mirror of https://github.com/F-Stack/f-stack.git
773 lines
18 KiB
C
773 lines
18 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 2012-2018 Solarflare Communications Inc.
|
|
* All rights reserved.
|
|
*/
|
|
|
|
#include "efx.h"
|
|
#include "efx_impl.h"
|
|
|
|
|
|
#if EFX_OPTS_EF10()
|
|
|
|
#if EFSYS_OPT_QSTATS
|
|
#define EFX_TX_QSTAT_INCR(_etp, _stat) \
|
|
do { \
|
|
(_etp)->et_stat[_stat]++; \
|
|
_NOTE(CONSTANTCONDITION) \
|
|
} while (B_FALSE)
|
|
#else
|
|
#define EFX_TX_QSTAT_INCR(_etp, _stat)
|
|
#endif
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_init_txq(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t ndescs,
|
|
__in uint32_t target_evq,
|
|
__in uint32_t label,
|
|
__in uint32_t instance,
|
|
__in uint16_t flags,
|
|
__in efsys_mem_t *esmp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload,
|
|
MC_CMD_INIT_TXQ_IN_LEN(EF10_TXQ_MAXNBUFS),
|
|
MC_CMD_INIT_TXQ_OUT_LEN);
|
|
efx_qword_t *dma_addr;
|
|
uint64_t addr;
|
|
int npages;
|
|
int i;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(EF10_TXQ_MAXNBUFS >=
|
|
efx_txq_nbufs(enp, enp->en_nic_cfg.enc_txq_max_ndescs));
|
|
|
|
if ((esmp == NULL) ||
|
|
(EFSYS_MEM_SIZE(esmp) < efx_txq_size(enp, ndescs))) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
npages = efx_txq_nbufs(enp, ndescs);
|
|
if (MC_CMD_INIT_TXQ_IN_LEN(npages) > sizeof (payload)) {
|
|
rc = EINVAL;
|
|
goto fail2;
|
|
}
|
|
|
|
req.emr_cmd = MC_CMD_INIT_TXQ;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_INIT_TXQ_IN_LEN(npages);
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_INIT_TXQ_OUT_LEN;
|
|
|
|
MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_SIZE, ndescs);
|
|
MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_TARGET_EVQ, target_evq);
|
|
MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_LABEL, label);
|
|
MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_INSTANCE, instance);
|
|
|
|
MCDI_IN_POPULATE_DWORD_9(req, INIT_TXQ_IN_FLAGS,
|
|
INIT_TXQ_IN_FLAG_BUFF_MODE, 0,
|
|
INIT_TXQ_IN_FLAG_IP_CSUM_DIS,
|
|
(flags & EFX_TXQ_CKSUM_IPV4) ? 0 : 1,
|
|
INIT_TXQ_IN_FLAG_TCP_CSUM_DIS,
|
|
(flags & EFX_TXQ_CKSUM_TCPUDP) ? 0 : 1,
|
|
INIT_TXQ_EXT_IN_FLAG_INNER_IP_CSUM_EN,
|
|
(flags & EFX_TXQ_CKSUM_INNER_IPV4) ? 1 : 0,
|
|
INIT_TXQ_EXT_IN_FLAG_INNER_TCP_CSUM_EN,
|
|
(flags & EFX_TXQ_CKSUM_INNER_TCPUDP) ? 1 : 0,
|
|
INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, (flags & EFX_TXQ_FATSOV2) ? 1 : 0,
|
|
INIT_TXQ_IN_FLAG_TCP_UDP_ONLY, 0,
|
|
INIT_TXQ_IN_CRC_MODE, 0,
|
|
INIT_TXQ_IN_FLAG_TIMESTAMP, 0);
|
|
|
|
MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_OWNER_ID, 0);
|
|
MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_PORT_ID, enp->en_vport_id);
|
|
|
|
dma_addr = MCDI_IN2(req, efx_qword_t, INIT_TXQ_IN_DMA_ADDR);
|
|
addr = EFSYS_MEM_ADDR(esmp);
|
|
|
|
for (i = 0; i < npages; i++) {
|
|
EFX_POPULATE_QWORD_2(*dma_addr,
|
|
EFX_DWORD_1, (uint32_t)(addr >> 32),
|
|
EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
|
|
|
|
dma_addr++;
|
|
addr += EFX_BUF_SIZE;
|
|
}
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail3;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_fini_txq(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t instance)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_TXQ_IN_LEN,
|
|
MC_CMD_FINI_TXQ_OUT_LEN);
|
|
efx_rc_t rc;
|
|
|
|
req.emr_cmd = MC_CMD_FINI_TXQ;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_FINI_TXQ_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_FINI_TXQ_OUT_LEN;
|
|
|
|
MCDI_IN_SET_DWORD(req, FINI_TXQ_IN_INSTANCE, instance);
|
|
|
|
efx_mcdi_execute_quiet(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
/*
|
|
* EALREADY is not an error, but indicates that the MC has rebooted and
|
|
* that the TXQ has already been destroyed.
|
|
*/
|
|
if (rc != EALREADY)
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_tx_init(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
_NOTE(ARGUNUSED(enp))
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ef10_tx_fini(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
_NOTE(ARGUNUSED(enp))
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_tx_qcreate(
|
|
__in efx_nic_t *enp,
|
|
__in unsigned int index,
|
|
__in unsigned int label,
|
|
__in efsys_mem_t *esmp,
|
|
__in size_t ndescs,
|
|
__in uint32_t id,
|
|
__in uint16_t flags,
|
|
__in efx_evq_t *eep,
|
|
__in efx_txq_t *etp,
|
|
__out unsigned int *addedp)
|
|
{
|
|
efx_nic_cfg_t *encp = &enp->en_nic_cfg;
|
|
uint16_t inner_csum;
|
|
efx_desc_t desc;
|
|
efx_rc_t rc;
|
|
|
|
_NOTE(ARGUNUSED(id))
|
|
|
|
inner_csum = EFX_TXQ_CKSUM_INNER_IPV4 | EFX_TXQ_CKSUM_INNER_TCPUDP;
|
|
if (((flags & inner_csum) != 0) &&
|
|
(encp->enc_tunnel_encapsulations_supported == 0)) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
if ((rc = efx_mcdi_init_txq(enp, ndescs, eep->ee_index, label, index,
|
|
flags, esmp)) != 0)
|
|
goto fail2;
|
|
|
|
/*
|
|
* A previous user of this TX queue may have written a descriptor to the
|
|
* TX push collector, but not pushed the doorbell (e.g. after a crash).
|
|
* The next doorbell write would then push the stale descriptor.
|
|
*
|
|
* Ensure the (per network port) TX push collector is cleared by writing
|
|
* a no-op TX option descriptor. See bug29981 for details.
|
|
*/
|
|
*addedp = 1;
|
|
ef10_tx_qdesc_checksum_create(etp, flags, &desc);
|
|
|
|
EFSYS_MEM_WRITEQ(etp->et_esmp, 0, &desc.ed_eq);
|
|
ef10_tx_qpush(etp, *addedp, 0);
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
void
|
|
ef10_tx_qdestroy(
|
|
__in efx_txq_t *etp)
|
|
{
|
|
/* FIXME */
|
|
_NOTE(ARGUNUSED(etp))
|
|
/* FIXME */
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_tx_qpio_enable(
|
|
__in efx_txq_t *etp)
|
|
{
|
|
efx_nic_t *enp = etp->et_enp;
|
|
efx_piobuf_handle_t handle;
|
|
efx_rc_t rc;
|
|
|
|
if (etp->et_pio_size != 0) {
|
|
rc = EALREADY;
|
|
goto fail1;
|
|
}
|
|
|
|
/* Sub-allocate a PIO block from a piobuf */
|
|
if ((rc = ef10_nic_pio_alloc(enp,
|
|
&etp->et_pio_bufnum,
|
|
&handle,
|
|
&etp->et_pio_blknum,
|
|
&etp->et_pio_offset,
|
|
&etp->et_pio_size)) != 0) {
|
|
goto fail2;
|
|
}
|
|
EFSYS_ASSERT3U(etp->et_pio_size, !=, 0);
|
|
|
|
/* Link the piobuf to this TXQ */
|
|
if ((rc = ef10_nic_pio_link(enp, etp->et_index, handle)) != 0) {
|
|
goto fail3;
|
|
}
|
|
|
|
/*
|
|
* et_pio_offset is the offset of the sub-allocated block within the
|
|
* hardware PIO buffer. It is used as the buffer address in the PIO
|
|
* option descriptor.
|
|
*
|
|
* et_pio_write_offset is the offset of the sub-allocated block from the
|
|
* start of the write-combined memory mapping, and is used for writing
|
|
* data into the PIO buffer.
|
|
*/
|
|
etp->et_pio_write_offset =
|
|
(etp->et_pio_bufnum * ER_DZ_TX_PIOBUF_STEP) +
|
|
ER_DZ_TX_PIOBUF_OFST + etp->et_pio_offset;
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
(void) ef10_nic_pio_free(enp, etp->et_pio_bufnum, etp->et_pio_blknum);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
etp->et_pio_size = 0;
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
void
|
|
ef10_tx_qpio_disable(
|
|
__in efx_txq_t *etp)
|
|
{
|
|
efx_nic_t *enp = etp->et_enp;
|
|
|
|
if (etp->et_pio_size != 0) {
|
|
/* Unlink the piobuf from this TXQ */
|
|
if (ef10_nic_pio_unlink(enp, etp->et_index) != 0)
|
|
return;
|
|
|
|
/* Free the sub-allocated PIO block */
|
|
(void) ef10_nic_pio_free(enp, etp->et_pio_bufnum,
|
|
etp->et_pio_blknum);
|
|
etp->et_pio_size = 0;
|
|
etp->et_pio_write_offset = 0;
|
|
}
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_tx_qpio_write(
|
|
__in efx_txq_t *etp,
|
|
__in_ecount(length) uint8_t *buffer,
|
|
__in size_t length,
|
|
__in size_t offset)
|
|
{
|
|
efx_nic_t *enp = etp->et_enp;
|
|
efsys_bar_t *esbp = enp->en_esbp;
|
|
uint32_t write_offset;
|
|
uint32_t write_offset_limit;
|
|
efx_qword_t *eqp;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(length % sizeof (efx_qword_t) == 0);
|
|
|
|
if (etp->et_pio_size == 0) {
|
|
rc = ENOENT;
|
|
goto fail1;
|
|
}
|
|
if (offset + length > etp->et_pio_size) {
|
|
rc = ENOSPC;
|
|
goto fail2;
|
|
}
|
|
|
|
/*
|
|
* Writes to PIO buffers must be 64 bit aligned, and multiples of
|
|
* 64 bits.
|
|
*/
|
|
write_offset = etp->et_pio_write_offset + offset;
|
|
write_offset_limit = write_offset + length;
|
|
eqp = (efx_qword_t *)buffer;
|
|
while (write_offset < write_offset_limit) {
|
|
EFSYS_BAR_WC_WRITEQ(esbp, write_offset, eqp);
|
|
eqp++;
|
|
write_offset += sizeof (efx_qword_t);
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_tx_qpio_post(
|
|
__in efx_txq_t *etp,
|
|
__in size_t pkt_length,
|
|
__in unsigned int completed,
|
|
__inout unsigned int *addedp)
|
|
{
|
|
efx_qword_t pio_desc;
|
|
unsigned int id;
|
|
size_t offset;
|
|
unsigned int added = *addedp;
|
|
efx_rc_t rc;
|
|
|
|
|
|
if (added - completed + 1 > EFX_TXQ_LIMIT(etp->et_mask + 1)) {
|
|
rc = ENOSPC;
|
|
goto fail1;
|
|
}
|
|
|
|
if (etp->et_pio_size == 0) {
|
|
rc = ENOENT;
|
|
goto fail2;
|
|
}
|
|
|
|
id = added++ & etp->et_mask;
|
|
offset = id * sizeof (efx_qword_t);
|
|
|
|
EFSYS_PROBE4(tx_pio_post, unsigned int, etp->et_index,
|
|
unsigned int, id, uint32_t, etp->et_pio_offset,
|
|
size_t, pkt_length);
|
|
|
|
EFX_POPULATE_QWORD_5(pio_desc,
|
|
ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
ESF_DZ_TX_OPTION_TYPE, 1,
|
|
ESF_DZ_TX_PIO_CONT, 0,
|
|
ESF_DZ_TX_PIO_BYTE_CNT, pkt_length,
|
|
ESF_DZ_TX_PIO_BUF_ADDR, etp->et_pio_offset);
|
|
|
|
EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &pio_desc);
|
|
|
|
EFX_TX_QSTAT_INCR(etp, TX_POST_PIO);
|
|
|
|
*addedp = added;
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_tx_qpost(
|
|
__in efx_txq_t *etp,
|
|
__in_ecount(ndescs) efx_buffer_t *eb,
|
|
__in unsigned int ndescs,
|
|
__in unsigned int completed,
|
|
__inout unsigned int *addedp)
|
|
{
|
|
unsigned int added = *addedp;
|
|
unsigned int i;
|
|
efx_rc_t rc;
|
|
|
|
if (added - completed + ndescs > EFX_TXQ_LIMIT(etp->et_mask + 1)) {
|
|
rc = ENOSPC;
|
|
goto fail1;
|
|
}
|
|
|
|
for (i = 0; i < ndescs; i++) {
|
|
efx_buffer_t *ebp = &eb[i];
|
|
efsys_dma_addr_t addr = ebp->eb_addr;
|
|
size_t size = ebp->eb_size;
|
|
boolean_t eop = ebp->eb_eop;
|
|
unsigned int id;
|
|
size_t offset;
|
|
efx_qword_t qword;
|
|
|
|
/* No limitations on boundary crossing */
|
|
EFSYS_ASSERT(size <=
|
|
etp->et_enp->en_nic_cfg.enc_tx_dma_desc_size_max);
|
|
|
|
id = added++ & etp->et_mask;
|
|
offset = id * sizeof (efx_qword_t);
|
|
|
|
EFSYS_PROBE5(tx_post, unsigned int, etp->et_index,
|
|
unsigned int, id, efsys_dma_addr_t, addr,
|
|
size_t, size, boolean_t, eop);
|
|
|
|
EFX_POPULATE_QWORD_5(qword,
|
|
ESF_DZ_TX_KER_TYPE, 0,
|
|
ESF_DZ_TX_KER_CONT, (eop) ? 0 : 1,
|
|
ESF_DZ_TX_KER_BYTE_CNT, (uint32_t)(size),
|
|
ESF_DZ_TX_KER_BUF_ADDR_DW0, (uint32_t)(addr & 0xffffffff),
|
|
ESF_DZ_TX_KER_BUF_ADDR_DW1, (uint32_t)(addr >> 32));
|
|
|
|
EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &qword);
|
|
}
|
|
|
|
EFX_TX_QSTAT_INCR(etp, TX_POST);
|
|
|
|
*addedp = added;
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* This improves performance by, when possible, pushing a TX descriptor at the
|
|
* same time as the doorbell. The descriptor must be added to the TXQ, so that
|
|
* can be used if the hardware decides not to use the pushed descriptor.
|
|
*/
|
|
void
|
|
ef10_tx_qpush(
|
|
__in efx_txq_t *etp,
|
|
__in unsigned int added,
|
|
__in unsigned int pushed)
|
|
{
|
|
efx_nic_t *enp = etp->et_enp;
|
|
unsigned int wptr;
|
|
unsigned int id;
|
|
size_t offset;
|
|
efx_qword_t desc;
|
|
efx_oword_t oword;
|
|
|
|
wptr = added & etp->et_mask;
|
|
id = pushed & etp->et_mask;
|
|
offset = id * sizeof (efx_qword_t);
|
|
|
|
EFSYS_MEM_READQ(etp->et_esmp, offset, &desc);
|
|
|
|
/*
|
|
* Bug 65776: TSO option descriptors cannot be pushed if pacer bypass is
|
|
* enabled on the event queue this transmit queue is attached to.
|
|
*
|
|
* To ensure the code is safe, it is easiest to simply test the type of
|
|
* the descriptor to push, and only push it is if it not a TSO option
|
|
* descriptor.
|
|
*/
|
|
if ((EFX_QWORD_FIELD(desc, ESF_DZ_TX_DESC_IS_OPT) != 1) ||
|
|
(EFX_QWORD_FIELD(desc, ESF_DZ_TX_OPTION_TYPE) !=
|
|
ESE_DZ_TX_OPTION_DESC_TSO)) {
|
|
/* Push the descriptor and update the wptr. */
|
|
EFX_POPULATE_OWORD_3(oword, ERF_DZ_TX_DESC_WPTR, wptr,
|
|
ERF_DZ_TX_DESC_HWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_1),
|
|
ERF_DZ_TX_DESC_LWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_0));
|
|
|
|
/* Ensure ordering of memory (descriptors) and PIO (doorbell) */
|
|
EFX_DMA_SYNC_QUEUE_FOR_DEVICE(etp->et_esmp, etp->et_mask + 1,
|
|
wptr, id);
|
|
EFSYS_PIO_WRITE_BARRIER();
|
|
EFX_BAR_VI_DOORBELL_WRITEO(enp, ER_DZ_TX_DESC_UPD_REG,
|
|
etp->et_index, &oword);
|
|
} else {
|
|
efx_dword_t dword;
|
|
|
|
/*
|
|
* Only update the wptr. This is signalled to the hardware by
|
|
* only writing one DWORD of the doorbell register.
|
|
*/
|
|
EFX_POPULATE_OWORD_1(oword, ERF_DZ_TX_DESC_WPTR, wptr);
|
|
dword = oword.eo_dword[2];
|
|
|
|
/* Ensure ordering of memory (descriptors) and PIO (doorbell) */
|
|
EFX_DMA_SYNC_QUEUE_FOR_DEVICE(etp->et_esmp, etp->et_mask + 1,
|
|
wptr, id);
|
|
EFSYS_PIO_WRITE_BARRIER();
|
|
EFX_BAR_VI_WRITED2(enp, ER_DZ_TX_DESC_UPD_REG,
|
|
etp->et_index, &dword, B_FALSE);
|
|
}
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_tx_qdesc_post(
|
|
__in efx_txq_t *etp,
|
|
__in_ecount(ndescs) efx_desc_t *ed,
|
|
__in unsigned int ndescs,
|
|
__in unsigned int completed,
|
|
__inout unsigned int *addedp)
|
|
{
|
|
unsigned int added = *addedp;
|
|
unsigned int i;
|
|
|
|
if (added - completed + ndescs > EFX_TXQ_LIMIT(etp->et_mask + 1))
|
|
return (ENOSPC);
|
|
|
|
for (i = 0; i < ndescs; i++) {
|
|
efx_desc_t *edp = &ed[i];
|
|
unsigned int id;
|
|
size_t offset;
|
|
|
|
id = added++ & etp->et_mask;
|
|
offset = id * sizeof (efx_desc_t);
|
|
|
|
EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &edp->ed_eq);
|
|
}
|
|
|
|
EFSYS_PROBE3(tx_desc_post, unsigned int, etp->et_index,
|
|
unsigned int, added, unsigned int, ndescs);
|
|
|
|
EFX_TX_QSTAT_INCR(etp, TX_POST);
|
|
|
|
*addedp = added;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ef10_tx_qdesc_dma_create(
|
|
__in efx_txq_t *etp,
|
|
__in efsys_dma_addr_t addr,
|
|
__in size_t size,
|
|
__in boolean_t eop,
|
|
__out efx_desc_t *edp)
|
|
{
|
|
_NOTE(ARGUNUSED(etp))
|
|
|
|
/* No limitations on boundary crossing */
|
|
EFSYS_ASSERT(size <= etp->et_enp->en_nic_cfg.enc_tx_dma_desc_size_max);
|
|
|
|
EFSYS_PROBE4(tx_desc_dma_create, unsigned int, etp->et_index,
|
|
efsys_dma_addr_t, addr,
|
|
size_t, size, boolean_t, eop);
|
|
|
|
EFX_POPULATE_QWORD_5(edp->ed_eq,
|
|
ESF_DZ_TX_KER_TYPE, 0,
|
|
ESF_DZ_TX_KER_CONT, (eop) ? 0 : 1,
|
|
ESF_DZ_TX_KER_BYTE_CNT, (uint32_t)(size),
|
|
ESF_DZ_TX_KER_BUF_ADDR_DW0, (uint32_t)(addr & 0xffffffff),
|
|
ESF_DZ_TX_KER_BUF_ADDR_DW1, (uint32_t)(addr >> 32));
|
|
}
|
|
|
|
void
|
|
ef10_tx_qdesc_tso_create(
|
|
__in efx_txq_t *etp,
|
|
__in uint16_t ipv4_id,
|
|
__in uint32_t tcp_seq,
|
|
__in uint8_t tcp_flags,
|
|
__out efx_desc_t *edp)
|
|
{
|
|
_NOTE(ARGUNUSED(etp))
|
|
|
|
EFSYS_PROBE4(tx_desc_tso_create, unsigned int, etp->et_index,
|
|
uint16_t, ipv4_id, uint32_t, tcp_seq,
|
|
uint8_t, tcp_flags);
|
|
|
|
EFX_POPULATE_QWORD_5(edp->ed_eq,
|
|
ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
ESF_DZ_TX_OPTION_TYPE,
|
|
ESE_DZ_TX_OPTION_DESC_TSO,
|
|
ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
|
|
ESF_DZ_TX_TSO_IP_ID, ipv4_id,
|
|
ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq);
|
|
}
|
|
|
|
void
|
|
ef10_tx_qdesc_tso2_create(
|
|
__in efx_txq_t *etp,
|
|
__in uint16_t ipv4_id,
|
|
__in uint16_t outer_ipv4_id,
|
|
__in uint32_t tcp_seq,
|
|
__in uint16_t tcp_mss,
|
|
__out_ecount(count) efx_desc_t *edp,
|
|
__in int count)
|
|
{
|
|
_NOTE(ARGUNUSED(etp, count))
|
|
|
|
EFSYS_PROBE4(tx_desc_tso2_create, unsigned int, etp->et_index,
|
|
uint16_t, ipv4_id, uint32_t, tcp_seq,
|
|
uint16_t, tcp_mss);
|
|
|
|
EFSYS_ASSERT(count >= EFX_TX_FATSOV2_OPT_NDESCS);
|
|
|
|
EFX_POPULATE_QWORD_5(edp[0].ed_eq,
|
|
ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
ESF_DZ_TX_OPTION_TYPE,
|
|
ESE_DZ_TX_OPTION_DESC_TSO,
|
|
ESF_DZ_TX_TSO_OPTION_TYPE,
|
|
ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
|
|
ESF_DZ_TX_TSO_IP_ID, ipv4_id,
|
|
ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq);
|
|
EFX_POPULATE_QWORD_5(edp[1].ed_eq,
|
|
ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
ESF_DZ_TX_OPTION_TYPE,
|
|
ESE_DZ_TX_OPTION_DESC_TSO,
|
|
ESF_DZ_TX_TSO_OPTION_TYPE,
|
|
ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
|
|
ESF_DZ_TX_TSO_TCP_MSS, tcp_mss,
|
|
ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id);
|
|
}
|
|
|
|
void
|
|
ef10_tx_qdesc_vlantci_create(
|
|
__in efx_txq_t *etp,
|
|
__in uint16_t tci,
|
|
__out efx_desc_t *edp)
|
|
{
|
|
_NOTE(ARGUNUSED(etp))
|
|
|
|
EFSYS_PROBE2(tx_desc_vlantci_create, unsigned int, etp->et_index,
|
|
uint16_t, tci);
|
|
|
|
EFX_POPULATE_QWORD_4(edp->ed_eq,
|
|
ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
ESF_DZ_TX_OPTION_TYPE,
|
|
ESE_DZ_TX_OPTION_DESC_VLAN,
|
|
ESF_DZ_TX_VLAN_OP, tci ? 1 : 0,
|
|
ESF_DZ_TX_VLAN_TAG1, tci);
|
|
}
|
|
|
|
void
|
|
ef10_tx_qdesc_checksum_create(
|
|
__in efx_txq_t *etp,
|
|
__in uint16_t flags,
|
|
__out efx_desc_t *edp)
|
|
{
|
|
_NOTE(ARGUNUSED(etp));
|
|
|
|
EFSYS_PROBE2(tx_desc_checksum_create, unsigned int, etp->et_index,
|
|
uint32_t, flags);
|
|
|
|
EFX_POPULATE_QWORD_6(edp->ed_eq,
|
|
ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
|
|
ESF_DZ_TX_OPTION_UDP_TCP_CSUM,
|
|
(flags & EFX_TXQ_CKSUM_TCPUDP) ? 1 : 0,
|
|
ESF_DZ_TX_OPTION_IP_CSUM,
|
|
(flags & EFX_TXQ_CKSUM_IPV4) ? 1 : 0,
|
|
ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM,
|
|
(flags & EFX_TXQ_CKSUM_INNER_TCPUDP) ? 1 : 0,
|
|
ESF_DZ_TX_OPTION_INNER_IP_CSUM,
|
|
(flags & EFX_TXQ_CKSUM_INNER_IPV4) ? 1 : 0);
|
|
}
|
|
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_tx_qpace(
|
|
__in efx_txq_t *etp,
|
|
__in unsigned int ns)
|
|
{
|
|
efx_rc_t rc;
|
|
|
|
/* FIXME */
|
|
_NOTE(ARGUNUSED(etp, ns))
|
|
_NOTE(CONSTANTCONDITION)
|
|
if (B_FALSE) {
|
|
rc = ENOTSUP;
|
|
goto fail1;
|
|
}
|
|
/* FIXME */
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_tx_qflush(
|
|
__in efx_txq_t *etp)
|
|
{
|
|
efx_nic_t *enp = etp->et_enp;
|
|
efx_rc_t rc;
|
|
|
|
if ((rc = efx_mcdi_fini_txq(enp, etp->et_index)) != 0)
|
|
goto fail1;
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
/*
|
|
* EALREADY is not an error, but indicates that the MC has rebooted and
|
|
* that the TXQ has already been destroyed. Callers need to know that
|
|
* the TXQ flush has completed to avoid waiting until timeout for a
|
|
* flush done event that will not be delivered.
|
|
*/
|
|
if (rc != EALREADY)
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
void
|
|
ef10_tx_qenable(
|
|
__in efx_txq_t *etp)
|
|
{
|
|
/* FIXME */
|
|
_NOTE(ARGUNUSED(etp))
|
|
/* FIXME */
|
|
}
|
|
|
|
#if EFSYS_OPT_QSTATS
|
|
void
|
|
ef10_tx_qstats_update(
|
|
__in efx_txq_t *etp,
|
|
__inout_ecount(TX_NQSTATS) efsys_stat_t *stat)
|
|
{
|
|
unsigned int id;
|
|
|
|
for (id = 0; id < TX_NQSTATS; id++) {
|
|
efsys_stat_t *essp = &stat[id];
|
|
|
|
EFSYS_STAT_INCR(essp, etp->et_stat[id]);
|
|
etp->et_stat[id] = 0;
|
|
}
|
|
}
|
|
|
|
#endif /* EFSYS_OPT_QSTATS */
|
|
|
|
#endif /* EFX_OPTS_EF10() */
|