f-stack/dpdk/drivers/net/enic/enic_flow.c

1796 lines
49 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2008-2017 Cisco Systems, Inc. All rights reserved.
*/
#include <errno.h>
#include <stdint.h>
#include <rte_log.h>
#include <rte_ethdev_driver.h>
#include <rte_flow_driver.h>
#include <rte_ether.h>
#include <rte_ip.h>
#include <rte_udp.h>
#include "enic_compat.h"
#include "enic.h"
#include "vnic_dev.h"
#include "vnic_nic.h"
/*
* Common arguments passed to copy_item functions. Use this structure
* so we can easily add new arguments.
* item: Item specification.
* filter: Partially filled in NIC filter structure.
* inner_ofst: If zero, this is an outer header. If non-zero, this is
* the offset into L5 where the header begins.
* l2_proto_off: offset to EtherType eth or vlan header.
* l3_proto_off: offset to next protocol field in IPv4 or 6 header.
*/
struct copy_item_args {
const struct rte_flow_item *item;
struct filter_v2 *filter;
uint8_t *inner_ofst;
uint8_t l2_proto_off;
uint8_t l3_proto_off;
struct enic *enic;
};
/* functions for copying items into enic filters */
typedef int (enic_copy_item_fn)(struct copy_item_args *arg);
/** Info about how to copy items into enic filters. */
struct enic_items {
/** Function for copying and validating an item. */
enic_copy_item_fn *copy_item;
/** List of valid previous items. */
const enum rte_flow_item_type * const prev_items;
/** True if it's OK for this item to be the first item. For some NIC
* versions, it's invalid to start the stack above layer 3.
*/
const u8 valid_start_item;
/* Inner packet version of copy_item. */
enic_copy_item_fn *inner_copy_item;
};
/** Filtering capabilities for various NIC and firmware versions. */
struct enic_filter_cap {
/** list of valid items and their handlers and attributes. */
const struct enic_items *item_info;
/* Max type in the above list, used to detect unsupported types */
enum rte_flow_item_type max_item_type;
};
/* functions for copying flow actions into enic actions */
typedef int (copy_action_fn)(struct enic *enic,
const struct rte_flow_action actions[],
struct filter_action_v2 *enic_action);
/** Action capabilities for various NICs. */
struct enic_action_cap {
/** list of valid actions */
const enum rte_flow_action_type *actions;
/** copy function for a particular NIC */
copy_action_fn *copy_fn;
};
/* Forward declarations */
static enic_copy_item_fn enic_copy_item_ipv4_v1;
static enic_copy_item_fn enic_copy_item_udp_v1;
static enic_copy_item_fn enic_copy_item_tcp_v1;
static enic_copy_item_fn enic_copy_item_raw_v2;
static enic_copy_item_fn enic_copy_item_eth_v2;
static enic_copy_item_fn enic_copy_item_vlan_v2;
static enic_copy_item_fn enic_copy_item_ipv4_v2;
static enic_copy_item_fn enic_copy_item_ipv6_v2;
static enic_copy_item_fn enic_copy_item_udp_v2;
static enic_copy_item_fn enic_copy_item_tcp_v2;
static enic_copy_item_fn enic_copy_item_sctp_v2;
static enic_copy_item_fn enic_copy_item_vxlan_v2;
static enic_copy_item_fn enic_copy_item_inner_eth_v2;
static enic_copy_item_fn enic_copy_item_inner_vlan_v2;
static enic_copy_item_fn enic_copy_item_inner_ipv4_v2;
static enic_copy_item_fn enic_copy_item_inner_ipv6_v2;
static enic_copy_item_fn enic_copy_item_inner_udp_v2;
static enic_copy_item_fn enic_copy_item_inner_tcp_v2;
static copy_action_fn enic_copy_action_v1;
static copy_action_fn enic_copy_action_v2;
/**
* Legacy NICs or NICs with outdated firmware. Only 5-tuple perfect match
* is supported.
*/
static const struct enic_items enic_items_v1[] = {
[RTE_FLOW_ITEM_TYPE_IPV4] = {
.copy_item = enic_copy_item_ipv4_v1,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = NULL,
},
[RTE_FLOW_ITEM_TYPE_UDP] = {
.copy_item = enic_copy_item_udp_v1,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = NULL,
},
[RTE_FLOW_ITEM_TYPE_TCP] = {
.copy_item = enic_copy_item_tcp_v1,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = NULL,
},
};
/**
* NICs have Advanced Filters capability but they are disabled. This means
* that layer 3 must be specified.
*/
static const struct enic_items enic_items_v2[] = {
[RTE_FLOW_ITEM_TYPE_RAW] = {
.copy_item = enic_copy_item_raw_v2,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = NULL,
},
[RTE_FLOW_ITEM_TYPE_ETH] = {
.copy_item = enic_copy_item_eth_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = enic_copy_item_inner_eth_v2,
},
[RTE_FLOW_ITEM_TYPE_VLAN] = {
.copy_item = enic_copy_item_vlan_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = enic_copy_item_inner_vlan_v2,
},
[RTE_FLOW_ITEM_TYPE_IPV4] = {
.copy_item = enic_copy_item_ipv4_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = enic_copy_item_inner_ipv4_v2,
},
[RTE_FLOW_ITEM_TYPE_IPV6] = {
.copy_item = enic_copy_item_ipv6_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = enic_copy_item_inner_ipv6_v2,
},
[RTE_FLOW_ITEM_TYPE_UDP] = {
.copy_item = enic_copy_item_udp_v2,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = enic_copy_item_inner_udp_v2,
},
[RTE_FLOW_ITEM_TYPE_TCP] = {
.copy_item = enic_copy_item_tcp_v2,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = enic_copy_item_inner_tcp_v2,
},
[RTE_FLOW_ITEM_TYPE_SCTP] = {
.copy_item = enic_copy_item_sctp_v2,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = NULL,
},
[RTE_FLOW_ITEM_TYPE_VXLAN] = {
.copy_item = enic_copy_item_vxlan_v2,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = NULL,
},
};
/** NICs with Advanced filters enabled */
static const struct enic_items enic_items_v3[] = {
[RTE_FLOW_ITEM_TYPE_RAW] = {
.copy_item = enic_copy_item_raw_v2,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = NULL,
},
[RTE_FLOW_ITEM_TYPE_ETH] = {
.copy_item = enic_copy_item_eth_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = enic_copy_item_inner_eth_v2,
},
[RTE_FLOW_ITEM_TYPE_VLAN] = {
.copy_item = enic_copy_item_vlan_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = enic_copy_item_inner_vlan_v2,
},
[RTE_FLOW_ITEM_TYPE_IPV4] = {
.copy_item = enic_copy_item_ipv4_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = enic_copy_item_inner_ipv4_v2,
},
[RTE_FLOW_ITEM_TYPE_IPV6] = {
.copy_item = enic_copy_item_ipv6_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = enic_copy_item_inner_ipv6_v2,
},
[RTE_FLOW_ITEM_TYPE_UDP] = {
.copy_item = enic_copy_item_udp_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = enic_copy_item_inner_udp_v2,
},
[RTE_FLOW_ITEM_TYPE_TCP] = {
.copy_item = enic_copy_item_tcp_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = enic_copy_item_inner_tcp_v2,
},
[RTE_FLOW_ITEM_TYPE_SCTP] = {
.copy_item = enic_copy_item_sctp_v2,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = NULL,
},
[RTE_FLOW_ITEM_TYPE_VXLAN] = {
.copy_item = enic_copy_item_vxlan_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
},
.inner_copy_item = NULL,
},
};
/** Filtering capabilities indexed this NICs supported filter type. */
static const struct enic_filter_cap enic_filter_cap[] = {
[FILTER_IPV4_5TUPLE] = {
.item_info = enic_items_v1,
.max_item_type = RTE_FLOW_ITEM_TYPE_TCP,
},
[FILTER_USNIC_IP] = {
.item_info = enic_items_v2,
.max_item_type = RTE_FLOW_ITEM_TYPE_VXLAN,
},
[FILTER_DPDK_1] = {
.item_info = enic_items_v3,
.max_item_type = RTE_FLOW_ITEM_TYPE_VXLAN,
},
};
/** Supported actions for older NICs */
static const enum rte_flow_action_type enic_supported_actions_v1[] = {
RTE_FLOW_ACTION_TYPE_QUEUE,
RTE_FLOW_ACTION_TYPE_END,
};
/** Supported actions for newer NICs */
static const enum rte_flow_action_type enic_supported_actions_v2_id[] = {
RTE_FLOW_ACTION_TYPE_QUEUE,
RTE_FLOW_ACTION_TYPE_MARK,
RTE_FLOW_ACTION_TYPE_FLAG,
RTE_FLOW_ACTION_TYPE_RSS,
RTE_FLOW_ACTION_TYPE_PASSTHRU,
RTE_FLOW_ACTION_TYPE_END,
};
static const enum rte_flow_action_type enic_supported_actions_v2_drop[] = {
RTE_FLOW_ACTION_TYPE_QUEUE,
RTE_FLOW_ACTION_TYPE_MARK,
RTE_FLOW_ACTION_TYPE_FLAG,
RTE_FLOW_ACTION_TYPE_DROP,
RTE_FLOW_ACTION_TYPE_RSS,
RTE_FLOW_ACTION_TYPE_PASSTHRU,
RTE_FLOW_ACTION_TYPE_END,
};
/** Action capabilities indexed by NIC version information */
static const struct enic_action_cap enic_action_cap[] = {
[FILTER_ACTION_RQ_STEERING_FLAG] = {
.actions = enic_supported_actions_v1,
.copy_fn = enic_copy_action_v1,
},
[FILTER_ACTION_FILTER_ID_FLAG] = {
.actions = enic_supported_actions_v2_id,
.copy_fn = enic_copy_action_v2,
},
[FILTER_ACTION_DROP_FLAG] = {
.actions = enic_supported_actions_v2_drop,
.copy_fn = enic_copy_action_v2,
},
};
static int
mask_exact_match(const u8 *supported, const u8 *supplied,
unsigned int size)
{
unsigned int i;
for (i = 0; i < size; i++) {
if (supported[i] != supplied[i])
return 0;
}
return 1;
}
static int
enic_copy_item_ipv4_v1(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
struct filter_v2 *enic_filter = arg->filter;
const struct rte_flow_item_ipv4 *spec = item->spec;
const struct rte_flow_item_ipv4 *mask = item->mask;
struct filter_ipv4_5tuple *enic_5tup = &enic_filter->u.ipv4;
struct rte_ipv4_hdr supported_mask = {
.src_addr = 0xffffffff,
.dst_addr = 0xffffffff,
};
ENICPMD_FUNC_TRACE();
if (!mask)
mask = &rte_flow_item_ipv4_mask;
/* This is an exact match filter, both fields must be set */
if (!spec || !spec->hdr.src_addr || !spec->hdr.dst_addr) {
ENICPMD_LOG(ERR, "IPv4 exact match src/dst addr");
return ENOTSUP;
}
/* check that the suppied mask exactly matches capabilty */
if (!mask_exact_match((const u8 *)&supported_mask,
(const u8 *)item->mask, sizeof(*mask))) {
ENICPMD_LOG(ERR, "IPv4 exact match mask");
return ENOTSUP;
}
enic_filter->u.ipv4.flags = FILTER_FIELDS_IPV4_5TUPLE;
enic_5tup->src_addr = spec->hdr.src_addr;
enic_5tup->dst_addr = spec->hdr.dst_addr;
return 0;
}
static int
enic_copy_item_udp_v1(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
struct filter_v2 *enic_filter = arg->filter;
const struct rte_flow_item_udp *spec = item->spec;
const struct rte_flow_item_udp *mask = item->mask;
struct filter_ipv4_5tuple *enic_5tup = &enic_filter->u.ipv4;
struct rte_udp_hdr supported_mask = {
.src_port = 0xffff,
.dst_port = 0xffff,
};
ENICPMD_FUNC_TRACE();
if (!mask)
mask = &rte_flow_item_udp_mask;
/* This is an exact match filter, both ports must be set */
if (!spec || !spec->hdr.src_port || !spec->hdr.dst_port) {
ENICPMD_LOG(ERR, "UDP exact match src/dst addr");
return ENOTSUP;
}
/* check that the suppied mask exactly matches capabilty */
if (!mask_exact_match((const u8 *)&supported_mask,
(const u8 *)item->mask, sizeof(*mask))) {
ENICPMD_LOG(ERR, "UDP exact match mask");
return ENOTSUP;
}
enic_filter->u.ipv4.flags = FILTER_FIELDS_IPV4_5TUPLE;
enic_5tup->src_port = spec->hdr.src_port;
enic_5tup->dst_port = spec->hdr.dst_port;
enic_5tup->protocol = PROTO_UDP;
return 0;
}
static int
enic_copy_item_tcp_v1(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
struct filter_v2 *enic_filter = arg->filter;
const struct rte_flow_item_tcp *spec = item->spec;
const struct rte_flow_item_tcp *mask = item->mask;
struct filter_ipv4_5tuple *enic_5tup = &enic_filter->u.ipv4;
struct rte_tcp_hdr supported_mask = {
.src_port = 0xffff,
.dst_port = 0xffff,
};
ENICPMD_FUNC_TRACE();
if (!mask)
mask = &rte_flow_item_tcp_mask;
/* This is an exact match filter, both ports must be set */
if (!spec || !spec->hdr.src_port || !spec->hdr.dst_port) {
ENICPMD_LOG(ERR, "TCPIPv4 exact match src/dst addr");
return ENOTSUP;
}
/* check that the suppied mask exactly matches capabilty */
if (!mask_exact_match((const u8 *)&supported_mask,
(const u8 *)item->mask, sizeof(*mask))) {
ENICPMD_LOG(ERR, "TCP exact match mask");
return ENOTSUP;
}
enic_filter->u.ipv4.flags = FILTER_FIELDS_IPV4_5TUPLE;
enic_5tup->src_port = spec->hdr.src_port;
enic_5tup->dst_port = spec->hdr.dst_port;
enic_5tup->protocol = PROTO_TCP;
return 0;
}
/*
* The common 'copy' function for all inner packet patterns. Patterns are
* first appended to the L5 pattern buffer. Then, since the NIC filter
* API has no special support for inner packet matching at the moment,
* we set EtherType and IP proto as necessary.
*/
static int
copy_inner_common(struct filter_generic_1 *gp, uint8_t *inner_ofst,
const void *val, const void *mask, uint8_t val_size,
uint8_t proto_off, uint16_t proto_val, uint8_t proto_size)
{
uint8_t *l5_mask, *l5_val;
uint8_t start_off;
/* No space left in the L5 pattern buffer. */
start_off = *inner_ofst;
if ((start_off + val_size) > FILTER_GENERIC_1_KEY_LEN)
return ENOTSUP;
l5_mask = gp->layer[FILTER_GENERIC_1_L5].mask;
l5_val = gp->layer[FILTER_GENERIC_1_L5].val;
/* Copy the pattern into the L5 buffer. */
if (val) {
memcpy(l5_mask + start_off, mask, val_size);
memcpy(l5_val + start_off, val, val_size);
}
/* Set the protocol field in the previous header. */
if (proto_off) {
void *m, *v;
m = l5_mask + proto_off;
v = l5_val + proto_off;
if (proto_size == 1) {
*(uint8_t *)m = 0xff;
*(uint8_t *)v = (uint8_t)proto_val;
} else if (proto_size == 2) {
*(uint16_t *)m = 0xffff;
*(uint16_t *)v = proto_val;
}
}
/* All inner headers land in L5 buffer even if their spec is null. */
*inner_ofst += val_size;
return 0;
}
static int
enic_copy_item_inner_eth_v2(struct copy_item_args *arg)
{
const void *mask = arg->item->mask;
uint8_t *off = arg->inner_ofst;
ENICPMD_FUNC_TRACE();
if (!mask)
mask = &rte_flow_item_eth_mask;
arg->l2_proto_off = *off + offsetof(struct rte_ether_hdr, ether_type);
return copy_inner_common(&arg->filter->u.generic_1, off,
arg->item->spec, mask, sizeof(struct rte_ether_hdr),
0 /* no previous protocol */, 0, 0);
}
static int
enic_copy_item_inner_vlan_v2(struct copy_item_args *arg)
{
const void *mask = arg->item->mask;
uint8_t *off = arg->inner_ofst;
uint8_t eth_type_off;
ENICPMD_FUNC_TRACE();
if (!mask)
mask = &rte_flow_item_vlan_mask;
/* Append vlan header to L5 and set ether type = TPID */
eth_type_off = arg->l2_proto_off;
arg->l2_proto_off = *off + offsetof(struct rte_vlan_hdr, eth_proto);
return copy_inner_common(&arg->filter->u.generic_1, off,
arg->item->spec, mask, sizeof(struct rte_vlan_hdr),
eth_type_off, rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN), 2);
}
static int
enic_copy_item_inner_ipv4_v2(struct copy_item_args *arg)
{
const void *mask = arg->item->mask;
uint8_t *off = arg->inner_ofst;
ENICPMD_FUNC_TRACE();
if (!mask)
mask = &rte_flow_item_ipv4_mask;
/* Append ipv4 header to L5 and set ether type = ipv4 */
arg->l3_proto_off = *off + offsetof(struct rte_ipv4_hdr, next_proto_id);
return copy_inner_common(&arg->filter->u.generic_1, off,
arg->item->spec, mask, sizeof(struct rte_ipv4_hdr),
arg->l2_proto_off, rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4), 2);
}
static int
enic_copy_item_inner_ipv6_v2(struct copy_item_args *arg)
{
const void *mask = arg->item->mask;
uint8_t *off = arg->inner_ofst;
ENICPMD_FUNC_TRACE();
if (!mask)
mask = &rte_flow_item_ipv6_mask;
/* Append ipv6 header to L5 and set ether type = ipv6 */
arg->l3_proto_off = *off + offsetof(struct rte_ipv6_hdr, proto);
return copy_inner_common(&arg->filter->u.generic_1, off,
arg->item->spec, mask, sizeof(struct rte_ipv6_hdr),
arg->l2_proto_off, rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6), 2);
}
static int
enic_copy_item_inner_udp_v2(struct copy_item_args *arg)
{
const void *mask = arg->item->mask;
uint8_t *off = arg->inner_ofst;
ENICPMD_FUNC_TRACE();
if (!mask)
mask = &rte_flow_item_udp_mask;
/* Append udp header to L5 and set ip proto = udp */
return copy_inner_common(&arg->filter->u.generic_1, off,
arg->item->spec, mask, sizeof(struct rte_udp_hdr),
arg->l3_proto_off, IPPROTO_UDP, 1);
}
static int
enic_copy_item_inner_tcp_v2(struct copy_item_args *arg)
{
const void *mask = arg->item->mask;
uint8_t *off = arg->inner_ofst;
ENICPMD_FUNC_TRACE();
if (!mask)
mask = &rte_flow_item_tcp_mask;
/* Append tcp header to L5 and set ip proto = tcp */
return copy_inner_common(&arg->filter->u.generic_1, off,
arg->item->spec, mask, sizeof(struct rte_tcp_hdr),
arg->l3_proto_off, IPPROTO_TCP, 1);
}
static int
enic_copy_item_eth_v2(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
struct filter_v2 *enic_filter = arg->filter;
struct rte_ether_hdr enic_spec;
struct rte_ether_hdr enic_mask;
const struct rte_flow_item_eth *spec = item->spec;
const struct rte_flow_item_eth *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
ENICPMD_FUNC_TRACE();
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_eth_mask;
memcpy(enic_spec.d_addr.addr_bytes, spec->dst.addr_bytes,
RTE_ETHER_ADDR_LEN);
memcpy(enic_spec.s_addr.addr_bytes, spec->src.addr_bytes,
RTE_ETHER_ADDR_LEN);
memcpy(enic_mask.d_addr.addr_bytes, mask->dst.addr_bytes,
RTE_ETHER_ADDR_LEN);
memcpy(enic_mask.s_addr.addr_bytes, mask->src.addr_bytes,
RTE_ETHER_ADDR_LEN);
enic_spec.ether_type = spec->type;
enic_mask.ether_type = mask->type;
/* outer header */
memcpy(gp->layer[FILTER_GENERIC_1_L2].mask, &enic_mask,
sizeof(struct rte_ether_hdr));
memcpy(gp->layer[FILTER_GENERIC_1_L2].val, &enic_spec,
sizeof(struct rte_ether_hdr));
return 0;
}
static int
enic_copy_item_vlan_v2(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
struct filter_v2 *enic_filter = arg->filter;
const struct rte_flow_item_vlan *spec = item->spec;
const struct rte_flow_item_vlan *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
struct rte_ether_hdr *eth_mask;
struct rte_ether_hdr *eth_val;
ENICPMD_FUNC_TRACE();
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_vlan_mask;
eth_mask = (void *)gp->layer[FILTER_GENERIC_1_L2].mask;
eth_val = (void *)gp->layer[FILTER_GENERIC_1_L2].val;
/* Outer TPID cannot be matched */
if (eth_mask->ether_type)
return ENOTSUP;
/*
* For recent models:
* When packet matching, the VIC always compares vlan-stripped
* L2, regardless of vlan stripping settings. So, the inner type
* from vlan becomes the ether type of the eth header.
*
* Older models w/o hardware vxlan parser have a different
* behavior when vlan stripping is disabled. In this case,
* vlan tag remains in the L2 buffer.
*/
if (!arg->enic->vxlan && !arg->enic->ig_vlan_strip_en) {
struct rte_vlan_hdr *vlan;
vlan = (struct rte_vlan_hdr *)(eth_mask + 1);
vlan->eth_proto = mask->inner_type;
vlan = (struct rte_vlan_hdr *)(eth_val + 1);
vlan->eth_proto = spec->inner_type;
} else {
eth_mask->ether_type = mask->inner_type;
eth_val->ether_type = spec->inner_type;
}
/* For TCI, use the vlan mask/val fields (little endian). */
gp->mask_vlan = rte_be_to_cpu_16(mask->tci);
gp->val_vlan = rte_be_to_cpu_16(spec->tci);
return 0;
}
static int
enic_copy_item_ipv4_v2(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
struct filter_v2 *enic_filter = arg->filter;
const struct rte_flow_item_ipv4 *spec = item->spec;
const struct rte_flow_item_ipv4 *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
ENICPMD_FUNC_TRACE();
/* Match IPv4 */
gp->mask_flags |= FILTER_GENERIC_1_IPV4;
gp->val_flags |= FILTER_GENERIC_1_IPV4;
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_ipv4_mask;
memcpy(gp->layer[FILTER_GENERIC_1_L3].mask, &mask->hdr,
sizeof(struct rte_ipv4_hdr));
memcpy(gp->layer[FILTER_GENERIC_1_L3].val, &spec->hdr,
sizeof(struct rte_ipv4_hdr));
return 0;
}
static int
enic_copy_item_ipv6_v2(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
struct filter_v2 *enic_filter = arg->filter;
const struct rte_flow_item_ipv6 *spec = item->spec;
const struct rte_flow_item_ipv6 *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
ENICPMD_FUNC_TRACE();
/* Match IPv6 */
gp->mask_flags |= FILTER_GENERIC_1_IPV6;
gp->val_flags |= FILTER_GENERIC_1_IPV6;
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_ipv6_mask;
memcpy(gp->layer[FILTER_GENERIC_1_L3].mask, &mask->hdr,
sizeof(struct rte_ipv6_hdr));
memcpy(gp->layer[FILTER_GENERIC_1_L3].val, &spec->hdr,
sizeof(struct rte_ipv6_hdr));
return 0;
}
static int
enic_copy_item_udp_v2(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
struct filter_v2 *enic_filter = arg->filter;
const struct rte_flow_item_udp *spec = item->spec;
const struct rte_flow_item_udp *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
ENICPMD_FUNC_TRACE();
/* Match UDP */
gp->mask_flags |= FILTER_GENERIC_1_UDP;
gp->val_flags |= FILTER_GENERIC_1_UDP;
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_udp_mask;
memcpy(gp->layer[FILTER_GENERIC_1_L4].mask, &mask->hdr,
sizeof(struct rte_udp_hdr));
memcpy(gp->layer[FILTER_GENERIC_1_L4].val, &spec->hdr,
sizeof(struct rte_udp_hdr));
return 0;
}
static int
enic_copy_item_tcp_v2(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
struct filter_v2 *enic_filter = arg->filter;
const struct rte_flow_item_tcp *spec = item->spec;
const struct rte_flow_item_tcp *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
ENICPMD_FUNC_TRACE();
/* Match TCP */
gp->mask_flags |= FILTER_GENERIC_1_TCP;
gp->val_flags |= FILTER_GENERIC_1_TCP;
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
return ENOTSUP;
memcpy(gp->layer[FILTER_GENERIC_1_L4].mask, &mask->hdr,
sizeof(struct rte_tcp_hdr));
memcpy(gp->layer[FILTER_GENERIC_1_L4].val, &spec->hdr,
sizeof(struct rte_tcp_hdr));
return 0;
}
static int
enic_copy_item_sctp_v2(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
struct filter_v2 *enic_filter = arg->filter;
const struct rte_flow_item_sctp *spec = item->spec;
const struct rte_flow_item_sctp *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
uint8_t *ip_proto_mask = NULL;
uint8_t *ip_proto = NULL;
ENICPMD_FUNC_TRACE();
/*
* The NIC filter API has no flags for "match sctp", so explicitly set
* the protocol number in the IP pattern.
*/
if (gp->val_flags & FILTER_GENERIC_1_IPV4) {
struct rte_ipv4_hdr *ip;
ip = (struct rte_ipv4_hdr *)gp->layer[FILTER_GENERIC_1_L3].mask;
ip_proto_mask = &ip->next_proto_id;
ip = (struct rte_ipv4_hdr *)gp->layer[FILTER_GENERIC_1_L3].val;
ip_proto = &ip->next_proto_id;
} else if (gp->val_flags & FILTER_GENERIC_1_IPV6) {
struct rte_ipv6_hdr *ip;
ip = (struct rte_ipv6_hdr *)gp->layer[FILTER_GENERIC_1_L3].mask;
ip_proto_mask = &ip->proto;
ip = (struct rte_ipv6_hdr *)gp->layer[FILTER_GENERIC_1_L3].val;
ip_proto = &ip->proto;
} else {
/* Need IPv4/IPv6 pattern first */
return EINVAL;
}
*ip_proto = IPPROTO_SCTP;
*ip_proto_mask = 0xff;
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_sctp_mask;
memcpy(gp->layer[FILTER_GENERIC_1_L4].mask, &mask->hdr,
sizeof(struct rte_sctp_hdr));
memcpy(gp->layer[FILTER_GENERIC_1_L4].val, &spec->hdr,
sizeof(struct rte_sctp_hdr));
return 0;
}
static int
enic_copy_item_vxlan_v2(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
struct filter_v2 *enic_filter = arg->filter;
uint8_t *inner_ofst = arg->inner_ofst;
const struct rte_flow_item_vxlan *spec = item->spec;
const struct rte_flow_item_vxlan *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
struct rte_udp_hdr *udp;
ENICPMD_FUNC_TRACE();
/*
* The NIC filter API has no flags for "match vxlan". Set UDP port to
* avoid false positives.
*/
gp->mask_flags |= FILTER_GENERIC_1_UDP;
gp->val_flags |= FILTER_GENERIC_1_UDP;
udp = (struct rte_udp_hdr *)gp->layer[FILTER_GENERIC_1_L4].mask;
udp->dst_port = 0xffff;
udp = (struct rte_udp_hdr *)gp->layer[FILTER_GENERIC_1_L4].val;
udp->dst_port = RTE_BE16(4789);
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_vxlan_mask;
memcpy(gp->layer[FILTER_GENERIC_1_L5].mask, mask,
sizeof(struct rte_vxlan_hdr));
memcpy(gp->layer[FILTER_GENERIC_1_L5].val, spec,
sizeof(struct rte_vxlan_hdr));
*inner_ofst = sizeof(struct rte_vxlan_hdr);
return 0;
}
/*
* Copy raw item into version 2 NIC filter. Currently, raw pattern match is
* very limited. It is intended for matching UDP tunnel header (e.g. vxlan
* or geneve).
*/
static int
enic_copy_item_raw_v2(struct copy_item_args *arg)
{
const struct rte_flow_item *item = arg->item;
struct filter_v2 *enic_filter = arg->filter;
uint8_t *inner_ofst = arg->inner_ofst;
const struct rte_flow_item_raw *spec = item->spec;
const struct rte_flow_item_raw *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
ENICPMD_FUNC_TRACE();
/* Cannot be used for inner packet */
if (*inner_ofst)
return EINVAL;
/* Need both spec and mask */
if (!spec || !mask)
return EINVAL;
/* Only supports relative with offset 0 */
if (!spec->relative || spec->offset != 0 || spec->search || spec->limit)
return EINVAL;
/* Need non-null pattern that fits within the NIC's filter pattern */
if (spec->length == 0 ||
spec->length + sizeof(struct rte_udp_hdr) > FILTER_GENERIC_1_KEY_LEN ||
!spec->pattern || !mask->pattern)
return EINVAL;
/*
* Mask fields, including length, are often set to zero. Assume that
* means "same as spec" to avoid breaking existing apps. If length
* is not zero, then it should be >= spec length.
*
* No more pattern follows this, so append to the L4 layer instead of
* L5 to work with both recent and older VICs.
*/
if (mask->length != 0 && mask->length < spec->length)
return EINVAL;
memcpy(gp->layer[FILTER_GENERIC_1_L4].mask + sizeof(struct rte_udp_hdr),
mask->pattern, spec->length);
memcpy(gp->layer[FILTER_GENERIC_1_L4].val + sizeof(struct rte_udp_hdr),
spec->pattern, spec->length);
return 0;
}
/**
* Return 1 if current item is valid on top of the previous one.
*
* @param prev_item[in]
* The item before this one in the pattern or RTE_FLOW_ITEM_TYPE_END if this
* is the first item.
* @param item_info[in]
* Info about this item, like valid previous items.
* @param is_first[in]
* True if this the first item in the pattern.
*/
static int
item_stacking_valid(enum rte_flow_item_type prev_item,
const struct enic_items *item_info, u8 is_first_item)
{
enum rte_flow_item_type const *allowed_items = item_info->prev_items;
ENICPMD_FUNC_TRACE();
for (; *allowed_items != RTE_FLOW_ITEM_TYPE_END; allowed_items++) {
if (prev_item == *allowed_items)
return 1;
}
/* This is the first item in the stack. Check if that's cool */
if (is_first_item && item_info->valid_start_item)
return 1;
return 0;
}
/*
* Fix up the L5 layer.. HW vxlan parsing removes vxlan header from L5.
* Instead it is in L4 following the UDP header. Append the vxlan
* pattern to L4 (udp) and shift any inner packet pattern in L5.
*/
static void
fixup_l5_layer(struct enic *enic, struct filter_generic_1 *gp,
uint8_t inner_ofst)
{
uint8_t layer[FILTER_GENERIC_1_KEY_LEN];
uint8_t inner;
uint8_t vxlan;
if (!(inner_ofst > 0 && enic->vxlan))
return;
ENICPMD_FUNC_TRACE();
vxlan = sizeof(struct rte_vxlan_hdr);
memcpy(gp->layer[FILTER_GENERIC_1_L4].mask + sizeof(struct rte_udp_hdr),
gp->layer[FILTER_GENERIC_1_L5].mask, vxlan);
memcpy(gp->layer[FILTER_GENERIC_1_L4].val + sizeof(struct rte_udp_hdr),
gp->layer[FILTER_GENERIC_1_L5].val, vxlan);
inner = inner_ofst - vxlan;
memset(layer, 0, sizeof(layer));
memcpy(layer, gp->layer[FILTER_GENERIC_1_L5].mask + vxlan, inner);
memcpy(gp->layer[FILTER_GENERIC_1_L5].mask, layer, sizeof(layer));
memset(layer, 0, sizeof(layer));
memcpy(layer, gp->layer[FILTER_GENERIC_1_L5].val + vxlan, inner);
memcpy(gp->layer[FILTER_GENERIC_1_L5].val, layer, sizeof(layer));
}
/**
* Build the intenal enic filter structure from the provided pattern. The
* pattern is validated as the items are copied.
*
* @param pattern[in]
* @param items_info[in]
* Info about this NICs item support, like valid previous items.
* @param enic_filter[out]
* NIC specfilc filters derived from the pattern.
* @param error[out]
*/
static int
enic_copy_filter(const struct rte_flow_item pattern[],
const struct enic_filter_cap *cap,
struct enic *enic,
struct filter_v2 *enic_filter,
struct rte_flow_error *error)
{
int ret;
const struct rte_flow_item *item = pattern;
u8 inner_ofst = 0; /* If encapsulated, ofst into L5 */
enum rte_flow_item_type prev_item;
const struct enic_items *item_info;
struct copy_item_args args;
enic_copy_item_fn *copy_fn;
u8 is_first_item = 1;
ENICPMD_FUNC_TRACE();
prev_item = 0;
args.filter = enic_filter;
args.inner_ofst = &inner_ofst;
args.enic = enic;
for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
/* Get info about how to validate and copy the item. If NULL
* is returned the nic does not support the item.
*/
if (item->type == RTE_FLOW_ITEM_TYPE_VOID)
continue;
item_info = &cap->item_info[item->type];
if (item->type > cap->max_item_type ||
item_info->copy_item == NULL ||
(inner_ofst > 0 && item_info->inner_copy_item == NULL)) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "Unsupported item.");
return -rte_errno;
}
/* check to see if item stacking is valid */
if (!item_stacking_valid(prev_item, item_info, is_first_item))
goto stacking_error;
args.item = item;
copy_fn = inner_ofst > 0 ? item_info->inner_copy_item :
item_info->copy_item;
ret = copy_fn(&args);
if (ret)
goto item_not_supported;
prev_item = item->type;
is_first_item = 0;
}
fixup_l5_layer(enic, &enic_filter->u.generic_1, inner_ofst);
return 0;
item_not_supported:
rte_flow_error_set(error, ret, RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "enic type error");
return -rte_errno;
stacking_error:
rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item, "stacking error");
return -rte_errno;
}
/**
* Build the intenal version 1 NIC action structure from the provided pattern.
* The pattern is validated as the items are copied.
*
* @param actions[in]
* @param enic_action[out]
* NIC specfilc actions derived from the actions.
* @param error[out]
*/
static int
enic_copy_action_v1(__rte_unused struct enic *enic,
const struct rte_flow_action actions[],
struct filter_action_v2 *enic_action)
{
enum { FATE = 1, };
uint32_t overlap = 0;
ENICPMD_FUNC_TRACE();
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
if (actions->type == RTE_FLOW_ACTION_TYPE_VOID)
continue;
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_QUEUE: {
const struct rte_flow_action_queue *queue =
(const struct rte_flow_action_queue *)
actions->conf;
if (overlap & FATE)
return ENOTSUP;
overlap |= FATE;
enic_action->rq_idx =
enic_rte_rq_idx_to_sop_idx(queue->index);
break;
}
default:
RTE_ASSERT(0);
break;
}
}
if (!(overlap & FATE))
return ENOTSUP;
enic_action->type = FILTER_ACTION_RQ_STEERING;
return 0;
}
/**
* Build the intenal version 2 NIC action structure from the provided pattern.
* The pattern is validated as the items are copied.
*
* @param actions[in]
* @param enic_action[out]
* NIC specfilc actions derived from the actions.
* @param error[out]
*/
static int
enic_copy_action_v2(struct enic *enic,
const struct rte_flow_action actions[],
struct filter_action_v2 *enic_action)
{
enum { FATE = 1, MARK = 2, };
uint32_t overlap = 0;
bool passthru = false;
ENICPMD_FUNC_TRACE();
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_QUEUE: {
const struct rte_flow_action_queue *queue =
(const struct rte_flow_action_queue *)
actions->conf;
if (overlap & FATE)
return ENOTSUP;
overlap |= FATE;
enic_action->rq_idx =
enic_rte_rq_idx_to_sop_idx(queue->index);
enic_action->flags |= FILTER_ACTION_RQ_STEERING_FLAG;
break;
}
case RTE_FLOW_ACTION_TYPE_MARK: {
const struct rte_flow_action_mark *mark =
(const struct rte_flow_action_mark *)
actions->conf;
if (overlap & MARK)
return ENOTSUP;
overlap |= MARK;
/*
* Map mark ID (32-bit) to filter ID (16-bit):
* - Reject values > 16 bits
* - Filter ID 0 is reserved for filters that steer
* but not mark. So add 1 to the mark ID to avoid
* using 0.
* - Filter ID (ENIC_MAGIC_FILTER_ID = 0xffff) is
* reserved for the "flag" action below.
*/
if (mark->id >= ENIC_MAGIC_FILTER_ID - 1)
return EINVAL;
enic_action->filter_id = mark->id + 1;
enic_action->flags |= FILTER_ACTION_FILTER_ID_FLAG;
break;
}
case RTE_FLOW_ACTION_TYPE_FLAG: {
if (overlap & MARK)
return ENOTSUP;
overlap |= MARK;
/* ENIC_MAGIC_FILTER_ID is reserved for flagging */
enic_action->filter_id = ENIC_MAGIC_FILTER_ID;
enic_action->flags |= FILTER_ACTION_FILTER_ID_FLAG;
break;
}
case RTE_FLOW_ACTION_TYPE_DROP: {
if (overlap & FATE)
return ENOTSUP;
overlap |= FATE;
enic_action->flags |= FILTER_ACTION_DROP_FLAG;
break;
}
case RTE_FLOW_ACTION_TYPE_RSS: {
const struct rte_flow_action_rss *rss =
(const struct rte_flow_action_rss *)
actions->conf;
bool allow;
uint16_t i;
/*
* Hardware does not support general RSS actions, but
* we can still support the dummy one that is used to
* "receive normally".
*/
allow = rss->func == RTE_ETH_HASH_FUNCTION_DEFAULT &&
rss->level == 0 &&
(rss->types == 0 ||
rss->types == enic->rss_hf) &&
rss->queue_num == enic->rq_count &&
rss->key_len == 0;
/* Identity queue map is ok */
for (i = 0; i < rss->queue_num; i++)
allow = allow && (i == rss->queue[i]);
if (!allow)
return ENOTSUP;
if (overlap & FATE)
return ENOTSUP;
/* Need MARK or FLAG */
if (!(overlap & MARK))
return ENOTSUP;
overlap |= FATE;
break;
}
case RTE_FLOW_ACTION_TYPE_PASSTHRU: {
/*
* Like RSS above, PASSTHRU + MARK may be used to
* "mark and then receive normally". MARK usually comes
* after PASSTHRU, so remember we have seen passthru
* and check for mark later.
*/
if (overlap & FATE)
return ENOTSUP;
overlap |= FATE;
passthru = true;
break;
}
case RTE_FLOW_ACTION_TYPE_VOID:
continue;
default:
RTE_ASSERT(0);
break;
}
}
/* Only PASSTHRU + MARK is allowed */
if (passthru && !(overlap & MARK))
return ENOTSUP;
if (!(overlap & FATE))
return ENOTSUP;
enic_action->type = FILTER_ACTION_V2;
return 0;
}
/** Check if the action is supported */
static int
enic_match_action(const struct rte_flow_action *action,
const enum rte_flow_action_type *supported_actions)
{
for (; *supported_actions != RTE_FLOW_ACTION_TYPE_END;
supported_actions++) {
if (action->type == *supported_actions)
return 1;
}
return 0;
}
/** Get the NIC filter capabilties structure */
static const struct enic_filter_cap *
enic_get_filter_cap(struct enic *enic)
{
if (enic->flow_filter_mode)
return &enic_filter_cap[enic->flow_filter_mode];
return NULL;
}
/** Get the actions for this NIC version. */
static const struct enic_action_cap *
enic_get_action_cap(struct enic *enic)
{
const struct enic_action_cap *ea;
uint8_t actions;
actions = enic->filter_actions;
if (actions & FILTER_ACTION_DROP_FLAG)
ea = &enic_action_cap[FILTER_ACTION_DROP_FLAG];
else if (actions & FILTER_ACTION_FILTER_ID_FLAG)
ea = &enic_action_cap[FILTER_ACTION_FILTER_ID_FLAG];
else
ea = &enic_action_cap[FILTER_ACTION_RQ_STEERING_FLAG];
return ea;
}
/* Debug function to dump internal NIC action structure. */
static void
enic_dump_actions(const struct filter_action_v2 *ea)
{
if (ea->type == FILTER_ACTION_RQ_STEERING) {
ENICPMD_LOG(INFO, "Action(V1), queue: %u\n", ea->rq_idx);
} else if (ea->type == FILTER_ACTION_V2) {
ENICPMD_LOG(INFO, "Actions(V2)\n");
if (ea->flags & FILTER_ACTION_RQ_STEERING_FLAG)
ENICPMD_LOG(INFO, "\tqueue: %u\n",
enic_sop_rq_idx_to_rte_idx(ea->rq_idx));
if (ea->flags & FILTER_ACTION_FILTER_ID_FLAG)
ENICPMD_LOG(INFO, "\tfilter_id: %u\n", ea->filter_id);
}
}
/* Debug function to dump internal NIC filter structure. */
static void
enic_dump_filter(const struct filter_v2 *filt)
{
const struct filter_generic_1 *gp;
int i, j, mbyte;
char buf[128], *bp;
char ip4[16], ip6[16], udp[16], tcp[16], tcpudp[16], ip4csum[16];
char l4csum[16], ipfrag[16];
switch (filt->type) {
case FILTER_IPV4_5TUPLE:
ENICPMD_LOG(INFO, "FILTER_IPV4_5TUPLE\n");
break;
case FILTER_USNIC_IP:
case FILTER_DPDK_1:
/* FIXME: this should be a loop */
gp = &filt->u.generic_1;
ENICPMD_LOG(INFO, "Filter: vlan: 0x%04x, mask: 0x%04x\n",
gp->val_vlan, gp->mask_vlan);
if (gp->mask_flags & FILTER_GENERIC_1_IPV4)
sprintf(ip4, "%s ",
(gp->val_flags & FILTER_GENERIC_1_IPV4)
? "ip4(y)" : "ip4(n)");
else
sprintf(ip4, "%s ", "ip4(x)");
if (gp->mask_flags & FILTER_GENERIC_1_IPV6)
sprintf(ip6, "%s ",
(gp->val_flags & FILTER_GENERIC_1_IPV4)
? "ip6(y)" : "ip6(n)");
else
sprintf(ip6, "%s ", "ip6(x)");
if (gp->mask_flags & FILTER_GENERIC_1_UDP)
sprintf(udp, "%s ",
(gp->val_flags & FILTER_GENERIC_1_UDP)
? "udp(y)" : "udp(n)");
else
sprintf(udp, "%s ", "udp(x)");
if (gp->mask_flags & FILTER_GENERIC_1_TCP)
sprintf(tcp, "%s ",
(gp->val_flags & FILTER_GENERIC_1_TCP)
? "tcp(y)" : "tcp(n)");
else
sprintf(tcp, "%s ", "tcp(x)");
if (gp->mask_flags & FILTER_GENERIC_1_TCP_OR_UDP)
sprintf(tcpudp, "%s ",
(gp->val_flags & FILTER_GENERIC_1_TCP_OR_UDP)
? "tcpudp(y)" : "tcpudp(n)");
else
sprintf(tcpudp, "%s ", "tcpudp(x)");
if (gp->mask_flags & FILTER_GENERIC_1_IP4SUM_OK)
sprintf(ip4csum, "%s ",
(gp->val_flags & FILTER_GENERIC_1_IP4SUM_OK)
? "ip4csum(y)" : "ip4csum(n)");
else
sprintf(ip4csum, "%s ", "ip4csum(x)");
if (gp->mask_flags & FILTER_GENERIC_1_L4SUM_OK)
sprintf(l4csum, "%s ",
(gp->val_flags & FILTER_GENERIC_1_L4SUM_OK)
? "l4csum(y)" : "l4csum(n)");
else
sprintf(l4csum, "%s ", "l4csum(x)");
if (gp->mask_flags & FILTER_GENERIC_1_IPFRAG)
sprintf(ipfrag, "%s ",
(gp->val_flags & FILTER_GENERIC_1_IPFRAG)
? "ipfrag(y)" : "ipfrag(n)");
else
sprintf(ipfrag, "%s ", "ipfrag(x)");
ENICPMD_LOG(INFO, "\tFlags: %s%s%s%s%s%s%s%s\n", ip4, ip6, udp,
tcp, tcpudp, ip4csum, l4csum, ipfrag);
for (i = 0; i < FILTER_GENERIC_1_NUM_LAYERS; i++) {
mbyte = FILTER_GENERIC_1_KEY_LEN - 1;
while (mbyte && !gp->layer[i].mask[mbyte])
mbyte--;
if (mbyte == 0)
continue;
bp = buf;
for (j = 0; j <= mbyte; j++) {
sprintf(bp, "%02x",
gp->layer[i].mask[j]);
bp += 2;
}
*bp = '\0';
ENICPMD_LOG(INFO, "\tL%u mask: %s\n", i + 2, buf);
bp = buf;
for (j = 0; j <= mbyte; j++) {
sprintf(bp, "%02x",
gp->layer[i].val[j]);
bp += 2;
}
*bp = '\0';
ENICPMD_LOG(INFO, "\tL%u val: %s\n", i + 2, buf);
}
break;
default:
ENICPMD_LOG(INFO, "FILTER UNKNOWN\n");
break;
}
}
/* Debug function to dump internal NIC flow structures. */
static void
enic_dump_flow(const struct filter_action_v2 *ea, const struct filter_v2 *filt)
{
enic_dump_filter(filt);
enic_dump_actions(ea);
}
/**
* Internal flow parse/validate function.
*
* @param dev[in]
* This device pointer.
* @param pattern[in]
* @param actions[in]
* @param error[out]
* @param enic_filter[out]
* Internal NIC filter structure pointer.
* @param enic_action[out]
* Internal NIC action structure pointer.
*/
static int
enic_flow_parse(struct rte_eth_dev *dev,
const struct rte_flow_attr *attrs,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error,
struct filter_v2 *enic_filter,
struct filter_action_v2 *enic_action)
{
unsigned int ret = 0;
struct enic *enic = pmd_priv(dev);
const struct enic_filter_cap *enic_filter_cap;
const struct enic_action_cap *enic_action_cap;
const struct rte_flow_action *action;
ENICPMD_FUNC_TRACE();
memset(enic_filter, 0, sizeof(*enic_filter));
memset(enic_action, 0, sizeof(*enic_action));
if (!pattern) {
rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "No pattern specified");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "No action specified");
return -rte_errno;
}
if (attrs) {
if (attrs->group) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
NULL,
"priority groups are not supported");
return -rte_errno;
} else if (attrs->priority) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
NULL,
"priorities are not supported");
return -rte_errno;
} else if (attrs->egress) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
NULL,
"egress is not supported");
return -rte_errno;
} else if (attrs->transfer) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
NULL,
"transfer is not supported");
return -rte_errno;
} else if (!attrs->ingress) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
NULL,
"only ingress is supported");
return -rte_errno;
}
} else {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "No attribute specified");
return -rte_errno;
}
/* Verify Actions. */
enic_action_cap = enic_get_action_cap(enic);
for (action = &actions[0]; action->type != RTE_FLOW_ACTION_TYPE_END;
action++) {
if (action->type == RTE_FLOW_ACTION_TYPE_VOID)
continue;
else if (!enic_match_action(action, enic_action_cap->actions))
break;
}
if (action->type != RTE_FLOW_ACTION_TYPE_END) {
rte_flow_error_set(error, EPERM, RTE_FLOW_ERROR_TYPE_ACTION,
action, "Invalid action.");
return -rte_errno;
}
ret = enic_action_cap->copy_fn(enic, actions, enic_action);
if (ret) {
rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Unsupported action.");
return -rte_errno;
}
/* Verify Flow items. If copying the filter from flow format to enic
* format fails, the flow is not supported
*/
enic_filter_cap = enic_get_filter_cap(enic);
if (enic_filter_cap == NULL) {
rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Flow API not available");
return -rte_errno;
}
enic_filter->type = enic->flow_filter_mode;
ret = enic_copy_filter(pattern, enic_filter_cap, enic,
enic_filter, error);
return ret;
}
/**
* Push filter/action to the NIC.
*
* @param enic[in]
* Device structure pointer.
* @param enic_filter[in]
* Internal NIC filter structure pointer.
* @param enic_action[in]
* Internal NIC action structure pointer.
* @param error[out]
*/
static struct rte_flow *
enic_flow_add_filter(struct enic *enic, struct filter_v2 *enic_filter,
struct filter_action_v2 *enic_action,
struct rte_flow_error *error)
{
struct rte_flow *flow;
int err;
u16 entry;
ENICPMD_FUNC_TRACE();
flow = rte_calloc(__func__, 1, sizeof(*flow), 0);
if (!flow) {
rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "cannot allocate flow memory");
return NULL;
}
/* entry[in] is the queue id, entry[out] is the filter Id for delete */
entry = enic_action->rq_idx;
err = vnic_dev_classifier(enic->vdev, CLSF_ADD, &entry, enic_filter,
enic_action);
if (err) {
rte_flow_error_set(error, -err, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "vnic_dev_classifier error");
rte_free(flow);
return NULL;
}
flow->enic_filter_id = entry;
flow->enic_filter = *enic_filter;
return flow;
}
/**
* Remove filter/action from the NIC.
*
* @param enic[in]
* Device structure pointer.
* @param filter_id[in]
* Id of NIC filter.
* @param enic_action[in]
* Internal NIC action structure pointer.
* @param error[out]
*/
static int
enic_flow_del_filter(struct enic *enic, struct rte_flow *flow,
struct rte_flow_error *error)
{
u16 filter_id;
int err;
ENICPMD_FUNC_TRACE();
filter_id = flow->enic_filter_id;
err = vnic_dev_classifier(enic->vdev, CLSF_DEL, &filter_id, NULL, NULL);
if (err) {
rte_flow_error_set(error, -err, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "vnic_dev_classifier failed");
return -err;
}
return 0;
}
/*
* The following functions are callbacks for Generic flow API.
*/
/**
* Validate a flow supported by the NIC.
*
* @see rte_flow_validate()
* @see rte_flow_ops
*/
static int
enic_flow_validate(struct rte_eth_dev *dev, const struct rte_flow_attr *attrs,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct filter_v2 enic_filter;
struct filter_action_v2 enic_action;
int ret;
ENICPMD_FUNC_TRACE();
ret = enic_flow_parse(dev, attrs, pattern, actions, error,
&enic_filter, &enic_action);
if (!ret)
enic_dump_flow(&enic_action, &enic_filter);
return ret;
}
/**
* Create a flow supported by the NIC.
*
* @see rte_flow_create()
* @see rte_flow_ops
*/
static struct rte_flow *
enic_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attrs,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
int ret;
struct filter_v2 enic_filter;
struct filter_action_v2 enic_action;
struct rte_flow *flow;
struct enic *enic = pmd_priv(dev);
ENICPMD_FUNC_TRACE();
ret = enic_flow_parse(dev, attrs, pattern, actions, error, &enic_filter,
&enic_action);
if (ret < 0)
return NULL;
flow = enic_flow_add_filter(enic, &enic_filter, &enic_action,
error);
if (flow)
LIST_INSERT_HEAD(&enic->flows, flow, next);
return flow;
}
/**
* Destroy a flow supported by the NIC.
*
* @see rte_flow_destroy()
* @see rte_flow_ops
*/
static int
enic_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow,
__rte_unused struct rte_flow_error *error)
{
struct enic *enic = pmd_priv(dev);
ENICPMD_FUNC_TRACE();
enic_flow_del_filter(enic, flow, error);
LIST_REMOVE(flow, next);
rte_free(flow);
return 0;
}
/**
* Flush all flows on the device.
*
* @see rte_flow_flush()
* @see rte_flow_ops
*/
static int
enic_flow_flush(struct rte_eth_dev *dev, struct rte_flow_error *error)
{
struct rte_flow *flow;
struct enic *enic = pmd_priv(dev);
ENICPMD_FUNC_TRACE();
while (!LIST_EMPTY(&enic->flows)) {
flow = LIST_FIRST(&enic->flows);
enic_flow_del_filter(enic, flow, error);
LIST_REMOVE(flow, next);
rte_free(flow);
}
return 0;
}
/**
* Flow callback registration.
*
* @see rte_flow_ops
*/
const struct rte_flow_ops enic_flow_ops = {
.validate = enic_flow_validate,
.create = enic_flow_create,
.destroy = enic_flow_destroy,
.flush = enic_flow_flush,
};