f-stack/dpdk/drivers/net/bnxt/bnxt_hwrm.c

5105 lines
142 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2014-2018 Broadcom
* All rights reserved.
*/
#include <unistd.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_version.h>
#include <rte_io.h>
#include "bnxt.h"
#include "bnxt_filter.h"
#include "bnxt_hwrm.h"
#include "bnxt_rxq.h"
#include "bnxt_rxr.h"
#include "bnxt_ring.h"
#include "bnxt_txq.h"
#include "bnxt_txr.h"
#include "bnxt_vnic.h"
#include "hsi_struct_def_dpdk.h"
#define HWRM_SPEC_CODE_1_8_3 0x10803
#define HWRM_VERSION_1_9_1 0x10901
#define HWRM_VERSION_1_9_2 0x10903
struct bnxt_plcmodes_cfg {
uint32_t flags;
uint16_t jumbo_thresh;
uint16_t hds_offset;
uint16_t hds_threshold;
};
static int page_getenum(size_t size)
{
if (size <= 1 << 4)
return 4;
if (size <= 1 << 12)
return 12;
if (size <= 1 << 13)
return 13;
if (size <= 1 << 16)
return 16;
if (size <= 1 << 21)
return 21;
if (size <= 1 << 22)
return 22;
if (size <= 1 << 30)
return 30;
PMD_DRV_LOG(ERR, "Page size %zu out of range\n", size);
return sizeof(int) * 8 - 1;
}
static int page_roundup(size_t size)
{
return 1 << page_getenum(size);
}
static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem,
uint8_t *pg_attr,
uint64_t *pg_dir)
{
if (rmem->nr_pages > 1) {
*pg_attr = 1;
*pg_dir = rte_cpu_to_le_64(rmem->pg_tbl_map);
} else {
*pg_dir = rte_cpu_to_le_64(rmem->dma_arr[0]);
}
}
/*
* HWRM Functions (sent to HWRM)
* These are named bnxt_hwrm_*() and return 0 on success or -110 if the
* HWRM command times out, or a negative error code if the HWRM
* command was failed by the FW.
*/
static int bnxt_hwrm_send_message(struct bnxt *bp, void *msg,
uint32_t msg_len, bool use_kong_mb)
{
unsigned int i;
struct input *req = msg;
struct output *resp = bp->hwrm_cmd_resp_addr;
uint32_t *data = msg;
uint8_t *bar;
uint8_t *valid;
uint16_t max_req_len = bp->max_req_len;
struct hwrm_short_input short_input = { 0 };
uint16_t bar_offset = use_kong_mb ?
GRCPF_REG_KONG_CHANNEL_OFFSET : GRCPF_REG_CHIMP_CHANNEL_OFFSET;
uint16_t mb_trigger_offset = use_kong_mb ?
GRCPF_REG_KONG_COMM_TRIGGER : GRCPF_REG_CHIMP_COMM_TRIGGER;
uint32_t timeout;
/* Do not send HWRM commands to firmware in error state */
if (bp->flags & BNXT_FLAG_FATAL_ERROR)
return 0;
timeout = bp->hwrm_cmd_timeout;
if (bp->flags & BNXT_FLAG_SHORT_CMD ||
msg_len > bp->max_req_len) {
void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
memset(short_cmd_req, 0, bp->hwrm_max_ext_req_len);
memcpy(short_cmd_req, req, msg_len);
short_input.req_type = rte_cpu_to_le_16(req->req_type);
short_input.signature = rte_cpu_to_le_16(
HWRM_SHORT_INPUT_SIGNATURE_SHORT_CMD);
short_input.size = rte_cpu_to_le_16(msg_len);
short_input.req_addr =
rte_cpu_to_le_64(bp->hwrm_short_cmd_req_dma_addr);
data = (uint32_t *)&short_input;
msg_len = sizeof(short_input);
max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
}
/* Write request msg to hwrm channel */
for (i = 0; i < msg_len; i += 4) {
bar = (uint8_t *)bp->bar0 + bar_offset + i;
rte_write32(*data, bar);
data++;
}
/* Zero the rest of the request space */
for (; i < max_req_len; i += 4) {
bar = (uint8_t *)bp->bar0 + bar_offset + i;
rte_write32(0, bar);
}
/* Ring channel doorbell */
bar = (uint8_t *)bp->bar0 + mb_trigger_offset;
rte_write32(1, bar);
/*
* Make sure the channel doorbell ring command complete before
* reading the response to avoid getting stale or invalid
* responses.
*/
rte_io_mb();
/* Poll for the valid bit */
for (i = 0; i < timeout; i++) {
/* Sanity check on the resp->resp_len */
rte_cio_rmb();
if (resp->resp_len && resp->resp_len <= bp->max_resp_len) {
/* Last byte of resp contains the valid key */
valid = (uint8_t *)resp + resp->resp_len - 1;
if (*valid == HWRM_RESP_VALID_KEY)
break;
}
rte_delay_us(1);
}
if (i >= timeout) {
/* Suppress VER_GET timeout messages during reset recovery */
if (bp->flags & BNXT_FLAG_FW_RESET &&
rte_cpu_to_le_16(req->req_type) == HWRM_VER_GET)
return -ETIMEDOUT;
PMD_DRV_LOG(ERR,
"Error(timeout) sending msg 0x%04x, seq_id %d\n",
req->req_type, req->seq_id);
return -ETIMEDOUT;
}
return 0;
}
/*
* HWRM_PREP() should be used to prepare *ALL* HWRM commands. It grabs the
* spinlock, and does initial processing.
*
* HWRM_CHECK_RESULT() returns errors on failure and may not be used. It
* releases the spinlock only if it returns. If the regular int return codes
* are not used by the function, HWRM_CHECK_RESULT() should not be used
* directly, rather it should be copied and modified to suit the function.
*
* HWRM_UNLOCK() must be called after all response processing is completed.
*/
#define HWRM_PREP(req, type, kong) do { \
rte_spinlock_lock(&bp->hwrm_lock); \
if (bp->hwrm_cmd_resp_addr == NULL) { \
rte_spinlock_unlock(&bp->hwrm_lock); \
return -EACCES; \
} \
memset(bp->hwrm_cmd_resp_addr, 0, bp->max_resp_len); \
req.req_type = rte_cpu_to_le_16(HWRM_##type); \
req.cmpl_ring = rte_cpu_to_le_16(-1); \
req.seq_id = kong ? rte_cpu_to_le_16(bp->kong_cmd_seq++) :\
rte_cpu_to_le_16(bp->hwrm_cmd_seq++); \
req.target_id = rte_cpu_to_le_16(0xffff); \
req.resp_addr = rte_cpu_to_le_64(bp->hwrm_cmd_resp_dma_addr); \
} while (0)
#define HWRM_CHECK_RESULT_SILENT() do {\
if (rc) { \
rte_spinlock_unlock(&bp->hwrm_lock); \
return rc; \
} \
if (resp->error_code) { \
rc = rte_le_to_cpu_16(resp->error_code); \
rte_spinlock_unlock(&bp->hwrm_lock); \
return rc; \
} \
} while (0)
#define HWRM_CHECK_RESULT() do {\
if (rc) { \
PMD_DRV_LOG(ERR, "failed rc:%d\n", rc); \
rte_spinlock_unlock(&bp->hwrm_lock); \
if (rc == HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED) \
rc = -EACCES; \
else if (rc == HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR) \
rc = -ENOSPC; \
else if (rc == HWRM_ERR_CODE_INVALID_PARAMS) \
rc = -EINVAL; \
else if (rc == HWRM_ERR_CODE_CMD_NOT_SUPPORTED) \
rc = -ENOTSUP; \
else if (rc == HWRM_ERR_CODE_HOT_RESET_PROGRESS) \
rc = -EAGAIN; \
else if (rc > 0) \
rc = -EIO; \
return rc; \
} \
if (resp->error_code) { \
rc = rte_le_to_cpu_16(resp->error_code); \
if (resp->resp_len >= 16) { \
struct hwrm_err_output *tmp_hwrm_err_op = \
(void *)resp; \
PMD_DRV_LOG(ERR, \
"error %d:%d:%08x:%04x\n", \
rc, tmp_hwrm_err_op->cmd_err, \
rte_le_to_cpu_32(\
tmp_hwrm_err_op->opaque_0), \
rte_le_to_cpu_16(\
tmp_hwrm_err_op->opaque_1)); \
} else { \
PMD_DRV_LOG(ERR, "error %d\n", rc); \
} \
rte_spinlock_unlock(&bp->hwrm_lock); \
if (rc == HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED) \
rc = -EACCES; \
else if (rc == HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR) \
rc = -ENOSPC; \
else if (rc == HWRM_ERR_CODE_INVALID_PARAMS) \
rc = -EINVAL; \
else if (rc == HWRM_ERR_CODE_CMD_NOT_SUPPORTED) \
rc = -ENOTSUP; \
else if (rc == HWRM_ERR_CODE_HOT_RESET_PROGRESS) \
rc = -EAGAIN; \
else if (rc > 0) \
rc = -EIO; \
return rc; \
} \
} while (0)
#define HWRM_UNLOCK() rte_spinlock_unlock(&bp->hwrm_lock)
int bnxt_hwrm_cfa_l2_clear_rx_mask(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_cfa_l2_set_rx_mask_input req = {.req_type = 0 };
struct hwrm_cfa_l2_set_rx_mask_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, CFA_L2_SET_RX_MASK, BNXT_USE_CHIMP_MB);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
req.mask = 0;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp,
struct bnxt_vnic_info *vnic,
uint16_t vlan_count,
struct bnxt_vlan_table_entry *vlan_table)
{
int rc = 0;
struct hwrm_cfa_l2_set_rx_mask_input req = {.req_type = 0 };
struct hwrm_cfa_l2_set_rx_mask_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t mask = 0;
if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
return rc;
HWRM_PREP(req, CFA_L2_SET_RX_MASK, BNXT_USE_CHIMP_MB);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
if (vnic->flags & BNXT_VNIC_INFO_BCAST)
mask |= HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_BCAST;
if (vnic->flags & BNXT_VNIC_INFO_UNTAGGED)
mask |= HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_VLAN_NONVLAN;
if (vnic->flags & BNXT_VNIC_INFO_PROMISC)
mask |= HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_PROMISCUOUS;
if (vnic->flags & BNXT_VNIC_INFO_ALLMULTI) {
mask |= HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_ALL_MCAST;
} else if (vnic->flags & BNXT_VNIC_INFO_MCAST) {
mask |= HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_MCAST;
req.num_mc_entries = rte_cpu_to_le_32(vnic->mc_addr_cnt);
req.mc_tbl_addr = rte_cpu_to_le_64(vnic->mc_list_dma_addr);
}
if (vlan_table) {
if (!(mask & HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_VLAN_NONVLAN))
mask |= HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_VLANONLY;
req.vlan_tag_tbl_addr =
rte_cpu_to_le_64(rte_malloc_virt2iova(vlan_table));
req.num_vlan_tags = rte_cpu_to_le_32((uint32_t)vlan_count);
}
req.mask = rte_cpu_to_le_32(mask);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_cfa_vlan_antispoof_cfg(struct bnxt *bp, uint16_t fid,
uint16_t vlan_count,
struct bnxt_vlan_antispoof_table_entry *vlan_table)
{
int rc = 0;
struct hwrm_cfa_vlan_antispoof_cfg_input req = {.req_type = 0 };
struct hwrm_cfa_vlan_antispoof_cfg_output *resp =
bp->hwrm_cmd_resp_addr;
/*
* Older HWRM versions did not support this command, and the set_rx_mask
* list was used for anti-spoof. In 1.8.0, the TX path configuration was
* removed from set_rx_mask call, and this command was added.
*
* This command is also present from 1.7.8.11 and higher,
* as well as 1.7.8.0
*/
if (bp->fw_ver < ((1 << 24) | (8 << 16))) {
if (bp->fw_ver != ((1 << 24) | (7 << 16) | (8 << 8))) {
if (bp->fw_ver < ((1 << 24) | (7 << 16) | (8 << 8) |
(11)))
return 0;
}
}
HWRM_PREP(req, CFA_VLAN_ANTISPOOF_CFG, BNXT_USE_CHIMP_MB);
req.fid = rte_cpu_to_le_16(fid);
req.vlan_tag_mask_tbl_addr =
rte_cpu_to_le_64(rte_malloc_virt2iova(vlan_table));
req.num_vlan_entries = rte_cpu_to_le_32((uint32_t)vlan_count);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_clear_l2_filter(struct bnxt *bp,
struct bnxt_filter_info *filter)
{
int rc = 0;
struct bnxt_filter_info *l2_filter = filter;
struct bnxt_vnic_info *vnic = NULL;
struct hwrm_cfa_l2_filter_free_input req = {.req_type = 0 };
struct hwrm_cfa_l2_filter_free_output *resp = bp->hwrm_cmd_resp_addr;
if (filter->fw_l2_filter_id == UINT64_MAX)
return 0;
if (filter->matching_l2_fltr_ptr)
l2_filter = filter->matching_l2_fltr_ptr;
PMD_DRV_LOG(DEBUG, "filter: %p l2_filter: %p ref_cnt: %d\n",
filter, l2_filter, l2_filter->l2_ref_cnt);
if (l2_filter->l2_ref_cnt == 0)
return 0;
if (l2_filter->l2_ref_cnt > 0)
l2_filter->l2_ref_cnt--;
if (l2_filter->l2_ref_cnt > 0)
return 0;
HWRM_PREP(req, CFA_L2_FILTER_FREE, BNXT_USE_CHIMP_MB);
req.l2_filter_id = rte_cpu_to_le_64(filter->fw_l2_filter_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
filter->fw_l2_filter_id = UINT64_MAX;
if (l2_filter->l2_ref_cnt == 0) {
vnic = l2_filter->vnic;
if (vnic) {
STAILQ_REMOVE(&vnic->filter, l2_filter,
bnxt_filter_info, next);
bnxt_free_filter(bp, l2_filter);
}
}
return 0;
}
int bnxt_hwrm_set_l2_filter(struct bnxt *bp,
uint16_t dst_id,
struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_l2_filter_alloc_input req = {.req_type = 0 };
struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
const struct rte_eth_vmdq_rx_conf *conf =
&dev_conf->rx_adv_conf.vmdq_rx_conf;
uint32_t enables = 0;
uint16_t j = dst_id - 1;
//TODO: Is there a better way to add VLANs to each VNIC in case of VMDQ
if ((dev_conf->rxmode.mq_mode & ETH_MQ_RX_VMDQ_FLAG) &&
conf->pool_map[j].pools & (1UL << j)) {
PMD_DRV_LOG(DEBUG,
"Add vlan %u to vmdq pool %u\n",
conf->pool_map[j].vlan_id, j);
filter->l2_ivlan = conf->pool_map[j].vlan_id;
filter->enables |=
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN |
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK;
}
if (filter->fw_l2_filter_id != UINT64_MAX)
bnxt_hwrm_clear_l2_filter(bp, filter);
HWRM_PREP(req, CFA_L2_FILTER_ALLOC, BNXT_USE_CHIMP_MB);
/* PMD does not support XDP and RoCE */
filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_XDP_DISABLE |
HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_TRAFFIC_L2;
req.flags = rte_cpu_to_le_32(filter->flags);
enables = filter->enables |
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_DST_ID;
req.dst_id = rte_cpu_to_le_16(dst_id);
if (enables &
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR)
memcpy(req.l2_addr, filter->l2_addr,
RTE_ETHER_ADDR_LEN);
if (enables &
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK)
memcpy(req.l2_addr_mask, filter->l2_addr_mask,
RTE_ETHER_ADDR_LEN);
if (enables &
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN)
req.l2_ovlan = filter->l2_ovlan;
if (enables &
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN)
req.l2_ivlan = filter->l2_ivlan;
if (enables &
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN_MASK)
req.l2_ovlan_mask = filter->l2_ovlan_mask;
if (enables &
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK)
req.l2_ivlan_mask = filter->l2_ivlan_mask;
if (enables & HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_SRC_ID)
req.src_id = rte_cpu_to_le_32(filter->src_id);
if (enables & HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_SRC_TYPE)
req.src_type = filter->src_type;
if (filter->pri_hint) {
req.pri_hint = filter->pri_hint;
req.l2_filter_id_hint =
rte_cpu_to_le_64(filter->l2_filter_id_hint);
}
req.enables = rte_cpu_to_le_32(enables);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
filter->fw_l2_filter_id = rte_le_to_cpu_64(resp->l2_filter_id);
HWRM_UNLOCK();
filter->l2_ref_cnt++;
return rc;
}
int bnxt_hwrm_ptp_cfg(struct bnxt *bp)
{
struct hwrm_port_mac_cfg_input req = {.req_type = 0};
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
uint32_t flags = 0;
int rc;
if (!ptp)
return 0;
HWRM_PREP(req, PORT_MAC_CFG, BNXT_USE_CHIMP_MB);
if (ptp->rx_filter)
flags |= HWRM_PORT_MAC_CFG_INPUT_FLAGS_PTP_RX_TS_CAPTURE_ENABLE;
else
flags |=
HWRM_PORT_MAC_CFG_INPUT_FLAGS_PTP_RX_TS_CAPTURE_DISABLE;
if (ptp->tx_tstamp_en)
flags |= HWRM_PORT_MAC_CFG_INPUT_FLAGS_PTP_TX_TS_CAPTURE_ENABLE;
else
flags |=
HWRM_PORT_MAC_CFG_INPUT_FLAGS_PTP_TX_TS_CAPTURE_DISABLE;
req.flags = rte_cpu_to_le_32(flags);
req.enables = rte_cpu_to_le_32
(HWRM_PORT_MAC_CFG_INPUT_ENABLES_RX_TS_CAPTURE_PTP_MSG_TYPE);
req.rx_ts_capture_ptp_msg_type = rte_cpu_to_le_16(ptp->rxctl);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_UNLOCK();
return rc;
}
static int bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
{
int rc = 0;
struct hwrm_port_mac_ptp_qcfg_input req = {.req_type = 0};
struct hwrm_port_mac_ptp_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
if (ptp)
return 0;
HWRM_PREP(req, PORT_MAC_PTP_QCFG, BNXT_USE_CHIMP_MB);
req.port_id = rte_cpu_to_le_16(bp->pf.port_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
if (!BNXT_CHIP_THOR(bp) &&
!(resp->flags & HWRM_PORT_MAC_PTP_QCFG_OUTPUT_FLAGS_DIRECT_ACCESS))
return 0;
if (resp->flags & HWRM_PORT_MAC_PTP_QCFG_OUTPUT_FLAGS_ONE_STEP_TX_TS)
bp->flags |= BNXT_FLAG_FW_CAP_ONE_STEP_TX_TS;
ptp = rte_zmalloc("ptp_cfg", sizeof(*ptp), 0);
if (!ptp)
return -ENOMEM;
if (!BNXT_CHIP_THOR(bp)) {
ptp->rx_regs[BNXT_PTP_RX_TS_L] =
rte_le_to_cpu_32(resp->rx_ts_reg_off_lower);
ptp->rx_regs[BNXT_PTP_RX_TS_H] =
rte_le_to_cpu_32(resp->rx_ts_reg_off_upper);
ptp->rx_regs[BNXT_PTP_RX_SEQ] =
rte_le_to_cpu_32(resp->rx_ts_reg_off_seq_id);
ptp->rx_regs[BNXT_PTP_RX_FIFO] =
rte_le_to_cpu_32(resp->rx_ts_reg_off_fifo);
ptp->rx_regs[BNXT_PTP_RX_FIFO_ADV] =
rte_le_to_cpu_32(resp->rx_ts_reg_off_fifo_adv);
ptp->tx_regs[BNXT_PTP_TX_TS_L] =
rte_le_to_cpu_32(resp->tx_ts_reg_off_lower);
ptp->tx_regs[BNXT_PTP_TX_TS_H] =
rte_le_to_cpu_32(resp->tx_ts_reg_off_upper);
ptp->tx_regs[BNXT_PTP_TX_SEQ] =
rte_le_to_cpu_32(resp->tx_ts_reg_off_seq_id);
ptp->tx_regs[BNXT_PTP_TX_FIFO] =
rte_le_to_cpu_32(resp->tx_ts_reg_off_fifo);
}
ptp->bp = bp;
bp->ptp_cfg = ptp;
return 0;
}
void bnxt_hwrm_free_vf_info(struct bnxt *bp)
{
uint16_t i;
for (i = 0; i < bp->pf.max_vfs; i++) {
rte_free(bp->pf.vf_info[i].vlan_table);
bp->pf.vf_info[i].vlan_table = NULL;
rte_free(bp->pf.vf_info[i].vlan_as_table);
bp->pf.vf_info[i].vlan_as_table = NULL;
}
rte_free(bp->pf.vf_info);
bp->pf.vf_info = NULL;
}
static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
{
int rc = 0;
struct hwrm_func_qcaps_input req = {.req_type = 0 };
struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
uint16_t new_max_vfs;
uint32_t flags;
int i;
HWRM_PREP(req, FUNC_QCAPS, BNXT_USE_CHIMP_MB);
req.fid = rte_cpu_to_le_16(0xffff);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
bp->max_ring_grps = rte_le_to_cpu_32(resp->max_hw_ring_grps);
flags = rte_le_to_cpu_32(resp->flags);
if (BNXT_PF(bp)) {
bp->pf.port_id = resp->port_id;
bp->pf.first_vf_id = rte_le_to_cpu_16(resp->first_vf_id);
bp->pf.total_vfs = rte_le_to_cpu_16(resp->max_vfs);
new_max_vfs = bp->pdev->max_vfs;
if (new_max_vfs != bp->pf.max_vfs) {
if (bp->pf.vf_info)
bnxt_hwrm_free_vf_info(bp);
bp->pf.vf_info = rte_zmalloc("bnxt_vf_info",
sizeof(bp->pf.vf_info[0]) * new_max_vfs, 0);
if (bp->pf.vf_info == NULL) {
PMD_DRV_LOG(ERR, "Alloc vf info fail\n");
return -ENOMEM;
}
bp->pf.max_vfs = new_max_vfs;
for (i = 0; i < new_max_vfs; i++) {
bp->pf.vf_info[i].fid = bp->pf.first_vf_id + i;
bp->pf.vf_info[i].vlan_table =
rte_zmalloc("VF VLAN table",
getpagesize(),
getpagesize());
if (bp->pf.vf_info[i].vlan_table == NULL)
PMD_DRV_LOG(ERR,
"Fail to alloc VLAN table for VF %d\n",
i);
else
rte_mem_lock_page(
bp->pf.vf_info[i].vlan_table);
bp->pf.vf_info[i].vlan_as_table =
rte_zmalloc("VF VLAN AS table",
getpagesize(),
getpagesize());
if (bp->pf.vf_info[i].vlan_as_table == NULL)
PMD_DRV_LOG(ERR,
"Alloc VLAN AS table for VF %d fail\n",
i);
else
rte_mem_lock_page(
bp->pf.vf_info[i].vlan_as_table);
STAILQ_INIT(&bp->pf.vf_info[i].filter);
}
}
}
bp->fw_fid = rte_le_to_cpu_32(resp->fid);
if (!bnxt_check_zero_bytes(resp->mac_address, RTE_ETHER_ADDR_LEN)) {
bp->flags |= BNXT_FLAG_DFLT_MAC_SET;
memcpy(bp->mac_addr, &resp->mac_address, RTE_ETHER_ADDR_LEN);
} else {
bp->flags &= ~BNXT_FLAG_DFLT_MAC_SET;
}
bp->max_rsscos_ctx = rte_le_to_cpu_16(resp->max_rsscos_ctx);
bp->max_cp_rings = rte_le_to_cpu_16(resp->max_cmpl_rings);
bp->max_tx_rings = rte_le_to_cpu_16(resp->max_tx_rings);
bp->max_rx_rings = rte_le_to_cpu_16(resp->max_rx_rings);
bp->first_vf_id = rte_le_to_cpu_16(resp->first_vf_id);
bp->max_rx_em_flows = rte_le_to_cpu_16(resp->max_rx_em_flows);
bp->max_l2_ctx = rte_le_to_cpu_16(resp->max_l2_ctxs);
if (!BNXT_CHIP_THOR(bp))
bp->max_l2_ctx += bp->max_rx_em_flows;
/* TODO: For now, do not support VMDq/RFS on VFs. */
if (BNXT_PF(bp)) {
if (bp->pf.max_vfs)
bp->max_vnics = 1;
else
bp->max_vnics = rte_le_to_cpu_16(resp->max_vnics);
} else {
bp->max_vnics = 1;
}
bp->max_stat_ctx = rte_le_to_cpu_16(resp->max_stat_ctx);
if (BNXT_PF(bp)) {
bp->pf.total_vnics = rte_le_to_cpu_16(resp->max_vnics);
if (flags & HWRM_FUNC_QCAPS_OUTPUT_FLAGS_PTP_SUPPORTED) {
bp->flags |= BNXT_FLAG_PTP_SUPPORTED;
PMD_DRV_LOG(DEBUG, "PTP SUPPORTED\n");
HWRM_UNLOCK();
bnxt_hwrm_ptp_qcfg(bp);
}
}
if (flags & HWRM_FUNC_QCAPS_OUTPUT_FLAGS_EXT_STATS_SUPPORTED)
bp->flags |= BNXT_FLAG_EXT_STATS_SUPPORTED;
if (flags & HWRM_FUNC_QCAPS_OUTPUT_FLAGS_ERROR_RECOVERY_CAPABLE) {
bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
PMD_DRV_LOG(DEBUG, "Adapter Error recovery SUPPORTED\n");
}
if (flags & HWRM_FUNC_QCAPS_OUTPUT_FLAGS_ERR_RECOVER_RELOAD)
bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
if (flags & HWRM_FUNC_QCAPS_OUTPUT_FLAGS_HOT_RESET_CAPABLE)
bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_qcaps(struct bnxt *bp)
{
int rc;
rc = __bnxt_hwrm_func_qcaps(bp);
if (!rc && bp->hwrm_spec_code >= HWRM_SPEC_CODE_1_8_3) {
rc = bnxt_alloc_ctx_mem(bp);
if (rc)
return rc;
rc = bnxt_hwrm_func_resc_qcaps(bp);
if (!rc)
bp->flags |= BNXT_FLAG_NEW_RM;
}
/* On older FW,
* bnxt_hwrm_func_resc_qcaps can fail and cause init failure.
* But the error can be ignored. Return success.
*/
return 0;
}
/* VNIC cap covers capability of all VNICs. So no need to pass vnic_id */
int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
{
int rc = 0;
struct hwrm_vnic_qcaps_input req = {.req_type = 0 };
struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, VNIC_QCAPS, BNXT_USE_CHIMP_MB);
req.target_id = rte_cpu_to_le_16(0xffff);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
if (rte_le_to_cpu_32(resp->flags) &
HWRM_VNIC_QCAPS_OUTPUT_FLAGS_COS_ASSIGNMENT_CAP) {
bp->vnic_cap_flags |= BNXT_VNIC_CAP_COS_CLASSIFY;
PMD_DRV_LOG(INFO, "CoS assignment capability enabled\n");
}
bp->max_tpa_v2 = rte_le_to_cpu_16(resp->max_aggs_supported);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_reset(struct bnxt *bp)
{
int rc = 0;
struct hwrm_func_reset_input req = {.req_type = 0 };
struct hwrm_func_reset_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, FUNC_RESET, BNXT_USE_CHIMP_MB);
req.enables = rte_cpu_to_le_32(0);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_driver_register(struct bnxt *bp)
{
int rc;
uint32_t flags = 0;
struct hwrm_func_drv_rgtr_input req = {.req_type = 0 };
struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
if (bp->flags & BNXT_FLAG_REGISTERED)
return 0;
if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
flags = HWRM_FUNC_DRV_RGTR_INPUT_FLAGS_HOT_RESET_SUPPORT;
if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
flags |= HWRM_FUNC_DRV_RGTR_INPUT_FLAGS_ERROR_RECOVERY_SUPPORT;
/* PFs and trusted VFs should indicate the support of the
* Master capability on non Stingray platform
*/
if ((BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) && !BNXT_STINGRAY(bp))
flags |= HWRM_FUNC_DRV_RGTR_INPUT_FLAGS_MASTER_SUPPORT;
HWRM_PREP(req, FUNC_DRV_RGTR, BNXT_USE_CHIMP_MB);
req.enables = rte_cpu_to_le_32(HWRM_FUNC_DRV_RGTR_INPUT_ENABLES_VER |
HWRM_FUNC_DRV_RGTR_INPUT_ENABLES_ASYNC_EVENT_FWD);
req.ver_maj = RTE_VER_YEAR;
req.ver_min = RTE_VER_MONTH;
req.ver_upd = RTE_VER_MINOR;
if (BNXT_PF(bp)) {
req.enables |= rte_cpu_to_le_32(
HWRM_FUNC_DRV_RGTR_INPUT_ENABLES_VF_REQ_FWD);
memcpy(req.vf_req_fwd, bp->pf.vf_req_fwd,
RTE_MIN(sizeof(req.vf_req_fwd),
sizeof(bp->pf.vf_req_fwd)));
/*
* PF can sniff HWRM API issued by VF. This can be set up by
* linux driver and inherited by the DPDK PF driver. Clear
* this HWRM sniffer list in FW because DPDK PF driver does
* not support this.
*/
flags |= HWRM_FUNC_DRV_RGTR_INPUT_FLAGS_FWD_NONE_MODE;
}
req.flags = rte_cpu_to_le_32(flags);
req.async_event_fwd[0] |=
rte_cpu_to_le_32(ASYNC_CMPL_EVENT_ID_LINK_STATUS_CHANGE |
ASYNC_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED |
ASYNC_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE |
ASYNC_CMPL_EVENT_ID_LINK_SPEED_CHANGE |
ASYNC_CMPL_EVENT_ID_RESET_NOTIFY);
if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
req.async_event_fwd[0] |=
rte_cpu_to_le_32(ASYNC_CMPL_EVENT_ID_ERROR_RECOVERY);
req.async_event_fwd[1] |=
rte_cpu_to_le_32(ASYNC_CMPL_EVENT_ID_PF_DRVR_UNLOAD |
ASYNC_CMPL_EVENT_ID_VF_CFG_CHANGE);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
flags = rte_le_to_cpu_32(resp->flags);
if (flags & HWRM_FUNC_DRV_RGTR_OUTPUT_FLAGS_IF_CHANGE_SUPPORTED)
bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
HWRM_UNLOCK();
bp->flags |= BNXT_FLAG_REGISTERED;
return rc;
}
int bnxt_hwrm_check_vf_rings(struct bnxt *bp)
{
if (!(BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)))
return 0;
return bnxt_hwrm_func_reserve_vf_resc(bp, true);
}
int bnxt_hwrm_func_reserve_vf_resc(struct bnxt *bp, bool test)
{
int rc;
uint32_t flags = 0;
uint32_t enables;
struct hwrm_func_vf_cfg_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_func_vf_cfg_input req = {0};
HWRM_PREP(req, FUNC_VF_CFG, BNXT_USE_CHIMP_MB);
enables = HWRM_FUNC_VF_CFG_INPUT_ENABLES_NUM_RX_RINGS |
HWRM_FUNC_VF_CFG_INPUT_ENABLES_NUM_TX_RINGS |
HWRM_FUNC_VF_CFG_INPUT_ENABLES_NUM_STAT_CTXS |
HWRM_FUNC_VF_CFG_INPUT_ENABLES_NUM_CMPL_RINGS |
HWRM_FUNC_VF_CFG_INPUT_ENABLES_NUM_VNICS;
if (BNXT_HAS_RING_GRPS(bp)) {
enables |= HWRM_FUNC_VF_CFG_INPUT_ENABLES_NUM_HW_RING_GRPS;
req.num_hw_ring_grps = rte_cpu_to_le_16(bp->rx_nr_rings);
}
req.num_tx_rings = rte_cpu_to_le_16(bp->tx_nr_rings);
req.num_rx_rings = rte_cpu_to_le_16(bp->rx_nr_rings *
AGG_RING_MULTIPLIER);
req.num_stat_ctxs = rte_cpu_to_le_16(bp->rx_nr_rings + bp->tx_nr_rings);
req.num_cmpl_rings = rte_cpu_to_le_16(bp->rx_nr_rings +
bp->tx_nr_rings +
BNXT_NUM_ASYNC_CPR(bp));
req.num_vnics = rte_cpu_to_le_16(bp->rx_nr_rings);
if (bp->vf_resv_strategy ==
HWRM_FUNC_RESOURCE_QCAPS_OUTPUT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
enables |= HWRM_FUNC_VF_CFG_INPUT_ENABLES_NUM_VNICS |
HWRM_FUNC_VF_CFG_INPUT_ENABLES_NUM_L2_CTXS |
HWRM_FUNC_VF_CFG_INPUT_ENABLES_NUM_RSSCOS_CTXS;
req.num_rsscos_ctxs = rte_cpu_to_le_16(BNXT_VF_RSV_NUM_RSS_CTX);
req.num_l2_ctxs = rte_cpu_to_le_16(BNXT_VF_RSV_NUM_L2_CTX);
req.num_vnics = rte_cpu_to_le_16(BNXT_VF_RSV_NUM_VNIC);
} else if (bp->vf_resv_strategy ==
HWRM_FUNC_RESOURCE_QCAPS_OUTPUT_VF_RESV_STRATEGY_MAXIMAL) {
enables |= HWRM_FUNC_VF_CFG_INPUT_ENABLES_NUM_RSSCOS_CTXS;
req.num_rsscos_ctxs = rte_cpu_to_le_16(bp->max_rsscos_ctx);
}
if (test)
flags = HWRM_FUNC_VF_CFG_INPUT_FLAGS_TX_ASSETS_TEST |
HWRM_FUNC_VF_CFG_INPUT_FLAGS_RX_ASSETS_TEST |
HWRM_FUNC_VF_CFG_INPUT_FLAGS_CMPL_ASSETS_TEST |
HWRM_FUNC_VF_CFG_INPUT_FLAGS_RING_GRP_ASSETS_TEST |
HWRM_FUNC_VF_CFG_INPUT_FLAGS_STAT_CTX_ASSETS_TEST |
HWRM_FUNC_VF_CFG_INPUT_FLAGS_VNIC_ASSETS_TEST;
if (test && BNXT_HAS_RING_GRPS(bp))
flags |= HWRM_FUNC_VF_CFG_INPUT_FLAGS_RING_GRP_ASSETS_TEST;
req.flags = rte_cpu_to_le_32(flags);
req.enables |= rte_cpu_to_le_32(enables);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
if (test)
HWRM_CHECK_RESULT_SILENT();
else
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp)
{
int rc;
struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_func_resource_qcaps_input req = {0};
HWRM_PREP(req, FUNC_RESOURCE_QCAPS, BNXT_USE_CHIMP_MB);
req.fid = rte_cpu_to_le_16(0xffff);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT_SILENT();
if (BNXT_VF(bp)) {
bp->max_rsscos_ctx = rte_le_to_cpu_16(resp->max_rsscos_ctx);
bp->max_cp_rings = rte_le_to_cpu_16(resp->max_cmpl_rings);
bp->max_tx_rings = rte_le_to_cpu_16(resp->max_tx_rings);
bp->max_rx_rings = rte_le_to_cpu_16(resp->max_rx_rings);
bp->max_ring_grps = rte_le_to_cpu_32(resp->max_hw_ring_grps);
/* func_resource_qcaps does not return max_rx_em_flows.
* So use the value provided by func_qcaps.
*/
bp->max_l2_ctx = rte_le_to_cpu_16(resp->max_l2_ctxs);
if (!BNXT_CHIP_THOR(bp))
bp->max_l2_ctx += bp->max_rx_em_flows;
bp->max_vnics = rte_le_to_cpu_16(resp->max_vnics);
bp->max_stat_ctx = rte_le_to_cpu_16(resp->max_stat_ctx);
}
bp->max_nq_rings = rte_le_to_cpu_16(resp->max_msix);
bp->vf_resv_strategy = rte_le_to_cpu_16(resp->vf_reservation_strategy);
if (bp->vf_resv_strategy >
HWRM_FUNC_RESOURCE_QCAPS_OUTPUT_VF_RESV_STRATEGY_MINIMAL_STATIC)
bp->vf_resv_strategy =
HWRM_FUNC_RESOURCE_QCAPS_OUTPUT_VF_RESERVATION_STRATEGY_MAXIMAL;
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_ver_get(struct bnxt *bp, uint32_t timeout)
{
int rc = 0;
struct hwrm_ver_get_input req = {.req_type = 0 };
struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t fw_version;
uint16_t max_resp_len;
char type[RTE_MEMZONE_NAMESIZE];
uint32_t dev_caps_cfg;
bp->max_req_len = HWRM_MAX_REQ_LEN;
bp->hwrm_cmd_timeout = timeout;
HWRM_PREP(req, VER_GET, BNXT_USE_CHIMP_MB);
req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
req.hwrm_intf_min = HWRM_VERSION_MINOR;
req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
if (bp->flags & BNXT_FLAG_FW_RESET)
HWRM_CHECK_RESULT_SILENT();
else
HWRM_CHECK_RESULT();
PMD_DRV_LOG(INFO, "%d.%d.%d:%d.%d.%d\n",
resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
resp->hwrm_intf_upd_8b, resp->hwrm_fw_maj_8b,
resp->hwrm_fw_min_8b, resp->hwrm_fw_bld_8b);
bp->fw_ver = (resp->hwrm_fw_maj_8b << 24) |
(resp->hwrm_fw_min_8b << 16) |
(resp->hwrm_fw_bld_8b << 8) |
resp->hwrm_fw_rsvd_8b;
PMD_DRV_LOG(INFO, "Driver HWRM version: %d.%d.%d\n",
HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, HWRM_VERSION_UPDATE);
fw_version = resp->hwrm_intf_maj_8b << 16;
fw_version |= resp->hwrm_intf_min_8b << 8;
fw_version |= resp->hwrm_intf_upd_8b;
bp->hwrm_spec_code = fw_version;
/* def_req_timeout value is in milliseconds */
bp->hwrm_cmd_timeout = rte_le_to_cpu_16(resp->def_req_timeout);
/* convert timeout to usec */
bp->hwrm_cmd_timeout *= 1000;
if (!bp->hwrm_cmd_timeout)
bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
if (resp->hwrm_intf_maj_8b != HWRM_VERSION_MAJOR) {
PMD_DRV_LOG(ERR, "Unsupported firmware API version\n");
rc = -EINVAL;
goto error;
}
if (bp->max_req_len > resp->max_req_win_len) {
PMD_DRV_LOG(ERR, "Unsupported request length\n");
rc = -EINVAL;
}
bp->max_req_len = rte_le_to_cpu_16(resp->max_req_win_len);
bp->hwrm_max_ext_req_len = rte_le_to_cpu_16(resp->max_ext_req_len);
if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
max_resp_len = rte_le_to_cpu_16(resp->max_resp_len);
dev_caps_cfg = rte_le_to_cpu_32(resp->dev_caps_cfg);
if (bp->max_resp_len != max_resp_len) {
sprintf(type, "bnxt_hwrm_%04x:%02x:%02x:%02x",
bp->pdev->addr.domain, bp->pdev->addr.bus,
bp->pdev->addr.devid, bp->pdev->addr.function);
rte_free(bp->hwrm_cmd_resp_addr);
bp->hwrm_cmd_resp_addr = rte_malloc(type, max_resp_len, 0);
if (bp->hwrm_cmd_resp_addr == NULL) {
rc = -ENOMEM;
goto error;
}
bp->hwrm_cmd_resp_dma_addr =
rte_malloc_virt2iova(bp->hwrm_cmd_resp_addr);
if (bp->hwrm_cmd_resp_dma_addr == RTE_BAD_IOVA) {
PMD_DRV_LOG(ERR,
"Unable to map response buffer to physical memory.\n");
rc = -ENOMEM;
goto error;
}
bp->max_resp_len = max_resp_len;
}
if ((dev_caps_cfg &
HWRM_VER_GET_OUTPUT_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
(dev_caps_cfg &
HWRM_VER_GET_OUTPUT_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) {
PMD_DRV_LOG(DEBUG, "Short command supported\n");
bp->flags |= BNXT_FLAG_SHORT_CMD;
}
if (((dev_caps_cfg &
HWRM_VER_GET_OUTPUT_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
(dev_caps_cfg &
HWRM_VER_GET_OUTPUT_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) ||
bp->hwrm_max_ext_req_len > HWRM_MAX_REQ_LEN) {
sprintf(type, "bnxt_hwrm_short_%04x:%02x:%02x:%02x",
bp->pdev->addr.domain, bp->pdev->addr.bus,
bp->pdev->addr.devid, bp->pdev->addr.function);
rte_free(bp->hwrm_short_cmd_req_addr);
bp->hwrm_short_cmd_req_addr =
rte_malloc(type, bp->hwrm_max_ext_req_len, 0);
if (bp->hwrm_short_cmd_req_addr == NULL) {
rc = -ENOMEM;
goto error;
}
bp->hwrm_short_cmd_req_dma_addr =
rte_malloc_virt2iova(bp->hwrm_short_cmd_req_addr);
if (bp->hwrm_short_cmd_req_dma_addr == RTE_BAD_IOVA) {
rte_free(bp->hwrm_short_cmd_req_addr);
PMD_DRV_LOG(ERR,
"Unable to map buffer to physical memory.\n");
rc = -ENOMEM;
goto error;
}
}
if (dev_caps_cfg &
HWRM_VER_GET_OUTPUT_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) {
bp->flags |= BNXT_FLAG_KONG_MB_EN;
PMD_DRV_LOG(DEBUG, "Kong mailbox channel enabled\n");
}
if (dev_caps_cfg &
HWRM_VER_GET_OUTPUT_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
PMD_DRV_LOG(DEBUG, "FW supports Trusted VFs\n");
if (dev_caps_cfg &
HWRM_VER_GET_OUTPUT_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) {
bp->flags |= BNXT_FLAG_ADV_FLOW_MGMT;
PMD_DRV_LOG(DEBUG, "FW supports advanced flow management\n");
}
error:
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_driver_unregister(struct bnxt *bp, uint32_t flags)
{
int rc;
struct hwrm_func_drv_unrgtr_input req = {.req_type = 0 };
struct hwrm_func_drv_unrgtr_output *resp = bp->hwrm_cmd_resp_addr;
if (!(bp->flags & BNXT_FLAG_REGISTERED))
return 0;
HWRM_PREP(req, FUNC_DRV_UNRGTR, BNXT_USE_CHIMP_MB);
req.flags = flags;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
static int bnxt_hwrm_port_phy_cfg(struct bnxt *bp, struct bnxt_link_info *conf)
{
int rc = 0;
struct hwrm_port_phy_cfg_input req = {0};
struct hwrm_port_phy_cfg_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t enables = 0;
HWRM_PREP(req, PORT_PHY_CFG, BNXT_USE_CHIMP_MB);
if (conf->link_up) {
/* Setting Fixed Speed. But AutoNeg is ON, So disable it */
if (bp->link_info.auto_mode && conf->link_speed) {
req.auto_mode = HWRM_PORT_PHY_CFG_INPUT_AUTO_MODE_NONE;
PMD_DRV_LOG(DEBUG, "Disabling AutoNeg\n");
}
req.flags = rte_cpu_to_le_32(conf->phy_flags);
req.force_link_speed = rte_cpu_to_le_16(conf->link_speed);
enables |= HWRM_PORT_PHY_CFG_INPUT_ENABLES_AUTO_MODE;
/*
* Note, ChiMP FW 20.2.1 and 20.2.2 return an error when we set
* any auto mode, even "none".
*/
if (!conf->link_speed) {
/* No speeds specified. Enable AutoNeg - all speeds */
req.auto_mode =
HWRM_PORT_PHY_CFG_INPUT_AUTO_MODE_ALL_SPEEDS;
}
/* AutoNeg - Advertise speeds specified. */
if (conf->auto_link_speed_mask &&
!(conf->phy_flags & HWRM_PORT_PHY_CFG_INPUT_FLAGS_FORCE)) {
req.auto_mode =
HWRM_PORT_PHY_CFG_INPUT_AUTO_MODE_SPEED_MASK;
req.auto_link_speed_mask =
conf->auto_link_speed_mask;
enables |=
HWRM_PORT_PHY_CFG_INPUT_ENABLES_AUTO_LINK_SPEED_MASK;
}
req.auto_duplex = conf->duplex;
enables |= HWRM_PORT_PHY_CFG_INPUT_ENABLES_AUTO_DUPLEX;
req.auto_pause = conf->auto_pause;
req.force_pause = conf->force_pause;
/* Set force_pause if there is no auto or if there is a force */
if (req.auto_pause && !req.force_pause)
enables |= HWRM_PORT_PHY_CFG_INPUT_ENABLES_AUTO_PAUSE;
else
enables |= HWRM_PORT_PHY_CFG_INPUT_ENABLES_FORCE_PAUSE;
req.enables = rte_cpu_to_le_32(enables);
} else {
req.flags =
rte_cpu_to_le_32(HWRM_PORT_PHY_CFG_INPUT_FLAGS_FORCE_LINK_DWN);
PMD_DRV_LOG(INFO, "Force Link Down\n");
}
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
static int bnxt_hwrm_port_phy_qcfg(struct bnxt *bp,
struct bnxt_link_info *link_info)
{
int rc = 0;
struct hwrm_port_phy_qcfg_input req = {0};
struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, PORT_PHY_QCFG, BNXT_USE_CHIMP_MB);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
link_info->phy_link_status = resp->link;
link_info->link_up =
(link_info->phy_link_status ==
HWRM_PORT_PHY_QCFG_OUTPUT_LINK_LINK) ? 1 : 0;
link_info->link_speed = rte_le_to_cpu_16(resp->link_speed);
link_info->duplex = resp->duplex_cfg;
link_info->pause = resp->pause;
link_info->auto_pause = resp->auto_pause;
link_info->force_pause = resp->force_pause;
link_info->auto_mode = resp->auto_mode;
link_info->phy_type = resp->phy_type;
link_info->media_type = resp->media_type;
link_info->support_speeds = rte_le_to_cpu_16(resp->support_speeds);
link_info->auto_link_speed = rte_le_to_cpu_16(resp->auto_link_speed);
link_info->preemphasis = rte_le_to_cpu_32(resp->preemphasis);
link_info->force_link_speed = rte_le_to_cpu_16(resp->force_link_speed);
link_info->phy_ver[0] = resp->phy_maj;
link_info->phy_ver[1] = resp->phy_min;
link_info->phy_ver[2] = resp->phy_bld;
HWRM_UNLOCK();
PMD_DRV_LOG(DEBUG, "Link Speed %d\n", link_info->link_speed);
PMD_DRV_LOG(DEBUG, "Auto Mode %d\n", link_info->auto_mode);
PMD_DRV_LOG(DEBUG, "Support Speeds %x\n", link_info->support_speeds);
PMD_DRV_LOG(DEBUG, "Auto Link Speed %x\n", link_info->auto_link_speed);
PMD_DRV_LOG(DEBUG, "Auto Link Speed Mask %x\n",
link_info->auto_link_speed_mask);
PMD_DRV_LOG(DEBUG, "Forced Link Speed %x\n",
link_info->force_link_speed);
return rc;
}
static bool bnxt_find_lossy_profile(struct bnxt *bp)
{
int i = 0;
for (i = BNXT_COS_QUEUE_COUNT - 1; i >= 0; i--) {
if (bp->tx_cos_queue[i].profile ==
HWRM_QUEUE_SERVICE_PROFILE_LOSSY) {
bp->tx_cosq_id[0] = bp->tx_cos_queue[i].id;
return true;
}
}
return false;
}
static void bnxt_find_first_valid_profile(struct bnxt *bp)
{
int i = 0;
for (i = BNXT_COS_QUEUE_COUNT - 1; i >= 0; i--) {
if (bp->tx_cos_queue[i].profile !=
HWRM_QUEUE_SERVICE_PROFILE_UNKNOWN &&
bp->tx_cos_queue[i].id !=
HWRM_QUEUE_SERVICE_PROFILE_UNKNOWN) {
bp->tx_cosq_id[0] = bp->tx_cos_queue[i].id;
break;
}
}
}
int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
{
int rc = 0;
struct hwrm_queue_qportcfg_input req = {.req_type = 0 };
struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t dir = HWRM_QUEUE_QPORTCFG_INPUT_FLAGS_PATH_TX;
int i;
get_rx_info:
HWRM_PREP(req, QUEUE_QPORTCFG, BNXT_USE_CHIMP_MB);
req.flags = rte_cpu_to_le_32(dir);
/* HWRM Version >= 1.9.1 only if COS Classification is not required. */
if (bp->hwrm_spec_code >= HWRM_VERSION_1_9_1 &&
!(bp->vnic_cap_flags & BNXT_VNIC_CAP_COS_CLASSIFY))
req.drv_qmap_cap =
HWRM_QUEUE_QPORTCFG_INPUT_DRV_QMAP_CAP_ENABLED;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
if (dir == HWRM_QUEUE_QPORTCFG_INPUT_FLAGS_PATH_TX) {
GET_TX_QUEUE_INFO(0);
GET_TX_QUEUE_INFO(1);
GET_TX_QUEUE_INFO(2);
GET_TX_QUEUE_INFO(3);
GET_TX_QUEUE_INFO(4);
GET_TX_QUEUE_INFO(5);
GET_TX_QUEUE_INFO(6);
GET_TX_QUEUE_INFO(7);
} else {
GET_RX_QUEUE_INFO(0);
GET_RX_QUEUE_INFO(1);
GET_RX_QUEUE_INFO(2);
GET_RX_QUEUE_INFO(3);
GET_RX_QUEUE_INFO(4);
GET_RX_QUEUE_INFO(5);
GET_RX_QUEUE_INFO(6);
GET_RX_QUEUE_INFO(7);
}
HWRM_UNLOCK();
if (dir == HWRM_QUEUE_QPORTCFG_INPUT_FLAGS_PATH_RX)
goto done;
if (bp->hwrm_spec_code < HWRM_VERSION_1_9_1) {
bp->tx_cosq_id[0] = bp->tx_cos_queue[0].id;
} else {
int j;
/* iterate and find the COSq profile to use for Tx */
if (bp->vnic_cap_flags & BNXT_VNIC_CAP_COS_CLASSIFY) {
for (j = 0, i = 0; i < BNXT_COS_QUEUE_COUNT; i++) {
if (bp->tx_cos_queue[i].id != 0xff)
bp->tx_cosq_id[j++] =
bp->tx_cos_queue[i].id;
}
} else {
/* When CoS classification is disabled, for normal NIC
* operations, ideally we should look to use LOSSY.
* If not found, fallback to the first valid profile
*/
if (!bnxt_find_lossy_profile(bp))
bnxt_find_first_valid_profile(bp);
}
}
bp->max_tc = resp->max_configurable_queues;
bp->max_lltc = resp->max_configurable_lossless_queues;
if (bp->max_tc > BNXT_MAX_QUEUE)
bp->max_tc = BNXT_MAX_QUEUE;
bp->max_q = bp->max_tc;
if (dir == HWRM_QUEUE_QPORTCFG_INPUT_FLAGS_PATH_TX) {
dir = HWRM_QUEUE_QPORTCFG_INPUT_FLAGS_PATH_RX;
goto get_rx_info;
}
done:
return rc;
}
int bnxt_hwrm_ring_alloc(struct bnxt *bp,
struct bnxt_ring *ring,
uint32_t ring_type, uint32_t map_index,
uint32_t stats_ctx_id, uint32_t cmpl_ring_id,
uint16_t tx_cosq_id)
{
int rc = 0;
uint32_t enables = 0;
struct hwrm_ring_alloc_input req = {.req_type = 0 };
struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
struct rte_mempool *mb_pool;
uint16_t rx_buf_size;
HWRM_PREP(req, RING_ALLOC, BNXT_USE_CHIMP_MB);
req.page_tbl_addr = rte_cpu_to_le_64(ring->bd_dma);
req.fbo = rte_cpu_to_le_32(0);
/* Association of ring index with doorbell index */
req.logical_id = rte_cpu_to_le_16(map_index);
req.length = rte_cpu_to_le_32(ring->ring_size);
switch (ring_type) {
case HWRM_RING_ALLOC_INPUT_RING_TYPE_TX:
req.ring_type = ring_type;
req.cmpl_ring_id = rte_cpu_to_le_16(cmpl_ring_id);
req.stat_ctx_id = rte_cpu_to_le_32(stats_ctx_id);
req.queue_id = rte_cpu_to_le_16(tx_cosq_id);
if (stats_ctx_id != INVALID_STATS_CTX_ID)
enables |=
HWRM_RING_ALLOC_INPUT_ENABLES_STAT_CTX_ID_VALID;
break;
case HWRM_RING_ALLOC_INPUT_RING_TYPE_RX:
req.ring_type = ring_type;
req.cmpl_ring_id = rte_cpu_to_le_16(cmpl_ring_id);
req.stat_ctx_id = rte_cpu_to_le_32(stats_ctx_id);
if (BNXT_CHIP_THOR(bp)) {
mb_pool = bp->rx_queues[0]->mb_pool;
rx_buf_size = rte_pktmbuf_data_room_size(mb_pool) -
RTE_PKTMBUF_HEADROOM;
rx_buf_size = RTE_MIN(BNXT_MAX_PKT_LEN, rx_buf_size);
req.rx_buf_size = rte_cpu_to_le_16(rx_buf_size);
enables |=
HWRM_RING_ALLOC_INPUT_ENABLES_RX_BUF_SIZE_VALID;
}
if (stats_ctx_id != INVALID_STATS_CTX_ID)
enables |=
HWRM_RING_ALLOC_INPUT_ENABLES_STAT_CTX_ID_VALID;
break;
case HWRM_RING_ALLOC_INPUT_RING_TYPE_L2_CMPL:
req.ring_type = ring_type;
if (BNXT_HAS_NQ(bp)) {
/* Association of cp ring with nq */
req.nq_ring_id = rte_cpu_to_le_16(cmpl_ring_id);
enables |=
HWRM_RING_ALLOC_INPUT_ENABLES_NQ_RING_ID_VALID;
}
req.int_mode = HWRM_RING_ALLOC_INPUT_INT_MODE_MSIX;
break;
case HWRM_RING_ALLOC_INPUT_RING_TYPE_NQ:
req.ring_type = ring_type;
req.page_size = BNXT_PAGE_SHFT;
req.int_mode = HWRM_RING_ALLOC_INPUT_INT_MODE_MSIX;
break;
case HWRM_RING_ALLOC_INPUT_RING_TYPE_RX_AGG:
req.ring_type = ring_type;
req.rx_ring_id = rte_cpu_to_le_16(ring->fw_rx_ring_id);
mb_pool = bp->rx_queues[0]->mb_pool;
rx_buf_size = rte_pktmbuf_data_room_size(mb_pool) -
RTE_PKTMBUF_HEADROOM;
rx_buf_size = RTE_MIN(BNXT_MAX_PKT_LEN, rx_buf_size);
req.rx_buf_size = rte_cpu_to_le_16(rx_buf_size);
req.stat_ctx_id = rte_cpu_to_le_32(stats_ctx_id);
enables |= HWRM_RING_ALLOC_INPUT_ENABLES_RX_RING_ID_VALID |
HWRM_RING_ALLOC_INPUT_ENABLES_RX_BUF_SIZE_VALID |
HWRM_RING_ALLOC_INPUT_ENABLES_STAT_CTX_ID_VALID;
break;
default:
PMD_DRV_LOG(ERR, "hwrm alloc invalid ring type %d\n",
ring_type);
HWRM_UNLOCK();
return -EINVAL;
}
req.enables = rte_cpu_to_le_32(enables);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
if (rc || resp->error_code) {
if (rc == 0 && resp->error_code)
rc = rte_le_to_cpu_16(resp->error_code);
switch (ring_type) {
case HWRM_RING_ALLOC_INPUT_RING_TYPE_L2_CMPL:
PMD_DRV_LOG(ERR,
"hwrm_ring_alloc cp failed. rc:%d\n", rc);
HWRM_UNLOCK();
return rc;
case HWRM_RING_ALLOC_INPUT_RING_TYPE_RX:
PMD_DRV_LOG(ERR,
"hwrm_ring_alloc rx failed. rc:%d\n", rc);
HWRM_UNLOCK();
return rc;
case HWRM_RING_ALLOC_INPUT_RING_TYPE_RX_AGG:
PMD_DRV_LOG(ERR,
"hwrm_ring_alloc rx agg failed. rc:%d\n",
rc);
HWRM_UNLOCK();
return rc;
case HWRM_RING_ALLOC_INPUT_RING_TYPE_TX:
PMD_DRV_LOG(ERR,
"hwrm_ring_alloc tx failed. rc:%d\n", rc);
HWRM_UNLOCK();
return rc;
case HWRM_RING_ALLOC_INPUT_RING_TYPE_NQ:
PMD_DRV_LOG(ERR,
"hwrm_ring_alloc nq failed. rc:%d\n", rc);
HWRM_UNLOCK();
return rc;
default:
PMD_DRV_LOG(ERR, "Invalid ring. rc:%d\n", rc);
HWRM_UNLOCK();
return rc;
}
}
ring->fw_ring_id = rte_le_to_cpu_16(resp->ring_id);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_ring_free(struct bnxt *bp,
struct bnxt_ring *ring, uint32_t ring_type)
{
int rc;
struct hwrm_ring_free_input req = {.req_type = 0 };
struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, RING_FREE, BNXT_USE_CHIMP_MB);
req.ring_type = ring_type;
req.ring_id = rte_cpu_to_le_16(ring->fw_ring_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
if (rc || resp->error_code) {
if (rc == 0 && resp->error_code)
rc = rte_le_to_cpu_16(resp->error_code);
HWRM_UNLOCK();
switch (ring_type) {
case HWRM_RING_FREE_INPUT_RING_TYPE_L2_CMPL:
PMD_DRV_LOG(ERR, "hwrm_ring_free cp failed. rc:%d\n",
rc);
return rc;
case HWRM_RING_FREE_INPUT_RING_TYPE_RX:
PMD_DRV_LOG(ERR, "hwrm_ring_free rx failed. rc:%d\n",
rc);
return rc;
case HWRM_RING_FREE_INPUT_RING_TYPE_TX:
PMD_DRV_LOG(ERR, "hwrm_ring_free tx failed. rc:%d\n",
rc);
return rc;
case HWRM_RING_FREE_INPUT_RING_TYPE_NQ:
PMD_DRV_LOG(ERR,
"hwrm_ring_free nq failed. rc:%d\n", rc);
return rc;
case HWRM_RING_FREE_INPUT_RING_TYPE_RX_AGG:
PMD_DRV_LOG(ERR,
"hwrm_ring_free agg failed. rc:%d\n", rc);
return rc;
default:
PMD_DRV_LOG(ERR, "Invalid ring, rc:%d\n", rc);
return rc;
}
}
HWRM_UNLOCK();
return 0;
}
int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp, unsigned int idx)
{
int rc = 0;
struct hwrm_ring_grp_alloc_input req = {.req_type = 0 };
struct hwrm_ring_grp_alloc_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, RING_GRP_ALLOC, BNXT_USE_CHIMP_MB);
req.cr = rte_cpu_to_le_16(bp->grp_info[idx].cp_fw_ring_id);
req.rr = rte_cpu_to_le_16(bp->grp_info[idx].rx_fw_ring_id);
req.ar = rte_cpu_to_le_16(bp->grp_info[idx].ag_fw_ring_id);
req.sc = rte_cpu_to_le_16(bp->grp_info[idx].fw_stats_ctx);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
bp->grp_info[idx].fw_grp_id = rte_le_to_cpu_16(resp->ring_group_id);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_ring_grp_free(struct bnxt *bp, unsigned int idx)
{
int rc;
struct hwrm_ring_grp_free_input req = {.req_type = 0 };
struct hwrm_ring_grp_free_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, RING_GRP_FREE, BNXT_USE_CHIMP_MB);
req.ring_group_id = rte_cpu_to_le_16(bp->grp_info[idx].fw_grp_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
bp->grp_info[idx].fw_grp_id = INVALID_HW_RING_ID;
return rc;
}
int bnxt_hwrm_stat_clear(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
{
int rc = 0;
struct hwrm_stat_ctx_clr_stats_input req = {.req_type = 0 };
struct hwrm_stat_ctx_clr_stats_output *resp = bp->hwrm_cmd_resp_addr;
if (cpr->hw_stats_ctx_id == (uint32_t)HWRM_NA_SIGNATURE)
return rc;
HWRM_PREP(req, STAT_CTX_CLR_STATS, BNXT_USE_CHIMP_MB);
req.stat_ctx_id = rte_cpu_to_le_32(cpr->hw_stats_ctx_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
unsigned int idx __rte_unused)
{
int rc;
struct hwrm_stat_ctx_alloc_input req = {.req_type = 0 };
struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, STAT_CTX_ALLOC, BNXT_USE_CHIMP_MB);
req.update_period_ms = rte_cpu_to_le_32(0);
req.stats_dma_addr = rte_cpu_to_le_64(cpr->hw_stats_map);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
cpr->hw_stats_ctx_id = rte_le_to_cpu_32(resp->stat_ctx_id);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_stat_ctx_free(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
unsigned int idx __rte_unused)
{
int rc;
struct hwrm_stat_ctx_free_input req = {.req_type = 0 };
struct hwrm_stat_ctx_free_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, STAT_CTX_FREE, BNXT_USE_CHIMP_MB);
req.stat_ctx_id = rte_cpu_to_le_32(cpr->hw_stats_ctx_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0, i, j;
struct hwrm_vnic_alloc_input req = { 0 };
struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
if (!BNXT_HAS_RING_GRPS(bp))
goto skip_ring_grps;
/* map ring groups to this vnic */
PMD_DRV_LOG(DEBUG, "Alloc VNIC. Start %x, End %x\n",
vnic->start_grp_id, vnic->end_grp_id);
for (i = vnic->start_grp_id, j = 0; i < vnic->end_grp_id; i++, j++)
vnic->fw_grp_ids[j] = bp->grp_info[i].fw_grp_id;
vnic->dflt_ring_grp = bp->grp_info[vnic->start_grp_id].fw_grp_id;
vnic->rss_rule = (uint16_t)HWRM_NA_SIGNATURE;
vnic->cos_rule = (uint16_t)HWRM_NA_SIGNATURE;
vnic->lb_rule = (uint16_t)HWRM_NA_SIGNATURE;
skip_ring_grps:
vnic->mru = BNXT_VNIC_MRU(bp->eth_dev->data->mtu);
HWRM_PREP(req, VNIC_ALLOC, BNXT_USE_CHIMP_MB);
if (vnic->func_default)
req.flags =
rte_cpu_to_le_32(HWRM_VNIC_ALLOC_INPUT_FLAGS_DEFAULT);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
vnic->fw_vnic_id = rte_le_to_cpu_16(resp->vnic_id);
HWRM_UNLOCK();
PMD_DRV_LOG(DEBUG, "VNIC ID %x\n", vnic->fw_vnic_id);
return rc;
}
static int bnxt_hwrm_vnic_plcmodes_qcfg(struct bnxt *bp,
struct bnxt_vnic_info *vnic,
struct bnxt_plcmodes_cfg *pmode)
{
int rc = 0;
struct hwrm_vnic_plcmodes_qcfg_input req = {.req_type = 0 };
struct hwrm_vnic_plcmodes_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, VNIC_PLCMODES_QCFG, BNXT_USE_CHIMP_MB);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
pmode->flags = rte_le_to_cpu_32(resp->flags);
/* dflt_vnic bit doesn't exist in the _cfg command */
pmode->flags &= ~(HWRM_VNIC_PLCMODES_QCFG_OUTPUT_FLAGS_DFLT_VNIC);
pmode->jumbo_thresh = rte_le_to_cpu_16(resp->jumbo_thresh);
pmode->hds_offset = rte_le_to_cpu_16(resp->hds_offset);
pmode->hds_threshold = rte_le_to_cpu_16(resp->hds_threshold);
HWRM_UNLOCK();
return rc;
}
static int bnxt_hwrm_vnic_plcmodes_cfg(struct bnxt *bp,
struct bnxt_vnic_info *vnic,
struct bnxt_plcmodes_cfg *pmode)
{
int rc = 0;
struct hwrm_vnic_plcmodes_cfg_input req = {.req_type = 0 };
struct hwrm_vnic_plcmodes_cfg_output *resp = bp->hwrm_cmd_resp_addr;
if (vnic->fw_vnic_id == INVALID_HW_RING_ID) {
PMD_DRV_LOG(DEBUG, "VNIC ID %x\n", vnic->fw_vnic_id);
return rc;
}
HWRM_PREP(req, VNIC_PLCMODES_CFG, BNXT_USE_CHIMP_MB);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
req.flags = rte_cpu_to_le_32(pmode->flags);
req.jumbo_thresh = rte_cpu_to_le_16(pmode->jumbo_thresh);
req.hds_offset = rte_cpu_to_le_16(pmode->hds_offset);
req.hds_threshold = rte_cpu_to_le_16(pmode->hds_threshold);
req.enables = rte_cpu_to_le_32(
HWRM_VNIC_PLCMODES_CFG_INPUT_ENABLES_HDS_THRESHOLD_VALID |
HWRM_VNIC_PLCMODES_CFG_INPUT_ENABLES_HDS_OFFSET_VALID |
HWRM_VNIC_PLCMODES_CFG_INPUT_ENABLES_JUMBO_THRESH_VALID
);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_vnic_cfg_input req = {.req_type = 0 };
struct hwrm_vnic_cfg_output *resp = bp->hwrm_cmd_resp_addr;
struct bnxt_plcmodes_cfg pmodes = { 0 };
uint32_t ctx_enable_flag = 0;
uint32_t enables = 0;
if (vnic->fw_vnic_id == INVALID_HW_RING_ID) {
PMD_DRV_LOG(DEBUG, "VNIC ID %x\n", vnic->fw_vnic_id);
return rc;
}
rc = bnxt_hwrm_vnic_plcmodes_qcfg(bp, vnic, &pmodes);
if (rc)
return rc;
HWRM_PREP(req, VNIC_CFG, BNXT_USE_CHIMP_MB);
if (BNXT_CHIP_THOR(bp)) {
int dflt_rxq = vnic->start_grp_id;
struct bnxt_rx_ring_info *rxr;
struct bnxt_cp_ring_info *cpr;
struct bnxt_rx_queue *rxq;
int i;
/*
* The first active receive ring is used as the VNIC
* default receive ring. If there are no active receive
* rings (all corresponding receive queues are stopped),
* the first receive ring is used.
*/
for (i = vnic->start_grp_id; i < vnic->end_grp_id; i++) {
rxq = bp->eth_dev->data->rx_queues[i];
if (rxq->rx_started) {
dflt_rxq = i;
break;
}
}
rxq = bp->eth_dev->data->rx_queues[dflt_rxq];
rxr = rxq->rx_ring;
cpr = rxq->cp_ring;
req.default_rx_ring_id =
rte_cpu_to_le_16(rxr->rx_ring_struct->fw_ring_id);
req.default_cmpl_ring_id =
rte_cpu_to_le_16(cpr->cp_ring_struct->fw_ring_id);
enables = HWRM_VNIC_CFG_INPUT_ENABLES_DEFAULT_RX_RING_ID |
HWRM_VNIC_CFG_INPUT_ENABLES_DEFAULT_CMPL_RING_ID;
goto config_mru;
}
/* Only RSS support for now TBD: COS & LB */
enables = HWRM_VNIC_CFG_INPUT_ENABLES_DFLT_RING_GRP;
if (vnic->lb_rule != 0xffff)
ctx_enable_flag |= HWRM_VNIC_CFG_INPUT_ENABLES_LB_RULE;
if (vnic->cos_rule != 0xffff)
ctx_enable_flag |= HWRM_VNIC_CFG_INPUT_ENABLES_COS_RULE;
if (vnic->rss_rule != (uint16_t)HWRM_NA_SIGNATURE) {
ctx_enable_flag |= HWRM_VNIC_CFG_INPUT_ENABLES_MRU;
ctx_enable_flag |= HWRM_VNIC_CFG_INPUT_ENABLES_RSS_RULE;
}
if (bp->vnic_cap_flags & BNXT_VNIC_CAP_COS_CLASSIFY) {
ctx_enable_flag |= HWRM_VNIC_CFG_INPUT_ENABLES_QUEUE_ID;
req.queue_id = rte_cpu_to_le_16(vnic->cos_queue_id);
}
enables |= ctx_enable_flag;
req.dflt_ring_grp = rte_cpu_to_le_16(vnic->dflt_ring_grp);
req.rss_rule = rte_cpu_to_le_16(vnic->rss_rule);
req.cos_rule = rte_cpu_to_le_16(vnic->cos_rule);
req.lb_rule = rte_cpu_to_le_16(vnic->lb_rule);
config_mru:
req.enables = rte_cpu_to_le_32(enables);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
req.mru = rte_cpu_to_le_16(vnic->mru);
/* Configure default VNIC only once. */
if (vnic->func_default && !(bp->flags & BNXT_FLAG_DFLT_VNIC_SET)) {
req.flags |=
rte_cpu_to_le_32(HWRM_VNIC_CFG_INPUT_FLAGS_DEFAULT);
bp->flags |= BNXT_FLAG_DFLT_VNIC_SET;
}
if (vnic->vlan_strip)
req.flags |=
rte_cpu_to_le_32(HWRM_VNIC_CFG_INPUT_FLAGS_VLAN_STRIP_MODE);
if (vnic->bd_stall)
req.flags |=
rte_cpu_to_le_32(HWRM_VNIC_CFG_INPUT_FLAGS_BD_STALL_MODE);
if (vnic->roce_dual)
req.flags |= rte_cpu_to_le_32(
HWRM_VNIC_QCFG_OUTPUT_FLAGS_ROCE_DUAL_VNIC_MODE);
if (vnic->roce_only)
req.flags |= rte_cpu_to_le_32(
HWRM_VNIC_QCFG_OUTPUT_FLAGS_ROCE_ONLY_VNIC_MODE);
if (vnic->rss_dflt_cr)
req.flags |= rte_cpu_to_le_32(
HWRM_VNIC_QCFG_OUTPUT_FLAGS_RSS_DFLT_CR_MODE);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
rc = bnxt_hwrm_vnic_plcmodes_cfg(bp, vnic, &pmodes);
return rc;
}
int bnxt_hwrm_vnic_qcfg(struct bnxt *bp, struct bnxt_vnic_info *vnic,
int16_t fw_vf_id)
{
int rc = 0;
struct hwrm_vnic_qcfg_input req = {.req_type = 0 };
struct hwrm_vnic_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
if (vnic->fw_vnic_id == INVALID_HW_RING_ID) {
PMD_DRV_LOG(DEBUG, "VNIC QCFG ID %d\n", vnic->fw_vnic_id);
return rc;
}
HWRM_PREP(req, VNIC_QCFG, BNXT_USE_CHIMP_MB);
req.enables =
rte_cpu_to_le_32(HWRM_VNIC_QCFG_INPUT_ENABLES_VF_ID_VALID);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
req.vf_id = rte_cpu_to_le_16(fw_vf_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
vnic->dflt_ring_grp = rte_le_to_cpu_16(resp->dflt_ring_grp);
vnic->rss_rule = rte_le_to_cpu_16(resp->rss_rule);
vnic->cos_rule = rte_le_to_cpu_16(resp->cos_rule);
vnic->lb_rule = rte_le_to_cpu_16(resp->lb_rule);
vnic->mru = rte_le_to_cpu_16(resp->mru);
vnic->func_default = rte_le_to_cpu_32(
resp->flags) & HWRM_VNIC_QCFG_OUTPUT_FLAGS_DEFAULT;
vnic->vlan_strip = rte_le_to_cpu_32(resp->flags) &
HWRM_VNIC_QCFG_OUTPUT_FLAGS_VLAN_STRIP_MODE;
vnic->bd_stall = rte_le_to_cpu_32(resp->flags) &
HWRM_VNIC_QCFG_OUTPUT_FLAGS_BD_STALL_MODE;
vnic->roce_dual = rte_le_to_cpu_32(resp->flags) &
HWRM_VNIC_QCFG_OUTPUT_FLAGS_ROCE_DUAL_VNIC_MODE;
vnic->roce_only = rte_le_to_cpu_32(resp->flags) &
HWRM_VNIC_QCFG_OUTPUT_FLAGS_ROCE_ONLY_VNIC_MODE;
vnic->rss_dflt_cr = rte_le_to_cpu_32(resp->flags) &
HWRM_VNIC_QCFG_OUTPUT_FLAGS_RSS_DFLT_CR_MODE;
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp,
struct bnxt_vnic_info *vnic, uint16_t ctx_idx)
{
int rc = 0;
uint16_t ctx_id;
struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {.req_type = 0 };
struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, VNIC_RSS_COS_LB_CTX_ALLOC, BNXT_USE_CHIMP_MB);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
ctx_id = rte_le_to_cpu_16(resp->rss_cos_lb_ctx_id);
if (!BNXT_HAS_RING_GRPS(bp))
vnic->fw_grp_ids[ctx_idx] = ctx_id;
else if (ctx_idx == 0)
vnic->rss_rule = ctx_id;
HWRM_UNLOCK();
return rc;
}
static
int _bnxt_hwrm_vnic_ctx_free(struct bnxt *bp,
struct bnxt_vnic_info *vnic, uint16_t ctx_idx)
{
int rc = 0;
struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {.req_type = 0 };
struct hwrm_vnic_rss_cos_lb_ctx_free_output *resp =
bp->hwrm_cmd_resp_addr;
if (ctx_idx == (uint16_t)HWRM_NA_SIGNATURE) {
PMD_DRV_LOG(DEBUG, "VNIC RSS Rule %x\n", vnic->rss_rule);
return rc;
}
HWRM_PREP(req, VNIC_RSS_COS_LB_CTX_FREE, BNXT_USE_CHIMP_MB);
req.rss_cos_lb_ctx_id = rte_cpu_to_le_16(ctx_idx);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_vnic_ctx_free(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0;
if (BNXT_CHIP_THOR(bp)) {
int j;
for (j = 0; j < vnic->num_lb_ctxts; j++) {
rc = _bnxt_hwrm_vnic_ctx_free(bp,
vnic,
vnic->fw_grp_ids[j]);
vnic->fw_grp_ids[j] = INVALID_HW_RING_ID;
}
vnic->num_lb_ctxts = 0;
} else {
rc = _bnxt_hwrm_vnic_ctx_free(bp, vnic, vnic->rss_rule);
vnic->rss_rule = INVALID_HW_RING_ID;
}
return rc;
}
int bnxt_hwrm_vnic_free(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_vnic_free_input req = {.req_type = 0 };
struct hwrm_vnic_free_output *resp = bp->hwrm_cmd_resp_addr;
if (vnic->fw_vnic_id == INVALID_HW_RING_ID) {
PMD_DRV_LOG(DEBUG, "VNIC FREE ID %x\n", vnic->fw_vnic_id);
return rc;
}
HWRM_PREP(req, VNIC_FREE, BNXT_USE_CHIMP_MB);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
vnic->fw_vnic_id = INVALID_HW_RING_ID;
/* Configure default VNIC again if necessary. */
if (vnic->func_default && (bp->flags & BNXT_FLAG_DFLT_VNIC_SET))
bp->flags &= ~BNXT_FLAG_DFLT_VNIC_SET;
return rc;
}
static int
bnxt_hwrm_vnic_rss_cfg_thor(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int i;
int rc = 0;
int nr_ctxs = vnic->num_lb_ctxts;
struct hwrm_vnic_rss_cfg_input req = {.req_type = 0 };
struct hwrm_vnic_rss_cfg_output *resp = bp->hwrm_cmd_resp_addr;
for (i = 0; i < nr_ctxs; i++) {
HWRM_PREP(req, VNIC_RSS_CFG, BNXT_USE_CHIMP_MB);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
req.hash_type = rte_cpu_to_le_32(vnic->hash_type);
req.hash_mode_flags = vnic->hash_mode;
req.hash_key_tbl_addr =
rte_cpu_to_le_64(vnic->rss_hash_key_dma_addr);
req.ring_grp_tbl_addr =
rte_cpu_to_le_64(vnic->rss_table_dma_addr +
i * HW_HASH_INDEX_SIZE);
req.ring_table_pair_index = i;
req.rss_ctx_idx = rte_cpu_to_le_16(vnic->fw_grp_ids[i]);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req),
BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
}
return rc;
}
int bnxt_hwrm_vnic_rss_cfg(struct bnxt *bp,
struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_vnic_rss_cfg_input req = {.req_type = 0 };
struct hwrm_vnic_rss_cfg_output *resp = bp->hwrm_cmd_resp_addr;
if (!vnic->rss_table)
return 0;
if (BNXT_CHIP_THOR(bp))
return bnxt_hwrm_vnic_rss_cfg_thor(bp, vnic);
HWRM_PREP(req, VNIC_RSS_CFG, BNXT_USE_CHIMP_MB);
req.hash_type = rte_cpu_to_le_32(vnic->hash_type);
req.hash_mode_flags = vnic->hash_mode;
req.ring_grp_tbl_addr =
rte_cpu_to_le_64(vnic->rss_table_dma_addr);
req.hash_key_tbl_addr =
rte_cpu_to_le_64(vnic->rss_hash_key_dma_addr);
req.rss_ctx_idx = rte_cpu_to_le_16(vnic->rss_rule);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_vnic_plcmode_cfg(struct bnxt *bp,
struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_vnic_plcmodes_cfg_input req = {.req_type = 0 };
struct hwrm_vnic_plcmodes_cfg_output *resp = bp->hwrm_cmd_resp_addr;
uint16_t size;
if (vnic->fw_vnic_id == INVALID_HW_RING_ID) {
PMD_DRV_LOG(DEBUG, "VNIC ID %x\n", vnic->fw_vnic_id);
return rc;
}
HWRM_PREP(req, VNIC_PLCMODES_CFG, BNXT_USE_CHIMP_MB);
req.flags = rte_cpu_to_le_32(
HWRM_VNIC_PLCMODES_CFG_INPUT_FLAGS_JUMBO_PLACEMENT);
req.enables = rte_cpu_to_le_32(
HWRM_VNIC_PLCMODES_CFG_INPUT_ENABLES_JUMBO_THRESH_VALID);
size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool);
size -= RTE_PKTMBUF_HEADROOM;
size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
req.jumbo_thresh = rte_cpu_to_le_16(size);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_vnic_tpa_cfg(struct bnxt *bp,
struct bnxt_vnic_info *vnic, bool enable)
{
int rc = 0;
struct hwrm_vnic_tpa_cfg_input req = {.req_type = 0 };
struct hwrm_vnic_tpa_cfg_output *resp = bp->hwrm_cmd_resp_addr;
if (BNXT_CHIP_THOR(bp) && !bp->max_tpa_v2) {
if (enable)
PMD_DRV_LOG(ERR, "No HW support for LRO\n");
return -ENOTSUP;
}
if (vnic->fw_vnic_id == INVALID_HW_RING_ID) {
PMD_DRV_LOG(DEBUG, "Invalid vNIC ID\n");
return 0;
}
HWRM_PREP(req, VNIC_TPA_CFG, BNXT_USE_CHIMP_MB);
if (enable) {
req.enables = rte_cpu_to_le_32(
HWRM_VNIC_TPA_CFG_INPUT_ENABLES_MAX_AGG_SEGS |
HWRM_VNIC_TPA_CFG_INPUT_ENABLES_MAX_AGGS |
HWRM_VNIC_TPA_CFG_INPUT_ENABLES_MIN_AGG_LEN);
req.flags = rte_cpu_to_le_32(
HWRM_VNIC_TPA_CFG_INPUT_FLAGS_TPA |
HWRM_VNIC_TPA_CFG_INPUT_FLAGS_ENCAP_TPA |
HWRM_VNIC_TPA_CFG_INPUT_FLAGS_RSC_WND_UPDATE |
HWRM_VNIC_TPA_CFG_INPUT_FLAGS_GRO |
HWRM_VNIC_TPA_CFG_INPUT_FLAGS_AGG_WITH_ECN |
HWRM_VNIC_TPA_CFG_INPUT_FLAGS_AGG_WITH_SAME_GRE_SEQ);
req.max_aggs = rte_cpu_to_le_16(BNXT_TPA_MAX_AGGS(bp));
req.max_agg_segs = rte_cpu_to_le_16(BNXT_TPA_MAX_SEGS(bp));
req.min_agg_len = rte_cpu_to_le_32(512);
}
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_vf_mac(struct bnxt *bp, uint16_t vf, const uint8_t *mac_addr)
{
struct hwrm_func_cfg_input req = {0};
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
int rc;
req.flags = rte_cpu_to_le_32(bp->pf.vf_info[vf].func_cfg_flags);
req.enables = rte_cpu_to_le_32(
HWRM_FUNC_CFG_INPUT_ENABLES_DFLT_MAC_ADDR);
memcpy(req.dflt_mac_addr, mac_addr, sizeof(req.dflt_mac_addr));
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[vf].fid);
HWRM_PREP(req, FUNC_CFG, BNXT_USE_CHIMP_MB);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
bp->pf.vf_info[vf].random_mac = false;
return rc;
}
int bnxt_hwrm_func_qstats_tx_drop(struct bnxt *bp, uint16_t fid,
uint64_t *dropped)
{
int rc = 0;
struct hwrm_func_qstats_input req = {.req_type = 0};
struct hwrm_func_qstats_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, FUNC_QSTATS, BNXT_USE_CHIMP_MB);
req.fid = rte_cpu_to_le_16(fid);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
if (dropped)
*dropped = rte_le_to_cpu_64(resp->tx_drop_pkts);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_qstats(struct bnxt *bp, uint16_t fid,
struct rte_eth_stats *stats)
{
int rc = 0;
struct hwrm_func_qstats_input req = {.req_type = 0};
struct hwrm_func_qstats_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, FUNC_QSTATS, BNXT_USE_CHIMP_MB);
req.fid = rte_cpu_to_le_16(fid);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
stats->ipackets = rte_le_to_cpu_64(resp->rx_ucast_pkts);
stats->ipackets += rte_le_to_cpu_64(resp->rx_mcast_pkts);
stats->ipackets += rte_le_to_cpu_64(resp->rx_bcast_pkts);
stats->ibytes = rte_le_to_cpu_64(resp->rx_ucast_bytes);
stats->ibytes += rte_le_to_cpu_64(resp->rx_mcast_bytes);
stats->ibytes += rte_le_to_cpu_64(resp->rx_bcast_bytes);
stats->opackets = rte_le_to_cpu_64(resp->tx_ucast_pkts);
stats->opackets += rte_le_to_cpu_64(resp->tx_mcast_pkts);
stats->opackets += rte_le_to_cpu_64(resp->tx_bcast_pkts);
stats->obytes = rte_le_to_cpu_64(resp->tx_ucast_bytes);
stats->obytes += rte_le_to_cpu_64(resp->tx_mcast_bytes);
stats->obytes += rte_le_to_cpu_64(resp->tx_bcast_bytes);
stats->imissed = rte_le_to_cpu_64(resp->rx_discard_pkts);
stats->ierrors = rte_le_to_cpu_64(resp->rx_drop_pkts);
stats->oerrors = rte_le_to_cpu_64(resp->tx_discard_pkts);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_clr_stats(struct bnxt *bp, uint16_t fid)
{
int rc = 0;
struct hwrm_func_clr_stats_input req = {.req_type = 0};
struct hwrm_func_clr_stats_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, FUNC_CLR_STATS, BNXT_USE_CHIMP_MB);
req.fid = rte_cpu_to_le_16(fid);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_clear_all_hwrm_stat_ctxs(struct bnxt *bp)
{
unsigned int i;
int rc = 0;
for (i = 0; i < bp->rx_cp_nr_rings + bp->tx_cp_nr_rings; i++) {
struct bnxt_tx_queue *txq;
struct bnxt_rx_queue *rxq;
struct bnxt_cp_ring_info *cpr;
if (i >= bp->rx_cp_nr_rings) {
txq = bp->tx_queues[i - bp->rx_cp_nr_rings];
cpr = txq->cp_ring;
} else {
rxq = bp->rx_queues[i];
cpr = rxq->cp_ring;
}
rc = bnxt_hwrm_stat_clear(bp, cpr);
if (rc)
return rc;
}
return 0;
}
int bnxt_free_all_hwrm_stat_ctxs(struct bnxt *bp)
{
int rc;
unsigned int i;
struct bnxt_cp_ring_info *cpr;
for (i = 0; i < bp->rx_cp_nr_rings + bp->tx_cp_nr_rings; i++) {
if (i >= bp->rx_cp_nr_rings) {
cpr = bp->tx_queues[i - bp->rx_cp_nr_rings]->cp_ring;
} else {
cpr = bp->rx_queues[i]->cp_ring;
if (BNXT_HAS_RING_GRPS(bp))
bp->grp_info[i].fw_stats_ctx = -1;
}
if (cpr->hw_stats_ctx_id != HWRM_NA_SIGNATURE) {
rc = bnxt_hwrm_stat_ctx_free(bp, cpr, i);
cpr->hw_stats_ctx_id = HWRM_NA_SIGNATURE;
if (rc)
return rc;
}
}
return 0;
}
int bnxt_alloc_all_hwrm_stat_ctxs(struct bnxt *bp)
{
unsigned int i;
int rc = 0;
for (i = 0; i < bp->rx_cp_nr_rings + bp->tx_cp_nr_rings; i++) {
struct bnxt_tx_queue *txq;
struct bnxt_rx_queue *rxq;
struct bnxt_cp_ring_info *cpr;
if (i >= bp->rx_cp_nr_rings) {
txq = bp->tx_queues[i - bp->rx_cp_nr_rings];
cpr = txq->cp_ring;
} else {
rxq = bp->rx_queues[i];
cpr = rxq->cp_ring;
}
rc = bnxt_hwrm_stat_ctx_alloc(bp, cpr, i);
if (rc)
return rc;
}
return rc;
}
int bnxt_free_all_hwrm_ring_grps(struct bnxt *bp)
{
uint16_t idx;
uint32_t rc = 0;
if (!BNXT_HAS_RING_GRPS(bp))
return 0;
for (idx = 0; idx < bp->rx_cp_nr_rings; idx++) {
if (bp->grp_info[idx].fw_grp_id == INVALID_HW_RING_ID)
continue;
rc = bnxt_hwrm_ring_grp_free(bp, idx);
if (rc)
return rc;
}
return rc;
}
void bnxt_free_nq_ring(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
{
struct bnxt_ring *cp_ring = cpr->cp_ring_struct;
bnxt_hwrm_ring_free(bp, cp_ring,
HWRM_RING_FREE_INPUT_RING_TYPE_NQ);
cp_ring->fw_ring_id = INVALID_HW_RING_ID;
memset(cpr->cp_desc_ring, 0, cpr->cp_ring_struct->ring_size *
sizeof(*cpr->cp_desc_ring));
cpr->cp_raw_cons = 0;
cpr->valid = 0;
}
void bnxt_free_cp_ring(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
{
struct bnxt_ring *cp_ring = cpr->cp_ring_struct;
bnxt_hwrm_ring_free(bp, cp_ring,
HWRM_RING_FREE_INPUT_RING_TYPE_L2_CMPL);
cp_ring->fw_ring_id = INVALID_HW_RING_ID;
memset(cpr->cp_desc_ring, 0, cpr->cp_ring_struct->ring_size *
sizeof(*cpr->cp_desc_ring));
cpr->cp_raw_cons = 0;
cpr->valid = 0;
}
void bnxt_free_hwrm_rx_ring(struct bnxt *bp, int queue_index)
{
struct bnxt_rx_queue *rxq = bp->rx_queues[queue_index];
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
struct bnxt_ring *ring = rxr->rx_ring_struct;
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
bnxt_hwrm_ring_free(bp, ring,
HWRM_RING_FREE_INPUT_RING_TYPE_RX);
ring->fw_ring_id = INVALID_HW_RING_ID;
if (BNXT_HAS_RING_GRPS(bp))
bp->grp_info[queue_index].rx_fw_ring_id =
INVALID_HW_RING_ID;
}
ring = rxr->ag_ring_struct;
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
bnxt_hwrm_ring_free(bp, ring,
BNXT_CHIP_THOR(bp) ?
HWRM_RING_FREE_INPUT_RING_TYPE_RX_AGG :
HWRM_RING_FREE_INPUT_RING_TYPE_RX);
if (BNXT_HAS_RING_GRPS(bp))
bp->grp_info[queue_index].ag_fw_ring_id =
INVALID_HW_RING_ID;
}
if (cpr->cp_ring_struct->fw_ring_id != INVALID_HW_RING_ID)
bnxt_free_cp_ring(bp, cpr);
if (BNXT_HAS_RING_GRPS(bp))
bp->grp_info[queue_index].cp_fw_ring_id = INVALID_HW_RING_ID;
}
int bnxt_free_all_hwrm_rings(struct bnxt *bp)
{
unsigned int i;
for (i = 0; i < bp->tx_cp_nr_rings; i++) {
struct bnxt_tx_queue *txq = bp->tx_queues[i];
struct bnxt_tx_ring_info *txr = txq->tx_ring;
struct bnxt_ring *ring = txr->tx_ring_struct;
struct bnxt_cp_ring_info *cpr = txq->cp_ring;
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
bnxt_hwrm_ring_free(bp, ring,
HWRM_RING_FREE_INPUT_RING_TYPE_TX);
ring->fw_ring_id = INVALID_HW_RING_ID;
memset(txr->tx_desc_ring, 0,
txr->tx_ring_struct->ring_size *
sizeof(*txr->tx_desc_ring));
memset(txr->tx_buf_ring, 0,
txr->tx_ring_struct->ring_size *
sizeof(*txr->tx_buf_ring));
txr->tx_prod = 0;
txr->tx_cons = 0;
}
if (cpr->cp_ring_struct->fw_ring_id != INVALID_HW_RING_ID) {
bnxt_free_cp_ring(bp, cpr);
cpr->cp_ring_struct->fw_ring_id = INVALID_HW_RING_ID;
}
}
for (i = 0; i < bp->rx_cp_nr_rings; i++)
bnxt_free_hwrm_rx_ring(bp, i);
return 0;
}
int bnxt_alloc_all_hwrm_ring_grps(struct bnxt *bp)
{
uint16_t i;
uint32_t rc = 0;
if (!BNXT_HAS_RING_GRPS(bp))
return 0;
for (i = 0; i < bp->rx_cp_nr_rings; i++) {
rc = bnxt_hwrm_ring_grp_alloc(bp, i);
if (rc)
return rc;
}
return rc;
}
/*
* HWRM utility functions
*/
void bnxt_free_hwrm_resources(struct bnxt *bp)
{
/* Release memzone */
rte_free(bp->hwrm_cmd_resp_addr);
rte_free(bp->hwrm_short_cmd_req_addr);
bp->hwrm_cmd_resp_addr = NULL;
bp->hwrm_short_cmd_req_addr = NULL;
bp->hwrm_cmd_resp_dma_addr = 0;
bp->hwrm_short_cmd_req_dma_addr = 0;
}
int bnxt_alloc_hwrm_resources(struct bnxt *bp)
{
struct rte_pci_device *pdev = bp->pdev;
char type[RTE_MEMZONE_NAMESIZE];
sprintf(type, "bnxt_hwrm_%04x:%02x:%02x:%02x", pdev->addr.domain,
pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
bp->max_resp_len = HWRM_MAX_RESP_LEN;
bp->hwrm_cmd_resp_addr = rte_malloc(type, bp->max_resp_len, 0);
if (bp->hwrm_cmd_resp_addr == NULL)
return -ENOMEM;
bp->hwrm_cmd_resp_dma_addr =
rte_malloc_virt2iova(bp->hwrm_cmd_resp_addr);
if (bp->hwrm_cmd_resp_dma_addr == RTE_BAD_IOVA) {
PMD_DRV_LOG(ERR,
"unable to map response address to physical memory\n");
return -ENOMEM;
}
rte_spinlock_init(&bp->hwrm_lock);
return 0;
}
int
bnxt_clear_one_vnic_filter(struct bnxt *bp, struct bnxt_filter_info *filter)
{
int rc = 0;
if (filter->filter_type == HWRM_CFA_EM_FILTER) {
rc = bnxt_hwrm_clear_em_filter(bp, filter);
if (rc)
return rc;
} else if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER) {
rc = bnxt_hwrm_clear_ntuple_filter(bp, filter);
if (rc)
return rc;
}
rc = bnxt_hwrm_clear_l2_filter(bp, filter);
return rc;
}
int bnxt_clear_hwrm_vnic_filters(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
struct bnxt_filter_info *filter;
int rc = 0;
STAILQ_FOREACH(filter, &vnic->filter, next) {
rc = bnxt_clear_one_vnic_filter(bp, filter);
STAILQ_REMOVE(&vnic->filter, filter, bnxt_filter_info, next);
bnxt_free_filter(bp, filter);
}
return rc;
}
static int
bnxt_clear_hwrm_vnic_flows(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
struct bnxt_filter_info *filter;
struct rte_flow *flow;
int rc = 0;
while (!STAILQ_EMPTY(&vnic->flow_list)) {
flow = STAILQ_FIRST(&vnic->flow_list);
filter = flow->filter;
PMD_DRV_LOG(DEBUG, "filter type %d\n", filter->filter_type);
rc = bnxt_clear_one_vnic_filter(bp, filter);
STAILQ_REMOVE(&vnic->flow_list, flow, rte_flow, next);
rte_free(flow);
}
return rc;
}
int bnxt_set_hwrm_vnic_filters(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
struct bnxt_filter_info *filter;
int rc = 0;
STAILQ_FOREACH(filter, &vnic->filter, next) {
if (filter->filter_type == HWRM_CFA_EM_FILTER)
rc = bnxt_hwrm_set_em_filter(bp, filter->dst_id,
filter);
else if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER)
rc = bnxt_hwrm_set_ntuple_filter(bp, filter->dst_id,
filter);
else
rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id,
filter);
if (rc)
break;
}
return rc;
}
void bnxt_free_tunnel_ports(struct bnxt *bp)
{
if (bp->vxlan_port_cnt)
bnxt_hwrm_tunnel_dst_port_free(bp, bp->vxlan_fw_dst_port_id,
HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN);
bp->vxlan_port = 0;
if (bp->geneve_port_cnt)
bnxt_hwrm_tunnel_dst_port_free(bp, bp->geneve_fw_dst_port_id,
HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE);
bp->geneve_port = 0;
}
void bnxt_free_all_hwrm_resources(struct bnxt *bp)
{
int i;
if (bp->vnic_info == NULL)
return;
/*
* Cleanup VNICs in reverse order, to make sure the L2 filter
* from vnic0 is last to be cleaned up.
*/
for (i = bp->max_vnics - 1; i >= 0; i--) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
continue;
bnxt_clear_hwrm_vnic_flows(bp, vnic);
bnxt_clear_hwrm_vnic_filters(bp, vnic);
bnxt_hwrm_vnic_ctx_free(bp, vnic);
bnxt_hwrm_vnic_tpa_cfg(bp, vnic, false);
bnxt_hwrm_vnic_free(bp, vnic);
rte_free(vnic->fw_grp_ids);
}
/* Ring resources */
bnxt_free_all_hwrm_rings(bp);
bnxt_free_all_hwrm_ring_grps(bp);
bnxt_free_all_hwrm_stat_ctxs(bp);
bnxt_free_tunnel_ports(bp);
}
static uint16_t bnxt_parse_eth_link_duplex(uint32_t conf_link_speed)
{
uint8_t hw_link_duplex = HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_BOTH;
if ((conf_link_speed & ETH_LINK_SPEED_FIXED) == ETH_LINK_SPEED_AUTONEG)
return HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_BOTH;
switch (conf_link_speed) {
case ETH_LINK_SPEED_10M_HD:
case ETH_LINK_SPEED_100M_HD:
/* FALLTHROUGH */
return HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_HALF;
}
return hw_link_duplex;
}
static uint16_t bnxt_check_eth_link_autoneg(uint32_t conf_link)
{
return (conf_link & ETH_LINK_SPEED_FIXED) ? 0 : 1;
}
static uint16_t bnxt_parse_eth_link_speed(uint32_t conf_link_speed)
{
uint16_t eth_link_speed = 0;
if (conf_link_speed == ETH_LINK_SPEED_AUTONEG)
return ETH_LINK_SPEED_AUTONEG;
switch (conf_link_speed & ~ETH_LINK_SPEED_FIXED) {
case ETH_LINK_SPEED_100M:
case ETH_LINK_SPEED_100M_HD:
/* FALLTHROUGH */
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_100MB;
break;
case ETH_LINK_SPEED_1G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_1GB;
break;
case ETH_LINK_SPEED_2_5G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_2_5GB;
break;
case ETH_LINK_SPEED_10G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_FORCE_LINK_SPEED_10GB;
break;
case ETH_LINK_SPEED_20G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_20GB;
break;
case ETH_LINK_SPEED_25G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_25GB;
break;
case ETH_LINK_SPEED_40G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_FORCE_LINK_SPEED_40GB;
break;
case ETH_LINK_SPEED_50G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_FORCE_LINK_SPEED_50GB;
break;
case ETH_LINK_SPEED_100G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_FORCE_LINK_SPEED_100GB;
break;
default:
PMD_DRV_LOG(ERR,
"Unsupported link speed %d; default to AUTO\n",
conf_link_speed);
break;
}
return eth_link_speed;
}
#define BNXT_SUPPORTED_SPEEDS (ETH_LINK_SPEED_100M | ETH_LINK_SPEED_100M_HD | \
ETH_LINK_SPEED_1G | ETH_LINK_SPEED_2_5G | \
ETH_LINK_SPEED_10G | ETH_LINK_SPEED_20G | ETH_LINK_SPEED_25G | \
ETH_LINK_SPEED_40G | ETH_LINK_SPEED_50G | ETH_LINK_SPEED_100G)
static int bnxt_valid_link_speed(uint32_t link_speed, uint16_t port_id)
{
uint32_t one_speed;
if (link_speed == ETH_LINK_SPEED_AUTONEG)
return 0;
if (link_speed & ETH_LINK_SPEED_FIXED) {
one_speed = link_speed & ~ETH_LINK_SPEED_FIXED;
if (one_speed & (one_speed - 1)) {
PMD_DRV_LOG(ERR,
"Invalid advertised speeds (%u) for port %u\n",
link_speed, port_id);
return -EINVAL;
}
if ((one_speed & BNXT_SUPPORTED_SPEEDS) != one_speed) {
PMD_DRV_LOG(ERR,
"Unsupported advertised speed (%u) for port %u\n",
link_speed, port_id);
return -EINVAL;
}
} else {
if (!(link_speed & BNXT_SUPPORTED_SPEEDS)) {
PMD_DRV_LOG(ERR,
"Unsupported advertised speeds (%u) for port %u\n",
link_speed, port_id);
return -EINVAL;
}
}
return 0;
}
static uint16_t
bnxt_parse_eth_link_speed_mask(struct bnxt *bp, uint32_t link_speed)
{
uint16_t ret = 0;
if (link_speed == ETH_LINK_SPEED_AUTONEG) {
if (bp->link_info.support_speeds)
return bp->link_info.support_speeds;
link_speed = BNXT_SUPPORTED_SPEEDS;
}
if (link_speed & ETH_LINK_SPEED_100M)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_100MB;
if (link_speed & ETH_LINK_SPEED_100M_HD)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_100MB;
if (link_speed & ETH_LINK_SPEED_1G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_1GB;
if (link_speed & ETH_LINK_SPEED_2_5G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_2_5GB;
if (link_speed & ETH_LINK_SPEED_10G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_10GB;
if (link_speed & ETH_LINK_SPEED_20G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_20GB;
if (link_speed & ETH_LINK_SPEED_25G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_25GB;
if (link_speed & ETH_LINK_SPEED_40G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_40GB;
if (link_speed & ETH_LINK_SPEED_50G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_50GB;
if (link_speed & ETH_LINK_SPEED_100G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_100GB;
return ret;
}
static uint32_t bnxt_parse_hw_link_speed(uint16_t hw_link_speed)
{
uint32_t eth_link_speed = ETH_SPEED_NUM_NONE;
switch (hw_link_speed) {
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_100MB:
eth_link_speed = ETH_SPEED_NUM_100M;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_1GB:
eth_link_speed = ETH_SPEED_NUM_1G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_2_5GB:
eth_link_speed = ETH_SPEED_NUM_2_5G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_10GB:
eth_link_speed = ETH_SPEED_NUM_10G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_20GB:
eth_link_speed = ETH_SPEED_NUM_20G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_25GB:
eth_link_speed = ETH_SPEED_NUM_25G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_40GB:
eth_link_speed = ETH_SPEED_NUM_40G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_50GB:
eth_link_speed = ETH_SPEED_NUM_50G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_100GB:
eth_link_speed = ETH_SPEED_NUM_100G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_2GB:
default:
PMD_DRV_LOG(ERR, "HWRM link speed %d not defined\n",
hw_link_speed);
break;
}
return eth_link_speed;
}
static uint16_t bnxt_parse_hw_link_duplex(uint16_t hw_link_duplex)
{
uint16_t eth_link_duplex = ETH_LINK_FULL_DUPLEX;
switch (hw_link_duplex) {
case HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_BOTH:
case HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_FULL:
/* FALLTHROUGH */
eth_link_duplex = ETH_LINK_FULL_DUPLEX;
break;
case HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_HALF:
eth_link_duplex = ETH_LINK_HALF_DUPLEX;
break;
default:
PMD_DRV_LOG(ERR, "HWRM link duplex %d not defined\n",
hw_link_duplex);
break;
}
return eth_link_duplex;
}
int bnxt_get_hwrm_link_config(struct bnxt *bp, struct rte_eth_link *link)
{
int rc = 0;
struct bnxt_link_info *link_info = &bp->link_info;
rc = bnxt_hwrm_port_phy_qcfg(bp, link_info);
if (rc) {
PMD_DRV_LOG(ERR,
"Get link config failed with rc %d\n", rc);
goto exit;
}
if (link_info->link_speed)
link->link_speed =
bnxt_parse_hw_link_speed(link_info->link_speed);
else
link->link_speed = ETH_SPEED_NUM_NONE;
link->link_duplex = bnxt_parse_hw_link_duplex(link_info->duplex);
link->link_status = link_info->link_up;
link->link_autoneg = link_info->auto_mode ==
HWRM_PORT_PHY_QCFG_OUTPUT_AUTO_MODE_NONE ?
ETH_LINK_FIXED : ETH_LINK_AUTONEG;
exit:
return rc;
}
int bnxt_set_hwrm_link_config(struct bnxt *bp, bool link_up)
{
int rc = 0;
struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
struct bnxt_link_info link_req;
uint16_t speed, autoneg;
if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp))
return 0;
rc = bnxt_valid_link_speed(dev_conf->link_speeds,
bp->eth_dev->data->port_id);
if (rc)
goto error;
memset(&link_req, 0, sizeof(link_req));
link_req.link_up = link_up;
if (!link_up)
goto port_phy_cfg;
autoneg = bnxt_check_eth_link_autoneg(dev_conf->link_speeds);
if (BNXT_CHIP_THOR(bp) &&
dev_conf->link_speeds == ETH_LINK_SPEED_40G) {
/* 40G is not supported as part of media auto detect.
* The speed should be forced and autoneg disabled
* to configure 40G speed.
*/
PMD_DRV_LOG(INFO, "Disabling autoneg for 40G\n");
autoneg = 0;
}
speed = bnxt_parse_eth_link_speed(dev_conf->link_speeds);
link_req.phy_flags = HWRM_PORT_PHY_CFG_INPUT_FLAGS_RESET_PHY;
/* Autoneg can be done only when the FW allows.
* When user configures fixed speed of 40G and later changes to
* any other speed, auto_link_speed/force_link_speed is still set
* to 40G until link comes up at new speed.
*/
if (autoneg == 1 &&
!(!BNXT_CHIP_THOR(bp) &&
(bp->link_info.auto_link_speed ||
bp->link_info.force_link_speed))) {
link_req.phy_flags |=
HWRM_PORT_PHY_CFG_INPUT_FLAGS_RESTART_AUTONEG;
link_req.auto_link_speed_mask =
bnxt_parse_eth_link_speed_mask(bp,
dev_conf->link_speeds);
} else {
if (bp->link_info.phy_type ==
HWRM_PORT_PHY_QCFG_OUTPUT_PHY_TYPE_BASET ||
bp->link_info.phy_type ==
HWRM_PORT_PHY_QCFG_OUTPUT_PHY_TYPE_BASETE ||
bp->link_info.media_type ==
HWRM_PORT_PHY_QCFG_OUTPUT_MEDIA_TYPE_TP) {
PMD_DRV_LOG(ERR, "10GBase-T devices must autoneg\n");
return -EINVAL;
}
link_req.phy_flags |= HWRM_PORT_PHY_CFG_INPUT_FLAGS_FORCE;
/* If user wants a particular speed try that first. */
if (speed)
link_req.link_speed = speed;
else if (bp->link_info.force_link_speed)
link_req.link_speed = bp->link_info.force_link_speed;
else
link_req.link_speed = bp->link_info.auto_link_speed;
}
link_req.duplex = bnxt_parse_eth_link_duplex(dev_conf->link_speeds);
link_req.auto_pause = bp->link_info.auto_pause;
link_req.force_pause = bp->link_info.force_pause;
port_phy_cfg:
rc = bnxt_hwrm_port_phy_cfg(bp, &link_req);
if (rc) {
PMD_DRV_LOG(ERR,
"Set link config failed with rc %d\n", rc);
}
error:
return rc;
}
/* JIRA 22088 */
int bnxt_hwrm_func_qcfg(struct bnxt *bp, uint16_t *mtu)
{
struct hwrm_func_qcfg_input req = {0};
struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
uint16_t flags;
int rc = 0;
HWRM_PREP(req, FUNC_QCFG, BNXT_USE_CHIMP_MB);
req.fid = rte_cpu_to_le_16(0xffff);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
/* Hard Coded.. 0xfff VLAN ID mask */
bp->vlan = rte_le_to_cpu_16(resp->vlan) & 0xfff;
flags = rte_le_to_cpu_16(resp->flags);
if (BNXT_PF(bp) && (flags & HWRM_FUNC_QCFG_OUTPUT_FLAGS_MULTI_HOST))
bp->flags |= BNXT_FLAG_MULTI_HOST;
if (BNXT_VF(bp) &&
!BNXT_VF_IS_TRUSTED(bp) &&
(flags & HWRM_FUNC_QCFG_OUTPUT_FLAGS_TRUSTED_VF)) {
bp->flags |= BNXT_FLAG_TRUSTED_VF_EN;
PMD_DRV_LOG(INFO, "Trusted VF cap enabled\n");
} else if (BNXT_VF(bp) &&
BNXT_VF_IS_TRUSTED(bp) &&
!(flags & HWRM_FUNC_QCFG_OUTPUT_FLAGS_TRUSTED_VF)) {
bp->flags &= ~BNXT_FLAG_TRUSTED_VF_EN;
PMD_DRV_LOG(INFO, "Trusted VF cap disabled\n");
}
if (mtu)
*mtu = rte_le_to_cpu_16(resp->mtu);
switch (resp->port_partition_type) {
case HWRM_FUNC_QCFG_OUTPUT_PORT_PARTITION_TYPE_NPAR1_0:
case HWRM_FUNC_QCFG_OUTPUT_PORT_PARTITION_TYPE_NPAR1_5:
case HWRM_FUNC_QCFG_OUTPUT_PORT_PARTITION_TYPE_NPAR2_0:
/* FALLTHROUGH */
bp->flags |= BNXT_FLAG_NPAR_PF;
break;
default:
bp->flags &= ~BNXT_FLAG_NPAR_PF;
break;
}
HWRM_UNLOCK();
return rc;
}
static void copy_func_cfg_to_qcaps(struct hwrm_func_cfg_input *fcfg,
struct hwrm_func_qcaps_output *qcaps)
{
qcaps->max_rsscos_ctx = fcfg->num_rsscos_ctxs;
memcpy(qcaps->mac_address, fcfg->dflt_mac_addr,
sizeof(qcaps->mac_address));
qcaps->max_l2_ctxs = fcfg->num_l2_ctxs;
qcaps->max_rx_rings = fcfg->num_rx_rings;
qcaps->max_tx_rings = fcfg->num_tx_rings;
qcaps->max_cmpl_rings = fcfg->num_cmpl_rings;
qcaps->max_stat_ctx = fcfg->num_stat_ctxs;
qcaps->max_vfs = 0;
qcaps->first_vf_id = 0;
qcaps->max_vnics = fcfg->num_vnics;
qcaps->max_decap_records = 0;
qcaps->max_encap_records = 0;
qcaps->max_tx_wm_flows = 0;
qcaps->max_tx_em_flows = 0;
qcaps->max_rx_wm_flows = 0;
qcaps->max_rx_em_flows = 0;
qcaps->max_flow_id = 0;
qcaps->max_mcast_filters = fcfg->num_mcast_filters;
qcaps->max_sp_tx_rings = 0;
qcaps->max_hw_ring_grps = fcfg->num_hw_ring_grps;
}
static int bnxt_hwrm_pf_func_cfg(struct bnxt *bp, int tx_rings)
{
struct hwrm_func_cfg_input req = {0};
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t enables;
int rc;
enables = HWRM_FUNC_CFG_INPUT_ENABLES_MTU |
HWRM_FUNC_CFG_INPUT_ENABLES_MRU |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_RSSCOS_CTXS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_STAT_CTXS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_CMPL_RINGS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_TX_RINGS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_RX_RINGS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_L2_CTXS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_VNICS;
if (BNXT_HAS_RING_GRPS(bp)) {
enables |= HWRM_FUNC_CFG_INPUT_ENABLES_NUM_HW_RING_GRPS;
req.num_hw_ring_grps = rte_cpu_to_le_16(bp->max_ring_grps);
} else if (BNXT_HAS_NQ(bp)) {
enables |= HWRM_FUNC_CFG_INPUT_ENABLES_NUM_MSIX;
req.num_msix = rte_cpu_to_le_16(bp->max_nq_rings);
}
req.flags = rte_cpu_to_le_32(bp->pf.func_cfg_flags);
req.mtu = rte_cpu_to_le_16(BNXT_MAX_MTU);
req.mru = rte_cpu_to_le_16(BNXT_VNIC_MRU(bp->eth_dev->data->mtu));
req.num_rsscos_ctxs = rte_cpu_to_le_16(bp->max_rsscos_ctx);
req.num_stat_ctxs = rte_cpu_to_le_16(bp->max_stat_ctx);
req.num_cmpl_rings = rte_cpu_to_le_16(bp->max_cp_rings);
req.num_tx_rings = rte_cpu_to_le_16(tx_rings);
req.num_rx_rings = rte_cpu_to_le_16(bp->max_rx_rings);
req.num_l2_ctxs = rte_cpu_to_le_16(bp->max_l2_ctx);
req.num_vnics = rte_cpu_to_le_16(bp->max_vnics);
req.fid = rte_cpu_to_le_16(0xffff);
req.enables = rte_cpu_to_le_32(enables);
HWRM_PREP(req, FUNC_CFG, BNXT_USE_CHIMP_MB);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
static void populate_vf_func_cfg_req(struct bnxt *bp,
struct hwrm_func_cfg_input *req,
int num_vfs)
{
req->enables = rte_cpu_to_le_32(HWRM_FUNC_CFG_INPUT_ENABLES_MTU |
HWRM_FUNC_CFG_INPUT_ENABLES_MRU |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_RSSCOS_CTXS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_STAT_CTXS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_CMPL_RINGS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_TX_RINGS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_RX_RINGS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_L2_CTXS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_VNICS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_HW_RING_GRPS);
req->mtu = rte_cpu_to_le_16(bp->eth_dev->data->mtu + RTE_ETHER_HDR_LEN +
RTE_ETHER_CRC_LEN + VLAN_TAG_SIZE *
BNXT_NUM_VLANS);
req->mru = rte_cpu_to_le_16(BNXT_VNIC_MRU(bp->eth_dev->data->mtu));
req->num_rsscos_ctxs = rte_cpu_to_le_16(bp->max_rsscos_ctx /
(num_vfs + 1));
req->num_stat_ctxs = rte_cpu_to_le_16(bp->max_stat_ctx / (num_vfs + 1));
req->num_cmpl_rings = rte_cpu_to_le_16(bp->max_cp_rings /
(num_vfs + 1));
req->num_tx_rings = rte_cpu_to_le_16(bp->max_tx_rings / (num_vfs + 1));
req->num_rx_rings = rte_cpu_to_le_16(bp->max_rx_rings / (num_vfs + 1));
req->num_l2_ctxs = rte_cpu_to_le_16(bp->max_l2_ctx / (num_vfs + 1));
/* TODO: For now, do not support VMDq/RFS on VFs. */
req->num_vnics = rte_cpu_to_le_16(1);
req->num_hw_ring_grps = rte_cpu_to_le_16(bp->max_ring_grps /
(num_vfs + 1));
}
static void add_random_mac_if_needed(struct bnxt *bp,
struct hwrm_func_cfg_input *cfg_req,
int vf)
{
struct rte_ether_addr mac;
if (bnxt_hwrm_func_qcfg_vf_default_mac(bp, vf, &mac))
return;
if (memcmp(mac.addr_bytes, "\x00\x00\x00\x00\x00", 6) == 0) {
cfg_req->enables |=
rte_cpu_to_le_32(HWRM_FUNC_CFG_INPUT_ENABLES_DFLT_MAC_ADDR);
rte_eth_random_addr(cfg_req->dflt_mac_addr);
bp->pf.vf_info[vf].random_mac = true;
} else {
memcpy(cfg_req->dflt_mac_addr, mac.addr_bytes,
RTE_ETHER_ADDR_LEN);
}
}
static int reserve_resources_from_vf(struct bnxt *bp,
struct hwrm_func_cfg_input *cfg_req,
int vf)
{
struct hwrm_func_qcaps_input req = {0};
struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
int rc;
/* Get the actual allocated values now */
HWRM_PREP(req, FUNC_QCAPS, BNXT_USE_CHIMP_MB);
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[vf].fid);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
if (rc) {
PMD_DRV_LOG(ERR, "hwrm_func_qcaps failed rc:%d\n", rc);
copy_func_cfg_to_qcaps(cfg_req, resp);
} else if (resp->error_code) {
rc = rte_le_to_cpu_16(resp->error_code);
PMD_DRV_LOG(ERR, "hwrm_func_qcaps error %d\n", rc);
copy_func_cfg_to_qcaps(cfg_req, resp);
}
bp->max_rsscos_ctx -= rte_le_to_cpu_16(resp->max_rsscos_ctx);
bp->max_stat_ctx -= rte_le_to_cpu_16(resp->max_stat_ctx);
bp->max_cp_rings -= rte_le_to_cpu_16(resp->max_cmpl_rings);
bp->max_tx_rings -= rte_le_to_cpu_16(resp->max_tx_rings);
bp->max_rx_rings -= rte_le_to_cpu_16(resp->max_rx_rings);
bp->max_l2_ctx -= rte_le_to_cpu_16(resp->max_l2_ctxs);
/*
* TODO: While not supporting VMDq with VFs, max_vnics is always
* forced to 1 in this case
*/
//bp->max_vnics -= rte_le_to_cpu_16(esp->max_vnics);
bp->max_ring_grps -= rte_le_to_cpu_16(resp->max_hw_ring_grps);
HWRM_UNLOCK();
return 0;
}
int bnxt_hwrm_func_qcfg_current_vf_vlan(struct bnxt *bp, int vf)
{
struct hwrm_func_qcfg_input req = {0};
struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
int rc;
/* Check for zero MAC address */
HWRM_PREP(req, FUNC_QCFG, BNXT_USE_CHIMP_MB);
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[vf].fid);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
rc = rte_le_to_cpu_16(resp->vlan);
HWRM_UNLOCK();
return rc;
}
static int update_pf_resource_max(struct bnxt *bp)
{
struct hwrm_func_qcfg_input req = {0};
struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
int rc;
/* And copy the allocated numbers into the pf struct */
HWRM_PREP(req, FUNC_QCFG, BNXT_USE_CHIMP_MB);
req.fid = rte_cpu_to_le_16(0xffff);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
/* Only TX ring value reflects actual allocation? TODO */
bp->max_tx_rings = rte_le_to_cpu_16(resp->alloc_tx_rings);
bp->pf.evb_mode = resp->evb_mode;
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_allocate_pf_only(struct bnxt *bp)
{
int rc;
if (!BNXT_PF(bp)) {
PMD_DRV_LOG(ERR, "Attempt to allcoate VFs on a VF!\n");
return -EINVAL;
}
rc = bnxt_hwrm_func_qcaps(bp);
if (rc)
return rc;
bp->pf.func_cfg_flags &=
~(HWRM_FUNC_CFG_INPUT_FLAGS_STD_TX_RING_MODE_ENABLE |
HWRM_FUNC_CFG_INPUT_FLAGS_STD_TX_RING_MODE_DISABLE);
bp->pf.func_cfg_flags |=
HWRM_FUNC_CFG_INPUT_FLAGS_STD_TX_RING_MODE_DISABLE;
rc = bnxt_hwrm_pf_func_cfg(bp, bp->max_tx_rings);
rc = __bnxt_hwrm_func_qcaps(bp);
return rc;
}
int bnxt_hwrm_allocate_vfs(struct bnxt *bp, int num_vfs)
{
struct hwrm_func_cfg_input req = {0};
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
int i;
size_t sz;
int rc = 0;
size_t req_buf_sz;
if (!BNXT_PF(bp)) {
PMD_DRV_LOG(ERR, "Attempt to allcoate VFs on a VF!\n");
return -EINVAL;
}
rc = bnxt_hwrm_func_qcaps(bp);
if (rc)
return rc;
bp->pf.active_vfs = num_vfs;
/*
* First, configure the PF to only use one TX ring. This ensures that
* there are enough rings for all VFs.
*
* If we don't do this, when we call func_alloc() later, we will lock
* extra rings to the PF that won't be available during func_cfg() of
* the VFs.
*
* This has been fixed with firmware versions above 20.6.54
*/
bp->pf.func_cfg_flags &=
~(HWRM_FUNC_CFG_INPUT_FLAGS_STD_TX_RING_MODE_ENABLE |
HWRM_FUNC_CFG_INPUT_FLAGS_STD_TX_RING_MODE_DISABLE);
bp->pf.func_cfg_flags |=
HWRM_FUNC_CFG_INPUT_FLAGS_STD_TX_RING_MODE_ENABLE;
rc = bnxt_hwrm_pf_func_cfg(bp, 1);
if (rc)
return rc;
/*
* Now, create and register a buffer to hold forwarded VF requests
*/
req_buf_sz = num_vfs * HWRM_MAX_REQ_LEN;
bp->pf.vf_req_buf = rte_malloc("bnxt_vf_fwd", req_buf_sz,
page_roundup(num_vfs * HWRM_MAX_REQ_LEN));
if (bp->pf.vf_req_buf == NULL) {
rc = -ENOMEM;
goto error_free;
}
for (sz = 0; sz < req_buf_sz; sz += getpagesize())
rte_mem_lock_page(((char *)bp->pf.vf_req_buf) + sz);
for (i = 0; i < num_vfs; i++)
bp->pf.vf_info[i].req_buf = ((char *)bp->pf.vf_req_buf) +
(i * HWRM_MAX_REQ_LEN);
rc = bnxt_hwrm_func_buf_rgtr(bp);
if (rc)
goto error_free;
populate_vf_func_cfg_req(bp, &req, num_vfs);
bp->pf.active_vfs = 0;
for (i = 0; i < num_vfs; i++) {
add_random_mac_if_needed(bp, &req, i);
HWRM_PREP(req, FUNC_CFG, BNXT_USE_CHIMP_MB);
req.flags = rte_cpu_to_le_32(bp->pf.vf_info[i].func_cfg_flags);
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[i].fid);
rc = bnxt_hwrm_send_message(bp,
&req,
sizeof(req),
BNXT_USE_CHIMP_MB);
/* Clear enable flag for next pass */
req.enables &= ~rte_cpu_to_le_32(
HWRM_FUNC_CFG_INPUT_ENABLES_DFLT_MAC_ADDR);
if (rc || resp->error_code) {
PMD_DRV_LOG(ERR,
"Failed to initizlie VF %d\n", i);
PMD_DRV_LOG(ERR,
"Not all VFs available. (%d, %d)\n",
rc, resp->error_code);
HWRM_UNLOCK();
break;
}
HWRM_UNLOCK();
reserve_resources_from_vf(bp, &req, i);
bp->pf.active_vfs++;
bnxt_hwrm_func_clr_stats(bp, bp->pf.vf_info[i].fid);
}
/*
* Now configure the PF to use "the rest" of the resources
* We're using STD_TX_RING_MODE here though which will limit the TX
* rings. This will allow QoS to function properly. Not setting this
* will cause PF rings to break bandwidth settings.
*/
rc = bnxt_hwrm_pf_func_cfg(bp, bp->max_tx_rings);
if (rc)
goto error_free;
rc = update_pf_resource_max(bp);
if (rc)
goto error_free;
return rc;
error_free:
bnxt_hwrm_func_buf_unrgtr(bp);
return rc;
}
int bnxt_hwrm_pf_evb_mode(struct bnxt *bp)
{
struct hwrm_func_cfg_input req = {0};
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
int rc;
HWRM_PREP(req, FUNC_CFG, BNXT_USE_CHIMP_MB);
req.fid = rte_cpu_to_le_16(0xffff);
req.enables = rte_cpu_to_le_32(HWRM_FUNC_CFG_INPUT_ENABLES_EVB_MODE);
req.evb_mode = bp->pf.evb_mode;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, uint16_t port,
uint8_t tunnel_type)
{
struct hwrm_tunnel_dst_port_alloc_input req = {0};
struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
int rc = 0;
HWRM_PREP(req, TUNNEL_DST_PORT_ALLOC, BNXT_USE_CHIMP_MB);
req.tunnel_type = tunnel_type;
req.tunnel_dst_port_val = rte_cpu_to_be_16(port);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
switch (tunnel_type) {
case HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN:
bp->vxlan_fw_dst_port_id =
rte_le_to_cpu_16(resp->tunnel_dst_port_id);
bp->vxlan_port = port;
break;
case HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE:
bp->geneve_fw_dst_port_id =
rte_le_to_cpu_16(resp->tunnel_dst_port_id);
bp->geneve_port = port;
break;
default:
break;
}
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, uint16_t port,
uint8_t tunnel_type)
{
struct hwrm_tunnel_dst_port_free_input req = {0};
struct hwrm_tunnel_dst_port_free_output *resp = bp->hwrm_cmd_resp_addr;
int rc = 0;
HWRM_PREP(req, TUNNEL_DST_PORT_FREE, BNXT_USE_CHIMP_MB);
req.tunnel_type = tunnel_type;
req.tunnel_dst_port_id = rte_cpu_to_be_16(port);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_cfg_vf_set_flags(struct bnxt *bp, uint16_t vf,
uint32_t flags)
{
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_func_cfg_input req = {0};
int rc;
HWRM_PREP(req, FUNC_CFG, BNXT_USE_CHIMP_MB);
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[vf].fid);
req.flags = rte_cpu_to_le_32(flags);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
void vf_vnic_set_rxmask_cb(struct bnxt_vnic_info *vnic, void *flagp)
{
uint32_t *flag = flagp;
vnic->flags = *flag;
}
int bnxt_set_rx_mask_no_vlan(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
}
int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
{
int rc = 0;
struct hwrm_func_buf_rgtr_input req = {.req_type = 0 };
struct hwrm_func_buf_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, FUNC_BUF_RGTR, BNXT_USE_CHIMP_MB);
req.req_buf_num_pages = rte_cpu_to_le_16(1);
req.req_buf_page_size = rte_cpu_to_le_16(
page_getenum(bp->pf.active_vfs * HWRM_MAX_REQ_LEN));
req.req_buf_len = rte_cpu_to_le_16(HWRM_MAX_REQ_LEN);
req.req_buf_page_addr0 =
rte_cpu_to_le_64(rte_malloc_virt2iova(bp->pf.vf_req_buf));
if (req.req_buf_page_addr0 == RTE_BAD_IOVA) {
PMD_DRV_LOG(ERR,
"unable to map buffer address to physical memory\n");
return -ENOMEM;
}
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_buf_unrgtr(struct bnxt *bp)
{
int rc = 0;
struct hwrm_func_buf_unrgtr_input req = {.req_type = 0 };
struct hwrm_func_buf_unrgtr_output *resp = bp->hwrm_cmd_resp_addr;
if (!(BNXT_PF(bp) && bp->pdev->max_vfs))
return 0;
HWRM_PREP(req, FUNC_BUF_UNRGTR, BNXT_USE_CHIMP_MB);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_cfg_def_cp(struct bnxt *bp)
{
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_func_cfg_input req = {0};
int rc;
HWRM_PREP(req, FUNC_CFG, BNXT_USE_CHIMP_MB);
req.fid = rte_cpu_to_le_16(0xffff);
req.flags = rte_cpu_to_le_32(bp->pf.func_cfg_flags);
req.enables = rte_cpu_to_le_32(
HWRM_FUNC_CFG_INPUT_ENABLES_ASYNC_EVENT_CR);
req.async_event_cr = rte_cpu_to_le_16(
bp->async_cp_ring->cp_ring_struct->fw_ring_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_vf_func_cfg_def_cp(struct bnxt *bp)
{
struct hwrm_func_vf_cfg_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_func_vf_cfg_input req = {0};
int rc;
HWRM_PREP(req, FUNC_VF_CFG, BNXT_USE_CHIMP_MB);
req.enables = rte_cpu_to_le_32(
HWRM_FUNC_VF_CFG_INPUT_ENABLES_ASYNC_EVENT_CR);
req.async_event_cr = rte_cpu_to_le_16(
bp->async_cp_ring->cp_ring_struct->fw_ring_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_set_default_vlan(struct bnxt *bp, int vf, uint8_t is_vf)
{
struct hwrm_func_cfg_input req = {0};
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
uint16_t dflt_vlan, fid;
uint32_t func_cfg_flags;
int rc = 0;
HWRM_PREP(req, FUNC_CFG, BNXT_USE_CHIMP_MB);
if (is_vf) {
dflt_vlan = bp->pf.vf_info[vf].dflt_vlan;
fid = bp->pf.vf_info[vf].fid;
func_cfg_flags = bp->pf.vf_info[vf].func_cfg_flags;
} else {
fid = rte_cpu_to_le_16(0xffff);
func_cfg_flags = bp->pf.func_cfg_flags;
dflt_vlan = bp->vlan;
}
req.flags = rte_cpu_to_le_32(func_cfg_flags);
req.fid = rte_cpu_to_le_16(fid);
req.enables |= rte_cpu_to_le_32(HWRM_FUNC_CFG_INPUT_ENABLES_DFLT_VLAN);
req.dflt_vlan = rte_cpu_to_le_16(dflt_vlan);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_bw_cfg(struct bnxt *bp, uint16_t vf,
uint16_t max_bw, uint16_t enables)
{
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_func_cfg_input req = {0};
int rc;
HWRM_PREP(req, FUNC_CFG, BNXT_USE_CHIMP_MB);
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[vf].fid);
req.enables |= rte_cpu_to_le_32(enables);
req.flags = rte_cpu_to_le_32(bp->pf.vf_info[vf].func_cfg_flags);
req.max_bw = rte_cpu_to_le_32(max_bw);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_set_vf_vlan(struct bnxt *bp, int vf)
{
struct hwrm_func_cfg_input req = {0};
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
int rc = 0;
HWRM_PREP(req, FUNC_CFG, BNXT_USE_CHIMP_MB);
req.flags = rte_cpu_to_le_32(bp->pf.vf_info[vf].func_cfg_flags);
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[vf].fid);
req.enables |= rte_cpu_to_le_32(HWRM_FUNC_CFG_INPUT_ENABLES_DFLT_VLAN);
req.dflt_vlan = rte_cpu_to_le_16(bp->pf.vf_info[vf].dflt_vlan);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_set_async_event_cr(struct bnxt *bp)
{
int rc;
if (BNXT_PF(bp))
rc = bnxt_hwrm_func_cfg_def_cp(bp);
else
rc = bnxt_hwrm_vf_func_cfg_def_cp(bp);
return rc;
}
int bnxt_hwrm_reject_fwd_resp(struct bnxt *bp, uint16_t target_id,
void *encaped, size_t ec_size)
{
int rc = 0;
struct hwrm_reject_fwd_resp_input req = {.req_type = 0};
struct hwrm_reject_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
if (ec_size > sizeof(req.encap_request))
return -1;
HWRM_PREP(req, REJECT_FWD_RESP, BNXT_USE_CHIMP_MB);
req.encap_resp_target_id = rte_cpu_to_le_16(target_id);
memcpy(req.encap_request, encaped, ec_size);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_qcfg_vf_default_mac(struct bnxt *bp, uint16_t vf,
struct rte_ether_addr *mac)
{
struct hwrm_func_qcfg_input req = {0};
struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
int rc;
HWRM_PREP(req, FUNC_QCFG, BNXT_USE_CHIMP_MB);
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[vf].fid);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
memcpy(mac->addr_bytes, resp->mac_address, RTE_ETHER_ADDR_LEN);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, uint16_t target_id,
void *encaped, size_t ec_size)
{
int rc = 0;
struct hwrm_exec_fwd_resp_input req = {.req_type = 0};
struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
if (ec_size > sizeof(req.encap_request))
return -1;
HWRM_PREP(req, EXEC_FWD_RESP, BNXT_USE_CHIMP_MB);
req.encap_resp_target_id = rte_cpu_to_le_16(target_id);
memcpy(req.encap_request, encaped, ec_size);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_ctx_qstats(struct bnxt *bp, uint32_t cid, int idx,
struct rte_eth_stats *stats, uint8_t rx)
{
int rc = 0;
struct hwrm_stat_ctx_query_input req = {.req_type = 0};
struct hwrm_stat_ctx_query_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, STAT_CTX_QUERY, BNXT_USE_CHIMP_MB);
req.stat_ctx_id = rte_cpu_to_le_32(cid);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
if (rx) {
stats->q_ipackets[idx] = rte_le_to_cpu_64(resp->rx_ucast_pkts);
stats->q_ipackets[idx] += rte_le_to_cpu_64(resp->rx_mcast_pkts);
stats->q_ipackets[idx] += rte_le_to_cpu_64(resp->rx_bcast_pkts);
stats->q_ibytes[idx] = rte_le_to_cpu_64(resp->rx_ucast_bytes);
stats->q_ibytes[idx] += rte_le_to_cpu_64(resp->rx_mcast_bytes);
stats->q_ibytes[idx] += rte_le_to_cpu_64(resp->rx_bcast_bytes);
stats->q_errors[idx] = rte_le_to_cpu_64(resp->rx_err_pkts);
stats->q_errors[idx] += rte_le_to_cpu_64(resp->rx_drop_pkts);
} else {
stats->q_opackets[idx] = rte_le_to_cpu_64(resp->tx_ucast_pkts);
stats->q_opackets[idx] += rte_le_to_cpu_64(resp->tx_mcast_pkts);
stats->q_opackets[idx] += rte_le_to_cpu_64(resp->tx_bcast_pkts);
stats->q_obytes[idx] = rte_le_to_cpu_64(resp->tx_ucast_bytes);
stats->q_obytes[idx] += rte_le_to_cpu_64(resp->tx_mcast_bytes);
stats->q_obytes[idx] += rte_le_to_cpu_64(resp->tx_bcast_bytes);
}
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_port_qstats(struct bnxt *bp)
{
struct hwrm_port_qstats_input req = {0};
struct hwrm_port_qstats_output *resp = bp->hwrm_cmd_resp_addr;
struct bnxt_pf_info *pf = &bp->pf;
int rc;
HWRM_PREP(req, PORT_QSTATS, BNXT_USE_CHIMP_MB);
req.port_id = rte_cpu_to_le_16(pf->port_id);
req.tx_stat_host_addr = rte_cpu_to_le_64(bp->hw_tx_port_stats_map);
req.rx_stat_host_addr = rte_cpu_to_le_64(bp->hw_rx_port_stats_map);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_port_clr_stats(struct bnxt *bp)
{
struct hwrm_port_clr_stats_input req = {0};
struct hwrm_port_clr_stats_output *resp = bp->hwrm_cmd_resp_addr;
struct bnxt_pf_info *pf = &bp->pf;
int rc;
/* Not allowed on NS2 device, NPAR, MultiHost, VF */
if (!(bp->flags & BNXT_FLAG_PORT_STATS) || BNXT_VF(bp) ||
BNXT_NPAR(bp) || BNXT_MH(bp) || BNXT_TOTAL_VFS(bp))
return 0;
HWRM_PREP(req, PORT_CLR_STATS, BNXT_USE_CHIMP_MB);
req.port_id = rte_cpu_to_le_16(pf->port_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
{
struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_port_led_qcaps_input req = {0};
int rc;
if (BNXT_VF(bp))
return 0;
HWRM_PREP(req, PORT_LED_QCAPS, BNXT_USE_CHIMP_MB);
req.port_id = bp->pf.port_id;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
unsigned int i;
bp->num_leds = resp->num_leds;
memcpy(bp->leds, &resp->led0_id,
sizeof(bp->leds[0]) * bp->num_leds);
for (i = 0; i < bp->num_leds; i++) {
struct bnxt_led_info *led = &bp->leds[i];
uint16_t caps = led->led_state_caps;
if (!led->led_group_id ||
!BNXT_LED_ALT_BLINK_CAP(caps)) {
bp->num_leds = 0;
break;
}
}
}
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_port_led_cfg(struct bnxt *bp, bool led_on)
{
struct hwrm_port_led_cfg_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_port_led_cfg_input req = {0};
struct bnxt_led_cfg *led_cfg;
uint8_t led_state = HWRM_PORT_LED_QCFG_OUTPUT_LED0_STATE_DEFAULT;
uint16_t duration = 0;
int rc, i;
if (!bp->num_leds || BNXT_VF(bp))
return -EOPNOTSUPP;
HWRM_PREP(req, PORT_LED_CFG, BNXT_USE_CHIMP_MB);
if (led_on) {
led_state = HWRM_PORT_LED_CFG_INPUT_LED0_STATE_BLINKALT;
duration = rte_cpu_to_le_16(500);
}
req.port_id = bp->pf.port_id;
req.num_leds = bp->num_leds;
led_cfg = (struct bnxt_led_cfg *)&req.led0_id;
for (i = 0; i < bp->num_leds; i++, led_cfg++) {
req.enables |= BNXT_LED_DFLT_ENABLES(i);
led_cfg->led_id = bp->leds[i].led_id;
led_cfg->led_state = led_state;
led_cfg->led_blink_on = duration;
led_cfg->led_blink_off = duration;
led_cfg->led_group_id = bp->leds[i].led_group_id;
}
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_nvm_get_dir_info(struct bnxt *bp, uint32_t *entries,
uint32_t *length)
{
int rc;
struct hwrm_nvm_get_dir_info_input req = {0};
struct hwrm_nvm_get_dir_info_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, NVM_GET_DIR_INFO, BNXT_USE_CHIMP_MB);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
*entries = rte_le_to_cpu_32(resp->entries);
*length = rte_le_to_cpu_32(resp->entry_length);
HWRM_UNLOCK();
return rc;
}
int bnxt_get_nvram_directory(struct bnxt *bp, uint32_t len, uint8_t *data)
{
int rc;
uint32_t dir_entries;
uint32_t entry_length;
uint8_t *buf;
size_t buflen;
rte_iova_t dma_handle;
struct hwrm_nvm_get_dir_entries_input req = {0};
struct hwrm_nvm_get_dir_entries_output *resp = bp->hwrm_cmd_resp_addr;
rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
if (rc != 0)
return rc;
*data++ = dir_entries;
*data++ = entry_length;
len -= 2;
memset(data, 0xff, len);
buflen = dir_entries * entry_length;
buf = rte_malloc("nvm_dir", buflen, 0);
if (buf == NULL)
return -ENOMEM;
dma_handle = rte_malloc_virt2iova(buf);
if (dma_handle == RTE_BAD_IOVA) {
PMD_DRV_LOG(ERR,
"unable to map response address to physical memory\n");
return -ENOMEM;
}
HWRM_PREP(req, NVM_GET_DIR_ENTRIES, BNXT_USE_CHIMP_MB);
req.host_dest_addr = rte_cpu_to_le_64(dma_handle);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
if (rc == 0)
memcpy(data, buf, len > buflen ? buflen : len);
rte_free(buf);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_get_nvram_item(struct bnxt *bp, uint32_t index,
uint32_t offset, uint32_t length,
uint8_t *data)
{
int rc;
uint8_t *buf;
rte_iova_t dma_handle;
struct hwrm_nvm_read_input req = {0};
struct hwrm_nvm_read_output *resp = bp->hwrm_cmd_resp_addr;
buf = rte_malloc("nvm_item", length, 0);
if (!buf)
return -ENOMEM;
dma_handle = rte_malloc_virt2iova(buf);
if (dma_handle == RTE_BAD_IOVA) {
PMD_DRV_LOG(ERR,
"unable to map response address to physical memory\n");
return -ENOMEM;
}
HWRM_PREP(req, NVM_READ, BNXT_USE_CHIMP_MB);
req.host_dest_addr = rte_cpu_to_le_64(dma_handle);
req.dir_idx = rte_cpu_to_le_16(index);
req.offset = rte_cpu_to_le_32(offset);
req.len = rte_cpu_to_le_32(length);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
if (rc == 0)
memcpy(data, buf, length);
rte_free(buf);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_erase_nvram_directory(struct bnxt *bp, uint8_t index)
{
int rc;
struct hwrm_nvm_erase_dir_entry_input req = {0};
struct hwrm_nvm_erase_dir_entry_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, NVM_ERASE_DIR_ENTRY, BNXT_USE_CHIMP_MB);
req.dir_idx = rte_cpu_to_le_16(index);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_flash_nvram(struct bnxt *bp, uint16_t dir_type,
uint16_t dir_ordinal, uint16_t dir_ext,
uint16_t dir_attr, const uint8_t *data,
size_t data_len)
{
int rc;
struct hwrm_nvm_write_input req = {0};
struct hwrm_nvm_write_output *resp = bp->hwrm_cmd_resp_addr;
rte_iova_t dma_handle;
uint8_t *buf;
buf = rte_malloc("nvm_write", data_len, 0);
if (!buf)
return -ENOMEM;
dma_handle = rte_malloc_virt2iova(buf);
if (dma_handle == RTE_BAD_IOVA) {
PMD_DRV_LOG(ERR,
"unable to map response address to physical memory\n");
return -ENOMEM;
}
memcpy(buf, data, data_len);
HWRM_PREP(req, NVM_WRITE, BNXT_USE_CHIMP_MB);
req.dir_type = rte_cpu_to_le_16(dir_type);
req.dir_ordinal = rte_cpu_to_le_16(dir_ordinal);
req.dir_ext = rte_cpu_to_le_16(dir_ext);
req.dir_attr = rte_cpu_to_le_16(dir_attr);
req.dir_data_length = rte_cpu_to_le_32(data_len);
req.host_src_addr = rte_cpu_to_le_64(dma_handle);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
rte_free(buf);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
static void
bnxt_vnic_count(struct bnxt_vnic_info *vnic __rte_unused, void *cbdata)
{
uint32_t *count = cbdata;
*count = *count + 1;
}
static int bnxt_vnic_count_hwrm_stub(struct bnxt *bp __rte_unused,
struct bnxt_vnic_info *vnic __rte_unused)
{
return 0;
}
int bnxt_vf_vnic_count(struct bnxt *bp, uint16_t vf)
{
uint32_t count = 0;
bnxt_hwrm_func_vf_vnic_query_and_config(bp, vf, bnxt_vnic_count,
&count, bnxt_vnic_count_hwrm_stub);
return count;
}
static int bnxt_hwrm_func_vf_vnic_query(struct bnxt *bp, uint16_t vf,
uint16_t *vnic_ids)
{
struct hwrm_func_vf_vnic_ids_query_input req = {0};
struct hwrm_func_vf_vnic_ids_query_output *resp =
bp->hwrm_cmd_resp_addr;
int rc;
/* First query all VNIC ids */
HWRM_PREP(req, FUNC_VF_VNIC_IDS_QUERY, BNXT_USE_CHIMP_MB);
req.vf_id = rte_cpu_to_le_16(bp->pf.first_vf_id + vf);
req.max_vnic_id_cnt = rte_cpu_to_le_32(bp->pf.total_vnics);
req.vnic_id_tbl_addr = rte_cpu_to_le_64(rte_malloc_virt2iova(vnic_ids));
if (req.vnic_id_tbl_addr == RTE_BAD_IOVA) {
HWRM_UNLOCK();
PMD_DRV_LOG(ERR,
"unable to map VNIC ID table address to physical memory\n");
return -ENOMEM;
}
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
rc = rte_le_to_cpu_32(resp->vnic_id_cnt);
HWRM_UNLOCK();
return rc;
}
/*
* This function queries the VNIC IDs for a specified VF. It then calls
* the vnic_cb to update the necessary field in vnic_info with cbdata.
* Then it calls the hwrm_cb function to program this new vnic configuration.
*/
int bnxt_hwrm_func_vf_vnic_query_and_config(struct bnxt *bp, uint16_t vf,
void (*vnic_cb)(struct bnxt_vnic_info *, void *), void *cbdata,
int (*hwrm_cb)(struct bnxt *bp, struct bnxt_vnic_info *vnic))
{
struct bnxt_vnic_info vnic;
int rc = 0;
int i, num_vnic_ids;
uint16_t *vnic_ids;
size_t vnic_id_sz;
size_t sz;
/* First query all VNIC ids */
vnic_id_sz = bp->pf.total_vnics * sizeof(*vnic_ids);
vnic_ids = rte_malloc("bnxt_hwrm_vf_vnic_ids_query", vnic_id_sz,
RTE_CACHE_LINE_SIZE);
if (vnic_ids == NULL)
return -ENOMEM;
for (sz = 0; sz < vnic_id_sz; sz += getpagesize())
rte_mem_lock_page(((char *)vnic_ids) + sz);
num_vnic_ids = bnxt_hwrm_func_vf_vnic_query(bp, vf, vnic_ids);
if (num_vnic_ids < 0)
return num_vnic_ids;
/* Retrieve VNIC, update bd_stall then update */
for (i = 0; i < num_vnic_ids; i++) {
memset(&vnic, 0, sizeof(struct bnxt_vnic_info));
vnic.fw_vnic_id = rte_le_to_cpu_16(vnic_ids[i]);
rc = bnxt_hwrm_vnic_qcfg(bp, &vnic, bp->pf.first_vf_id + vf);
if (rc)
break;
if (vnic.mru <= 4) /* Indicates unallocated */
continue;
vnic_cb(&vnic, cbdata);
rc = hwrm_cb(bp, &vnic);
if (rc)
break;
}
rte_free(vnic_ids);
return rc;
}
int bnxt_hwrm_func_cfg_vf_set_vlan_anti_spoof(struct bnxt *bp, uint16_t vf,
bool on)
{
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_func_cfg_input req = {0};
int rc;
HWRM_PREP(req, FUNC_CFG, BNXT_USE_CHIMP_MB);
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[vf].fid);
req.enables |= rte_cpu_to_le_32(
HWRM_FUNC_CFG_INPUT_ENABLES_VLAN_ANTISPOOF_MODE);
req.vlan_antispoof_mode = on ?
HWRM_FUNC_CFG_INPUT_VLAN_ANTISPOOF_MODE_VALIDATE_VLAN :
HWRM_FUNC_CFG_INPUT_VLAN_ANTISPOOF_MODE_NOCHECK;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_qcfg_vf_dflt_vnic_id(struct bnxt *bp, int vf)
{
struct bnxt_vnic_info vnic;
uint16_t *vnic_ids;
size_t vnic_id_sz;
int num_vnic_ids, i;
size_t sz;
int rc;
vnic_id_sz = bp->pf.total_vnics * sizeof(*vnic_ids);
vnic_ids = rte_malloc("bnxt_hwrm_vf_vnic_ids_query", vnic_id_sz,
RTE_CACHE_LINE_SIZE);
if (vnic_ids == NULL)
return -ENOMEM;
for (sz = 0; sz < vnic_id_sz; sz += getpagesize())
rte_mem_lock_page(((char *)vnic_ids) + sz);
rc = bnxt_hwrm_func_vf_vnic_query(bp, vf, vnic_ids);
if (rc <= 0)
goto exit;
num_vnic_ids = rc;
/*
* Loop through to find the default VNIC ID.
* TODO: The easier way would be to obtain the resp->dflt_vnic_id
* by sending the hwrm_func_qcfg command to the firmware.
*/
for (i = 0; i < num_vnic_ids; i++) {
memset(&vnic, 0, sizeof(struct bnxt_vnic_info));
vnic.fw_vnic_id = rte_le_to_cpu_16(vnic_ids[i]);
rc = bnxt_hwrm_vnic_qcfg(bp, &vnic,
bp->pf.first_vf_id + vf);
if (rc)
goto exit;
if (vnic.func_default) {
rte_free(vnic_ids);
return vnic.fw_vnic_id;
}
}
/* Could not find a default VNIC. */
PMD_DRV_LOG(ERR, "No default VNIC\n");
exit:
rte_free(vnic_ids);
return rc;
}
int bnxt_hwrm_set_em_filter(struct bnxt *bp,
uint16_t dst_id,
struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_em_flow_alloc_input req = {.req_type = 0 };
struct hwrm_cfa_em_flow_alloc_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t enables = 0;
if (filter->fw_em_filter_id != UINT64_MAX)
bnxt_hwrm_clear_em_filter(bp, filter);
HWRM_PREP(req, CFA_EM_FLOW_ALLOC, BNXT_USE_KONG(bp));
req.flags = rte_cpu_to_le_32(filter->flags);
enables = filter->enables |
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_DST_ID;
req.dst_id = rte_cpu_to_le_16(dst_id);
if (filter->ip_addr_type) {
req.ip_addr_type = filter->ip_addr_type;
enables |= HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_IPADDR_TYPE;
}
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_L2_FILTER_ID)
req.l2_filter_id = rte_cpu_to_le_64(filter->fw_l2_filter_id);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_SRC_MACADDR)
memcpy(req.src_macaddr, filter->src_macaddr,
RTE_ETHER_ADDR_LEN);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_DST_MACADDR)
memcpy(req.dst_macaddr, filter->dst_macaddr,
RTE_ETHER_ADDR_LEN);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_OVLAN_VID)
req.ovlan_vid = filter->l2_ovlan;
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_IVLAN_VID)
req.ivlan_vid = filter->l2_ivlan;
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_ETHERTYPE)
req.ethertype = rte_cpu_to_be_16(filter->ethertype);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_IP_PROTOCOL)
req.ip_protocol = filter->ip_protocol;
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_SRC_IPADDR)
req.src_ipaddr[0] = rte_cpu_to_be_32(filter->src_ipaddr[0]);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_DST_IPADDR)
req.dst_ipaddr[0] = rte_cpu_to_be_32(filter->dst_ipaddr[0]);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_SRC_PORT)
req.src_port = rte_cpu_to_be_16(filter->src_port);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_DST_PORT)
req.dst_port = rte_cpu_to_be_16(filter->dst_port);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_MIRROR_VNIC_ID)
req.mirror_vnic_id = filter->mirror_vnic_id;
req.enables = rte_cpu_to_le_32(enables);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_KONG(bp));
HWRM_CHECK_RESULT();
filter->fw_em_filter_id = rte_le_to_cpu_64(resp->em_filter_id);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_clear_em_filter(struct bnxt *bp, struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_em_flow_free_input req = {.req_type = 0 };
struct hwrm_cfa_em_flow_free_output *resp = bp->hwrm_cmd_resp_addr;
if (filter->fw_em_filter_id == UINT64_MAX)
return 0;
PMD_DRV_LOG(ERR, "Clear EM filter\n");
HWRM_PREP(req, CFA_EM_FLOW_FREE, BNXT_USE_KONG(bp));
req.em_filter_id = rte_cpu_to_le_64(filter->fw_em_filter_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_KONG(bp));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
filter->fw_em_filter_id = UINT64_MAX;
filter->fw_l2_filter_id = UINT64_MAX;
return 0;
}
int bnxt_hwrm_set_ntuple_filter(struct bnxt *bp,
uint16_t dst_id,
struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_ntuple_filter_alloc_input req = {.req_type = 0 };
struct hwrm_cfa_ntuple_filter_alloc_output *resp =
bp->hwrm_cmd_resp_addr;
uint32_t enables = 0;
if (filter->fw_ntuple_filter_id != UINT64_MAX)
bnxt_hwrm_clear_ntuple_filter(bp, filter);
HWRM_PREP(req, CFA_NTUPLE_FILTER_ALLOC, BNXT_USE_CHIMP_MB);
req.flags = rte_cpu_to_le_32(filter->flags);
enables = filter->enables |
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_ID;
req.dst_id = rte_cpu_to_le_16(dst_id);
if (filter->ip_addr_type) {
req.ip_addr_type = filter->ip_addr_type;
enables |=
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_IPADDR_TYPE;
}
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID)
req.l2_filter_id = rte_cpu_to_le_64(filter->fw_l2_filter_id);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_MACADDR)
memcpy(req.src_macaddr, filter->src_macaddr,
RTE_ETHER_ADDR_LEN);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_ETHERTYPE)
req.ethertype = rte_cpu_to_be_16(filter->ethertype);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_IP_PROTOCOL)
req.ip_protocol = filter->ip_protocol;
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_IPADDR)
req.src_ipaddr[0] = rte_cpu_to_le_32(filter->src_ipaddr[0]);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_IPADDR_MASK)
req.src_ipaddr_mask[0] =
rte_cpu_to_le_32(filter->src_ipaddr_mask[0]);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_IPADDR)
req.dst_ipaddr[0] = rte_cpu_to_le_32(filter->dst_ipaddr[0]);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_IPADDR_MASK)
req.dst_ipaddr_mask[0] =
rte_cpu_to_be_32(filter->dst_ipaddr_mask[0]);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_PORT)
req.src_port = rte_cpu_to_le_16(filter->src_port);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_PORT_MASK)
req.src_port_mask = rte_cpu_to_le_16(filter->src_port_mask);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_PORT)
req.dst_port = rte_cpu_to_le_16(filter->dst_port);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_PORT_MASK)
req.dst_port_mask = rte_cpu_to_le_16(filter->dst_port_mask);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_MIRROR_VNIC_ID)
req.mirror_vnic_id = filter->mirror_vnic_id;
req.enables = rte_cpu_to_le_32(enables);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
filter->fw_ntuple_filter_id = rte_le_to_cpu_64(resp->ntuple_filter_id);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_clear_ntuple_filter(struct bnxt *bp,
struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_ntuple_filter_free_input req = {.req_type = 0 };
struct hwrm_cfa_ntuple_filter_free_output *resp =
bp->hwrm_cmd_resp_addr;
if (filter->fw_ntuple_filter_id == UINT64_MAX)
return 0;
HWRM_PREP(req, CFA_NTUPLE_FILTER_FREE, BNXT_USE_CHIMP_MB);
req.ntuple_filter_id = rte_cpu_to_le_64(filter->fw_ntuple_filter_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
filter->fw_ntuple_filter_id = UINT64_MAX;
return 0;
}
static int
bnxt_vnic_rss_configure_thor(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
struct hwrm_vnic_rss_cfg_output *resp = bp->hwrm_cmd_resp_addr;
uint8_t *rx_queue_state = bp->eth_dev->data->rx_queue_state;
struct hwrm_vnic_rss_cfg_input req = {.req_type = 0 };
struct bnxt_rx_queue **rxqs = bp->rx_queues;
uint16_t *ring_tbl = vnic->rss_table;
int nr_ctxs = vnic->num_lb_ctxts;
int max_rings = bp->rx_nr_rings;
int i, j, k, cnt;
int rc = 0;
for (i = 0, k = 0; i < nr_ctxs; i++) {
struct bnxt_rx_ring_info *rxr;
struct bnxt_cp_ring_info *cpr;
HWRM_PREP(req, VNIC_RSS_CFG, BNXT_USE_CHIMP_MB);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
req.hash_type = rte_cpu_to_le_32(vnic->hash_type);
req.hash_mode_flags = vnic->hash_mode;
req.ring_grp_tbl_addr =
rte_cpu_to_le_64(vnic->rss_table_dma_addr +
i * BNXT_RSS_ENTRIES_PER_CTX_THOR *
2 * sizeof(*ring_tbl));
req.hash_key_tbl_addr =
rte_cpu_to_le_64(vnic->rss_hash_key_dma_addr);
req.ring_table_pair_index = i;
req.rss_ctx_idx = rte_cpu_to_le_16(vnic->fw_grp_ids[i]);
for (j = 0; j < 64; j++) {
uint16_t ring_id;
/* Find next active ring. */
for (cnt = 0; cnt < max_rings; cnt++) {
if (rx_queue_state[k] !=
RTE_ETH_QUEUE_STATE_STOPPED)
break;
if (++k == max_rings)
k = 0;
}
/* Return if no rings are active. */
if (cnt == max_rings) {
HWRM_UNLOCK();
return 0;
}
/* Add rx/cp ring pair to RSS table. */
rxr = rxqs[k]->rx_ring;
cpr = rxqs[k]->cp_ring;
ring_id = rxr->rx_ring_struct->fw_ring_id;
*ring_tbl++ = rte_cpu_to_le_16(ring_id);
ring_id = cpr->cp_ring_struct->fw_ring_id;
*ring_tbl++ = rte_cpu_to_le_16(ring_id);
if (++k == max_rings)
k = 0;
}
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req),
BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
}
return rc;
}
int bnxt_vnic_rss_configure(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
unsigned int rss_idx, fw_idx, i;
if (!(vnic->rss_table && vnic->hash_type))
return 0;
if (BNXT_CHIP_THOR(bp))
return bnxt_vnic_rss_configure_thor(bp, vnic);
if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
return 0;
if (vnic->rss_table && vnic->hash_type) {
/*
* Fill the RSS hash & redirection table with
* ring group ids for all VNICs
*/
for (rss_idx = 0, fw_idx = 0; rss_idx < HW_HASH_INDEX_SIZE;
rss_idx++, fw_idx++) {
for (i = 0; i < bp->rx_cp_nr_rings; i++) {
fw_idx %= bp->rx_cp_nr_rings;
if (vnic->fw_grp_ids[fw_idx] !=
INVALID_HW_RING_ID)
break;
fw_idx++;
}
if (i == bp->rx_cp_nr_rings)
return 0;
vnic->rss_table[rss_idx] = vnic->fw_grp_ids[fw_idx];
}
return bnxt_hwrm_vnic_rss_cfg(bp, vnic);
}
return 0;
}
static void bnxt_hwrm_set_coal_params(struct bnxt_coal *hw_coal,
struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
{
uint16_t flags;
req->num_cmpl_aggr_int = rte_cpu_to_le_16(hw_coal->num_cmpl_aggr_int);
/* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
req->num_cmpl_dma_aggr = rte_cpu_to_le_16(hw_coal->num_cmpl_dma_aggr);
/* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
req->num_cmpl_dma_aggr_during_int =
rte_cpu_to_le_16(hw_coal->num_cmpl_dma_aggr_during_int);
req->int_lat_tmr_max = rte_cpu_to_le_16(hw_coal->int_lat_tmr_max);
/* min timer set to 1/2 of interrupt timer */
req->int_lat_tmr_min = rte_cpu_to_le_16(hw_coal->int_lat_tmr_min);
/* buf timer set to 1/4 of interrupt timer */
req->cmpl_aggr_dma_tmr = rte_cpu_to_le_16(hw_coal->cmpl_aggr_dma_tmr);
req->cmpl_aggr_dma_tmr_during_int =
rte_cpu_to_le_16(hw_coal->cmpl_aggr_dma_tmr_during_int);
flags = HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS_INPUT_FLAGS_TIMER_RESET |
HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS_INPUT_FLAGS_RING_IDLE;
req->flags = rte_cpu_to_le_16(flags);
}
static int bnxt_hwrm_set_coal_params_thor(struct bnxt *bp,
struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *agg_req)
{
struct hwrm_ring_aggint_qcaps_input req = {0};
struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t enables;
uint16_t flags;
int rc;
HWRM_PREP(req, RING_AGGINT_QCAPS, BNXT_USE_CHIMP_MB);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
agg_req->num_cmpl_dma_aggr = resp->num_cmpl_dma_aggr_max;
agg_req->cmpl_aggr_dma_tmr = resp->cmpl_aggr_dma_tmr_min;
flags = HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS_INPUT_FLAGS_TIMER_RESET |
HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS_INPUT_FLAGS_RING_IDLE;
agg_req->flags = rte_cpu_to_le_16(flags);
enables =
HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS_INPUT_ENABLES_CMPL_AGGR_DMA_TMR |
HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS_INPUT_ENABLES_NUM_CMPL_DMA_AGGR;
agg_req->enables = rte_cpu_to_le_32(enables);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_set_ring_coal(struct bnxt *bp,
struct bnxt_coal *coal, uint16_t ring_id)
{
struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
struct hwrm_ring_cmpl_ring_cfg_aggint_params_output *resp =
bp->hwrm_cmd_resp_addr;
int rc;
/* Set ring coalesce parameters only for 100G NICs */
if (BNXT_CHIP_THOR(bp)) {
if (bnxt_hwrm_set_coal_params_thor(bp, &req))
return -1;
} else if (bnxt_stratus_device(bp)) {
bnxt_hwrm_set_coal_params(coal, &req);
} else {
return 0;
}
HWRM_PREP(req, RING_CMPL_RING_CFG_AGGINT_PARAMS, BNXT_USE_CHIMP_MB);
req.ring_id = rte_cpu_to_le_16(ring_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return 0;
}
#define BNXT_RTE_MEMZONE_FLAG (RTE_MEMZONE_1GB | RTE_MEMZONE_IOVA_CONTIG)
int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
{
struct hwrm_func_backing_store_qcaps_input req = {0};
struct hwrm_func_backing_store_qcaps_output *resp =
bp->hwrm_cmd_resp_addr;
struct bnxt_ctx_pg_info *ctx_pg;
struct bnxt_ctx_mem_info *ctx;
int total_alloc_len;
int rc, i;
if (!BNXT_CHIP_THOR(bp) ||
bp->hwrm_spec_code < HWRM_VERSION_1_9_2 ||
BNXT_VF(bp) ||
bp->ctx)
return 0;
HWRM_PREP(req, FUNC_BACKING_STORE_QCAPS, BNXT_USE_CHIMP_MB);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT_SILENT();
total_alloc_len = sizeof(*ctx);
ctx = rte_zmalloc("bnxt_ctx_mem", total_alloc_len,
RTE_CACHE_LINE_SIZE);
if (!ctx) {
rc = -ENOMEM;
goto ctx_err;
}
ctx_pg = rte_malloc("bnxt_ctx_pg_mem",
sizeof(*ctx_pg) * BNXT_MAX_Q,
RTE_CACHE_LINE_SIZE);
if (!ctx_pg) {
rc = -ENOMEM;
goto ctx_err;
}
for (i = 0; i < BNXT_MAX_Q; i++, ctx_pg++)
ctx->tqm_mem[i] = ctx_pg;
bp->ctx = ctx;
ctx->qp_max_entries = rte_le_to_cpu_32(resp->qp_max_entries);
ctx->qp_min_qp1_entries =
rte_le_to_cpu_16(resp->qp_min_qp1_entries);
ctx->qp_max_l2_entries =
rte_le_to_cpu_16(resp->qp_max_l2_entries);
ctx->qp_entry_size = rte_le_to_cpu_16(resp->qp_entry_size);
ctx->srq_max_l2_entries =
rte_le_to_cpu_16(resp->srq_max_l2_entries);
ctx->srq_max_entries = rte_le_to_cpu_32(resp->srq_max_entries);
ctx->srq_entry_size = rte_le_to_cpu_16(resp->srq_entry_size);
ctx->cq_max_l2_entries =
rte_le_to_cpu_16(resp->cq_max_l2_entries);
ctx->cq_max_entries = rte_le_to_cpu_32(resp->cq_max_entries);
ctx->cq_entry_size = rte_le_to_cpu_16(resp->cq_entry_size);
ctx->vnic_max_vnic_entries =
rte_le_to_cpu_16(resp->vnic_max_vnic_entries);
ctx->vnic_max_ring_table_entries =
rte_le_to_cpu_16(resp->vnic_max_ring_table_entries);
ctx->vnic_entry_size = rte_le_to_cpu_16(resp->vnic_entry_size);
ctx->stat_max_entries =
rte_le_to_cpu_32(resp->stat_max_entries);
ctx->stat_entry_size = rte_le_to_cpu_16(resp->stat_entry_size);
ctx->tqm_entry_size = rte_le_to_cpu_16(resp->tqm_entry_size);
ctx->tqm_min_entries_per_ring =
rte_le_to_cpu_32(resp->tqm_min_entries_per_ring);
ctx->tqm_max_entries_per_ring =
rte_le_to_cpu_32(resp->tqm_max_entries_per_ring);
ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
if (!ctx->tqm_entries_multiple)
ctx->tqm_entries_multiple = 1;
ctx->mrav_max_entries =
rte_le_to_cpu_32(resp->mrav_max_entries);
ctx->mrav_entry_size = rte_le_to_cpu_16(resp->mrav_entry_size);
ctx->tim_entry_size = rte_le_to_cpu_16(resp->tim_entry_size);
ctx->tim_max_entries = rte_le_to_cpu_32(resp->tim_max_entries);
ctx_err:
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, uint32_t enables)
{
struct hwrm_func_backing_store_cfg_input req = {0};
struct hwrm_func_backing_store_cfg_output *resp =
bp->hwrm_cmd_resp_addr;
struct bnxt_ctx_mem_info *ctx = bp->ctx;
struct bnxt_ctx_pg_info *ctx_pg;
uint32_t *num_entries;
uint64_t *pg_dir;
uint8_t *pg_attr;
uint32_t ena;
int i, rc;
if (!ctx)
return 0;
HWRM_PREP(req, FUNC_BACKING_STORE_CFG, BNXT_USE_CHIMP_MB);
req.enables = rte_cpu_to_le_32(enables);
if (enables & HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_QP) {
ctx_pg = &ctx->qp_mem;
req.qp_num_entries = rte_cpu_to_le_32(ctx_pg->entries);
req.qp_num_qp1_entries =
rte_cpu_to_le_16(ctx->qp_min_qp1_entries);
req.qp_num_l2_entries =
rte_cpu_to_le_16(ctx->qp_max_l2_entries);
req.qp_entry_size = rte_cpu_to_le_16(ctx->qp_entry_size);
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
&req.qpc_pg_size_qpc_lvl,
&req.qpc_page_dir);
}
if (enables & HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_SRQ) {
ctx_pg = &ctx->srq_mem;
req.srq_num_entries = rte_cpu_to_le_32(ctx_pg->entries);
req.srq_num_l2_entries =
rte_cpu_to_le_16(ctx->srq_max_l2_entries);
req.srq_entry_size = rte_cpu_to_le_16(ctx->srq_entry_size);
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
&req.srq_pg_size_srq_lvl,
&req.srq_page_dir);
}
if (enables & HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_CQ) {
ctx_pg = &ctx->cq_mem;
req.cq_num_entries = rte_cpu_to_le_32(ctx_pg->entries);
req.cq_num_l2_entries =
rte_cpu_to_le_16(ctx->cq_max_l2_entries);
req.cq_entry_size = rte_cpu_to_le_16(ctx->cq_entry_size);
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
&req.cq_pg_size_cq_lvl,
&req.cq_page_dir);
}
if (enables & HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_VNIC) {
ctx_pg = &ctx->vnic_mem;
req.vnic_num_vnic_entries =
rte_cpu_to_le_16(ctx->vnic_max_vnic_entries);
req.vnic_num_ring_table_entries =
rte_cpu_to_le_16(ctx->vnic_max_ring_table_entries);
req.vnic_entry_size = rte_cpu_to_le_16(ctx->vnic_entry_size);
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
&req.vnic_pg_size_vnic_lvl,
&req.vnic_page_dir);
}
if (enables & HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_STAT) {
ctx_pg = &ctx->stat_mem;
req.stat_num_entries = rte_cpu_to_le_16(ctx->stat_max_entries);
req.stat_entry_size = rte_cpu_to_le_16(ctx->stat_entry_size);
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
&req.stat_pg_size_stat_lvl,
&req.stat_page_dir);
}
req.tqm_entry_size = rte_cpu_to_le_16(ctx->tqm_entry_size);
num_entries = &req.tqm_sp_num_entries;
pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl;
pg_dir = &req.tqm_sp_page_dir;
ena = HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_SP;
for (i = 0; i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
if (!(enables & ena))
continue;
req.tqm_entry_size = rte_cpu_to_le_16(ctx->tqm_entry_size);
ctx_pg = ctx->tqm_mem[i];
*num_entries = rte_cpu_to_le_16(ctx_pg->entries);
bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
}
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_ext_port_qstats(struct bnxt *bp)
{
struct hwrm_port_qstats_ext_input req = {0};
struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
struct bnxt_pf_info *pf = &bp->pf;
int rc;
if (!(bp->flags & BNXT_FLAG_EXT_RX_PORT_STATS ||
bp->flags & BNXT_FLAG_EXT_TX_PORT_STATS))
return 0;
HWRM_PREP(req, PORT_QSTATS_EXT, BNXT_USE_CHIMP_MB);
req.port_id = rte_cpu_to_le_16(pf->port_id);
if (bp->flags & BNXT_FLAG_EXT_TX_PORT_STATS) {
req.tx_stat_host_addr =
rte_cpu_to_le_64(bp->hw_tx_port_stats_ext_map);
req.tx_stat_size =
rte_cpu_to_le_16(sizeof(struct tx_port_stats_ext));
}
if (bp->flags & BNXT_FLAG_EXT_RX_PORT_STATS) {
req.rx_stat_host_addr =
rte_cpu_to_le_64(bp->hw_rx_port_stats_ext_map);
req.rx_stat_size =
rte_cpu_to_le_16(sizeof(struct rx_port_stats_ext));
}
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
if (rc) {
bp->fw_rx_port_stats_ext_size = 0;
bp->fw_tx_port_stats_ext_size = 0;
} else {
bp->fw_rx_port_stats_ext_size =
rte_le_to_cpu_16(resp->rx_stat_size);
bp->fw_tx_port_stats_ext_size =
rte_le_to_cpu_16(resp->tx_stat_size);
}
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int
bnxt_hwrm_tunnel_redirect(struct bnxt *bp, uint8_t type)
{
struct hwrm_cfa_redirect_tunnel_type_alloc_input req = {0};
struct hwrm_cfa_redirect_tunnel_type_alloc_output *resp =
bp->hwrm_cmd_resp_addr;
int rc = 0;
HWRM_PREP(req, CFA_REDIRECT_TUNNEL_TYPE_ALLOC, BNXT_USE_CHIMP_MB);
req.tunnel_type = type;
req.dest_fid = bp->fw_fid;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int
bnxt_hwrm_tunnel_redirect_free(struct bnxt *bp, uint8_t type)
{
struct hwrm_cfa_redirect_tunnel_type_free_input req = {0};
struct hwrm_cfa_redirect_tunnel_type_free_output *resp =
bp->hwrm_cmd_resp_addr;
int rc = 0;
HWRM_PREP(req, CFA_REDIRECT_TUNNEL_TYPE_FREE, BNXT_USE_CHIMP_MB);
req.tunnel_type = type;
req.dest_fid = bp->fw_fid;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_tunnel_redirect_query(struct bnxt *bp, uint32_t *type)
{
struct hwrm_cfa_redirect_query_tunnel_type_input req = {0};
struct hwrm_cfa_redirect_query_tunnel_type_output *resp =
bp->hwrm_cmd_resp_addr;
int rc = 0;
HWRM_PREP(req, CFA_REDIRECT_QUERY_TUNNEL_TYPE, BNXT_USE_CHIMP_MB);
req.src_fid = bp->fw_fid;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
if (type)
*type = rte_le_to_cpu_32(resp->tunnel_mask);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_tunnel_redirect_info(struct bnxt *bp, uint8_t tun_type,
uint16_t *dst_fid)
{
struct hwrm_cfa_redirect_tunnel_type_info_input req = {0};
struct hwrm_cfa_redirect_tunnel_type_info_output *resp =
bp->hwrm_cmd_resp_addr;
int rc = 0;
HWRM_PREP(req, CFA_REDIRECT_TUNNEL_TYPE_INFO, BNXT_USE_CHIMP_MB);
req.src_fid = bp->fw_fid;
req.tunnel_type = tun_type;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
if (dst_fid)
*dst_fid = rte_le_to_cpu_16(resp->dest_fid);
PMD_DRV_LOG(DEBUG, "dst_fid: %x\n", resp->dest_fid);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_set_mac(struct bnxt *bp)
{
struct hwrm_func_vf_cfg_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_func_vf_cfg_input req = {0};
int rc = 0;
if (!BNXT_VF(bp))
return 0;
HWRM_PREP(req, FUNC_VF_CFG, BNXT_USE_CHIMP_MB);
req.enables =
rte_cpu_to_le_32(HWRM_FUNC_VF_CFG_INPUT_ENABLES_DFLT_MAC_ADDR);
memcpy(req.dflt_mac_addr, bp->mac_addr, RTE_ETHER_ADDR_LEN);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
{
struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_func_drv_if_change_input req = {0};
uint32_t flags;
int rc;
if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
return 0;
/* Do not issue FUNC_DRV_IF_CHANGE during reset recovery.
* If we issue FUNC_DRV_IF_CHANGE with flags down before
* FUNC_DRV_UNRGTR, FW resets before FUNC_DRV_UNRGTR
*/
if (!up && (bp->flags & BNXT_FLAG_FW_RESET))
return 0;
HWRM_PREP(req, FUNC_DRV_IF_CHANGE, BNXT_USE_CHIMP_MB);
if (up)
req.flags =
rte_cpu_to_le_32(HWRM_FUNC_DRV_IF_CHANGE_INPUT_FLAGS_UP);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
flags = rte_le_to_cpu_32(resp->flags);
HWRM_UNLOCK();
if (!up)
return 0;
if (flags & HWRM_FUNC_DRV_IF_CHANGE_OUTPUT_FLAGS_HOT_FW_RESET_DONE) {
PMD_DRV_LOG(INFO, "FW reset happened while port was down\n");
bp->flags |= BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE;
}
return 0;
}
int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
{
struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
struct bnxt_error_recovery_info *info = bp->recovery_info;
struct hwrm_error_recovery_qcfg_input req = {0};
uint32_t flags = 0;
unsigned int i;
int rc;
/* Older FW does not have error recovery support */
if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
return 0;
if (!info) {
info = rte_zmalloc("bnxt_hwrm_error_recovery_qcfg",
sizeof(*info), 0);
bp->recovery_info = info;
if (info == NULL)
return -ENOMEM;
} else {
memset(info, 0, sizeof(*info));
}
HWRM_PREP(req, ERROR_RECOVERY_QCFG, BNXT_USE_CHIMP_MB);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
flags = rte_le_to_cpu_32(resp->flags);
if (flags & HWRM_ERROR_RECOVERY_QCFG_OUTPUT_FLAGS_HOST)
info->flags |= BNXT_FLAG_ERROR_RECOVERY_HOST;
else if (flags & HWRM_ERROR_RECOVERY_QCFG_OUTPUT_FLAGS_CO_CPU)
info->flags |= BNXT_FLAG_ERROR_RECOVERY_CO_CPU;
if ((info->flags & BNXT_FLAG_ERROR_RECOVERY_CO_CPU) &&
!(bp->flags & BNXT_FLAG_KONG_MB_EN)) {
rc = -EINVAL;
goto err;
}
/* FW returned values are in units of 100msec */
info->driver_polling_freq =
rte_le_to_cpu_32(resp->driver_polling_freq) * 100;
info->master_func_wait_period =
rte_le_to_cpu_32(resp->master_func_wait_period) * 100;
info->normal_func_wait_period =
rte_le_to_cpu_32(resp->normal_func_wait_period) * 100;
info->master_func_wait_period_after_reset =
rte_le_to_cpu_32(resp->master_func_wait_period_after_reset) * 100;
info->max_bailout_time_after_reset =
rte_le_to_cpu_32(resp->max_bailout_time_after_reset) * 100;
info->status_regs[BNXT_FW_STATUS_REG] =
rte_le_to_cpu_32(resp->fw_health_status_reg);
info->status_regs[BNXT_FW_HEARTBEAT_CNT_REG] =
rte_le_to_cpu_32(resp->fw_heartbeat_reg);
info->status_regs[BNXT_FW_RECOVERY_CNT_REG] =
rte_le_to_cpu_32(resp->fw_reset_cnt_reg);
info->status_regs[BNXT_FW_RESET_INPROG_REG] =
rte_le_to_cpu_32(resp->reset_inprogress_reg);
info->reg_array_cnt =
rte_le_to_cpu_32(resp->reg_array_cnt);
if (info->reg_array_cnt >= BNXT_NUM_RESET_REG) {
rc = -EINVAL;
goto err;
}
for (i = 0; i < info->reg_array_cnt; i++) {
info->reset_reg[i] =
rte_le_to_cpu_32(resp->reset_reg[i]);
info->reset_reg_val[i] =
rte_le_to_cpu_32(resp->reset_reg_val[i]);
info->delay_after_reset[i] =
resp->delay_after_reset[i];
}
err:
HWRM_UNLOCK();
/* Map the FW status registers */
if (!rc)
rc = bnxt_map_fw_health_status_regs(bp);
if (rc) {
rte_free(bp->recovery_info);
bp->recovery_info = NULL;
}
return rc;
}
int bnxt_hwrm_fw_reset(struct bnxt *bp)
{
struct hwrm_fw_reset_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_fw_reset_input req = {0};
int rc;
if (!BNXT_PF(bp))
return -EOPNOTSUPP;
HWRM_PREP(req, FW_RESET, BNXT_USE_KONG(bp));
req.embedded_proc_type =
HWRM_FW_RESET_INPUT_EMBEDDED_PROC_TYPE_CHIP;
req.selfrst_status =
HWRM_FW_RESET_INPUT_SELFRST_STATUS_SELFRSTASAP;
req.flags = HWRM_FW_RESET_INPUT_FLAGS_RESET_GRACEFUL;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req),
BNXT_USE_KONG(bp));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_port_ts_query(struct bnxt *bp, uint8_t path, uint64_t *timestamp)
{
struct hwrm_port_ts_query_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_port_ts_query_input req = {0};
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
uint32_t flags = 0;
int rc;
if (!ptp)
return 0;
HWRM_PREP(req, PORT_TS_QUERY, BNXT_USE_CHIMP_MB);
switch (path) {
case BNXT_PTP_FLAGS_PATH_TX:
flags |= HWRM_PORT_TS_QUERY_INPUT_FLAGS_PATH_TX;
break;
case BNXT_PTP_FLAGS_PATH_RX:
flags |= HWRM_PORT_TS_QUERY_INPUT_FLAGS_PATH_RX;
break;
case BNXT_PTP_FLAGS_CURRENT_TIME:
flags |= HWRM_PORT_TS_QUERY_INPUT_FLAGS_CURRENT_TIME;
break;
}
req.flags = rte_cpu_to_le_32(flags);
req.port_id = rte_cpu_to_le_16(bp->pf.port_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req), BNXT_USE_CHIMP_MB);
HWRM_CHECK_RESULT();
if (timestamp) {
*timestamp = rte_le_to_cpu_32(resp->ptp_msg_ts[0]);
*timestamp |=
(uint64_t)(rte_le_to_cpu_32(resp->ptp_msg_ts[1])) << 32;
}
HWRM_UNLOCK();
return rc;
}