f-stack/dpdk/drivers/net/pfe/base/pfe.h

423 lines
12 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2018-2019 NXP
*/
#ifndef _PFE_H_
#define _PFE_H_
#include "cbus.h"
/*
* WARNING: non atomic version.
*/
static inline void
set_bit(unsigned long nr, void *addr)
{
int *m = ((int *)addr) + (nr >> 5);
*m |= 1 << (nr & 31);
}
static inline int
test_bit(int nr, const void *addr)
{
return (1UL & (((const int *)addr)[nr >> 5] >> (nr & 31))) != 0UL;
}
/*
* WARNING: non atomic version.
*/
static inline void
clear_bit(unsigned long nr, void *addr)
{
int *m = ((int *)addr) + (nr >> 5);
*m &= ~(1 << (nr & 31));
}
/*
* WARNING: non atomic version.
*/
static inline int
test_and_clear_bit(unsigned long nr, void *addr)
{
unsigned long mask = 1 << (nr & 0x1f);
int *m = ((int *)addr) + (nr >> 5);
int old = *m;
*m = old & ~mask;
return (old & mask) != 0;
}
/*
* WARNING: non atomic version.
*/
static inline int
test_and_set_bit(unsigned long nr, void *addr)
{
unsigned long mask = 1 << (nr & 0x1f);
int *m = ((int *)addr) + (nr >> 5);
int old = *m;
*m = old | mask;
return (old & mask) != 0;
}
#ifndef BIT
#define BIT(nr) (1UL << (nr))
#endif
#define CLASS_DMEM_BASE_ADDR(i) (0x00000000 | ((i) << 20))
/*
* Only valid for mem access register interface
*/
#define CLASS_IMEM_BASE_ADDR(i) (0x00000000 | ((i) << 20))
#define CLASS_DMEM_SIZE 0x00002000
#define CLASS_IMEM_SIZE 0x00008000
#define TMU_DMEM_BASE_ADDR(i) (0x00000000 + ((i) << 20))
/*
* Only valid for mem access register interface
*/
#define TMU_IMEM_BASE_ADDR(i) (0x00000000 + ((i) << 20))
#define TMU_DMEM_SIZE 0x00000800
#define TMU_IMEM_SIZE 0x00002000
#define UTIL_DMEM_BASE_ADDR 0x00000000
#define UTIL_DMEM_SIZE 0x00002000
#define PE_LMEM_BASE_ADDR 0xc3010000
#define PE_LMEM_SIZE 0x8000
#define PE_LMEM_END (PE_LMEM_BASE_ADDR + PE_LMEM_SIZE)
#define DMEM_BASE_ADDR 0x00000000
#define DMEM_SIZE 0x2000 /* TMU has less... */
#define DMEM_END (DMEM_BASE_ADDR + DMEM_SIZE)
#define PMEM_BASE_ADDR 0x00010000
#define PMEM_SIZE 0x8000 /* TMU has less... */
#define PMEM_END (PMEM_BASE_ADDR + PMEM_SIZE)
#define writel(v, p) ({*(volatile unsigned int *)(p) = (v); })
#define readl(p) (*(const volatile unsigned int *)(p))
/* These check memory ranges from PE point of view/memory map */
#define IS_DMEM(addr, len) \
({ typeof(addr) addr_ = (addr); \
((unsigned long)(addr_) >= DMEM_BASE_ADDR) && \
(((unsigned long)(addr_) + (len)) <= DMEM_END); })
#define IS_PMEM(addr, len) \
({ typeof(addr) addr_ = (addr); \
((unsigned long)(addr_) >= PMEM_BASE_ADDR) && \
(((unsigned long)(addr_) + (len)) <= PMEM_END); })
#define IS_PE_LMEM(addr, len) \
({ typeof(addr) addr_ = (addr); \
((unsigned long)(addr_) >= \
PE_LMEM_BASE_ADDR) && \
(((unsigned long)(addr_) + \
(len)) <= PE_LMEM_END); })
#define IS_PFE_LMEM(addr, len) \
({ typeof(addr) addr_ = (addr); \
((unsigned long)(addr_) >= \
CBUS_VIRT_TO_PFE(LMEM_BASE_ADDR)) && \
(((unsigned long)(addr_) + (len)) <= \
CBUS_VIRT_TO_PFE(LMEM_END)); })
#define __IS_PHYS_DDR(addr, len) \
({ typeof(addr) addr_ = (addr); \
((unsigned long)(addr_) >= \
DDR_PHYS_BASE_ADDR) && \
(((unsigned long)(addr_) + (len)) <= \
DDR_PHYS_END); })
#define IS_PHYS_DDR(addr, len) __IS_PHYS_DDR(DDR_PFE_TO_PHYS(addr), len)
/*
* If using a run-time virtual address for the cbus base address use this code
*/
extern void *cbus_base_addr;
extern void *ddr_base_addr;
extern unsigned long ddr_phys_base_addr;
extern unsigned int ddr_size;
#define CBUS_BASE_ADDR cbus_base_addr
#define DDR_PHYS_BASE_ADDR ddr_phys_base_addr
#define DDR_BASE_ADDR ddr_base_addr
#define DDR_SIZE ddr_size
#define DDR_PHYS_END (DDR_PHYS_BASE_ADDR + DDR_SIZE)
#define LS1012A_PFE_RESET_WA /*
* PFE doesn't have global reset and re-init
* should takecare few things to make PFE
* functional after reset
*/
#define PFE_CBUS_PHYS_BASE_ADDR 0xc0000000 /* CBUS physical base address
* as seen by PE's.
*/
/* CBUS physical base address as seen by PE's. */
#define PFE_CBUS_PHYS_BASE_ADDR_FROM_PFE 0xc0000000
#define DDR_PHYS_TO_PFE(p) (((unsigned long)(p)) & 0x7FFFFFFF)
#define DDR_PFE_TO_PHYS(p) (((unsigned long)(p)) | 0x80000000)
#define CBUS_PHYS_TO_PFE(p) (((p) - PFE_CBUS_PHYS_BASE_ADDR) + \
PFE_CBUS_PHYS_BASE_ADDR_FROM_PFE)
/* Translates to PFE address map */
#define DDR_PHYS_TO_VIRT(p) (((p) - DDR_PHYS_BASE_ADDR) + DDR_BASE_ADDR)
#define DDR_VIRT_TO_PHYS(v) (((v) - DDR_BASE_ADDR) + DDR_PHYS_BASE_ADDR)
#define DDR_VIRT_TO_PFE(p) (DDR_PHYS_TO_PFE(DDR_VIRT_TO_PHYS(p)))
#define CBUS_VIRT_TO_PFE(v) (((v) - CBUS_BASE_ADDR) + \
PFE_CBUS_PHYS_BASE_ADDR)
#define CBUS_PFE_TO_VIRT(p) (((unsigned long)(p) - \
PFE_CBUS_PHYS_BASE_ADDR) + CBUS_BASE_ADDR)
/* The below part of the code is used in QOS control driver from host */
#define TMU_APB_BASE_ADDR 0xc1000000 /* TMU base address seen by
* pe's
*/
enum {
CLASS0_ID = 0,
CLASS1_ID,
CLASS2_ID,
CLASS3_ID,
CLASS4_ID,
CLASS5_ID,
TMU0_ID,
TMU1_ID,
TMU2_ID,
TMU3_ID,
#if !defined(CONFIG_FSL_PFE_UTIL_DISABLED)
UTIL_ID,
#endif
MAX_PE
};
#define CLASS_MASK (BIT(CLASS0_ID) | BIT(CLASS1_ID) |\
BIT(CLASS2_ID) | BIT(CLASS3_ID) |\
BIT(CLASS4_ID) | BIT(CLASS5_ID))
#define CLASS_MAX_ID CLASS5_ID
#define TMU_MASK (BIT(TMU0_ID) | BIT(TMU1_ID) |\
BIT(TMU3_ID))
#define TMU_MAX_ID TMU3_ID
#if !defined(CONFIG_FSL_PFE_UTIL_DISABLED)
#define UTIL_MASK BIT(UTIL_ID)
#endif
struct pe_status {
u32 cpu_state;
u32 activity_counter;
u32 rx;
union {
u32 tx;
u32 tmu_qstatus;
};
u32 drop;
#if defined(CFG_PE_DEBUG)
u32 debug_indicator;
u32 debug[16];
#endif
} __rte_aligned(16);
struct pe_sync_mailbox {
u32 stop;
u32 stopped;
};
/* Drop counter definitions */
#define CLASS_NUM_DROP_COUNTERS 13
#define UTIL_NUM_DROP_COUNTERS 8
/* PE information.
* Structure containing PE's specific information. It is used to create
* generic C functions common to all PE's.
* Before using the library functions this structure needs to be initialized
* with the different registers virtual addresses
* (according to the ARM MMU mmaping). The default initialization supports a
* virtual == physical mapping.
*/
struct pe_info {
u32 dmem_base_addr; /* PE's dmem base address */
u32 pmem_base_addr; /* PE's pmem base address */
u32 pmem_size; /* PE's pmem size */
void *mem_access_wdata; /* PE's _MEM_ACCESS_WDATA register
* address
*/
void *mem_access_addr; /* PE's _MEM_ACCESS_ADDR register
* address
*/
void *mem_access_rdata; /* PE's _MEM_ACCESS_RDATA register
* address
*/
};
void pe_lmem_read(u32 *dst, u32 len, u32 offset);
void pe_lmem_write(u32 *src, u32 len, u32 offset);
void pe_dmem_memcpy_to32(int id, u32 dst, const void *src, unsigned int len);
void pe_pmem_memcpy_to32(int id, u32 dst, const void *src, unsigned int len);
u32 pe_pmem_read(int id, u32 addr, u8 size);
void pe_dmem_write(int id, u32 val, u32 addr, u8 size);
u32 pe_dmem_read(int id, u32 addr, u8 size);
void class_pe_lmem_memcpy_to32(u32 dst, const void *src, unsigned int len);
void class_pe_lmem_memset(u32 dst, int val, unsigned int len);
void class_bus_write(u32 val, u32 addr, u8 size);
u32 class_bus_read(u32 addr, u8 size);
#define class_bus_readl(addr) class_bus_read(addr, 4)
#define class_bus_readw(addr) class_bus_read(addr, 2)
#define class_bus_readb(addr) class_bus_read(addr, 1)
#define class_bus_writel(val, addr) class_bus_write(val, addr, 4)
#define class_bus_writew(val, addr) class_bus_write(val, addr, 2)
#define class_bus_writeb(val, addr) class_bus_write(val, addr, 1)
#define pe_dmem_readl(id, addr) pe_dmem_read(id, addr, 4)
#define pe_dmem_readw(id, addr) pe_dmem_read(id, addr, 2)
#define pe_dmem_readb(id, addr) pe_dmem_read(id, addr, 1)
#define pe_dmem_writel(id, val, addr) pe_dmem_write(id, val, addr, 4)
#define pe_dmem_writew(id, val, addr) pe_dmem_write(id, val, addr, 2)
#define pe_dmem_writeb(id, val, addr) pe_dmem_write(id, val, addr, 1)
/*int pe_load_elf_section(int id, const void *data, elf32_shdr *shdr); */
//int pe_load_elf_section(int id, const void *data, struct elf32_shdr *shdr,
// struct device *dev);
void pfe_lib_init(void *cbus_base, void *ddr_base, unsigned long ddr_phys_base,
unsigned int ddr_size);
void bmu_init(void *base, struct BMU_CFG *cfg);
void bmu_reset(void *base);
void bmu_enable(void *base);
void bmu_disable(void *base);
void bmu_set_config(void *base, struct BMU_CFG *cfg);
/*
* An enumerated type for loopback values. This can be one of three values, no
* loopback -normal operation, local loopback with internal loopback module of
* MAC or PHY loopback which is through the external PHY.
*/
#ifndef __MAC_LOOP_ENUM__
#define __MAC_LOOP_ENUM__
enum mac_loop {LB_NONE, LB_EXT, LB_LOCAL};
#endif
void gemac_init(void *base, void *config);
void gemac_disable_rx_checksum_offload(void *base);
void gemac_enable_rx_checksum_offload(void *base);
void gemac_set_mdc_div(void *base, int mdc_div);
void gemac_set_speed(void *base, enum mac_speed gem_speed);
void gemac_set_duplex(void *base, int duplex);
void gemac_set_mode(void *base, int mode);
void gemac_enable(void *base);
void gemac_tx_disable(void *base);
void gemac_tx_enable(void *base);
void gemac_disable(void *base);
void gemac_reset(void *base);
void gemac_set_address(void *base, struct spec_addr *addr);
struct spec_addr gemac_get_address(void *base);
void gemac_set_loop(void *base, enum mac_loop gem_loop);
void gemac_set_laddr1(void *base, struct pfe_mac_addr *address);
void gemac_set_laddr2(void *base, struct pfe_mac_addr *address);
void gemac_set_laddr3(void *base, struct pfe_mac_addr *address);
void gemac_set_laddr4(void *base, struct pfe_mac_addr *address);
void gemac_set_laddrN(void *base, struct pfe_mac_addr *address,
unsigned int entry_index);
void gemac_clear_laddr1(void *base);
void gemac_clear_laddr2(void *base);
void gemac_clear_laddr3(void *base);
void gemac_clear_laddr4(void *base);
void gemac_clear_laddrN(void *base, unsigned int entry_index);
struct pfe_mac_addr gemac_get_hash(void *base);
void gemac_set_hash(void *base, struct pfe_mac_addr *hash);
struct pfe_mac_addr gem_get_laddr1(void *base);
struct pfe_mac_addr gem_get_laddr2(void *base);
struct pfe_mac_addr gem_get_laddr3(void *base);
struct pfe_mac_addr gem_get_laddr4(void *base);
struct pfe_mac_addr gem_get_laddrN(void *base, unsigned int entry_index);
void gemac_set_config(void *base, struct gemac_cfg *cfg);
void gemac_allow_broadcast(void *base);
void gemac_no_broadcast(void *base);
void gemac_enable_1536_rx(void *base);
void gemac_disable_1536_rx(void *base);
int gemac_set_rx(void *base, int mtu);
void gemac_enable_rx_jmb(void *base);
void gemac_disable_rx_jmb(void *base);
void gemac_enable_stacked_vlan(void *base);
void gemac_disable_stacked_vlan(void *base);
void gemac_enable_pause_rx(void *base);
void gemac_disable_pause_rx(void *base);
void gemac_enable_pause_tx(void *base);
void gemac_disable_pause_tx(void *base);
void gemac_enable_copy_all(void *base);
void gemac_disable_copy_all(void *base);
void gemac_set_bus_width(void *base, int width);
void gemac_set_wol(void *base, u32 wol_conf);
void gpi_init(void *base, struct gpi_cfg *cfg);
void gpi_reset(void *base);
void gpi_enable(void *base);
void gpi_disable(void *base);
void gpi_set_config(void *base, struct gpi_cfg *cfg);
void hif_init(void);
void hif_tx_enable(void);
void hif_tx_disable(void);
void hif_rx_enable(void);
void hif_rx_disable(void);
/* Get Chip Revision level
*
*/
static inline unsigned int CHIP_REVISION(void)
{
/*For LS1012A return always 1 */
return 1;
}
/* Start HIF rx DMA
*
*/
static inline void hif_rx_dma_start(void)
{
writel(HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB, HIF_RX_CTRL);
}
/* Start HIF tx DMA
*
*/
static inline void hif_tx_dma_start(void)
{
writel(HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB, HIF_TX_CTRL);
}
static inline void *pfe_mem_ptov(phys_addr_t paddr)
{
return rte_mem_iova2virt(paddr);
}
static phys_addr_t pfe_mem_vtop(uint64_t vaddr) __attribute__((unused));
static inline phys_addr_t pfe_mem_vtop(uint64_t vaddr)
{
const struct rte_memseg *memseg;
memseg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL);
if (memseg)
return memseg->phys_addr + RTE_PTR_DIFF(vaddr, memseg->addr);
return (size_t)NULL;
}
#endif /* _PFE_H_ */