_demote_pde() or
|
|
* destroyed by pmap_remove_pde().
|
|
*/
|
|
mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
|
|
KASSERT(mpte >= vm_page_array &&
|
|
mpte < &vm_page_array[vm_page_array_size],
|
|
("pmap_promote_pde: page table page is out of range"));
|
|
KASSERT(mpte->pindex == va >> PDRSHIFT,
|
|
("pmap_promote_pde: page table page's pindex is wrong"));
|
|
if (pmap_insert_pt_page(pmap, mpte, true)) {
|
|
pmap_pde_p_failures++;
|
|
CTR2(KTR_PMAP,
|
|
"pmap_promote_pde: failure for va %#x in pmap %p", va,
|
|
pmap);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Promote the pv entries.
|
|
*/
|
|
if ((newpde & PG_MANAGED) != 0)
|
|
pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
|
|
|
|
/*
|
|
* Propagate the PAT index to its proper position.
|
|
*/
|
|
if ((newpde & PG_PTE_PAT) != 0)
|
|
newpde ^= PG_PDE_PAT | PG_PTE_PAT;
|
|
|
|
/*
|
|
* Map the superpage.
|
|
*/
|
|
if (workaround_erratum383)
|
|
pmap_update_pde(pmap, va, pde, PG_PS | newpde);
|
|
else if (pmap == kernel_pmap)
|
|
pmap_kenter_pde(va, PG_PROMOTED | PG_PS | newpde);
|
|
else
|
|
pde_store(pde, PG_PROMOTED | PG_PS | newpde);
|
|
|
|
pmap_pde_promotions++;
|
|
CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
|
|
" in pmap %p", va, pmap);
|
|
}
|
|
#endif /* VM_NRESERVLEVEL > 0 */
|
|
|
|
/*
|
|
* Insert the given physical page (p) at
|
|
* the specified virtual address (v) in the
|
|
* target physical map with the protection requested.
|
|
*
|
|
* If specified, the page will be wired down, meaning
|
|
* that the related pte can not be reclaimed.
|
|
*
|
|
* NB: This is the only routine which MAY NOT lazy-evaluate
|
|
* or lose information. That is, this routine must actually
|
|
* insert this page into the given map NOW.
|
|
*/
|
|
static int
|
|
__CONCAT(PMTYPE, enter)(pmap_t pmap, vm_offset_t va, vm_page_t m,
|
|
vm_prot_t prot, u_int flags, int8_t psind)
|
|
{
|
|
pd_entry_t *pde;
|
|
pt_entry_t *pte;
|
|
pt_entry_t newpte, origpte;
|
|
pv_entry_t pv;
|
|
vm_paddr_t opa, pa;
|
|
vm_page_t mpte, om;
|
|
int rv;
|
|
|
|
va = trunc_page(va);
|
|
KASSERT((pmap == kernel_pmap && va < VM_MAX_KERNEL_ADDRESS) ||
|
|
(pmap != kernel_pmap && va < VM_MAXUSER_ADDRESS),
|
|
("pmap_enter: toobig k%d %#x", pmap == kernel_pmap, va));
|
|
KASSERT(va < PMAP_TRM_MIN_ADDRESS,
|
|
("pmap_enter: invalid to pmap_enter into trampoline (va: 0x%x)",
|
|
va));
|
|
KASSERT(pmap != kernel_pmap || (m->oflags & VPO_UNMANAGED) != 0 ||
|
|
va < kmi.clean_sva || va >= kmi.clean_eva,
|
|
("pmap_enter: managed mapping within the clean submap"));
|
|
if ((m->oflags & VPO_UNMANAGED) == 0)
|
|
VM_PAGE_OBJECT_BUSY_ASSERT(m);
|
|
KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
|
|
("pmap_enter: flags %u has reserved bits set", flags));
|
|
pa = VM_PAGE_TO_PHYS(m);
|
|
newpte = (pt_entry_t)(pa | PG_A | PG_V);
|
|
if ((flags & VM_PROT_WRITE) != 0)
|
|
newpte |= PG_M;
|
|
if ((prot & VM_PROT_WRITE) != 0)
|
|
newpte |= PG_RW;
|
|
KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
|
|
("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
|
|
#ifdef PMAP_PAE_COMP
|
|
if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
|
|
newpte |= pg_nx;
|
|
#endif
|
|
if ((flags & PMAP_ENTER_WIRED) != 0)
|
|
newpte |= PG_W;
|
|
if (pmap != kernel_pmap)
|
|
newpte |= PG_U;
|
|
newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
|
|
if ((m->oflags & VPO_UNMANAGED) == 0)
|
|
newpte |= PG_MANAGED;
|
|
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pmap);
|
|
sched_pin();
|
|
if (psind == 1) {
|
|
/* Assert the required virtual and physical alignment. */
|
|
KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
|
|
KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
|
|
rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m);
|
|
goto out;
|
|
}
|
|
|
|
pde = pmap_pde(pmap, va);
|
|
if (pmap != kernel_pmap) {
|
|
/*
|
|
* va is for UVA.
|
|
* In the case that a page table page is not resident,
|
|
* we are creating it here. pmap_allocpte() handles
|
|
* demotion.
|
|
*/
|
|
mpte = pmap_allocpte(pmap, va, flags);
|
|
if (mpte == NULL) {
|
|
KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
|
|
("pmap_allocpte failed with sleep allowed"));
|
|
rv = KERN_RESOURCE_SHORTAGE;
|
|
goto out;
|
|
}
|
|
} else {
|
|
/*
|
|
* va is for KVA, so pmap_demote_pde() will never fail
|
|
* to install a page table page. PG_V is also
|
|
* asserted by pmap_demote_pde().
|
|
*/
|
|
mpte = NULL;
|
|
KASSERT(pde != NULL && (*pde & PG_V) != 0,
|
|
("KVA %#x invalid pde pdir %#jx", va,
|
|
(uintmax_t)pmap->pm_pdir[PTDPTDI]));
|
|
if ((*pde & PG_PS) != 0)
|
|
pmap_demote_pde(pmap, pde, va);
|
|
}
|
|
pte = pmap_pte_quick(pmap, va);
|
|
|
|
/*
|
|
* Page Directory table entry is not valid, which should not
|
|
* happen. We should have either allocated the page table
|
|
* page or demoted the existing mapping above.
|
|
*/
|
|
if (pte == NULL) {
|
|
panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
|
|
(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
|
|
}
|
|
|
|
origpte = *pte;
|
|
pv = NULL;
|
|
|
|
/*
|
|
* Is the specified virtual address already mapped?
|
|
*/
|
|
if ((origpte & PG_V) != 0) {
|
|
/*
|
|
* Wiring change, just update stats. We don't worry about
|
|
* wiring PT pages as they remain resident as long as there
|
|
* are valid mappings in them. Hence, if a user page is wired,
|
|
* the PT page will be also.
|
|
*/
|
|
if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
|
|
pmap->pm_stats.wired_count++;
|
|
else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
|
|
pmap->pm_stats.wired_count--;
|
|
|
|
/*
|
|
* Remove the extra PT page reference.
|
|
*/
|
|
if (mpte != NULL) {
|
|
mpte->ref_count--;
|
|
KASSERT(mpte->ref_count > 0,
|
|
("pmap_enter: missing reference to page table page,"
|
|
" va: 0x%x", va));
|
|
}
|
|
|
|
/*
|
|
* Has the physical page changed?
|
|
*/
|
|
opa = origpte & PG_FRAME;
|
|
if (opa == pa) {
|
|
/*
|
|
* No, might be a protection or wiring change.
|
|
*/
|
|
if ((origpte & PG_MANAGED) != 0 &&
|
|
(newpte & PG_RW) != 0)
|
|
vm_page_aflag_set(m, PGA_WRITEABLE);
|
|
if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
|
|
goto unchanged;
|
|
goto validate;
|
|
}
|
|
|
|
/*
|
|
* The physical page has changed. Temporarily invalidate
|
|
* the mapping. This ensures that all threads sharing the
|
|
* pmap keep a consistent view of the mapping, which is
|
|
* necessary for the correct handling of COW faults. It
|
|
* also permits reuse of the old mapping's PV entry,
|
|
* avoiding an allocation.
|
|
*
|
|
* For consistency, handle unmanaged mappings the same way.
|
|
*/
|
|
origpte = pte_load_clear(pte);
|
|
KASSERT((origpte & PG_FRAME) == opa,
|
|
("pmap_enter: unexpected pa update for %#x", va));
|
|
if ((origpte & PG_MANAGED) != 0) {
|
|
om = PHYS_TO_VM_PAGE(opa);
|
|
|
|
/*
|
|
* The pmap lock is sufficient to synchronize with
|
|
* concurrent calls to pmap_page_test_mappings() and
|
|
* pmap_ts_referenced().
|
|
*/
|
|
if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
|
|
vm_page_dirty(om);
|
|
if ((origpte & PG_A) != 0) {
|
|
pmap_invalidate_page_int(pmap, va);
|
|
vm_page_aflag_set(om, PGA_REFERENCED);
|
|
}
|
|
pv = pmap_pvh_remove(&om->md, pmap, va);
|
|
KASSERT(pv != NULL,
|
|
("pmap_enter: no PV entry for %#x", va));
|
|
if ((newpte & PG_MANAGED) == 0)
|
|
free_pv_entry(pmap, pv);
|
|
if ((om->a.flags & PGA_WRITEABLE) != 0 &&
|
|
TAILQ_EMPTY(&om->md.pv_list) &&
|
|
((om->flags & PG_FICTITIOUS) != 0 ||
|
|
TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
|
|
vm_page_aflag_clear(om, PGA_WRITEABLE);
|
|
} else {
|
|
/*
|
|
* Since this mapping is unmanaged, assume that PG_A
|
|
* is set.
|
|
*/
|
|
pmap_invalidate_page_int(pmap, va);
|
|
}
|
|
origpte = 0;
|
|
} else {
|
|
/*
|
|
* Increment the counters.
|
|
*/
|
|
if ((newpte & PG_W) != 0)
|
|
pmap->pm_stats.wired_count++;
|
|
pmap->pm_stats.resident_count++;
|
|
}
|
|
|
|
/*
|
|
* Enter on the PV list if part of our managed memory.
|
|
*/
|
|
if ((newpte & PG_MANAGED) != 0) {
|
|
if (pv == NULL) {
|
|
pv = get_pv_entry(pmap, FALSE);
|
|
pv->pv_va = va;
|
|
}
|
|
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
|
|
if ((newpte & PG_RW) != 0)
|
|
vm_page_aflag_set(m, PGA_WRITEABLE);
|
|
}
|
|
|
|
/*
|
|
* Update the PTE.
|
|
*/
|
|
if ((origpte & PG_V) != 0) {
|
|
validate:
|
|
origpte = pte_load_store(pte, newpte);
|
|
KASSERT((origpte & PG_FRAME) == pa,
|
|
("pmap_enter: unexpected pa update for %#x", va));
|
|
if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
|
|
(PG_M | PG_RW)) {
|
|
if ((origpte & PG_MANAGED) != 0)
|
|
vm_page_dirty(m);
|
|
|
|
/*
|
|
* Although the PTE may still have PG_RW set, TLB
|
|
* invalidation may nonetheless be required because
|
|
* the PTE no longer has PG_M set.
|
|
*/
|
|
}
|
|
#ifdef PMAP_PAE_COMP
|
|
else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
|
|
/*
|
|
* This PTE change does not require TLB invalidation.
|
|
*/
|
|
goto unchanged;
|
|
}
|
|
#endif
|
|
if ((origpte & PG_A) != 0)
|
|
pmap_invalidate_page_int(pmap, va);
|
|
} else
|
|
pte_store_zero(pte, newpte);
|
|
|
|
unchanged:
|
|
|
|
#if VM_NRESERVLEVEL > 0
|
|
/*
|
|
* If both the page table page and the reservation are fully
|
|
* populated, then attempt promotion.
|
|
*/
|
|
if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
|
|
pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
|
|
vm_reserv_level_iffullpop(m) == 0)
|
|
pmap_promote_pde(pmap, pde, va);
|
|
#endif
|
|
|
|
rv = KERN_SUCCESS;
|
|
out:
|
|
sched_unpin();
|
|
rw_wunlock(&pvh_global_lock);
|
|
PMAP_UNLOCK(pmap);
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Tries to create a read- and/or execute-only 2 or 4 MB page mapping. Returns
|
|
* true if successful. Returns false if (1) a mapping already exists at the
|
|
* specified virtual address or (2) a PV entry cannot be allocated without
|
|
* reclaiming another PV entry.
|
|
*/
|
|
static bool
|
|
pmap_enter_4mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
|
|
{
|
|
pd_entry_t newpde;
|
|
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
|
|
PG_PS | PG_V;
|
|
if ((m->oflags & VPO_UNMANAGED) == 0)
|
|
newpde |= PG_MANAGED;
|
|
#ifdef PMAP_PAE_COMP
|
|
if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
|
|
newpde |= pg_nx;
|
|
#endif
|
|
if (pmap != kernel_pmap)
|
|
newpde |= PG_U;
|
|
return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
|
|
PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL) ==
|
|
KERN_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* Returns true if every page table entry in the page table page that maps
|
|
* the specified kernel virtual address is zero.
|
|
*/
|
|
static bool
|
|
pmap_every_pte_zero(vm_offset_t va)
|
|
{
|
|
pt_entry_t *pt_end, *pte;
|
|
|
|
KASSERT((va & PDRMASK) == 0, ("va is misaligned"));
|
|
pte = vtopte(va);
|
|
for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
|
|
if (*pte != 0)
|
|
return (false);
|
|
}
|
|
return (true);
|
|
}
|
|
|
|
/*
|
|
* Tries to create the specified 2 or 4 MB page mapping. Returns KERN_SUCCESS
|
|
* if the mapping was created, and either KERN_FAILURE or
|
|
* KERN_RESOURCE_SHORTAGE otherwise. Returns KERN_FAILURE if
|
|
* PMAP_ENTER_NOREPLACE was specified and a mapping already exists at the
|
|
* specified virtual address. Returns KERN_RESOURCE_SHORTAGE if
|
|
* PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
|
|
*
|
|
* The parameter "m" is only used when creating a managed, writeable mapping.
|
|
*/
|
|
static int
|
|
pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
|
|
vm_page_t m)
|
|
{
|
|
struct spglist free;
|
|
pd_entry_t oldpde, *pde;
|
|
vm_page_t mt;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
|
|
("pmap_enter_pde: newpde is missing PG_M"));
|
|
KASSERT(pmap == kernel_pmap || (newpde & PG_W) == 0,
|
|
("pmap_enter_pde: cannot create wired user mapping"));
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
pde = pmap_pde(pmap, va);
|
|
oldpde = *pde;
|
|
if ((oldpde & PG_V) != 0) {
|
|
if ((flags & PMAP_ENTER_NOREPLACE) != 0 && (pmap !=
|
|
kernel_pmap || (oldpde & PG_PS) != 0 ||
|
|
!pmap_every_pte_zero(va))) {
|
|
CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
|
|
" in pmap %p", va, pmap);
|
|
return (KERN_FAILURE);
|
|
}
|
|
/* Break the existing mapping(s). */
|
|
SLIST_INIT(&free);
|
|
if ((oldpde & PG_PS) != 0) {
|
|
/*
|
|
* If the PDE resulted from a promotion, then a
|
|
* reserved PT page could be freed.
|
|
*/
|
|
(void)pmap_remove_pde(pmap, pde, va, &free);
|
|
if ((oldpde & PG_G) == 0)
|
|
pmap_invalidate_pde_page(pmap, va, oldpde);
|
|
} else {
|
|
if (pmap_remove_ptes(pmap, va, va + NBPDR, &free))
|
|
pmap_invalidate_all_int(pmap);
|
|
}
|
|
if (pmap != kernel_pmap) {
|
|
vm_page_free_pages_toq(&free, true);
|
|
KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
|
|
pde));
|
|
} else {
|
|
KASSERT(SLIST_EMPTY(&free),
|
|
("pmap_enter_pde: freed kernel page table page"));
|
|
|
|
/*
|
|
* Both pmap_remove_pde() and pmap_remove_ptes() will
|
|
* leave the kernel page table page zero filled.
|
|
*/
|
|
mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
|
|
if (pmap_insert_pt_page(pmap, mt, false))
|
|
panic("pmap_enter_pde: trie insert failed");
|
|
}
|
|
}
|
|
if ((newpde & PG_MANAGED) != 0) {
|
|
/*
|
|
* Abort this mapping if its PV entry could not be created.
|
|
*/
|
|
if (!pmap_pv_insert_pde(pmap, va, newpde, flags)) {
|
|
CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
|
|
" in pmap %p", va, pmap);
|
|
return (KERN_RESOURCE_SHORTAGE);
|
|
}
|
|
if ((newpde & PG_RW) != 0) {
|
|
for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
|
|
vm_page_aflag_set(mt, PGA_WRITEABLE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Increment counters.
|
|
*/
|
|
if ((newpde & PG_W) != 0)
|
|
pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
|
|
pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
|
|
|
|
/*
|
|
* Map the superpage. (This is not a promoted mapping; there will not
|
|
* be any lingering 4KB page mappings in the TLB.)
|
|
*/
|
|
pde_store(pde, newpde);
|
|
|
|
pmap_pde_mappings++;
|
|
CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
|
|
va, pmap);
|
|
return (KERN_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* Maps a sequence of resident pages belonging to the same object.
|
|
* The sequence begins with the given page m_start. This page is
|
|
* mapped at the given virtual address start. Each subsequent page is
|
|
* mapped at a virtual address that is offset from start by the same
|
|
* amount as the page is offset from m_start within the object. The
|
|
* last page in the sequence is the page with the largest offset from
|
|
* m_start that can be mapped at a virtual address less than the given
|
|
* virtual address end. Not every virtual page between start and end
|
|
* is mapped; only those for which a resident page exists with the
|
|
* corresponding offset from m_start are mapped.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, enter_object)(pmap_t pmap, vm_offset_t start, vm_offset_t end,
|
|
vm_page_t m_start, vm_prot_t prot)
|
|
{
|
|
vm_offset_t va;
|
|
vm_page_t m, mpte;
|
|
vm_pindex_t diff, psize;
|
|
|
|
VM_OBJECT_ASSERT_LOCKED(m_start->object);
|
|
|
|
psize = atop(end - start);
|
|
mpte = NULL;
|
|
m = m_start;
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pmap);
|
|
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
|
|
va = start + ptoa(diff);
|
|
if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
|
|
m->psind == 1 && pg_ps_enabled &&
|
|
pmap_enter_4mpage(pmap, va, m, prot))
|
|
m = &m[NBPDR / PAGE_SIZE - 1];
|
|
else
|
|
mpte = pmap_enter_quick_locked(pmap, va, m, prot,
|
|
mpte);
|
|
m = TAILQ_NEXT(m, listq);
|
|
}
|
|
rw_wunlock(&pvh_global_lock);
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
|
|
/*
|
|
* this code makes some *MAJOR* assumptions:
|
|
* 1. Current pmap & pmap exists.
|
|
* 2. Not wired.
|
|
* 3. Read access.
|
|
* 4. No page table pages.
|
|
* but is *MUCH* faster than pmap_enter...
|
|
*/
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, enter_quick)(pmap_t pmap, vm_offset_t va, vm_page_t m,
|
|
vm_prot_t prot)
|
|
{
|
|
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pmap);
|
|
(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
|
|
rw_wunlock(&pvh_global_lock);
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
|
|
static vm_page_t
|
|
pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
|
|
vm_prot_t prot, vm_page_t mpte)
|
|
{
|
|
pt_entry_t newpte, *pte;
|
|
|
|
KASSERT(pmap != kernel_pmap || va < kmi.clean_sva ||
|
|
va >= kmi.clean_eva || (m->oflags & VPO_UNMANAGED) != 0,
|
|
("pmap_enter_quick_locked: managed mapping within the clean submap"));
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
|
|
/*
|
|
* In the case that a page table page is not
|
|
* resident, we are creating it here.
|
|
*/
|
|
if (pmap != kernel_pmap) {
|
|
u_int ptepindex;
|
|
pd_entry_t ptepa;
|
|
|
|
/*
|
|
* Calculate pagetable page index
|
|
*/
|
|
ptepindex = va >> PDRSHIFT;
|
|
if (mpte && (mpte->pindex == ptepindex)) {
|
|
mpte->ref_count++;
|
|
} else {
|
|
/*
|
|
* Get the page directory entry
|
|
*/
|
|
ptepa = pmap->pm_pdir[ptepindex];
|
|
|
|
/*
|
|
* If the page table page is mapped, we just increment
|
|
* the hold count, and activate it.
|
|
*/
|
|
if (ptepa) {
|
|
if (ptepa & PG_PS)
|
|
return (NULL);
|
|
mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
|
|
mpte->ref_count++;
|
|
} else {
|
|
mpte = _pmap_allocpte(pmap, ptepindex,
|
|
PMAP_ENTER_NOSLEEP);
|
|
if (mpte == NULL)
|
|
return (mpte);
|
|
}
|
|
}
|
|
} else {
|
|
mpte = NULL;
|
|
}
|
|
|
|
sched_pin();
|
|
pte = pmap_pte_quick(pmap, va);
|
|
if (*pte) {
|
|
if (mpte != NULL)
|
|
mpte->ref_count--;
|
|
sched_unpin();
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Enter on the PV list if part of our managed memory.
|
|
*/
|
|
if ((m->oflags & VPO_UNMANAGED) == 0 &&
|
|
!pmap_try_insert_pv_entry(pmap, va, m)) {
|
|
if (mpte != NULL)
|
|
pmap_abort_ptp(pmap, va, mpte);
|
|
sched_unpin();
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Increment counters
|
|
*/
|
|
pmap->pm_stats.resident_count++;
|
|
|
|
newpte = VM_PAGE_TO_PHYS(m) | PG_V |
|
|
pmap_cache_bits(pmap, m->md.pat_mode, 0);
|
|
if ((m->oflags & VPO_UNMANAGED) == 0)
|
|
newpte |= PG_MANAGED;
|
|
#ifdef PMAP_PAE_COMP
|
|
if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
|
|
newpte |= pg_nx;
|
|
#endif
|
|
if (pmap != kernel_pmap)
|
|
newpte |= PG_U;
|
|
pte_store_zero(pte, newpte);
|
|
sched_unpin();
|
|
return (mpte);
|
|
}
|
|
|
|
/*
|
|
* Make a temporary mapping for a physical address. This is only intended
|
|
* to be used for panic dumps.
|
|
*/
|
|
static void *
|
|
__CONCAT(PMTYPE, kenter_temporary)(vm_paddr_t pa, int i)
|
|
{
|
|
vm_offset_t va;
|
|
|
|
va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
|
|
pmap_kenter(va, pa);
|
|
invlpg(va);
|
|
return ((void *)crashdumpmap);
|
|
}
|
|
|
|
/*
|
|
* This code maps large physical mmap regions into the
|
|
* processor address space. Note that some shortcuts
|
|
* are taken, but the code works.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, object_init_pt)(pmap_t pmap, vm_offset_t addr,
|
|
vm_object_t object, vm_pindex_t pindex, vm_size_t size)
|
|
{
|
|
pd_entry_t *pde;
|
|
vm_paddr_t pa, ptepa;
|
|
vm_page_t p;
|
|
int pat_mode;
|
|
|
|
VM_OBJECT_ASSERT_WLOCKED(object);
|
|
KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
|
|
("pmap_object_init_pt: non-device object"));
|
|
if (pg_ps_enabled &&
|
|
(addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
|
|
if (!vm_object_populate(object, pindex, pindex + atop(size)))
|
|
return;
|
|
p = vm_page_lookup(object, pindex);
|
|
KASSERT(p->valid == VM_PAGE_BITS_ALL,
|
|
("pmap_object_init_pt: invalid page %p", p));
|
|
pat_mode = p->md.pat_mode;
|
|
|
|
/*
|
|
* Abort the mapping if the first page is not physically
|
|
* aligned to a 2/4MB page boundary.
|
|
*/
|
|
ptepa = VM_PAGE_TO_PHYS(p);
|
|
if (ptepa & (NBPDR - 1))
|
|
return;
|
|
|
|
/*
|
|
* Skip the first page. Abort the mapping if the rest of
|
|
* the pages are not physically contiguous or have differing
|
|
* memory attributes.
|
|
*/
|
|
p = TAILQ_NEXT(p, listq);
|
|
for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
|
|
pa += PAGE_SIZE) {
|
|
KASSERT(p->valid == VM_PAGE_BITS_ALL,
|
|
("pmap_object_init_pt: invalid page %p", p));
|
|
if (pa != VM_PAGE_TO_PHYS(p) ||
|
|
pat_mode != p->md.pat_mode)
|
|
return;
|
|
p = TAILQ_NEXT(p, listq);
|
|
}
|
|
|
|
/*
|
|
* Map using 2/4MB pages. Since "ptepa" is 2/4M aligned and
|
|
* "size" is a multiple of 2/4M, adding the PAT setting to
|
|
* "pa" will not affect the termination of this loop.
|
|
*/
|
|
PMAP_LOCK(pmap);
|
|
for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
|
|
pa < ptepa + size; pa += NBPDR) {
|
|
pde = pmap_pde(pmap, addr);
|
|
if (*pde == 0) {
|
|
pde_store(pde, pa | PG_PS | PG_M | PG_A |
|
|
PG_U | PG_RW | PG_V);
|
|
pmap->pm_stats.resident_count += NBPDR /
|
|
PAGE_SIZE;
|
|
pmap_pde_mappings++;
|
|
}
|
|
/* Else continue on if the PDE is already valid. */
|
|
addr += NBPDR;
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear the wired attribute from the mappings for the specified range of
|
|
* addresses in the given pmap. Every valid mapping within that range
|
|
* must have the wired attribute set. In contrast, invalid mappings
|
|
* cannot have the wired attribute set, so they are ignored.
|
|
*
|
|
* The wired attribute of the page table entry is not a hardware feature,
|
|
* so there is no need to invalidate any TLB entries.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, unwire)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
vm_offset_t pdnxt;
|
|
pd_entry_t *pde;
|
|
pt_entry_t *pte;
|
|
boolean_t pv_lists_locked;
|
|
|
|
if (pmap_is_current(pmap))
|
|
pv_lists_locked = FALSE;
|
|
else {
|
|
pv_lists_locked = TRUE;
|
|
resume:
|
|
rw_wlock(&pvh_global_lock);
|
|
sched_pin();
|
|
}
|
|
PMAP_LOCK(pmap);
|
|
for (; sva < eva; sva = pdnxt) {
|
|
pdnxt = (sva + NBPDR) & ~PDRMASK;
|
|
if (pdnxt < sva)
|
|
pdnxt = eva;
|
|
pde = pmap_pde(pmap, sva);
|
|
if ((*pde & PG_V) == 0)
|
|
continue;
|
|
if ((*pde & PG_PS) != 0) {
|
|
if ((*pde & PG_W) == 0)
|
|
panic("pmap_unwire: pde %#jx is missing PG_W",
|
|
(uintmax_t)*pde);
|
|
|
|
/*
|
|
* Are we unwiring the entire large page? If not,
|
|
* demote the mapping and fall through.
|
|
*/
|
|
if (sva + NBPDR == pdnxt && eva >= pdnxt) {
|
|
/*
|
|
* Regardless of whether a pde (or pte) is 32
|
|
* or 64 bits in size, PG_W is among the least
|
|
* significant 32 bits.
|
|
*/
|
|
atomic_clear_int((u_int *)pde, PG_W);
|
|
pmap->pm_stats.wired_count -= NBPDR /
|
|
PAGE_SIZE;
|
|
continue;
|
|
} else {
|
|
if (!pv_lists_locked) {
|
|
pv_lists_locked = TRUE;
|
|
if (!rw_try_wlock(&pvh_global_lock)) {
|
|
PMAP_UNLOCK(pmap);
|
|
/* Repeat sva. */
|
|
goto resume;
|
|
}
|
|
sched_pin();
|
|
}
|
|
if (!pmap_demote_pde(pmap, pde, sva))
|
|
panic("pmap_unwire: demotion failed");
|
|
}
|
|
}
|
|
if (pdnxt > eva)
|
|
pdnxt = eva;
|
|
for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
|
|
sva += PAGE_SIZE) {
|
|
if ((*pte & PG_V) == 0)
|
|
continue;
|
|
if ((*pte & PG_W) == 0)
|
|
panic("pmap_unwire: pte %#jx is missing PG_W",
|
|
(uintmax_t)*pte);
|
|
|
|
/*
|
|
* PG_W must be cleared atomically. Although the pmap
|
|
* lock synchronizes access to PG_W, another processor
|
|
* could be setting PG_M and/or PG_A concurrently.
|
|
*
|
|
* PG_W is among the least significant 32 bits.
|
|
*/
|
|
atomic_clear_int((u_int *)pte, PG_W);
|
|
pmap->pm_stats.wired_count--;
|
|
}
|
|
}
|
|
if (pv_lists_locked) {
|
|
sched_unpin();
|
|
rw_wunlock(&pvh_global_lock);
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
|
|
/*
|
|
* Copy the range specified by src_addr/len
|
|
* from the source map to the range dst_addr/len
|
|
* in the destination map.
|
|
*
|
|
* This routine is only advisory and need not do anything. Since
|
|
* current pmap is always the kernel pmap when executing in
|
|
* kernel, and we do not copy from the kernel pmap to a user
|
|
* pmap, this optimization is not usable in 4/4G full split i386
|
|
* world.
|
|
*/
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, copy)(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
|
|
vm_size_t len, vm_offset_t src_addr)
|
|
{
|
|
pt_entry_t *src_pte, *dst_pte, ptetemp;
|
|
pd_entry_t srcptepaddr;
|
|
vm_page_t dstmpte, srcmpte;
|
|
vm_offset_t addr, end_addr, pdnxt;
|
|
u_int ptepindex;
|
|
|
|
if (dst_addr != src_addr)
|
|
return;
|
|
|
|
end_addr = src_addr + len;
|
|
|
|
rw_wlock(&pvh_global_lock);
|
|
if (dst_pmap < src_pmap) {
|
|
PMAP_LOCK(dst_pmap);
|
|
PMAP_LOCK(src_pmap);
|
|
} else {
|
|
PMAP_LOCK(src_pmap);
|
|
PMAP_LOCK(dst_pmap);
|
|
}
|
|
sched_pin();
|
|
for (addr = src_addr; addr < end_addr; addr = pdnxt) {
|
|
KASSERT(addr < PMAP_TRM_MIN_ADDRESS,
|
|
("pmap_copy: invalid to pmap_copy the trampoline"));
|
|
|
|
pdnxt = (addr + NBPDR) & ~PDRMASK;
|
|
if (pdnxt < addr)
|
|
pdnxt = end_addr;
|
|
ptepindex = addr >> PDRSHIFT;
|
|
|
|
srcptepaddr = src_pmap->pm_pdir[ptepindex];
|
|
if (srcptepaddr == 0)
|
|
continue;
|
|
|
|
if (srcptepaddr & PG_PS) {
|
|
if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
|
|
continue;
|
|
if (dst_pmap->pm_pdir[ptepindex] == 0 &&
|
|
((srcptepaddr & PG_MANAGED) == 0 ||
|
|
pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
|
|
PMAP_ENTER_NORECLAIM))) {
|
|
dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
|
|
~PG_W;
|
|
dst_pmap->pm_stats.resident_count +=
|
|
NBPDR / PAGE_SIZE;
|
|
pmap_pde_mappings++;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
|
|
KASSERT(srcmpte->ref_count > 0,
|
|
("pmap_copy: source page table page is unused"));
|
|
|
|
if (pdnxt > end_addr)
|
|
pdnxt = end_addr;
|
|
|
|
src_pte = pmap_pte_quick3(src_pmap, addr);
|
|
while (addr < pdnxt) {
|
|
ptetemp = *src_pte;
|
|
/*
|
|
* we only virtual copy managed pages
|
|
*/
|
|
if ((ptetemp & PG_MANAGED) != 0) {
|
|
dstmpte = pmap_allocpte(dst_pmap, addr,
|
|
PMAP_ENTER_NOSLEEP);
|
|
if (dstmpte == NULL)
|
|
goto out;
|
|
dst_pte = pmap_pte_quick(dst_pmap, addr);
|
|
if (*dst_pte == 0 &&
|
|
pmap_try_insert_pv_entry(dst_pmap, addr,
|
|
PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
|
|
/*
|
|
* Clear the wired, modified, and
|
|
* accessed (referenced) bits
|
|
* during the copy.
|
|
*/
|
|
*dst_pte = ptetemp & ~(PG_W | PG_M |
|
|
PG_A);
|
|
dst_pmap->pm_stats.resident_count++;
|
|
} else {
|
|
pmap_abort_ptp(dst_pmap, addr, dstmpte);
|
|
goto out;
|
|
}
|
|
if (dstmpte->ref_count >= srcmpte->ref_count)
|
|
break;
|
|
}
|
|
addr += PAGE_SIZE;
|
|
src_pte++;
|
|
}
|
|
}
|
|
out:
|
|
sched_unpin();
|
|
rw_wunlock(&pvh_global_lock);
|
|
PMAP_UNLOCK(src_pmap);
|
|
PMAP_UNLOCK(dst_pmap);
|
|
}
|
|
|
|
/*
|
|
* Zero 1 page of virtual memory mapped from a hardware page by the caller.
|
|
*/
|
|
static __inline void
|
|
pagezero(void *page)
|
|
{
|
|
#if defined(I686_CPU)
|
|
if (cpu_class == CPUCLASS_686) {
|
|
if (cpu_feature & CPUID_SSE2)
|
|
sse2_pagezero(page);
|
|
else
|
|
i686_pagezero(page);
|
|
} else
|
|
#endif
|
|
bzero(page, PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Zero the specified hardware page.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, zero_page)(vm_page_t m)
|
|
{
|
|
pt_entry_t *cmap_pte2;
|
|
struct pcpu *pc;
|
|
|
|
sched_pin();
|
|
pc = get_pcpu();
|
|
cmap_pte2 = pc->pc_cmap_pte2;
|
|
mtx_lock(&pc->pc_cmap_lock);
|
|
if (*cmap_pte2)
|
|
panic("pmap_zero_page: CMAP2 busy");
|
|
*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
|
|
pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
|
|
invlcaddr(pc->pc_cmap_addr2);
|
|
pagezero(pc->pc_cmap_addr2);
|
|
*cmap_pte2 = 0;
|
|
|
|
/*
|
|
* Unpin the thread before releasing the lock. Otherwise the thread
|
|
* could be rescheduled while still bound to the current CPU, only
|
|
* to unpin itself immediately upon resuming execution.
|
|
*/
|
|
sched_unpin();
|
|
mtx_unlock(&pc->pc_cmap_lock);
|
|
}
|
|
|
|
/*
|
|
* Zero an an area within a single hardware page. off and size must not
|
|
* cover an area beyond a single hardware page.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, zero_page_area)(vm_page_t m, int off, int size)
|
|
{
|
|
pt_entry_t *cmap_pte2;
|
|
struct pcpu *pc;
|
|
|
|
sched_pin();
|
|
pc = get_pcpu();
|
|
cmap_pte2 = pc->pc_cmap_pte2;
|
|
mtx_lock(&pc->pc_cmap_lock);
|
|
if (*cmap_pte2)
|
|
panic("pmap_zero_page_area: CMAP2 busy");
|
|
*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
|
|
pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
|
|
invlcaddr(pc->pc_cmap_addr2);
|
|
if (off == 0 && size == PAGE_SIZE)
|
|
pagezero(pc->pc_cmap_addr2);
|
|
else
|
|
bzero(pc->pc_cmap_addr2 + off, size);
|
|
*cmap_pte2 = 0;
|
|
sched_unpin();
|
|
mtx_unlock(&pc->pc_cmap_lock);
|
|
}
|
|
|
|
/*
|
|
* Copy 1 specified hardware page to another.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, copy_page)(vm_page_t src, vm_page_t dst)
|
|
{
|
|
pt_entry_t *cmap_pte1, *cmap_pte2;
|
|
struct pcpu *pc;
|
|
|
|
sched_pin();
|
|
pc = get_pcpu();
|
|
cmap_pte1 = pc->pc_cmap_pte1;
|
|
cmap_pte2 = pc->pc_cmap_pte2;
|
|
mtx_lock(&pc->pc_cmap_lock);
|
|
if (*cmap_pte1)
|
|
panic("pmap_copy_page: CMAP1 busy");
|
|
if (*cmap_pte2)
|
|
panic("pmap_copy_page: CMAP2 busy");
|
|
*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
|
|
pmap_cache_bits(kernel_pmap, src->md.pat_mode, 0);
|
|
invlcaddr(pc->pc_cmap_addr1);
|
|
*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
|
|
pmap_cache_bits(kernel_pmap, dst->md.pat_mode, 0);
|
|
invlcaddr(pc->pc_cmap_addr2);
|
|
bcopy(pc->pc_cmap_addr1, pc->pc_cmap_addr2, PAGE_SIZE);
|
|
*cmap_pte1 = 0;
|
|
*cmap_pte2 = 0;
|
|
sched_unpin();
|
|
mtx_unlock(&pc->pc_cmap_lock);
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, copy_pages)(vm_page_t ma[], vm_offset_t a_offset,
|
|
vm_page_t mb[], vm_offset_t b_offset, int xfersize)
|
|
{
|
|
vm_page_t a_pg, b_pg;
|
|
char *a_cp, *b_cp;
|
|
vm_offset_t a_pg_offset, b_pg_offset;
|
|
pt_entry_t *cmap_pte1, *cmap_pte2;
|
|
struct pcpu *pc;
|
|
int cnt;
|
|
|
|
sched_pin();
|
|
pc = get_pcpu();
|
|
cmap_pte1 = pc->pc_cmap_pte1;
|
|
cmap_pte2 = pc->pc_cmap_pte2;
|
|
mtx_lock(&pc->pc_cmap_lock);
|
|
if (*cmap_pte1 != 0)
|
|
panic("pmap_copy_pages: CMAP1 busy");
|
|
if (*cmap_pte2 != 0)
|
|
panic("pmap_copy_pages: CMAP2 busy");
|
|
while (xfersize > 0) {
|
|
a_pg = ma[a_offset >> PAGE_SHIFT];
|
|
a_pg_offset = a_offset & PAGE_MASK;
|
|
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
|
|
b_pg = mb[b_offset >> PAGE_SHIFT];
|
|
b_pg_offset = b_offset & PAGE_MASK;
|
|
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
|
|
*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
|
|
pmap_cache_bits(kernel_pmap, a_pg->md.pat_mode, 0);
|
|
invlcaddr(pc->pc_cmap_addr1);
|
|
*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
|
|
PG_M | pmap_cache_bits(kernel_pmap, b_pg->md.pat_mode, 0);
|
|
invlcaddr(pc->pc_cmap_addr2);
|
|
a_cp = pc->pc_cmap_addr1 + a_pg_offset;
|
|
b_cp = pc->pc_cmap_addr2 + b_pg_offset;
|
|
bcopy(a_cp, b_cp, cnt);
|
|
a_offset += cnt;
|
|
b_offset += cnt;
|
|
xfersize -= cnt;
|
|
}
|
|
*cmap_pte1 = 0;
|
|
*cmap_pte2 = 0;
|
|
sched_unpin();
|
|
mtx_unlock(&pc->pc_cmap_lock);
|
|
}
|
|
|
|
/*
|
|
* Returns true if the pmap's pv is one of the first
|
|
* 16 pvs linked to from this page. This count may
|
|
* be changed upwards or downwards in the future; it
|
|
* is only necessary that true be returned for a small
|
|
* subset of pmaps for proper page aging.
|
|
*/
|
|
static boolean_t
|
|
__CONCAT(PMTYPE, page_exists_quick)(pmap_t pmap, vm_page_t m)
|
|
{
|
|
struct md_page *pvh;
|
|
pv_entry_t pv;
|
|
int loops = 0;
|
|
boolean_t rv;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("pmap_page_exists_quick: page %p is not managed", m));
|
|
rv = FALSE;
|
|
rw_wlock(&pvh_global_lock);
|
|
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
|
|
if (PV_PMAP(pv) == pmap) {
|
|
rv = TRUE;
|
|
break;
|
|
}
|
|
loops++;
|
|
if (loops >= 16)
|
|
break;
|
|
}
|
|
if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
|
|
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
|
|
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
|
|
if (PV_PMAP(pv) == pmap) {
|
|
rv = TRUE;
|
|
break;
|
|
}
|
|
loops++;
|
|
if (loops >= 16)
|
|
break;
|
|
}
|
|
}
|
|
rw_wunlock(&pvh_global_lock);
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* pmap_page_wired_mappings:
|
|
*
|
|
* Return the number of managed mappings to the given physical page
|
|
* that are wired.
|
|
*/
|
|
static int
|
|
__CONCAT(PMTYPE, page_wired_mappings)(vm_page_t m)
|
|
{
|
|
int count;
|
|
|
|
count = 0;
|
|
if ((m->oflags & VPO_UNMANAGED) != 0)
|
|
return (count);
|
|
rw_wlock(&pvh_global_lock);
|
|
count = pmap_pvh_wired_mappings(&m->md, count);
|
|
if ((m->flags & PG_FICTITIOUS) == 0) {
|
|
count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
|
|
count);
|
|
}
|
|
rw_wunlock(&pvh_global_lock);
|
|
return (count);
|
|
}
|
|
|
|
/*
|
|
* pmap_pvh_wired_mappings:
|
|
*
|
|
* Return the updated number "count" of managed mappings that are wired.
|
|
*/
|
|
static int
|
|
pmap_pvh_wired_mappings(struct md_page *pvh, int count)
|
|
{
|
|
pmap_t pmap;
|
|
pt_entry_t *pte;
|
|
pv_entry_t pv;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
sched_pin();
|
|
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
|
|
pmap = PV_PMAP(pv);
|
|
PMAP_LOCK(pmap);
|
|
pte = pmap_pte_quick(pmap, pv->pv_va);
|
|
if ((*pte & PG_W) != 0)
|
|
count++;
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
sched_unpin();
|
|
return (count);
|
|
}
|
|
|
|
/*
|
|
* Returns TRUE if the given page is mapped individually or as part of
|
|
* a 4mpage. Otherwise, returns FALSE.
|
|
*/
|
|
static boolean_t
|
|
__CONCAT(PMTYPE, page_is_mapped)(vm_page_t m)
|
|
{
|
|
boolean_t rv;
|
|
|
|
if ((m->oflags & VPO_UNMANAGED) != 0)
|
|
return (FALSE);
|
|
rw_wlock(&pvh_global_lock);
|
|
rv = !TAILQ_EMPTY(&m->md.pv_list) ||
|
|
((m->flags & PG_FICTITIOUS) == 0 &&
|
|
!TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
|
|
rw_wunlock(&pvh_global_lock);
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Remove all pages from specified address space
|
|
* this aids process exit speeds. Also, this code
|
|
* is special cased for current process only, but
|
|
* can have the more generic (and slightly slower)
|
|
* mode enabled. This is much faster than pmap_remove
|
|
* in the case of running down an entire address space.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, remove_pages)(pmap_t pmap)
|
|
{
|
|
pt_entry_t *pte, tpte;
|
|
vm_page_t m, mpte, mt;
|
|
pv_entry_t pv;
|
|
struct md_page *pvh;
|
|
struct pv_chunk *pc, *npc;
|
|
struct spglist free;
|
|
int field, idx;
|
|
int32_t bit;
|
|
uint32_t inuse, bitmask;
|
|
int allfree;
|
|
|
|
if (pmap != PCPU_GET(curpmap)) {
|
|
printf("warning: pmap_remove_pages called with non-current pmap\n");
|
|
return;
|
|
}
|
|
SLIST_INIT(&free);
|
|
rw_wlock(&pvh_global_lock);
|
|
PMAP_LOCK(pmap);
|
|
sched_pin();
|
|
TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
|
|
KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
|
|
pc->pc_pmap));
|
|
allfree = 1;
|
|
for (field = 0; field < _NPCM; field++) {
|
|
inuse = ~pc->pc_map[field] & pc_freemask[field];
|
|
while (inuse != 0) {
|
|
bit = bsfl(inuse);
|
|
bitmask = 1UL << bit;
|
|
idx = field * 32 + bit;
|
|
pv = &pc->pc_pventry[idx];
|
|
inuse &= ~bitmask;
|
|
|
|
pte = pmap_pde(pmap, pv->pv_va);
|
|
tpte = *pte;
|
|
if ((tpte & PG_PS) == 0) {
|
|
pte = pmap_pte_quick(pmap, pv->pv_va);
|
|
tpte = *pte & ~PG_PTE_PAT;
|
|
}
|
|
|
|
if (tpte == 0) {
|
|
printf(
|
|
"TPTE at %p IS ZERO @ VA %08x\n",
|
|
pte, pv->pv_va);
|
|
panic("bad pte");
|
|
}
|
|
|
|
/*
|
|
* We cannot remove wired pages from a process' mapping at this time
|
|
*/
|
|
if (tpte & PG_W) {
|
|
allfree = 0;
|
|
continue;
|
|
}
|
|
|
|
m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
|
|
KASSERT(m->phys_addr == (tpte & PG_FRAME),
|
|
("vm_page_t %p phys_addr mismatch %016jx %016jx",
|
|
m, (uintmax_t)m->phys_addr,
|
|
(uintmax_t)tpte));
|
|
|
|
KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
|
|
m < &vm_page_array[vm_page_array_size],
|
|
("pmap_remove_pages: bad tpte %#jx",
|
|
(uintmax_t)tpte));
|
|
|
|
pte_clear(pte);
|
|
|
|
/*
|
|
* Update the vm_page_t clean/reference bits.
|
|
*/
|
|
if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
|
|
if ((tpte & PG_PS) != 0) {
|
|
for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
|
|
vm_page_dirty(mt);
|
|
} else
|
|
vm_page_dirty(m);
|
|
}
|
|
|
|
/* Mark free */
|
|
PV_STAT(pv_entry_frees++);
|
|
PV_STAT(pv_entry_spare++);
|
|
pv_entry_count--;
|
|
pc->pc_map[field] |= bitmask;
|
|
if ((tpte & PG_PS) != 0) {
|
|
pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
|
|
pvh = pa_to_pvh(tpte & PG_PS_FRAME);
|
|
TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
|
|
if (TAILQ_EMPTY(&pvh->pv_list)) {
|
|
for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
|
|
if (TAILQ_EMPTY(&mt->md.pv_list))
|
|
vm_page_aflag_clear(mt, PGA_WRITEABLE);
|
|
}
|
|
mpte = pmap_remove_pt_page(pmap, pv->pv_va);
|
|
if (mpte != NULL) {
|
|
KASSERT(mpte->valid == VM_PAGE_BITS_ALL,
|
|
("pmap_remove_pages: pte page not promoted"));
|
|
pmap->pm_stats.resident_count--;
|
|
KASSERT(mpte->ref_count == NPTEPG,
|
|
("pmap_remove_pages: pte page ref count error"));
|
|
mpte->ref_count = 0;
|
|
pmap_add_delayed_free_list(mpte, &free, FALSE);
|
|
}
|
|
} else {
|
|
pmap->pm_stats.resident_count--;
|
|
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
|
|
if (TAILQ_EMPTY(&m->md.pv_list) &&
|
|
(m->flags & PG_FICTITIOUS) == 0) {
|
|
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
|
|
if (TAILQ_EMPTY(&pvh->pv_list))
|
|
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
|
}
|
|
pmap_unuse_pt(pmap, pv->pv_va, &free);
|
|
}
|
|
}
|
|
}
|
|
if (allfree) {
|
|
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
|
free_pv_chunk(pc);
|
|
}
|
|
}
|
|
sched_unpin();
|
|
pmap_invalidate_all_int(pmap);
|
|
rw_wunlock(&pvh_global_lock);
|
|
PMAP_UNLOCK(pmap);
|
|
vm_page_free_pages_toq(&free, true);
|
|
}
|
|
|
|
/*
|
|
* pmap_is_modified:
|
|
*
|
|
* Return whether or not the specified physical page was modified
|
|
* in any physical maps.
|
|
*/
|
|
static boolean_t
|
|
__CONCAT(PMTYPE, is_modified)(vm_page_t m)
|
|
{
|
|
boolean_t rv;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("pmap_is_modified: page %p is not managed", m));
|
|
|
|
/*
|
|
* If the page is not busied then this check is racy.
|
|
*/
|
|
if (!pmap_page_is_write_mapped(m))
|
|
return (FALSE);
|
|
rw_wlock(&pvh_global_lock);
|
|
rv = pmap_is_modified_pvh(&m->md) ||
|
|
((m->flags & PG_FICTITIOUS) == 0 &&
|
|
pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
|
|
rw_wunlock(&pvh_global_lock);
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Returns TRUE if any of the given mappings were used to modify
|
|
* physical memory. Otherwise, returns FALSE. Both page and 2mpage
|
|
* mappings are supported.
|
|
*/
|
|
static boolean_t
|
|
pmap_is_modified_pvh(struct md_page *pvh)
|
|
{
|
|
pv_entry_t pv;
|
|
pt_entry_t *pte;
|
|
pmap_t pmap;
|
|
boolean_t rv;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
rv = FALSE;
|
|
sched_pin();
|
|
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
|
|
pmap = PV_PMAP(pv);
|
|
PMAP_LOCK(pmap);
|
|
pte = pmap_pte_quick(pmap, pv->pv_va);
|
|
rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
|
|
PMAP_UNLOCK(pmap);
|
|
if (rv)
|
|
break;
|
|
}
|
|
sched_unpin();
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* pmap_is_prefaultable:
|
|
*
|
|
* Return whether or not the specified virtual address is elgible
|
|
* for prefault.
|
|
*/
|
|
static boolean_t
|
|
__CONCAT(PMTYPE, is_prefaultable)(pmap_t pmap, vm_offset_t addr)
|
|
{
|
|
pd_entry_t pde;
|
|
boolean_t rv;
|
|
|
|
rv = FALSE;
|
|
PMAP_LOCK(pmap);
|
|
pde = *pmap_pde(pmap, addr);
|
|
if (pde != 0 && (pde & PG_PS) == 0)
|
|
rv = pmap_pte_ufast(pmap, addr, pde) == 0;
|
|
PMAP_UNLOCK(pmap);
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* pmap_is_referenced:
|
|
*
|
|
* Return whether or not the specified physical page was referenced
|
|
* in any physical maps.
|
|
*/
|
|
static boolean_t
|
|
__CONCAT(PMTYPE, is_referenced)(vm_page_t m)
|
|
{
|
|
boolean_t rv;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("pmap_is_referenced: page %p is not managed", m));
|
|
rw_wlock(&pvh_global_lock);
|
|
rv = pmap_is_referenced_pvh(&m->md) ||
|
|
((m->flags & PG_FICTITIOUS) == 0 &&
|
|
pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
|
|
rw_wunlock(&pvh_global_lock);
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Returns TRUE if any of the given mappings were referenced and FALSE
|
|
* otherwise. Both page and 4mpage mappings are supported.
|
|
*/
|
|
static boolean_t
|
|
pmap_is_referenced_pvh(struct md_page *pvh)
|
|
{
|
|
pv_entry_t pv;
|
|
pt_entry_t *pte;
|
|
pmap_t pmap;
|
|
boolean_t rv;
|
|
|
|
rw_assert(&pvh_global_lock, RA_WLOCKED);
|
|
rv = FALSE;
|
|
sched_pin();
|
|
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
|
|
pmap = PV_PMAP(pv);
|
|
PMAP_LOCK(pmap);
|
|
pte = pmap_pte_quick(pmap, pv->pv_va);
|
|
rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
|
|
PMAP_UNLOCK(pmap);
|
|
if (rv)
|
|
break;
|
|
}
|
|
sched_unpin();
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Clear the write and modified bits in each of the given page's mappings.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, remove_write)(vm_page_t m)
|
|
{
|
|
struct md_page *pvh;
|
|
pv_entry_t next_pv, pv;
|
|
pmap_t pmap;
|
|
pd_entry_t *pde;
|
|
pt_entry_t oldpte, *pte;
|
|
vm_offset_t va;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("pmap_remove_write: page %p is not managed", m));
|
|
vm_page_assert_busied(m);
|
|
|
|
if (!pmap_page_is_write_mapped(m))
|
|
return;
|
|
rw_wlock(&pvh_global_lock);
|
|
sched_pin();
|
|
if ((m->flags & PG_FICTITIOUS) != 0)
|
|
goto small_mappings;
|
|
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
|
|
TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
|
|
va = pv->pv_va;
|
|
pmap = PV_PMAP(pv);
|
|
PMAP_LOCK(pmap);
|
|
pde = pmap_pde(pmap, va);
|
|
if ((*pde & PG_RW) != 0)
|
|
(void)pmap_demote_pde(pmap, pde, va);
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
small_mappings:
|
|
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
|
|
pmap = PV_PMAP(pv);
|
|
PMAP_LOCK(pmap);
|
|
pde = pmap_pde(pmap, pv->pv_va);
|
|
KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
|
|
" a 4mpage in page %p's pv list", m));
|
|
pte = pmap_pte_quick(pmap, pv->pv_va);
|
|
retry:
|
|
oldpte = *pte;
|
|
if ((oldpte & PG_RW) != 0) {
|
|
/*
|
|
* Regardless of whether a pte is 32 or 64 bits
|
|
* in size, PG_RW and PG_M are among the least
|
|
* significant 32 bits.
|
|
*/
|
|
if (!atomic_cmpset_int((u_int *)pte, oldpte,
|
|
oldpte & ~(PG_RW | PG_M)))
|
|
goto retry;
|
|
if ((oldpte & PG_M) != 0)
|
|
vm_page_dirty(m);
|
|
pmap_invalidate_page_int(pmap, pv->pv_va);
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
|
sched_unpin();
|
|
rw_wunlock(&pvh_global_lock);
|
|
}
|
|
|
|
/*
|
|
* pmap_ts_referenced:
|
|
*
|
|
* Return a count of reference bits for a page, clearing those bits.
|
|
* It is not necessary for every reference bit to be cleared, but it
|
|
* is necessary that 0 only be returned when there are truly no
|
|
* reference bits set.
|
|
*
|
|
* As an optimization, update the page's dirty field if a modified bit is
|
|
* found while counting reference bits. This opportunistic update can be
|
|
* performed at low cost and can eliminate the need for some future calls
|
|
* to pmap_is_modified(). However, since this function stops after
|
|
* finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
|
|
* dirty pages. Those dirty pages will only be detected by a future call
|
|
* to pmap_is_modified().
|
|
*/
|
|
static int
|
|
__CONCAT(PMTYPE, ts_referenced)(vm_page_t m)
|
|
{
|
|
struct md_page *pvh;
|
|
pv_entry_t pv, pvf;
|
|
pmap_t pmap;
|
|
pd_entry_t *pde;
|
|
pt_entry_t *pte;
|
|
vm_paddr_t pa;
|
|
int rtval = 0;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("pmap_ts_referenced: page %p is not managed", m));
|
|
pa = VM_PAGE_TO_PHYS(m);
|
|
pvh = pa_to_pvh(pa);
|
|
rw_wlock(&pvh_global_lock);
|
|
sched_pin();
|
|
if ((m->flags & PG_FICTITIOUS) != 0 ||
|
|
(pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
|
|
goto small_mappings;
|
|
pv = pvf;
|
|
do {
|
|
pmap = PV_PMAP(pv);
|
|
PMAP_LOCK(pmap);
|
|
pde = pmap_pde(pmap, pv->pv_va);
|
|
if ((*pde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
|
|
/*
|
|
* Although "*pde" is mapping a 2/4MB page, because
|
|
* this function is called at a 4KB page granularity,
|
|
* we only update the 4KB page under test.
|
|
*/
|
|
vm_page_dirty(m);
|
|
}
|
|
if ((*pde & PG_A) != 0) {
|
|
/*
|
|
* Since this reference bit is shared by either 1024
|
|
* or 512 4KB pages, it should not be cleared every
|
|
* time it is tested. Apply a simple "hash" function
|
|
* on the physical page number, the virtual superpage
|
|
* number, and the pmap address to select one 4KB page
|
|
* out of the 1024 or 512 on which testing the
|
|
* reference bit will result in clearing that bit.
|
|
* This function is designed to avoid the selection of
|
|
* the same 4KB page for every 2- or 4MB page mapping.
|
|
*
|
|
* On demotion, a mapping that hasn't been referenced
|
|
* is simply destroyed. To avoid the possibility of a
|
|
* subsequent page fault on a demoted wired mapping,
|
|
* always leave its reference bit set. Moreover,
|
|
* since the superpage is wired, the current state of
|
|
* its reference bit won't affect page replacement.
|
|
*/
|
|
if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
|
|
(uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
|
|
(*pde & PG_W) == 0) {
|
|
atomic_clear_int((u_int *)pde, PG_A);
|
|
pmap_invalidate_page_int(pmap, pv->pv_va);
|
|
}
|
|
rtval++;
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
/* Rotate the PV list if it has more than one entry. */
|
|
if (TAILQ_NEXT(pv, pv_next) != NULL) {
|
|
TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
|
|
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
|
|
}
|
|
if (rtval >= PMAP_TS_REFERENCED_MAX)
|
|
goto out;
|
|
} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
|
|
small_mappings:
|
|
if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
|
|
goto out;
|
|
pv = pvf;
|
|
do {
|
|
pmap = PV_PMAP(pv);
|
|
PMAP_LOCK(pmap);
|
|
pde = pmap_pde(pmap, pv->pv_va);
|
|
KASSERT((*pde & PG_PS) == 0,
|
|
("pmap_ts_referenced: found a 4mpage in page %p's pv list",
|
|
m));
|
|
pte = pmap_pte_quick(pmap, pv->pv_va);
|
|
if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
|
|
vm_page_dirty(m);
|
|
if ((*pte & PG_A) != 0) {
|
|
atomic_clear_int((u_int *)pte, PG_A);
|
|
pmap_invalidate_page_int(pmap, pv->pv_va);
|
|
rtval++;
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
/* Rotate the PV list if it has more than one entry. */
|
|
if (TAILQ_NEXT(pv, pv_next) != NULL) {
|
|
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
|
|
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
|
|
}
|
|
} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
|
|
PMAP_TS_REFERENCED_MAX);
|
|
out:
|
|
sched_unpin();
|
|
rw_wunlock(&pvh_global_lock);
|
|
return (rtval);
|
|
}
|
|
|
|
/*
|
|
* Apply the given advice to the specified range of addresses within the
|
|
* given pmap. Depending on the advice, clear the referenced and/or
|
|
* modified flags in each mapping and set the mapped page's dirty field.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, advise)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
|
|
int advice)
|
|
{
|
|
pd_entry_t oldpde, *pde;
|
|
pt_entry_t *pte;
|
|
vm_offset_t va, pdnxt;
|
|
vm_page_t m;
|
|
bool anychanged, pv_lists_locked;
|
|
|
|
if (advice != MADV_DONTNEED && advice != MADV_FREE)
|
|
return;
|
|
if (pmap_is_current(pmap))
|
|
pv_lists_locked = false;
|
|
else {
|
|
pv_lists_locked = true;
|
|
resume:
|
|
rw_wlock(&pvh_global_lock);
|
|
sched_pin();
|
|
}
|
|
anychanged = false;
|
|
PMAP_LOCK(pmap);
|
|
for (; sva < eva; sva = pdnxt) {
|
|
pdnxt = (sva + NBPDR) & ~PDRMASK;
|
|
if (pdnxt < sva)
|
|
pdnxt = eva;
|
|
pde = pmap_pde(pmap, sva);
|
|
oldpde = *pde;
|
|
if ((oldpde & PG_V) == 0)
|
|
continue;
|
|
else if ((oldpde & PG_PS) != 0) {
|
|
if ((oldpde & PG_MANAGED) == 0)
|
|
continue;
|
|
if (!pv_lists_locked) {
|
|
pv_lists_locked = true;
|
|
if (!rw_try_wlock(&pvh_global_lock)) {
|
|
if (anychanged)
|
|
pmap_invalidate_all_int(pmap);
|
|
PMAP_UNLOCK(pmap);
|
|
goto resume;
|
|
}
|
|
sched_pin();
|
|
}
|
|
if (!pmap_demote_pde(pmap, pde, sva)) {
|
|
/*
|
|
* The large page mapping was destroyed.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Unless the page mappings are wired, remove the
|
|
* mapping to a single page so that a subsequent
|
|
* access may repromote. Choosing the last page
|
|
* within the address range [sva, min(pdnxt, eva))
|
|
* generally results in more repromotions. Since the
|
|
* underlying page table page is fully populated, this
|
|
* removal never frees a page table page.
|
|
*/
|
|
if ((oldpde & PG_W) == 0) {
|
|
va = eva;
|
|
if (va > pdnxt)
|
|
va = pdnxt;
|
|
va -= PAGE_SIZE;
|
|
KASSERT(va >= sva,
|
|
("pmap_advise: no address gap"));
|
|
pte = pmap_pte_quick(pmap, va);
|
|
KASSERT((*pte & PG_V) != 0,
|
|
("pmap_advise: invalid PTE"));
|
|
pmap_remove_pte(pmap, pte, va, NULL);
|
|
anychanged = true;
|
|
}
|
|
}
|
|
if (pdnxt > eva)
|
|
pdnxt = eva;
|
|
va = pdnxt;
|
|
for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
|
|
sva += PAGE_SIZE) {
|
|
if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
|
|
goto maybe_invlrng;
|
|
else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
|
|
if (advice == MADV_DONTNEED) {
|
|
/*
|
|
* Future calls to pmap_is_modified()
|
|
* can be avoided by making the page
|
|
* dirty now.
|
|
*/
|
|
m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
|
|
vm_page_dirty(m);
|
|
}
|
|
atomic_clear_int((u_int *)pte, PG_M | PG_A);
|
|
} else if ((*pte & PG_A) != 0)
|
|
atomic_clear_int((u_int *)pte, PG_A);
|
|
else
|
|
goto maybe_invlrng;
|
|
if ((*pte & PG_G) != 0) {
|
|
if (va == pdnxt)
|
|
va = sva;
|
|
} else
|
|
anychanged = true;
|
|
continue;
|
|
maybe_invlrng:
|
|
if (va != pdnxt) {
|
|
pmap_invalidate_range_int(pmap, va, sva);
|
|
va = pdnxt;
|
|
}
|
|
}
|
|
if (va != pdnxt)
|
|
pmap_invalidate_range_int(pmap, va, sva);
|
|
}
|
|
if (anychanged)
|
|
pmap_invalidate_all_int(pmap);
|
|
if (pv_lists_locked) {
|
|
sched_unpin();
|
|
rw_wunlock(&pvh_global_lock);
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
|
|
/*
|
|
* Clear the modify bits on the specified physical page.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, clear_modify)(vm_page_t m)
|
|
{
|
|
struct md_page *pvh;
|
|
pv_entry_t next_pv, pv;
|
|
pmap_t pmap;
|
|
pd_entry_t oldpde, *pde;
|
|
pt_entry_t *pte;
|
|
vm_offset_t va;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("pmap_clear_modify: page %p is not managed", m));
|
|
vm_page_assert_busied(m);
|
|
|
|
if (!pmap_page_is_write_mapped(m))
|
|
return;
|
|
rw_wlock(&pvh_global_lock);
|
|
sched_pin();
|
|
if ((m->flags & PG_FICTITIOUS) != 0)
|
|
goto small_mappings;
|
|
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
|
|
TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
|
|
va = pv->pv_va;
|
|
pmap = PV_PMAP(pv);
|
|
PMAP_LOCK(pmap);
|
|
pde = pmap_pde(pmap, va);
|
|
oldpde = *pde;
|
|
/* If oldpde has PG_RW set, then it also has PG_M set. */
|
|
if ((oldpde & PG_RW) != 0 &&
|
|
pmap_demote_pde(pmap, pde, va) &&
|
|
(oldpde & PG_W) == 0) {
|
|
/*
|
|
* Write protect the mapping to a single page so that
|
|
* a subsequent write access may repromote.
|
|
*/
|
|
va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
|
|
pte = pmap_pte_quick(pmap, va);
|
|
/*
|
|
* Regardless of whether a pte is 32 or 64 bits
|
|
* in size, PG_RW and PG_M are among the least
|
|
* significant 32 bits.
|
|
*/
|
|
atomic_clear_int((u_int *)pte, PG_M | PG_RW);
|
|
vm_page_dirty(m);
|
|
pmap_invalidate_page_int(pmap, va);
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
small_mappings:
|
|
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
|
|
pmap = PV_PMAP(pv);
|
|
PMAP_LOCK(pmap);
|
|
pde = pmap_pde(pmap, pv->pv_va);
|
|
KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
|
|
" a 4mpage in page %p's pv list", m));
|
|
pte = pmap_pte_quick(pmap, pv->pv_va);
|
|
if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
|
|
/*
|
|
* Regardless of whether a pte is 32 or 64 bits
|
|
* in size, PG_M is among the least significant
|
|
* 32 bits.
|
|
*/
|
|
atomic_clear_int((u_int *)pte, PG_M);
|
|
pmap_invalidate_page_int(pmap, pv->pv_va);
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
sched_unpin();
|
|
rw_wunlock(&pvh_global_lock);
|
|
}
|
|
|
|
/*
|
|
* Miscellaneous support routines follow
|
|
*/
|
|
|
|
/* Adjust the cache mode for a 4KB page mapped via a PTE. */
|
|
static __inline void
|
|
pmap_pte_attr(pt_entry_t *pte, int cache_bits)
|
|
{
|
|
u_int opte, npte;
|
|
|
|
/*
|
|
* The cache mode bits are all in the low 32-bits of the
|
|
* PTE, so we can just spin on updating the low 32-bits.
|
|
*/
|
|
do {
|
|
opte = *(u_int *)pte;
|
|
npte = opte & ~PG_PTE_CACHE;
|
|
npte |= cache_bits;
|
|
} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
|
|
}
|
|
|
|
/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
|
|
static __inline void
|
|
pmap_pde_attr(pd_entry_t *pde, int cache_bits)
|
|
{
|
|
u_int opde, npde;
|
|
|
|
/*
|
|
* The cache mode bits are all in the low 32-bits of the
|
|
* PDE, so we can just spin on updating the low 32-bits.
|
|
*/
|
|
do {
|
|
opde = *(u_int *)pde;
|
|
npde = opde & ~PG_PDE_CACHE;
|
|
npde |= cache_bits;
|
|
} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
|
|
}
|
|
|
|
/*
|
|
* Map a set of physical memory pages into the kernel virtual
|
|
* address space. Return a pointer to where it is mapped. This
|
|
* routine is intended to be used for mapping device memory,
|
|
* NOT real memory.
|
|
*/
|
|
static void *
|
|
__CONCAT(PMTYPE, mapdev_attr)(vm_paddr_t pa, vm_size_t size, int mode,
|
|
int flags)
|
|
{
|
|
struct pmap_preinit_mapping *ppim;
|
|
vm_offset_t va, offset;
|
|
vm_page_t m;
|
|
vm_size_t tmpsize;
|
|
int i;
|
|
|
|
offset = pa & PAGE_MASK;
|
|
size = round_page(offset + size);
|
|
pa = pa & PG_FRAME;
|
|
|
|
if (pa < PMAP_MAP_LOW && pa + size <= PMAP_MAP_LOW) {
|
|
va = pa + PMAP_MAP_LOW;
|
|
if ((flags & MAPDEV_SETATTR) == 0)
|
|
return ((void *)(va + offset));
|
|
} else if (!pmap_initialized) {
|
|
va = 0;
|
|
for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
|
|
ppim = pmap_preinit_mapping + i;
|
|
if (ppim->va == 0) {
|
|
ppim->pa = pa;
|
|
ppim->sz = size;
|
|
ppim->mode = mode;
|
|
ppim->va = virtual_avail;
|
|
virtual_avail += size;
|
|
va = ppim->va;
|
|
break;
|
|
}
|
|
}
|
|
if (va == 0)
|
|
panic("%s: too many preinit mappings", __func__);
|
|
} else {
|
|
/*
|
|
* If we have a preinit mapping, re-use it.
|
|
*/
|
|
for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
|
|
ppim = pmap_preinit_mapping + i;
|
|
if (ppim->pa == pa && ppim->sz == size &&
|
|
(ppim->mode == mode ||
|
|
(flags & MAPDEV_SETATTR) == 0))
|
|
return ((void *)(ppim->va + offset));
|
|
}
|
|
va = kva_alloc(size);
|
|
if (va == 0)
|
|
panic("%s: Couldn't allocate KVA", __func__);
|
|
}
|
|
for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE) {
|
|
if ((flags & MAPDEV_SETATTR) == 0 && pmap_initialized) {
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
if (m != NULL && VM_PAGE_TO_PHYS(m) == pa) {
|
|
pmap_kenter_attr(va + tmpsize, pa + tmpsize,
|
|
m->md.pat_mode);
|
|
continue;
|
|
}
|
|
}
|
|
pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
|
|
}
|
|
pmap_invalidate_range_int(kernel_pmap, va, va + tmpsize);
|
|
pmap_invalidate_cache_range(va, va + size);
|
|
return ((void *)(va + offset));
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, unmapdev)(vm_offset_t va, vm_size_t size)
|
|
{
|
|
struct pmap_preinit_mapping *ppim;
|
|
vm_offset_t offset;
|
|
int i;
|
|
|
|
if (va >= PMAP_MAP_LOW && va <= KERNBASE && va + size <= KERNBASE)
|
|
return;
|
|
offset = va & PAGE_MASK;
|
|
size = round_page(offset + size);
|
|
va = trunc_page(va);
|
|
for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
|
|
ppim = pmap_preinit_mapping + i;
|
|
if (ppim->va == va && ppim->sz == size) {
|
|
if (pmap_initialized)
|
|
return;
|
|
ppim->pa = 0;
|
|
ppim->va = 0;
|
|
ppim->sz = 0;
|
|
ppim->mode = 0;
|
|
if (va + size == virtual_avail)
|
|
virtual_avail = va;
|
|
return;
|
|
}
|
|
}
|
|
if (pmap_initialized) {
|
|
pmap_qremove(va, atop(size));
|
|
kva_free(va, size);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sets the memory attribute for the specified page.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, page_set_memattr)(vm_page_t m, vm_memattr_t ma)
|
|
{
|
|
|
|
m->md.pat_mode = ma;
|
|
if ((m->flags & PG_FICTITIOUS) != 0)
|
|
return;
|
|
|
|
/*
|
|
* If "m" is a normal page, flush it from the cache.
|
|
* See pmap_invalidate_cache_range().
|
|
*
|
|
* First, try to find an existing mapping of the page by sf
|
|
* buffer. sf_buf_invalidate_cache() modifies mapping and
|
|
* flushes the cache.
|
|
*/
|
|
if (sf_buf_invalidate_cache(m))
|
|
return;
|
|
|
|
/*
|
|
* If page is not mapped by sf buffer, but CPU does not
|
|
* support self snoop, map the page transient and do
|
|
* invalidation. In the worst case, whole cache is flushed by
|
|
* pmap_invalidate_cache_range().
|
|
*/
|
|
if ((cpu_feature & CPUID_SS) == 0)
|
|
pmap_flush_page(m);
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, flush_page)(vm_page_t m)
|
|
{
|
|
pt_entry_t *cmap_pte2;
|
|
struct pcpu *pc;
|
|
vm_offset_t sva, eva;
|
|
bool useclflushopt;
|
|
|
|
useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
|
|
if (useclflushopt || (cpu_feature & CPUID_CLFSH) != 0) {
|
|
sched_pin();
|
|
pc = get_pcpu();
|
|
cmap_pte2 = pc->pc_cmap_pte2;
|
|
mtx_lock(&pc->pc_cmap_lock);
|
|
if (*cmap_pte2)
|
|
panic("pmap_flush_page: CMAP2 busy");
|
|
*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
|
|
PG_A | PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode,
|
|
0);
|
|
invlcaddr(pc->pc_cmap_addr2);
|
|
sva = (vm_offset_t)pc->pc_cmap_addr2;
|
|
eva = sva + PAGE_SIZE;
|
|
|
|
/*
|
|
* Use mfence or sfence despite the ordering implied by
|
|
* mtx_{un,}lock() because clflush on non-Intel CPUs
|
|
* and clflushopt are not guaranteed to be ordered by
|
|
* any other instruction.
|
|
*/
|
|
if (useclflushopt)
|
|
sfence();
|
|
else if (cpu_vendor_id != CPU_VENDOR_INTEL)
|
|
mfence();
|
|
for (; sva < eva; sva += cpu_clflush_line_size) {
|
|
if (useclflushopt)
|
|
clflushopt(sva);
|
|
else
|
|
clflush(sva);
|
|
}
|
|
if (useclflushopt)
|
|
sfence();
|
|
else if (cpu_vendor_id != CPU_VENDOR_INTEL)
|
|
mfence();
|
|
*cmap_pte2 = 0;
|
|
sched_unpin();
|
|
mtx_unlock(&pc->pc_cmap_lock);
|
|
} else
|
|
pmap_invalidate_cache();
|
|
}
|
|
|
|
/*
|
|
* Changes the specified virtual address range's memory type to that given by
|
|
* the parameter "mode". The specified virtual address range must be
|
|
* completely contained within either the kernel map.
|
|
*
|
|
* Returns zero if the change completed successfully, and either EINVAL or
|
|
* ENOMEM if the change failed. Specifically, EINVAL is returned if some part
|
|
* of the virtual address range was not mapped, and ENOMEM is returned if
|
|
* there was insufficient memory available to complete the change.
|
|
*/
|
|
static int
|
|
__CONCAT(PMTYPE, change_attr)(vm_offset_t va, vm_size_t size, int mode)
|
|
{
|
|
vm_offset_t base, offset, tmpva;
|
|
pd_entry_t *pde;
|
|
pt_entry_t *pte;
|
|
int cache_bits_pte, cache_bits_pde;
|
|
boolean_t changed;
|
|
|
|
base = trunc_page(va);
|
|
offset = va & PAGE_MASK;
|
|
size = round_page(offset + size);
|
|
|
|
/*
|
|
* Only supported on kernel virtual addresses above the recursive map.
|
|
*/
|
|
if (base < VM_MIN_KERNEL_ADDRESS)
|
|
return (EINVAL);
|
|
|
|
cache_bits_pde = pmap_cache_bits(kernel_pmap, mode, 1);
|
|
cache_bits_pte = pmap_cache_bits(kernel_pmap, mode, 0);
|
|
changed = FALSE;
|
|
|
|
/*
|
|
* Pages that aren't mapped aren't supported. Also break down
|
|
* 2/4MB pages into 4KB pages if required.
|
|
*/
|
|
PMAP_LOCK(kernel_pmap);
|
|
for (tmpva = base; tmpva < base + size; ) {
|
|
pde = pmap_pde(kernel_pmap, tmpva);
|
|
if (*pde == 0) {
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
return (EINVAL);
|
|
}
|
|
if (*pde & PG_PS) {
|
|
/*
|
|
* If the current 2/4MB page already has
|
|
* the required memory type, then we need not
|
|
* demote this page. Just increment tmpva to
|
|
* the next 2/4MB page frame.
|
|
*/
|
|
if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
|
|
tmpva = trunc_4mpage(tmpva) + NBPDR;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the current offset aligns with a 2/4MB
|
|
* page frame and there is at least 2/4MB left
|
|
* within the range, then we need not break
|
|
* down this page into 4KB pages.
|
|
*/
|
|
if ((tmpva & PDRMASK) == 0 &&
|
|
tmpva + PDRMASK < base + size) {
|
|
tmpva += NBPDR;
|
|
continue;
|
|
}
|
|
if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
return (ENOMEM);
|
|
}
|
|
}
|
|
pte = vtopte(tmpva);
|
|
if (*pte == 0) {
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
return (EINVAL);
|
|
}
|
|
tmpva += PAGE_SIZE;
|
|
}
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
|
|
/*
|
|
* Ok, all the pages exist, so run through them updating their
|
|
* cache mode if required.
|
|
*/
|
|
for (tmpva = base; tmpva < base + size; ) {
|
|
pde = pmap_pde(kernel_pmap, tmpva);
|
|
if (*pde & PG_PS) {
|
|
if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
|
|
pmap_pde_attr(pde, cache_bits_pde);
|
|
changed = TRUE;
|
|
}
|
|
tmpva = trunc_4mpage(tmpva) + NBPDR;
|
|
} else {
|
|
pte = vtopte(tmpva);
|
|
if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
|
|
pmap_pte_attr(pte, cache_bits_pte);
|
|
changed = TRUE;
|
|
}
|
|
tmpva += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Flush CPU caches to make sure any data isn't cached that
|
|
* shouldn't be, etc.
|
|
*/
|
|
if (changed) {
|
|
pmap_invalidate_range_int(kernel_pmap, base, tmpva);
|
|
pmap_invalidate_cache_range(base, tmpva);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Perform the pmap work for mincore(2). If the page is not both referenced and
|
|
* modified by this pmap, returns its physical address so that the caller can
|
|
* find other mappings.
|
|
*/
|
|
static int
|
|
__CONCAT(PMTYPE, mincore)(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
|
|
{
|
|
pd_entry_t pde;
|
|
pt_entry_t pte;
|
|
vm_paddr_t pa;
|
|
int val;
|
|
|
|
PMAP_LOCK(pmap);
|
|
pde = *pmap_pde(pmap, addr);
|
|
if (pde != 0) {
|
|
if ((pde & PG_PS) != 0) {
|
|
pte = pde;
|
|
/* Compute the physical address of the 4KB page. */
|
|
pa = ((pde & PG_PS_FRAME) | (addr & PDRMASK)) &
|
|
PG_FRAME;
|
|
val = MINCORE_PSIND(1);
|
|
} else {
|
|
pte = pmap_pte_ufast(pmap, addr, pde);
|
|
pa = pte & PG_FRAME;
|
|
val = 0;
|
|
}
|
|
} else {
|
|
pte = 0;
|
|
pa = 0;
|
|
val = 0;
|
|
}
|
|
if ((pte & PG_V) != 0) {
|
|
val |= MINCORE_INCORE;
|
|
if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
|
|
val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
|
|
if ((pte & PG_A) != 0)
|
|
val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
|
|
}
|
|
if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
|
|
(MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
|
|
(pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
|
|
*pap = pa;
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
return (val);
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, activate)(struct thread *td)
|
|
{
|
|
pmap_t pmap, oldpmap;
|
|
u_int cpuid;
|
|
u_int32_t cr3;
|
|
|
|
critical_enter();
|
|
pmap = vmspace_pmap(td->td_proc->p_vmspace);
|
|
oldpmap = PCPU_GET(curpmap);
|
|
cpuid = PCPU_GET(cpuid);
|
|
#if defined(SMP)
|
|
CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
|
|
CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
|
|
#else
|
|
CPU_CLR(cpuid, &oldpmap->pm_active);
|
|
CPU_SET(cpuid, &pmap->pm_active);
|
|
#endif
|
|
#ifdef PMAP_PAE_COMP
|
|
cr3 = vtophys(pmap->pm_pdpt);
|
|
#else
|
|
cr3 = vtophys(pmap->pm_pdir);
|
|
#endif
|
|
/*
|
|
* pmap_activate is for the current thread on the current cpu
|
|
*/
|
|
td->td_pcb->pcb_cr3 = cr3;
|
|
PCPU_SET(curpmap, pmap);
|
|
critical_exit();
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, activate_boot)(pmap_t pmap)
|
|
{
|
|
u_int cpuid;
|
|
|
|
cpuid = PCPU_GET(cpuid);
|
|
#if defined(SMP)
|
|
CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
|
|
#else
|
|
CPU_SET(cpuid, &pmap->pm_active);
|
|
#endif
|
|
PCPU_SET(curpmap, pmap);
|
|
}
|
|
|
|
/*
|
|
* Increase the starting virtual address of the given mapping if a
|
|
* different alignment might result in more superpage mappings.
|
|
*/
|
|
static void
|
|
__CONCAT(PMTYPE, align_superpage)(vm_object_t object, vm_ooffset_t offset,
|
|
vm_offset_t *addr, vm_size_t size)
|
|
{
|
|
vm_offset_t superpage_offset;
|
|
|
|
if (size < NBPDR)
|
|
return;
|
|
if (object != NULL && (object->flags & OBJ_COLORED) != 0)
|
|
offset += ptoa(object->pg_color);
|
|
superpage_offset = offset & PDRMASK;
|
|
if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
|
|
(*addr & PDRMASK) == superpage_offset)
|
|
return;
|
|
if ((*addr & PDRMASK) < superpage_offset)
|
|
*addr = (*addr & ~PDRMASK) + superpage_offset;
|
|
else
|
|
*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
|
|
}
|
|
|
|
static vm_offset_t
|
|
__CONCAT(PMTYPE, quick_enter_page)(vm_page_t m)
|
|
{
|
|
vm_offset_t qaddr;
|
|
pt_entry_t *pte;
|
|
|
|
critical_enter();
|
|
qaddr = PCPU_GET(qmap_addr);
|
|
pte = vtopte(qaddr);
|
|
|
|
KASSERT(*pte == 0,
|
|
("pmap_quick_enter_page: PTE busy %#jx", (uintmax_t)*pte));
|
|
*pte = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
|
|
pmap_cache_bits(kernel_pmap, pmap_page_get_memattr(m), 0);
|
|
invlpg(qaddr);
|
|
|
|
return (qaddr);
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, quick_remove_page)(vm_offset_t addr)
|
|
{
|
|
vm_offset_t qaddr;
|
|
pt_entry_t *pte;
|
|
|
|
qaddr = PCPU_GET(qmap_addr);
|
|
pte = vtopte(qaddr);
|
|
|
|
KASSERT(*pte != 0, ("pmap_quick_remove_page: PTE not in use"));
|
|
KASSERT(addr == qaddr, ("pmap_quick_remove_page: invalid address"));
|
|
|
|
*pte = 0;
|
|
critical_exit();
|
|
}
|
|
|
|
static vmem_t *pmap_trm_arena;
|
|
static vmem_addr_t pmap_trm_arena_last = PMAP_TRM_MIN_ADDRESS;
|
|
static int trm_guard = PAGE_SIZE;
|
|
|
|
static int
|
|
pmap_trm_import(void *unused __unused, vmem_size_t size, int flags,
|
|
vmem_addr_t *addrp)
|
|
{
|
|
vm_page_t m;
|
|
vmem_addr_t af, addr, prev_addr;
|
|
pt_entry_t *trm_pte;
|
|
|
|
prev_addr = atomic_load_long(&pmap_trm_arena_last);
|
|
size = round_page(size) + trm_guard;
|
|
for (;;) {
|
|
if (prev_addr + size < prev_addr || prev_addr + size < size ||
|
|
prev_addr + size > PMAP_TRM_MAX_ADDRESS)
|
|
return (ENOMEM);
|
|
addr = prev_addr + size;
|
|
if (atomic_fcmpset_int(&pmap_trm_arena_last, &prev_addr, addr))
|
|
break;
|
|
}
|
|
prev_addr += trm_guard;
|
|
trm_pte = PTmap + atop(prev_addr);
|
|
for (af = prev_addr; af < addr; af += PAGE_SIZE) {
|
|
m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_NOBUSY |
|
|
VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
|
|
pte_store(&trm_pte[atop(af - prev_addr)], VM_PAGE_TO_PHYS(m) |
|
|
PG_M | PG_A | PG_RW | PG_V | pgeflag |
|
|
pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE));
|
|
}
|
|
*addrp = prev_addr;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
pmap_init_trm(void)
|
|
{
|
|
vm_page_t pd_m;
|
|
|
|
TUNABLE_INT_FETCH("machdep.trm_guard", &trm_guard);
|
|
if ((trm_guard & PAGE_MASK) != 0)
|
|
trm_guard = 0;
|
|
pmap_trm_arena = vmem_create("i386trampoline", 0, 0, 1, 0, M_WAITOK);
|
|
vmem_set_import(pmap_trm_arena, pmap_trm_import, NULL, NULL, PAGE_SIZE);
|
|
pd_m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_NOBUSY |
|
|
VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_WAITOK | VM_ALLOC_ZERO);
|
|
if ((pd_m->flags & PG_ZERO) == 0)
|
|
pmap_zero_page(pd_m);
|
|
PTD[TRPTDI] = VM_PAGE_TO_PHYS(pd_m) | PG_M | PG_A | PG_RW | PG_V |
|
|
pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, TRUE);
|
|
}
|
|
|
|
static void *
|
|
__CONCAT(PMTYPE, trm_alloc)(size_t size, int flags)
|
|
{
|
|
vmem_addr_t res;
|
|
int error;
|
|
|
|
MPASS((flags & ~(M_WAITOK | M_NOWAIT | M_ZERO)) == 0);
|
|
error = vmem_xalloc(pmap_trm_arena, roundup2(size, 4), sizeof(int),
|
|
0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags | M_FIRSTFIT, &res);
|
|
if (error != 0)
|
|
return (NULL);
|
|
if ((flags & M_ZERO) != 0)
|
|
bzero((void *)res, size);
|
|
return ((void *)res);
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, trm_free)(void *addr, size_t size)
|
|
{
|
|
|
|
vmem_free(pmap_trm_arena, (uintptr_t)addr, roundup2(size, 4));
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, ksetrw)(vm_offset_t va)
|
|
{
|
|
|
|
*vtopte(va) |= PG_RW;
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, remap_lowptdi)(bool enable)
|
|
{
|
|
|
|
PTD[KPTDI] = enable ? PTD[LOWPTDI] : 0;
|
|
invltlb_glob();
|
|
}
|
|
|
|
static vm_offset_t
|
|
__CONCAT(PMTYPE, get_map_low)(void)
|
|
{
|
|
|
|
return (PMAP_MAP_LOW);
|
|
}
|
|
|
|
static vm_offset_t
|
|
__CONCAT(PMTYPE, get_vm_maxuser_address)(void)
|
|
{
|
|
|
|
return (VM_MAXUSER_ADDRESS);
|
|
}
|
|
|
|
static vm_paddr_t
|
|
__CONCAT(PMTYPE, pg_frame)(vm_paddr_t pa)
|
|
{
|
|
|
|
return (pa & PG_FRAME);
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, sf_buf_map)(struct sf_buf *sf)
|
|
{
|
|
pt_entry_t opte, *ptep;
|
|
|
|
/*
|
|
* Update the sf_buf's virtual-to-physical mapping, flushing the
|
|
* virtual address from the TLB. Since the reference count for
|
|
* the sf_buf's old mapping was zero, that mapping is not
|
|
* currently in use. Consequently, there is no need to exchange
|
|
* the old and new PTEs atomically, even under PAE.
|
|
*/
|
|
ptep = vtopte(sf->kva);
|
|
opte = *ptep;
|
|
*ptep = VM_PAGE_TO_PHYS(sf->m) | PG_RW | PG_V |
|
|
pmap_cache_bits(kernel_pmap, sf->m->md.pat_mode, 0);
|
|
|
|
/*
|
|
* Avoid unnecessary TLB invalidations: If the sf_buf's old
|
|
* virtual-to-physical mapping was not used, then any processor
|
|
* that has invalidated the sf_buf's virtual address from its TLB
|
|
* since the last used mapping need not invalidate again.
|
|
*/
|
|
#ifdef SMP
|
|
if ((opte & (PG_V | PG_A)) == (PG_V | PG_A))
|
|
CPU_ZERO(&sf->cpumask);
|
|
#else
|
|
if ((opte & (PG_V | PG_A)) == (PG_V | PG_A))
|
|
pmap_invalidate_page_int(kernel_pmap, sf->kva);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, cp_slow0_map)(vm_offset_t kaddr, int plen, vm_page_t *ma)
|
|
{
|
|
pt_entry_t *pte;
|
|
int i;
|
|
|
|
for (i = 0, pte = vtopte(kaddr); i < plen; i++, pte++) {
|
|
*pte = PG_V | PG_RW | PG_A | PG_M | VM_PAGE_TO_PHYS(ma[i]) |
|
|
pmap_cache_bits(kernel_pmap, pmap_page_get_memattr(ma[i]),
|
|
FALSE);
|
|
invlpg(kaddr + ptoa(i));
|
|
}
|
|
}
|
|
|
|
static u_int
|
|
__CONCAT(PMTYPE, get_kcr3)(void)
|
|
{
|
|
|
|
#ifdef PMAP_PAE_COMP
|
|
return ((u_int)IdlePDPT);
|
|
#else
|
|
return ((u_int)IdlePTD);
|
|
#endif
|
|
}
|
|
|
|
static u_int
|
|
__CONCAT(PMTYPE, get_cr3)(pmap_t pmap)
|
|
{
|
|
|
|
#ifdef PMAP_PAE_COMP
|
|
return ((u_int)vtophys(pmap->pm_pdpt));
|
|
#else
|
|
return ((u_int)vtophys(pmap->pm_pdir));
|
|
#endif
|
|
}
|
|
|
|
static caddr_t
|
|
__CONCAT(PMTYPE, cmap3)(vm_paddr_t pa, u_int pte_bits)
|
|
{
|
|
pt_entry_t *pte;
|
|
|
|
pte = CMAP3;
|
|
*pte = pa | pte_bits;
|
|
invltlb();
|
|
return (CADDR3);
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, basemem_setup)(u_int basemem)
|
|
{
|
|
pt_entry_t *pte;
|
|
int i;
|
|
|
|
/*
|
|
* Map pages between basemem and ISA_HOLE_START, if any, r/w into
|
|
* the vm86 page table so that vm86 can scribble on them using
|
|
* the vm86 map too. XXX: why 2 ways for this and only 1 way for
|
|
* page 0, at least as initialized here?
|
|
*/
|
|
pte = (pt_entry_t *)vm86paddr;
|
|
for (i = basemem / 4; i < 160; i++)
|
|
pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
|
|
}
|
|
|
|
struct bios16_pmap_handle {
|
|
pt_entry_t *pte;
|
|
pd_entry_t *ptd;
|
|
pt_entry_t orig_ptd;
|
|
};
|
|
|
|
static void *
|
|
__CONCAT(PMTYPE, bios16_enter)(void)
|
|
{
|
|
struct bios16_pmap_handle *h;
|
|
|
|
/*
|
|
* no page table, so create one and install it.
|
|
*/
|
|
h = malloc(sizeof(struct bios16_pmap_handle), M_TEMP, M_WAITOK);
|
|
h->pte = (pt_entry_t *)malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
|
|
h->ptd = IdlePTD;
|
|
*h->pte = vm86phystk | PG_RW | PG_V;
|
|
h->orig_ptd = *h->ptd;
|
|
*h->ptd = vtophys(h->pte) | PG_RW | PG_V;
|
|
pmap_invalidate_all_int(kernel_pmap); /* XXX insurance for now */
|
|
return (h);
|
|
}
|
|
|
|
static void
|
|
__CONCAT(PMTYPE, bios16_leave)(void *arg)
|
|
{
|
|
struct bios16_pmap_handle *h;
|
|
|
|
h = arg;
|
|
*h->ptd = h->orig_ptd; /* remove page table */
|
|
/*
|
|
* XXX only needs to be invlpg(0) but that doesn't work on the 386
|
|
*/
|
|
pmap_invalidate_all_int(kernel_pmap);
|
|
free(h->pte, M_TEMP); /* ... and free it */
|
|
}
|
|
|
|
struct pmap_kernel_map_range {
|
|
vm_offset_t sva;
|
|
pt_entry_t attrs;
|
|
int ptes;
|
|
int pdes;
|
|
int pdpes;
|
|
};
|
|
|
|
static void
|
|
sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
|
|
vm_offset_t eva)
|
|
{
|
|
const char *mode;
|
|
int i, pat_idx;
|
|
|
|
if (eva <= range->sva)
|
|
return;
|
|
|
|
pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
|
|
for (i = 0; i < PAT_INDEX_SIZE; i++)
|
|
if (pat_index[i] == pat_idx)
|
|
break;
|
|
|
|
switch (i) {
|
|
case PAT_WRITE_BACK:
|
|
mode = "WB";
|
|
break;
|
|
case PAT_WRITE_THROUGH:
|
|
mode = "WT";
|
|
break;
|
|
case PAT_UNCACHEABLE:
|
|
mode = "UC";
|
|
break;
|
|
case PAT_UNCACHED:
|
|
mode = "U-";
|
|
break;
|
|
case PAT_WRITE_PROTECTED:
|
|
mode = "WP";
|
|
break;
|
|
case PAT_WRITE_COMBINING:
|
|
mode = "WC";
|
|
break;
|
|
default:
|
|
printf("%s: unknown PAT mode %#x for range 0x%08x-0x%08x\n",
|
|
__func__, pat_idx, range->sva, eva);
|
|
mode = "??";
|
|
break;
|
|
}
|
|
|
|
sbuf_printf(sb, "0x%08x-0x%08x r%c%c%c%c %s %d %d %d\n",
|
|
range->sva, eva,
|
|
(range->attrs & PG_RW) != 0 ? 'w' : '-',
|
|
(range->attrs & pg_nx) != 0 ? '-' : 'x',
|
|
(range->attrs & PG_U) != 0 ? 'u' : 's',
|
|
(range->attrs & PG_G) != 0 ? 'g' : '-',
|
|
mode, range->pdpes, range->pdes, range->ptes);
|
|
|
|
/* Reset to sentinel value. */
|
|
range->sva = 0xffffffff;
|
|
}
|
|
|
|
/*
|
|
* Determine whether the attributes specified by a page table entry match those
|
|
* being tracked by the current range. This is not quite as simple as a direct
|
|
* flag comparison since some PAT modes have multiple representations.
|
|
*/
|
|
static bool
|
|
sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
|
|
{
|
|
pt_entry_t diff, mask;
|
|
|
|
mask = pg_nx | PG_G | PG_RW | PG_U | PG_PDE_CACHE;
|
|
diff = (range->attrs ^ attrs) & mask;
|
|
if (diff == 0)
|
|
return (true);
|
|
if ((diff & ~PG_PDE_PAT) == 0 &&
|
|
pmap_pat_index(kernel_pmap, range->attrs, true) ==
|
|
pmap_pat_index(kernel_pmap, attrs, true))
|
|
return (true);
|
|
return (false);
|
|
}
|
|
|
|
static void
|
|
sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
|
|
pt_entry_t attrs)
|
|
{
|
|
|
|
memset(range, 0, sizeof(*range));
|
|
range->sva = va;
|
|
range->attrs = attrs;
|
|
}
|
|
|
|
/*
|
|
* Given a leaf PTE, derive the mapping's attributes. If they do not match
|
|
* those of the current run, dump the address range and its attributes, and
|
|
* begin a new run.
|
|
*/
|
|
static void
|
|
sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
|
|
vm_offset_t va, pd_entry_t pde, pt_entry_t pte)
|
|
{
|
|
pt_entry_t attrs;
|
|
|
|
attrs = pde & (PG_RW | PG_U | pg_nx);
|
|
|
|
if ((pde & PG_PS) != 0) {
|
|
attrs |= pde & (PG_G | PG_PDE_CACHE);
|
|
} else if (pte != 0) {
|
|
attrs |= pte & pg_nx;
|
|
attrs &= pg_nx | (pte & (PG_RW | PG_U));
|
|
attrs |= pte & (PG_G | PG_PTE_CACHE);
|
|
|
|
/* Canonicalize by always using the PDE PAT bit. */
|
|
if ((attrs & PG_PTE_PAT) != 0)
|
|
attrs ^= PG_PDE_PAT | PG_PTE_PAT;
|
|
}
|
|
|
|
if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
|
|
sysctl_kmaps_dump(sb, range, va);
|
|
sysctl_kmaps_reinit(range, va, attrs);
|
|
}
|
|
}
|
|
|
|
static int
|
|
__CONCAT(PMTYPE, sysctl_kmaps)(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct pmap_kernel_map_range range;
|
|
struct sbuf sbuf, *sb;
|
|
pd_entry_t pde;
|
|
pt_entry_t *pt, pte;
|
|
vm_offset_t sva;
|
|
vm_paddr_t pa;
|
|
int error;
|
|
u_int i, k;
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
sb = &sbuf;
|
|
sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
|
|
|
|
/* Sentinel value. */
|
|
range.sva = 0xffffffff;
|
|
|
|
/*
|
|
* Iterate over the kernel page tables without holding the
|
|
* kernel pmap lock. Kernel page table pages are never freed,
|
|
* so at worst we will observe inconsistencies in the output.
|
|
*/
|
|
for (sva = 0, i = 0; i < NPTEPG * NPGPTD * NPDEPG ;) {
|
|
if (i == 0)
|
|
sbuf_printf(sb, "\nLow PDE:\n");
|
|
else if (i == LOWPTDI * NPTEPG)
|
|
sbuf_printf(sb, "Low PDE dup:\n");
|
|
else if (i == PTDPTDI * NPTEPG)
|
|
sbuf_printf(sb, "Recursive map:\n");
|
|
else if (i == KERNPTDI * NPTEPG)
|
|
sbuf_printf(sb, "Kernel base:\n");
|
|
else if (i == TRPTDI * NPTEPG)
|
|
sbuf_printf(sb, "Trampoline:\n");
|
|
pde = IdlePTD[sva >> PDRSHIFT];
|
|
if ((pde & PG_V) == 0) {
|
|
sva = rounddown2(sva, NBPDR);
|
|
sysctl_kmaps_dump(sb, &range, sva);
|
|
sva += NBPDR;
|
|
i += NPTEPG;
|
|
continue;
|
|
}
|
|
pa = pde & PG_FRAME;
|
|
if ((pde & PG_PS) != 0) {
|
|
sysctl_kmaps_check(sb, &range, sva, pde, 0);
|
|
range.pdes++;
|
|
sva += NBPDR;
|
|
i += NPTEPG;
|
|
continue;
|
|
}
|
|
for (pt = vtopte(sva), k = 0; k < NPTEPG; i++, k++, pt++,
|
|
sva += PAGE_SIZE) {
|
|
pte = *pt;
|
|
if ((pte & PG_V) == 0) {
|
|
sysctl_kmaps_dump(sb, &range, sva);
|
|
continue;
|
|
}
|
|
sysctl_kmaps_check(sb, &range, sva, pde, pte);
|
|
range.ptes++;
|
|
}
|
|
}
|
|
|
|
error = sbuf_finish(sb);
|
|
sbuf_delete(sb);
|
|
return (error);
|
|
}
|
|
|
|
#define PMM(a) \
|
|
.pm_##a = __CONCAT(PMTYPE, a),
|
|
|
|
struct pmap_methods __CONCAT(PMTYPE, methods) = {
|
|
PMM(ksetrw)
|
|
PMM(remap_lower)
|
|
PMM(remap_lowptdi)
|
|
PMM(align_superpage)
|
|
PMM(quick_enter_page)
|
|
PMM(quick_remove_page)
|
|
PMM(trm_alloc)
|
|
PMM(trm_free)
|
|
PMM(get_map_low)
|
|
PMM(get_vm_maxuser_address)
|
|
PMM(kextract)
|
|
PMM(pg_frame)
|
|
PMM(sf_buf_map)
|
|
PMM(cp_slow0_map)
|
|
PMM(get_kcr3)
|
|
PMM(get_cr3)
|
|
PMM(cmap3)
|
|
PMM(basemem_setup)
|
|
PMM(set_nx)
|
|
PMM(bios16_enter)
|
|
PMM(bios16_leave)
|
|
PMM(bootstrap)
|
|
PMM(is_valid_memattr)
|
|
PMM(cache_bits)
|
|
PMM(ps_enabled)
|
|
PMM(pinit0)
|
|
PMM(pinit)
|
|
PMM(activate)
|
|
PMM(activate_boot)
|
|
PMM(advise)
|
|
PMM(clear_modify)
|
|
PMM(change_attr)
|
|
PMM(mincore)
|
|
PMM(copy)
|
|
PMM(copy_page)
|
|
PMM(copy_pages)
|
|
PMM(zero_page)
|
|
PMM(zero_page_area)
|
|
PMM(enter)
|
|
PMM(enter_object)
|
|
PMM(enter_quick)
|
|
PMM(kenter_temporary)
|
|
PMM(object_init_pt)
|
|
PMM(unwire)
|
|
PMM(page_exists_quick)
|
|
PMM(page_wired_mappings)
|
|
PMM(page_is_mapped)
|
|
PMM(remove_pages)
|
|
PMM(is_modified)
|
|
PMM(is_prefaultable)
|
|
PMM(is_referenced)
|
|
PMM(remove_write)
|
|
PMM(ts_referenced)
|
|
PMM(mapdev_attr)
|
|
PMM(unmapdev)
|
|
PMM(page_set_memattr)
|
|
PMM(extract)
|
|
PMM(extract_and_hold)
|
|
PMM(map)
|
|
PMM(qenter)
|
|
PMM(qremove)
|
|
PMM(release)
|
|
PMM(remove)
|
|
PMM(protect)
|
|
PMM(remove_all)
|
|
PMM(init)
|
|
PMM(init_pat)
|
|
PMM(growkernel)
|
|
PMM(invalidate_page)
|
|
PMM(invalidate_range)
|
|
PMM(invalidate_all)
|
|
PMM(invalidate_cache)
|
|
PMM(flush_page)
|
|
PMM(kenter)
|
|
PMM(kremove)
|
|
PMM(sysctl_kmaps)
|
|
};
|