mirror of https://github.com/F-Stack/f-stack.git
1497 lines
41 KiB
C
1497 lines
41 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2001 - 2015 Intel Corporation
|
|
*/
|
|
|
|
/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
|
|
* 80003ES2LAN Gigabit Ethernet Controller (Serdes)
|
|
*/
|
|
|
|
#include "e1000_api.h"
|
|
|
|
STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
|
|
STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
|
|
STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
|
|
STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
|
|
STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
|
|
u32 offset,
|
|
u16 *data);
|
|
STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
|
|
u32 offset,
|
|
u16 data);
|
|
STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
|
|
u16 words, u16 *data);
|
|
STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
|
|
STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
|
|
STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
|
|
STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
|
|
u16 *duplex);
|
|
STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
|
|
STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw);
|
|
STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
|
|
STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
|
|
STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
|
|
STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
|
|
STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
|
|
STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
|
|
STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
|
|
u16 *data);
|
|
STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
|
|
u16 data);
|
|
STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
|
|
STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
|
|
STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw);
|
|
STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
|
|
|
|
/* A table for the GG82563 cable length where the range is defined
|
|
* with a lower bound at "index" and the upper bound at
|
|
* "index + 5".
|
|
*/
|
|
STATIC const u16 e1000_gg82563_cable_length_table[] = {
|
|
0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
|
|
#define GG82563_CABLE_LENGTH_TABLE_SIZE \
|
|
(sizeof(e1000_gg82563_cable_length_table) / \
|
|
sizeof(e1000_gg82563_cable_length_table[0]))
|
|
|
|
/**
|
|
* e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
STATIC s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_init_phy_params_80003es2lan");
|
|
|
|
if (hw->phy.media_type != e1000_media_type_copper) {
|
|
phy->type = e1000_phy_none;
|
|
return E1000_SUCCESS;
|
|
} else {
|
|
phy->ops.power_up = e1000_power_up_phy_copper;
|
|
phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
|
|
}
|
|
|
|
phy->addr = 1;
|
|
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
|
phy->reset_delay_us = 100;
|
|
phy->type = e1000_phy_gg82563;
|
|
|
|
phy->ops.acquire = e1000_acquire_phy_80003es2lan;
|
|
phy->ops.check_polarity = e1000_check_polarity_m88;
|
|
phy->ops.check_reset_block = e1000_check_reset_block_generic;
|
|
phy->ops.commit = e1000_phy_sw_reset_generic;
|
|
phy->ops.get_cfg_done = e1000_get_cfg_done_80003es2lan;
|
|
phy->ops.get_info = e1000_get_phy_info_m88;
|
|
phy->ops.release = e1000_release_phy_80003es2lan;
|
|
phy->ops.reset = e1000_phy_hw_reset_generic;
|
|
phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
|
|
|
|
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
|
|
phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan;
|
|
phy->ops.read_reg = e1000_read_phy_reg_gg82563_80003es2lan;
|
|
phy->ops.write_reg = e1000_write_phy_reg_gg82563_80003es2lan;
|
|
|
|
phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan;
|
|
|
|
/* This can only be done after all function pointers are setup. */
|
|
ret_val = e1000_get_phy_id(hw);
|
|
|
|
/* Verify phy id */
|
|
if (phy->id != GG82563_E_PHY_ID)
|
|
return -E1000_ERR_PHY;
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
STATIC s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
u16 size;
|
|
|
|
DEBUGFUNC("e1000_init_nvm_params_80003es2lan");
|
|
|
|
nvm->opcode_bits = 8;
|
|
nvm->delay_usec = 1;
|
|
switch (nvm->override) {
|
|
case e1000_nvm_override_spi_large:
|
|
nvm->page_size = 32;
|
|
nvm->address_bits = 16;
|
|
break;
|
|
case e1000_nvm_override_spi_small:
|
|
nvm->page_size = 8;
|
|
nvm->address_bits = 8;
|
|
break;
|
|
default:
|
|
nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
|
|
nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
|
|
break;
|
|
}
|
|
|
|
nvm->type = e1000_nvm_eeprom_spi;
|
|
|
|
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
|
|
E1000_EECD_SIZE_EX_SHIFT);
|
|
|
|
/* Added to a constant, "size" becomes the left-shift value
|
|
* for setting word_size.
|
|
*/
|
|
size += NVM_WORD_SIZE_BASE_SHIFT;
|
|
|
|
/* EEPROM access above 16k is unsupported */
|
|
if (size > 14)
|
|
size = 14;
|
|
nvm->word_size = 1 << size;
|
|
|
|
/* Function Pointers */
|
|
nvm->ops.acquire = e1000_acquire_nvm_80003es2lan;
|
|
nvm->ops.read = e1000_read_nvm_eerd;
|
|
nvm->ops.release = e1000_release_nvm_80003es2lan;
|
|
nvm->ops.update = e1000_update_nvm_checksum_generic;
|
|
nvm->ops.valid_led_default = e1000_valid_led_default_generic;
|
|
nvm->ops.validate = e1000_validate_nvm_checksum_generic;
|
|
nvm->ops.write = e1000_write_nvm_80003es2lan;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
STATIC s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
|
|
DEBUGFUNC("e1000_init_mac_params_80003es2lan");
|
|
|
|
/* Set media type and media-dependent function pointers */
|
|
switch (hw->device_id) {
|
|
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
|
|
hw->phy.media_type = e1000_media_type_internal_serdes;
|
|
mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
|
|
mac->ops.setup_physical_interface =
|
|
e1000_setup_fiber_serdes_link_generic;
|
|
break;
|
|
default:
|
|
hw->phy.media_type = e1000_media_type_copper;
|
|
mac->ops.check_for_link = e1000_check_for_copper_link_generic;
|
|
mac->ops.setup_physical_interface =
|
|
e1000_setup_copper_link_80003es2lan;
|
|
break;
|
|
}
|
|
|
|
/* Set mta register count */
|
|
mac->mta_reg_count = 128;
|
|
/* Set rar entry count */
|
|
mac->rar_entry_count = E1000_RAR_ENTRIES;
|
|
/* Set if part includes ASF firmware */
|
|
mac->asf_firmware_present = true;
|
|
/* FWSM register */
|
|
mac->has_fwsm = true;
|
|
/* ARC supported; valid only if manageability features are enabled. */
|
|
mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
|
|
E1000_FWSM_MODE_MASK);
|
|
/* Adaptive IFS not supported */
|
|
mac->adaptive_ifs = false;
|
|
|
|
/* Function pointers */
|
|
|
|
/* bus type/speed/width */
|
|
mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
|
|
/* reset */
|
|
mac->ops.reset_hw = e1000_reset_hw_80003es2lan;
|
|
/* hw initialization */
|
|
mac->ops.init_hw = e1000_init_hw_80003es2lan;
|
|
/* link setup */
|
|
mac->ops.setup_link = e1000_setup_link_generic;
|
|
/* check management mode */
|
|
mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
|
|
/* multicast address update */
|
|
mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
|
|
/* writing VFTA */
|
|
mac->ops.write_vfta = e1000_write_vfta_generic;
|
|
/* clearing VFTA */
|
|
mac->ops.clear_vfta = e1000_clear_vfta_generic;
|
|
/* read mac address */
|
|
mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan;
|
|
/* ID LED init */
|
|
mac->ops.id_led_init = e1000_id_led_init_generic;
|
|
/* blink LED */
|
|
mac->ops.blink_led = e1000_blink_led_generic;
|
|
/* setup LED */
|
|
mac->ops.setup_led = e1000_setup_led_generic;
|
|
/* cleanup LED */
|
|
mac->ops.cleanup_led = e1000_cleanup_led_generic;
|
|
/* turn on/off LED */
|
|
mac->ops.led_on = e1000_led_on_generic;
|
|
mac->ops.led_off = e1000_led_off_generic;
|
|
/* clear hardware counters */
|
|
mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan;
|
|
/* link info */
|
|
mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan;
|
|
|
|
/* set lan id for port to determine which phy lock to use */
|
|
hw->mac.ops.set_lan_id(hw);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Called to initialize all function pointers and parameters.
|
|
**/
|
|
void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_init_function_pointers_80003es2lan");
|
|
|
|
hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan;
|
|
hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan;
|
|
hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan;
|
|
}
|
|
|
|
/**
|
|
* e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* A wrapper to acquire access rights to the correct PHY.
|
|
**/
|
|
STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
u16 mask;
|
|
|
|
DEBUGFUNC("e1000_acquire_phy_80003es2lan");
|
|
|
|
mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
|
|
return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
|
|
}
|
|
|
|
/**
|
|
* e1000_release_phy_80003es2lan - Release rights to access PHY
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* A wrapper to release access rights to the correct PHY.
|
|
**/
|
|
STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
u16 mask;
|
|
|
|
DEBUGFUNC("e1000_release_phy_80003es2lan");
|
|
|
|
mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
|
|
e1000_release_swfw_sync_80003es2lan(hw, mask);
|
|
}
|
|
|
|
/**
|
|
* e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Acquire the semaphore to access the Kumeran interface.
|
|
*
|
|
**/
|
|
STATIC s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
u16 mask;
|
|
|
|
DEBUGFUNC("e1000_acquire_mac_csr_80003es2lan");
|
|
|
|
mask = E1000_SWFW_CSR_SM;
|
|
|
|
return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
|
|
}
|
|
|
|
/**
|
|
* e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Release the semaphore used to access the Kumeran interface
|
|
**/
|
|
STATIC void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
u16 mask;
|
|
|
|
DEBUGFUNC("e1000_release_mac_csr_80003es2lan");
|
|
|
|
mask = E1000_SWFW_CSR_SM;
|
|
|
|
e1000_release_swfw_sync_80003es2lan(hw, mask);
|
|
}
|
|
|
|
/**
|
|
* e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Acquire the semaphore to access the EEPROM.
|
|
**/
|
|
STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_acquire_nvm_80003es2lan");
|
|
|
|
ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = e1000_acquire_nvm_generic(hw);
|
|
|
|
if (ret_val)
|
|
e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Release the semaphore used to access the EEPROM.
|
|
**/
|
|
STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_release_nvm_80003es2lan");
|
|
|
|
e1000_release_nvm_generic(hw);
|
|
e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
|
|
}
|
|
|
|
/**
|
|
* e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
|
|
* @hw: pointer to the HW structure
|
|
* @mask: specifies which semaphore to acquire
|
|
*
|
|
* Acquire the SW/FW semaphore to access the PHY or NVM. The mask
|
|
* will also specify which port we're acquiring the lock for.
|
|
**/
|
|
STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
|
|
{
|
|
u32 swfw_sync;
|
|
u32 swmask = mask;
|
|
u32 fwmask = mask << 16;
|
|
s32 i = 0;
|
|
s32 timeout = 50;
|
|
|
|
DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan");
|
|
|
|
while (i < timeout) {
|
|
if (e1000_get_hw_semaphore_generic(hw))
|
|
return -E1000_ERR_SWFW_SYNC;
|
|
|
|
swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
|
|
if (!(swfw_sync & (fwmask | swmask)))
|
|
break;
|
|
|
|
/* Firmware currently using resource (fwmask)
|
|
* or other software thread using resource (swmask)
|
|
*/
|
|
e1000_put_hw_semaphore_generic(hw);
|
|
msec_delay_irq(5);
|
|
i++;
|
|
}
|
|
|
|
if (i == timeout) {
|
|
DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
|
|
return -E1000_ERR_SWFW_SYNC;
|
|
}
|
|
|
|
swfw_sync |= swmask;
|
|
E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
|
|
|
|
e1000_put_hw_semaphore_generic(hw);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
|
|
* @hw: pointer to the HW structure
|
|
* @mask: specifies which semaphore to acquire
|
|
*
|
|
* Release the SW/FW semaphore used to access the PHY or NVM. The mask
|
|
* will also specify which port we're releasing the lock for.
|
|
**/
|
|
STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
|
|
{
|
|
u32 swfw_sync;
|
|
|
|
DEBUGFUNC("e1000_release_swfw_sync_80003es2lan");
|
|
|
|
while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
|
|
; /* Empty */
|
|
|
|
swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
|
|
swfw_sync &= ~mask;
|
|
E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
|
|
|
|
e1000_put_hw_semaphore_generic(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of the register to read
|
|
* @data: pointer to the data returned from the operation
|
|
*
|
|
* Read the GG82563 PHY register.
|
|
**/
|
|
STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
|
|
u32 offset, u16 *data)
|
|
{
|
|
s32 ret_val;
|
|
u32 page_select;
|
|
u16 temp;
|
|
|
|
DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan");
|
|
|
|
ret_val = e1000_acquire_phy_80003es2lan(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Select Configuration Page */
|
|
if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
|
|
page_select = GG82563_PHY_PAGE_SELECT;
|
|
} else {
|
|
/* Use Alternative Page Select register to access
|
|
* registers 30 and 31
|
|
*/
|
|
page_select = GG82563_PHY_PAGE_SELECT_ALT;
|
|
}
|
|
|
|
temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
|
|
ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
|
|
if (ret_val) {
|
|
e1000_release_phy_80003es2lan(hw);
|
|
return ret_val;
|
|
}
|
|
|
|
if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
|
|
/* The "ready" bit in the MDIC register may be incorrectly set
|
|
* before the device has completed the "Page Select" MDI
|
|
* transaction. So we wait 200us after each MDI command...
|
|
*/
|
|
usec_delay(200);
|
|
|
|
/* ...and verify the command was successful. */
|
|
ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
|
|
|
|
if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
|
|
e1000_release_phy_80003es2lan(hw);
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
|
|
usec_delay(200);
|
|
|
|
ret_val = e1000_read_phy_reg_mdic(hw,
|
|
MAX_PHY_REG_ADDRESS & offset,
|
|
data);
|
|
|
|
usec_delay(200);
|
|
} else {
|
|
ret_val = e1000_read_phy_reg_mdic(hw,
|
|
MAX_PHY_REG_ADDRESS & offset,
|
|
data);
|
|
}
|
|
|
|
e1000_release_phy_80003es2lan(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of the register to read
|
|
* @data: value to write to the register
|
|
*
|
|
* Write to the GG82563 PHY register.
|
|
**/
|
|
STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
|
|
u32 offset, u16 data)
|
|
{
|
|
s32 ret_val;
|
|
u32 page_select;
|
|
u16 temp;
|
|
|
|
DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan");
|
|
|
|
ret_val = e1000_acquire_phy_80003es2lan(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Select Configuration Page */
|
|
if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
|
|
page_select = GG82563_PHY_PAGE_SELECT;
|
|
} else {
|
|
/* Use Alternative Page Select register to access
|
|
* registers 30 and 31
|
|
*/
|
|
page_select = GG82563_PHY_PAGE_SELECT_ALT;
|
|
}
|
|
|
|
temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
|
|
ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
|
|
if (ret_val) {
|
|
e1000_release_phy_80003es2lan(hw);
|
|
return ret_val;
|
|
}
|
|
|
|
if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
|
|
/* The "ready" bit in the MDIC register may be incorrectly set
|
|
* before the device has completed the "Page Select" MDI
|
|
* transaction. So we wait 200us after each MDI command...
|
|
*/
|
|
usec_delay(200);
|
|
|
|
/* ...and verify the command was successful. */
|
|
ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
|
|
|
|
if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
|
|
e1000_release_phy_80003es2lan(hw);
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
|
|
usec_delay(200);
|
|
|
|
ret_val = e1000_write_phy_reg_mdic(hw,
|
|
MAX_PHY_REG_ADDRESS & offset,
|
|
data);
|
|
|
|
usec_delay(200);
|
|
} else {
|
|
ret_val = e1000_write_phy_reg_mdic(hw,
|
|
MAX_PHY_REG_ADDRESS & offset,
|
|
data);
|
|
}
|
|
|
|
e1000_release_phy_80003es2lan(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_write_nvm_80003es2lan - Write to ESB2 NVM
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of the register to read
|
|
* @words: number of words to write
|
|
* @data: buffer of data to write to the NVM
|
|
*
|
|
* Write "words" of data to the ESB2 NVM.
|
|
**/
|
|
STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
|
|
u16 words, u16 *data)
|
|
{
|
|
DEBUGFUNC("e1000_write_nvm_80003es2lan");
|
|
|
|
return e1000_write_nvm_spi(hw, offset, words, data);
|
|
}
|
|
|
|
/**
|
|
* e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Wait a specific amount of time for manageability processes to complete.
|
|
* This is a function pointer entry point called by the phy module.
|
|
**/
|
|
STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
s32 timeout = PHY_CFG_TIMEOUT;
|
|
u32 mask = E1000_NVM_CFG_DONE_PORT_0;
|
|
|
|
DEBUGFUNC("e1000_get_cfg_done_80003es2lan");
|
|
|
|
if (hw->bus.func == 1)
|
|
mask = E1000_NVM_CFG_DONE_PORT_1;
|
|
|
|
while (timeout) {
|
|
if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
|
|
break;
|
|
msec_delay(1);
|
|
timeout--;
|
|
}
|
|
if (!timeout) {
|
|
DEBUGOUT("MNG configuration cycle has not completed.\n");
|
|
return -E1000_ERR_RESET;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Force the speed and duplex settings onto the PHY. This is a
|
|
* function pointer entry point called by the phy module.
|
|
**/
|
|
STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
u16 phy_data;
|
|
bool link;
|
|
|
|
DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan");
|
|
|
|
if (!(hw->phy.ops.read_reg))
|
|
return E1000_SUCCESS;
|
|
|
|
/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
|
|
* forced whenever speed and duplex are forced.
|
|
*/
|
|
ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
|
|
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
DEBUGOUT1("GG82563 PSCR: %X\n", phy_data);
|
|
|
|
ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
e1000_phy_force_speed_duplex_setup(hw, &phy_data);
|
|
|
|
/* Reset the phy to commit changes. */
|
|
phy_data |= MII_CR_RESET;
|
|
|
|
ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
usec_delay(1);
|
|
|
|
if (hw->phy.autoneg_wait_to_complete) {
|
|
DEBUGOUT("Waiting for forced speed/duplex link on GG82563 phy.\n");
|
|
|
|
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
|
|
100000, &link);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (!link) {
|
|
/* We didn't get link.
|
|
* Reset the DSP and cross our fingers.
|
|
*/
|
|
ret_val = e1000_phy_reset_dsp_generic(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
/* Try once more */
|
|
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
|
|
100000, &link);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
|
|
&phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Resetting the phy means we need to verify the TX_CLK corresponds
|
|
* to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
|
|
*/
|
|
phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
|
|
if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
|
|
phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
|
|
else
|
|
phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
|
|
|
|
/* In addition, we must re-enable CRS on Tx for both half and full
|
|
* duplex.
|
|
*/
|
|
phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
|
|
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
|
|
phy_data);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_cable_length_80003es2lan - Set approximate cable length
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Find the approximate cable length as measured by the GG82563 PHY.
|
|
* This is a function pointer entry point called by the phy module.
|
|
**/
|
|
STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val;
|
|
u16 phy_data, index;
|
|
|
|
DEBUGFUNC("e1000_get_cable_length_80003es2lan");
|
|
|
|
if (!(hw->phy.ops.read_reg))
|
|
return E1000_SUCCESS;
|
|
|
|
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
index = phy_data & GG82563_DSPD_CABLE_LENGTH;
|
|
|
|
if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
|
|
return -E1000_ERR_PHY;
|
|
|
|
phy->min_cable_length = e1000_gg82563_cable_length_table[index];
|
|
phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
|
|
|
|
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_link_up_info_80003es2lan - Report speed and duplex
|
|
* @hw: pointer to the HW structure
|
|
* @speed: pointer to speed buffer
|
|
* @duplex: pointer to duplex buffer
|
|
*
|
|
* Retrieve the current speed and duplex configuration.
|
|
**/
|
|
STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
|
|
u16 *duplex)
|
|
{
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_get_link_up_info_80003es2lan");
|
|
|
|
if (hw->phy.media_type == e1000_media_type_copper) {
|
|
ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
|
|
duplex);
|
|
hw->phy.ops.cfg_on_link_up(hw);
|
|
} else {
|
|
ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
|
|
speed,
|
|
duplex);
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_reset_hw_80003es2lan - Reset the ESB2 controller
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Perform a global reset to the ESB2 controller.
|
|
**/
|
|
STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl;
|
|
s32 ret_val;
|
|
u16 kum_reg_data;
|
|
|
|
DEBUGFUNC("e1000_reset_hw_80003es2lan");
|
|
|
|
/* Prevent the PCI-E bus from sticking if there is no TLP connection
|
|
* on the last TLP read/write transaction when MAC is reset.
|
|
*/
|
|
ret_val = e1000_disable_pcie_master_generic(hw);
|
|
if (ret_val)
|
|
DEBUGOUT("PCI-E Master disable polling has failed.\n");
|
|
|
|
DEBUGOUT("Masking off all interrupts\n");
|
|
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
|
|
|
|
E1000_WRITE_REG(hw, E1000_RCTL, 0);
|
|
E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
msec_delay(10);
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
|
|
ret_val = e1000_acquire_phy_80003es2lan(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
DEBUGOUT("Issuing a global reset to MAC\n");
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
|
|
e1000_release_phy_80003es2lan(hw);
|
|
|
|
/* Disable IBIST slave mode (far-end loopback) */
|
|
ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
|
|
E1000_KMRNCTRLSTA_INBAND_PARAM, &kum_reg_data);
|
|
if (!ret_val) {
|
|
kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
|
|
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
|
|
E1000_KMRNCTRLSTA_INBAND_PARAM,
|
|
kum_reg_data);
|
|
if (ret_val)
|
|
DEBUGOUT("Error disabling far-end loopback\n");
|
|
} else
|
|
DEBUGOUT("Error disabling far-end loopback\n");
|
|
|
|
ret_val = e1000_get_auto_rd_done_generic(hw);
|
|
if (ret_val)
|
|
/* We don't want to continue accessing MAC registers. */
|
|
return ret_val;
|
|
|
|
/* Clear any pending interrupt events. */
|
|
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
|
|
E1000_READ_REG(hw, E1000_ICR);
|
|
|
|
return e1000_check_alt_mac_addr_generic(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_init_hw_80003es2lan - Initialize the ESB2 controller
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
|
|
**/
|
|
STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
u32 reg_data;
|
|
s32 ret_val;
|
|
u16 kum_reg_data;
|
|
u16 i;
|
|
|
|
DEBUGFUNC("e1000_init_hw_80003es2lan");
|
|
|
|
e1000_initialize_hw_bits_80003es2lan(hw);
|
|
|
|
/* Initialize identification LED */
|
|
ret_val = mac->ops.id_led_init(hw);
|
|
/* An error is not fatal and we should not stop init due to this */
|
|
if (ret_val)
|
|
DEBUGOUT("Error initializing identification LED\n");
|
|
|
|
/* Disabling VLAN filtering */
|
|
DEBUGOUT("Initializing the IEEE VLAN\n");
|
|
mac->ops.clear_vfta(hw);
|
|
|
|
/* Setup the receive address. */
|
|
e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
|
|
|
|
/* Zero out the Multicast HASH table */
|
|
DEBUGOUT("Zeroing the MTA\n");
|
|
for (i = 0; i < mac->mta_reg_count; i++)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
|
|
|
|
/* Setup link and flow control */
|
|
ret_val = mac->ops.setup_link(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Disable IBIST slave mode (far-end loopback) */
|
|
ret_val =
|
|
e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
|
|
&kum_reg_data);
|
|
if (!ret_val) {
|
|
kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
|
|
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
|
|
E1000_KMRNCTRLSTA_INBAND_PARAM,
|
|
kum_reg_data);
|
|
if (ret_val)
|
|
DEBUGOUT("Error disabling far-end loopback\n");
|
|
} else
|
|
DEBUGOUT("Error disabling far-end loopback\n");
|
|
|
|
/* Set the transmit descriptor write-back policy */
|
|
reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
|
|
reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
|
|
E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
|
|
E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
|
|
|
|
/* ...for both queues. */
|
|
reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
|
|
reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
|
|
E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
|
|
E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
|
|
|
|
/* Enable retransmit on late collisions */
|
|
reg_data = E1000_READ_REG(hw, E1000_TCTL);
|
|
reg_data |= E1000_TCTL_RTLC;
|
|
E1000_WRITE_REG(hw, E1000_TCTL, reg_data);
|
|
|
|
/* Configure Gigabit Carry Extend Padding */
|
|
reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT);
|
|
reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
|
|
reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
|
|
E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data);
|
|
|
|
/* Configure Transmit Inter-Packet Gap */
|
|
reg_data = E1000_READ_REG(hw, E1000_TIPG);
|
|
reg_data &= ~E1000_TIPG_IPGT_MASK;
|
|
reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
|
|
E1000_WRITE_REG(hw, E1000_TIPG, reg_data);
|
|
|
|
reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
|
|
reg_data &= ~0x00100000;
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
|
|
|
|
/* default to true to enable the MDIC W/A */
|
|
hw->dev_spec._80003es2lan.mdic_wa_enable = true;
|
|
|
|
ret_val =
|
|
e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
|
|
E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
|
|
if (!ret_val) {
|
|
if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
|
|
E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
|
|
hw->dev_spec._80003es2lan.mdic_wa_enable = false;
|
|
}
|
|
|
|
/* Clear all of the statistics registers (clear on read). It is
|
|
* important that we do this after we have tried to establish link
|
|
* because the symbol error count will increment wildly if there
|
|
* is no link.
|
|
*/
|
|
e1000_clear_hw_cntrs_80003es2lan(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Initializes required hardware-dependent bits needed for normal operation.
|
|
**/
|
|
STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
u32 reg;
|
|
|
|
DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan");
|
|
|
|
/* Transmit Descriptor Control 0 */
|
|
reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
|
|
reg |= (1 << 22);
|
|
E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
|
|
|
|
/* Transmit Descriptor Control 1 */
|
|
reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
|
|
reg |= (1 << 22);
|
|
E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
|
|
|
|
/* Transmit Arbitration Control 0 */
|
|
reg = E1000_READ_REG(hw, E1000_TARC(0));
|
|
reg &= ~(0xF << 27); /* 30:27 */
|
|
if (hw->phy.media_type != e1000_media_type_copper)
|
|
reg &= ~(1 << 20);
|
|
E1000_WRITE_REG(hw, E1000_TARC(0), reg);
|
|
|
|
/* Transmit Arbitration Control 1 */
|
|
reg = E1000_READ_REG(hw, E1000_TARC(1));
|
|
if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
|
|
reg &= ~(1 << 28);
|
|
else
|
|
reg |= (1 << 28);
|
|
E1000_WRITE_REG(hw, E1000_TARC(1), reg);
|
|
|
|
/* Disable IPv6 extension header parsing because some malformed
|
|
* IPv6 headers can hang the Rx.
|
|
*/
|
|
reg = E1000_READ_REG(hw, E1000_RFCTL);
|
|
reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
|
|
E1000_WRITE_REG(hw, E1000_RFCTL, reg);
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Setup some GG82563 PHY registers for obtaining link
|
|
**/
|
|
STATIC s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val;
|
|
u32 reg;
|
|
u16 data;
|
|
|
|
DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");
|
|
|
|
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
|
|
/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
|
|
data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
|
|
|
|
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Options:
|
|
* MDI/MDI-X = 0 (default)
|
|
* 0 - Auto for all speeds
|
|
* 1 - MDI mode
|
|
* 2 - MDI-X mode
|
|
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
|
|
*/
|
|
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
|
|
|
|
switch (phy->mdix) {
|
|
case 1:
|
|
data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
|
|
break;
|
|
case 2:
|
|
data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
|
|
break;
|
|
case 0:
|
|
default:
|
|
data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
|
|
break;
|
|
}
|
|
|
|
/* Options:
|
|
* disable_polarity_correction = 0 (default)
|
|
* Automatic Correction for Reversed Cable Polarity
|
|
* 0 - Disabled
|
|
* 1 - Enabled
|
|
*/
|
|
data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
|
|
if (phy->disable_polarity_correction)
|
|
data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
|
|
|
|
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* SW Reset the PHY so all changes take effect */
|
|
ret_val = hw->phy.ops.commit(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error Resetting the PHY\n");
|
|
return ret_val;
|
|
}
|
|
|
|
/* Bypass Rx and Tx FIFO's */
|
|
reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
|
|
data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
|
|
E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
|
|
ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
|
|
ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
|
|
ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
|
|
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
|
|
|
|
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Do not init these registers when the HW is in IAMT mode, since the
|
|
* firmware will have already initialized them. We only initialize
|
|
* them if the HW is not in IAMT mode.
|
|
*/
|
|
if (!hw->mac.ops.check_mng_mode(hw)) {
|
|
/* Enable Electrical Idle on the PHY */
|
|
data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
|
|
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
|
|
data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
|
|
&data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
|
|
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
|
|
data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
/* Workaround: Disable padding in Kumeran interface in the MAC
|
|
* and in the PHY to avoid CRC errors.
|
|
*/
|
|
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
data |= GG82563_ICR_DIS_PADDING;
|
|
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Essentially a wrapper for setting up all things "copper" related.
|
|
* This is a function pointer entry point called by the mac module.
|
|
**/
|
|
STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl;
|
|
s32 ret_val;
|
|
u16 reg_data;
|
|
|
|
DEBUGFUNC("e1000_setup_copper_link_80003es2lan");
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
ctrl |= E1000_CTRL_SLU;
|
|
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
|
|
|
|
/* Set the mac to wait the maximum time between each
|
|
* iteration and increase the max iterations when
|
|
* polling the phy; this fixes erroneous timeouts at 10Mbps.
|
|
*/
|
|
ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
|
|
0xFFFF);
|
|
if (ret_val)
|
|
return ret_val;
|
|
ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
|
|
®_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
reg_data |= 0x3F;
|
|
ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
|
|
reg_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
ret_val =
|
|
e1000_read_kmrn_reg_80003es2lan(hw,
|
|
E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
|
|
®_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
|
|
ret_val =
|
|
e1000_write_kmrn_reg_80003es2lan(hw,
|
|
E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
|
|
reg_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
return e1000_setup_copper_link_generic(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
|
|
* @hw: pointer to the HW structure
|
|
* @duplex: current duplex setting
|
|
*
|
|
* Configure the KMRN interface by applying last minute quirks for
|
|
* 10/100 operation.
|
|
**/
|
|
STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u16 speed;
|
|
u16 duplex;
|
|
|
|
DEBUGFUNC("e1000_configure_on_link_up");
|
|
|
|
if (hw->phy.media_type == e1000_media_type_copper) {
|
|
ret_val = e1000_get_speed_and_duplex_copper_generic(hw, &speed,
|
|
&duplex);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (speed == SPEED_1000)
|
|
ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
|
|
else
|
|
ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
|
|
* @hw: pointer to the HW structure
|
|
* @duplex: current duplex setting
|
|
*
|
|
* Configure the KMRN interface by applying last minute quirks for
|
|
* 10/100 operation.
|
|
**/
|
|
STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
|
|
{
|
|
s32 ret_val;
|
|
u32 tipg;
|
|
u32 i = 0;
|
|
u16 reg_data, reg_data2;
|
|
|
|
DEBUGFUNC("e1000_configure_kmrn_for_10_100");
|
|
|
|
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
|
|
ret_val =
|
|
e1000_write_kmrn_reg_80003es2lan(hw,
|
|
E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
|
|
reg_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Configure Transmit Inter-Packet Gap */
|
|
tipg = E1000_READ_REG(hw, E1000_TIPG);
|
|
tipg &= ~E1000_TIPG_IPGT_MASK;
|
|
tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
|
|
E1000_WRITE_REG(hw, E1000_TIPG, tipg);
|
|
|
|
do {
|
|
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
|
|
®_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
|
|
®_data2);
|
|
if (ret_val)
|
|
return ret_val;
|
|
i++;
|
|
} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
|
|
|
|
if (duplex == HALF_DUPLEX)
|
|
reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
|
|
else
|
|
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
|
|
|
|
return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
|
|
}
|
|
|
|
/**
|
|
* e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Configure the KMRN interface by applying last minute quirks for
|
|
* gigabit operation.
|
|
**/
|
|
STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
u16 reg_data, reg_data2;
|
|
u32 tipg;
|
|
u32 i = 0;
|
|
|
|
DEBUGFUNC("e1000_configure_kmrn_for_1000");
|
|
|
|
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
|
|
ret_val =
|
|
e1000_write_kmrn_reg_80003es2lan(hw,
|
|
E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
|
|
reg_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Configure Transmit Inter-Packet Gap */
|
|
tipg = E1000_READ_REG(hw, E1000_TIPG);
|
|
tipg &= ~E1000_TIPG_IPGT_MASK;
|
|
tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
|
|
E1000_WRITE_REG(hw, E1000_TIPG, tipg);
|
|
|
|
do {
|
|
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
|
|
®_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
|
|
®_data2);
|
|
if (ret_val)
|
|
return ret_val;
|
|
i++;
|
|
} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
|
|
|
|
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
|
|
|
|
return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
|
|
}
|
|
|
|
/**
|
|
* e1000_read_kmrn_reg_80003es2lan - Read kumeran register
|
|
* @hw: pointer to the HW structure
|
|
* @offset: register offset to be read
|
|
* @data: pointer to the read data
|
|
*
|
|
* Acquire semaphore, then read the PHY register at offset
|
|
* using the kumeran interface. The information retrieved is stored in data.
|
|
* Release the semaphore before exiting.
|
|
**/
|
|
STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
|
|
u16 *data)
|
|
{
|
|
u32 kmrnctrlsta;
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan");
|
|
|
|
ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
|
|
E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
|
|
E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
usec_delay(2);
|
|
|
|
kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
|
|
*data = (u16)kmrnctrlsta;
|
|
|
|
e1000_release_mac_csr_80003es2lan(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_write_kmrn_reg_80003es2lan - Write kumeran register
|
|
* @hw: pointer to the HW structure
|
|
* @offset: register offset to write to
|
|
* @data: data to write at register offset
|
|
*
|
|
* Acquire semaphore, then write the data to PHY register
|
|
* at the offset using the kumeran interface. Release semaphore
|
|
* before exiting.
|
|
**/
|
|
STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
|
|
u16 data)
|
|
{
|
|
u32 kmrnctrlsta;
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan");
|
|
|
|
ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
|
|
E1000_KMRNCTRLSTA_OFFSET) | data;
|
|
E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
usec_delay(2);
|
|
|
|
e1000_release_mac_csr_80003es2lan(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_read_mac_addr_80003es2lan - Read device MAC address
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_read_mac_addr_80003es2lan");
|
|
|
|
/* If there's an alternate MAC address place it in RAR0
|
|
* so that it will override the Si installed default perm
|
|
* address.
|
|
*/
|
|
ret_val = e1000_check_alt_mac_addr_generic(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
return e1000_read_mac_addr_generic(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* In the case of a PHY power down to save power, or to turn off link during a
|
|
* driver unload, or wake on lan is not enabled, remove the link.
|
|
**/
|
|
STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
/* If the management interface is not enabled, then power down */
|
|
if (!(hw->mac.ops.check_mng_mode(hw) ||
|
|
hw->phy.ops.check_reset_block(hw)))
|
|
e1000_power_down_phy_copper(hw);
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Clears the hardware counters by reading the counter registers.
|
|
**/
|
|
STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan");
|
|
|
|
e1000_clear_hw_cntrs_base_generic(hw);
|
|
|
|
E1000_READ_REG(hw, E1000_PRC64);
|
|
E1000_READ_REG(hw, E1000_PRC127);
|
|
E1000_READ_REG(hw, E1000_PRC255);
|
|
E1000_READ_REG(hw, E1000_PRC511);
|
|
E1000_READ_REG(hw, E1000_PRC1023);
|
|
E1000_READ_REG(hw, E1000_PRC1522);
|
|
E1000_READ_REG(hw, E1000_PTC64);
|
|
E1000_READ_REG(hw, E1000_PTC127);
|
|
E1000_READ_REG(hw, E1000_PTC255);
|
|
E1000_READ_REG(hw, E1000_PTC511);
|
|
E1000_READ_REG(hw, E1000_PTC1023);
|
|
E1000_READ_REG(hw, E1000_PTC1522);
|
|
|
|
E1000_READ_REG(hw, E1000_ALGNERRC);
|
|
E1000_READ_REG(hw, E1000_RXERRC);
|
|
E1000_READ_REG(hw, E1000_TNCRS);
|
|
E1000_READ_REG(hw, E1000_CEXTERR);
|
|
E1000_READ_REG(hw, E1000_TSCTC);
|
|
E1000_READ_REG(hw, E1000_TSCTFC);
|
|
|
|
E1000_READ_REG(hw, E1000_MGTPRC);
|
|
E1000_READ_REG(hw, E1000_MGTPDC);
|
|
E1000_READ_REG(hw, E1000_MGTPTC);
|
|
|
|
E1000_READ_REG(hw, E1000_IAC);
|
|
E1000_READ_REG(hw, E1000_ICRXOC);
|
|
|
|
E1000_READ_REG(hw, E1000_ICRXPTC);
|
|
E1000_READ_REG(hw, E1000_ICRXATC);
|
|
E1000_READ_REG(hw, E1000_ICTXPTC);
|
|
E1000_READ_REG(hw, E1000_ICTXATC);
|
|
E1000_READ_REG(hw, E1000_ICTXQEC);
|
|
E1000_READ_REG(hw, E1000_ICTXQMTC);
|
|
E1000_READ_REG(hw, E1000_ICRXDMTC);
|
|
}
|